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Kurzfassung

OPC und sein Nachfolger OPC Unified Architecture (OPC UA) sind aus der industriel-
len Automation nicht mehr wegzudenken. Es wird verwendet um die immer steigende
Komplexität der Systeme zu abstrahieren und zu modellieren. Hierzu wurde bisher
ein Server/Client Modell verwendet, um die Kommunikation zwischen Systemen zu
realisieren. In den letzten Jahren wurde OPC UA nun auch um eine Spezifikation für
ein Publisher/Subscriber Kommunikationsmodell erweitert. Dies führte zusammen mit
Time-Sensitive Networking (TSN) dazu, dass OPC UA auch für Echtzeitkommunikation
geeignet ist [1]. Mit einer weiteren Spezifikation soll nun der funktional sichere Datenaus-
tausch zwischen Systemen beschrieben werden. Das Dokument OPC UA Part 15: Safety
beschreibt Protokolle und Services für den Datenaustausch mithilfe von OPC UA. Ziel
dieser Arbeit ist es basierend auf dieser Spezifikation zwei sichere SPS-Systeme mittels
OPC UA zu verbinden und sicherheits-spezifische Daten auszutauschen. Hierzu wird ein
Beispielprogramm erstellt welches dann zum Testen und Evaluieren der Funktionalität
verwendet wird.
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Abstract

OPC and its successor OPC Unified Architecture (OPC UA) are indispensable in the
industrial automation. It gets used to abstract and model the evergrowing complexity of
systems. So far a Server/Client model has been used to realize the communication between
systems. Over the last years, OPC UA got extended with a specification describing the
Publisher/Subscriber communication model. In addition to Time-Sensitive Networking
(TSN), this resulted in OPC UA being able to implement real-time communication [1].
With an additional specification, functional safety data exchange shall be described. The
document OPC UA Part 15: Safety shows protocols and services for data exchange with
the help of OPC UA. The goal of this thesis is to connect two safe Programmable logic
controller (PLC) systems via OPC UA and to enable the exchange of safety data based
on the ideas of the specification. For this, an example program gets created, which is
then used to test and evaluate the functionality.
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CHAPTER 1
Introduction

Since the third industrial revolution, automation systems have become more complex
and more decentralized. This step towards Industry 4.0 resulted in widespread systems
where sensors and actuators with different interfaces and communication standards were
used. By that, a problem of interoperability occurred, which can be solved by using
OPC UA. It allows us to make an abstract model of the different systems and connect
them in a standardized way. Since the introduction of OPC UA, the release of different
specifications expanded the functionality of the framework. One of the most recent ones
being the Publisher/Subscriber specification which helped to take a big step towards
real-time applications using OPC UA. A topic that was not covered in detail in any of
those specifications until recently is functional safety. The latest released specification
OPC UA Part 15: Safety describes services and protocols, which extend the framework to
fulfill the requirements of functional safety as defined in the IEC 61508 and IEC 61784-3
standards. The goal of this thesis is to implement safe communication between two safe
PLCs with the help of this specification.

1.1 Motivation and problem statement

Safety has always been an important aspect when it comes to automation systems and
with the release of the new specification published by the OPC Foundation and the
Profibus Nutzerorganisation E.V., the motivation was sparked to implement and test
safe communication between two safe PLCs. OPC UA allows for interoperability and
vendor-independent communication between automation systems and has therefore taken
an important role in creating and easily connecting complex systems. Thus, an extension
to the OPC UA mechanism which fulfills the functional safety requirements is of interest.
The release of the specification presented a standardized way on how to model safe
communication using OPC UA. This new document proposes not only the behavior of
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1. Introduction

the individual endpoints for safe communication but also how to create an information
model to access these endpoints.

In this thesis, some of these techniques and models are used to create safe communication
between two safe PLC systems. The idea is to read the safe inputs of one system, transfer
them via safe communication to the other system, where they are then used to control
the safe outputs.

1.2 Methodical approach
The first step is to study the OPC UA specification and OPC UA itself to get a general
idea on how the implementation of safe communication and the creation of the needed
information model works. Further, some research is done to find relevant standards
regarding functional safety and safe communication. The next step is to create a
simple application for the safe PLC systems, which is extended later on with the safe
communication and used to test the information model. Next, the information model
is created following the guidelines of the specification. When this is completed the
application and the model are combined to create a system where the two PLCs can
communicate with each other. Finally, the complete system is tested and evaluated and
a review about the used services and protocols is given.

1.3 Structure of this thesis
Chapter 2 presents the technical background for this thesis. First, a closer look at OPC
UA with special attention to information modeling is shown. Then, some information
about the more relevant standards concerning this thesis and OPC UA is presented. At
the end of this chapter, a few of the best practices concerning information modeling are
listed.

Chapter 3 focuses on the specification OPC UA Part 15: Safety. The first section covers
the general idea of the specification and gives a summary of the content. It shows the
communication structure, information model, interfaces, and protocol used. After this,
safety-relevant standards and their connection to OPC UA Part 15: Safety are presented.

Chapter 4 then shows the use of those best practices by creating an information model
for the two PLCs such that the two systems can communicate with each other via a safe
communication. At first, the system with all modules and periphery is described. This
is followed by a short outline of the example program which is run on the PLCs. Then
the implemented information model and the communication between the two PLCs are
presented in more detail. The chapter concludes with an evaluation of the implemented
example.

The thesis concludes with chapter 5, which gives a summary and an outlook for future
work.
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CHAPTER 2
Technical background

2.1 OPC UA

The information and graphics for this chapter are taken from the book OPC Unified
Architecture by Mahnke et al. [2]. Changes to graphics and information from other
sources are marked.

OPC UA is a series of standards developed by the OPC Foundation. It is based on its
predecessor the Classic OPC and extends its functionality. Not only does it describe
the communication and data exchange between systems, but it also shows how to
systematically model them. This model can be everything, from a simple sensor to an
entire factory. The capability to do so, creates interoperability between systems and
makes it relatively easy to connect them using the protocols described by OPC UA.
These two parts, the transport and modeling of data, became the foundation of OPC UA
as shown in Figure 2.1.

When it comes to transportation of data, OPC UA defines different mechanisms for
different cases. An optimized binary TCP protocol is defined for intranet communication.
For Internet communication mappings to standards like XML or HTTP are defined.

The OPC UA Meta Model provides rules on how to model information, it gives base
modeling constructs, describes base types to build a type hierarchy, and defines entry
points into the address space. The address space contains the different items and their
properties described by the model. When accessing data, a user browses through the
address space to find the desired information.

The OPC UA Services provide the interface between server and client, where the server
acts as a supplier and the client as a consumer. The client can access small pieces of data
without having to understand the complex model of the system.
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2. Technical background

Figure 2.1: The foundation of OPC UA [2]

The architecture of OPC UA can contain different layers of information models as shown
in Figure 2.2. Different organizations or vendors can introduce these layers by extending
the base information model provided by OPC UA.

Figure 2.2: OPC UA layered architecture [2]

The elements of the graphical notation used in information modelling can be split into
two parts: nodes and references (see Figures 2.3a and 2.3b).

Figure 2.4 shows an abstract representation of an information model. It displays references
as a type of arrow, nodes as different types of shapes. References are used to connect
nodes and to show different relationships between them. Depending on the purpose of
a node, it can be of different node classes such as ObjectTypes, Methods, etc. A node

4



2.1. OPC UA

(a) Notation of Nodes

(b) Notation of references

Figure 2.3: OPC UA graphical notation (adapted from [2])

can contain attributes which can differ depending on the NodeClass. The attributes
which all nodes have in common are NodeId, NodeClass, BrowseName, DisplayName,
Description, WriteMask, and UserWriteMask. Of these seven attributes, the NodeId is
the most import one, as it uniquely identifies a node. The client uses it to address nodes
in a service call.

Node 1

Attributes

Node 2

Attributes

Node 3

Attributes

Reference 1
Reference 2
Reference 3

Reference 4 Reference 5

Reference 6

Figure 2.4: OPC UA simple model

To get a better understanding of how such a model could look like, this thesis presents
a summary of the example given by Mahnke et al. in [2]. The modeled example is an
air conditioner. It consists of a control module that offers information about the set
temperature and humidity, the actual temperature and humidity, power consumption,
fan speed, cooler state, and the possibility to turn the air conditioning on and off. The
controller is connected to a temperature sensor, a humidity sensor, a wattmeter, a fan, and
a cooler. Figure 2.5 shows s simple model of this example. The controller is an instance
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of BaseObjectType and is connected to its sensors and actuators via a HasComponent
reference. To turn the air conditioning on and off, two methods Start and Stop are used.

Controller::BaseObjectType

Temperature
::BaseDataVariable EngineeringUnit

::PropertyTypeTemperature Setpoint
::BaseDataVariable

Humidity
::BaseDataVariable

HumiditySetpoint
::BaseDataVariable

Cooler State
::BaseDataVariable

Fan Speed
::BaseDataVariable

Power Consumption
::BaseDataVariable

EnumStrings
::PropertyType

Start

Stop

An EngineeringUnit
Property can be
applied for most
Data Variables of

the example

Methods can be
used instead of

writing a
WriteOnly item

in OPC DA

Figure 2.5: OPC UA simple model

To further show the power of OPC UA and the use of type hierarchies, the example
is extended to allow for more than one controller as it would be in an office building
where each room has air conditioning. By adding a furnace to the office building, we
extend the example even further. The furnace controller contains information about
the set temperature, the actual temperature, power consumption, gas consumption,
burner state, and the possibility to turn it on and off. The controller is connected
to a temperature sensor, a flow transmitter, a wattmeter, and a burner. Figure 2.6
shows the extended model with the use of type hierarchies. The ControllerType is
used as an abstract base for all controllers. The temperature controller is an abstract
type containing all common parts. FurnaceController and AirConitionerController are
subtypes of TemperatureController and extend it with type-specific variables.
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2.2. OPC UA Standards

ControllerType

TemperatureController

Temperature
::BaseDataVariable

Temperature Setpoint
::BaseDataVariable

State
::BaseDataVariable

Power Consumption
::BaseDataVariable

EnumStrings
::PropertyType

Start

Stop

FurnaceController

Gas Consumption
::BaseDataVariable

State
::BaseDataVariable EnumStrings

::PropertyType

AirConditionerController

Humidity
::BaseDataVariable

Humidity Setpoint
::BaseDataVariable

Fan Speed
::BaseDataVariable

Abstract base type
for all Controllers

Abstract TypeDefinition
containing all common parts

Clients can be programmed
against this type

State Variable is overridden to
add States in the EnumString

Figure 2.6: OPC UA extended model

2.2 OPC UA Standards

OPC UA was released as a 16 part series of standards under the name IEC 62541-x,
where x stands for the specification number. Parts 1, 2, 11-14, and 100 are released under
Edition 1, whereas Parts 3-10 are released under Edition 2. The newest specification part
15 was published recently, under version 1.04.

The more relevant parts for this thesis are 1, 2, 3, 4, 5, 6, 8, 14, 15.

• Part 1 - Overview and Concepts [3] gives an overview of the goals of OPC UA and
provides an introduction to the concepts used to achieve these goals.

• Part 2 - Security Model [4] covers topics like user-authentification, access rights,
and secure/encrypted message transmission.
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2. Technical background

• Part 3 - Address Space Model [5] gives a more in-depth description of address space
within an OPC UA server.

• Part 4 - Services [6] provides information about the services the server provides
and the client can call.

• Part 5 - Information Model [7] gives an in-depth description of how nodes, references,
and the address space are used to create an information model.

• Part 6 - Mappings [8] contains information about data transfer between server and
client, with more in-depth information about data encoding, secure communication,
and transport protocols.

• Part 8 - Data Access [9] provides information about concepts of data access, address
space organization, and behavior rules for data-types amongst other things.

• Part 14 - PubSub [10] describes the publish subscribe pattern communication model
for OPC UA, which will be added to Part 15 - Safety [11] later on, since currently
only Server/Client communication is mentioned.

Since Part 15 - Safety is the main motivation for this thesis, it is covered in more detail
in Chapter 3.

2.3 Best practice
This section covers some of the best practices described by Mahnke et al. [2] to keep in
mind when modeling concepts in OPC UA. Because OPC UA is very flexible concerning
information modeling, the practices provided might not fit the desired application. Some
general advice before going into detail is to model the server according to the application.
There is no need for a big information model if the client is only accessing some variable
values. Also, it might be better to use standardized types instead of creating new types.
Clients that know such models can make use of them instead of generically accessing the
data.

When it comes to structuring the information model, it can be useful to use objects,
different reference types, and views. If clients are browsing the address space when
accessing information, it is better to structure it with several objects instead of having
one object with lots of variables. Different criteria can be used to group the variables to
objects such as configuration data or measurement data. When creating a complex model
where a simple hierarchy is no longer sufficient, it is good practice to make use of the
different reference types, hierarchical or non-hierarchical. Before creating new reference
types, it should be checked if already existing ones might fit the desired purpose. If a
new one is created, it has to use the most appropriate reference type in the existing
ReferenceTypes as supertype, since clients might filter based on standard ReferenceTypes
when accessing the address space. If there is a big amount of nodes in the model, it might
come in handy to use views to show only parts of the address space for each specific task.
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2.4. Functional safety

2.4 Functional safety
With the growing complexity of industrial automation systems and the number of tasks
they take over from humans, the safety of those systems is more relevant than ever. Safety
is defined as the freedom from harm to people, property or the environment. Functional
safety utilizes different methods to identify hazardous events that can cause harm and
applies protective measures to reduce the consequences of them. To ensure the safety of
a system, the principles of functional safety are used from the beginning of development
until the retirement of the system.

An important step to achieve functional safety is risk assessment. A general method for
this is described by Gehlen in [12], and consists of five steps:

• Establishing the limitations of a system

• Identifying hazards and hazard situations

• Assessing the risk for each identified hazard

• Evaluate the risk and deciding the need for risk reduction

• Removing or preventing the hazard with protective measures

The repeated execution of these five steps results in an iterative process, which is used to
reduce hazards as much as possible and to find appropriate protective measures.

When it comes to analyzing and identifying the hazards and risks of a system, different
methods can be used. Börcsök explains some of them in [13]. The forward-search starts
with an event and follows the real timeline to find hazards that result from it. The
opposite of this method is backwards-search. Here the consequences of already triggered
events are used as the start for the analysis. It is searched in reversed chronological
order for other events, which can result in the same consequences. Another method is
the bottom-up search, where the chronological error propagation is examined. It starts
with the origin error source and then each element of a system is analyzed to see if it is
affected by it. The top-down search, as opposed to bottom-up, starts with the element
that poses the most harm for people or the environment. From there possible error
sources are searched, which finally leads to the root error cause.

Another important aspect to better assess the risk of a system or a process is likelihood-
analysis, which estimates failure rates and frequency of different events. These rates
are generally estimated through information won by experience. If a system is complex,
most of the time there are not enough empirical values to create a statistic. In this case,
fault-propagation models are used. With those models, the complex system is split up in
smaller parts, which, concerning statistical evaluation, can be compared to other smaller
elements. By combining the results of these subsystems, a failure probability of the
whole system can be calculated. Some of these fault-propagation models are fault-tree,
event-tree, block-diagram, and Markov chains.
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2. Technical background

After completing the risk assessment and calculating the failure probability, there are
two ways a user can classify a system. One is by using the Safety Integrity Level (SIL)
which is defined in the IEC 61508 [14]. Here, the system is categorized with a SIL of 1-4,
depending on the average failure probability and how high the demand of the system is.
Another way is the Performance Level (PL) defined in the ISO 13849-1 [15]. Here the
system is classified with a PL from a-e, depending on the average failure probability.

Functional safety has to cover a large scope of applications and systems. Because of
this, there exist a lot of standards for different areas covering this topic. One of the
most import ones is the IEC 61508 [14], also referred to as the basic safety standard. It
provides the basis for almost all safety applications. Covered in it is the complete lifecycle
of safety-specific systems, starting at the development up to the retirement. Some other
important standards are the IEC 61511 [16], which covers systems for the process industry
sector, and the IEC 61784-3 [17], which covers functional safety communication. Also
important are the ISO 13849 [15] [18], which covers safety-related parts of a control system,
the ISO 12100 [19], which gives general design principles to create safe machines, and
the IEC 62061 [20], which covers safety-related electrical, electronic and programmable
electronic control systems. Section 3.5 presents more standards and how they connect to
the specification OPC UA Part 15: Safety.

There exist many protocols for industrial Ethernet to enable two systems to communicate
with each other, for example, PROFINET, POWERLINK, Modbus TCP or Ethernet.
Some of these have implementations, which can ensure functional safety for communication.
If a communication protocol is used, for which it is not possible to prove that it ensures
functional safety, the Black Channel Principle can be used.

It was first described in the IEC 61508 [14] and allows for the transmission of non-safe
and fail-safe data over the same network channel. Safety components utilizing this
principle use an isolated safety protocol, which tunnels the non-safe network layer. Since
this is only a protocol and not a physical connection, the available bandwidth is shared
with the regular data exchange and depends on the used protocol. Because a non-safe
channel is used, it is necessary to detect communication errors. To do so, a safety layer
is implemented between the non-safe communication channel and the safety application,
which performs the error checks. How accurately these communication errors need to be
detected is defined by the SIL needed by the application. This Black Channel Principle
is the basis for OPC UA Safety.

10



CHAPTER 3
OPC UA Safety

The following chapter gives more in-depth information about the specification OPC
UA Part 15: Safety Release 1.04. The content of this chapter is taken from [11]. It
addresses the protocols and services used for data exchange and gives more detail on how
to implement them. The specification defines a safety communication layer, which allows
the exchange of safety-related data by devices using OPC UA. By implementing this
communication correctly, it is possible to fulfill the requirements for the international
standards IEC61508 and IEC61784-3. The protocol used performs different checks to
ensure safe communication between two parties. These checks contain Cyclic Redundancy
Check (CRC) to detect transmission errors, timeouts to make sure the communication is
still up and running, monitoring numbers to check for the correct order of messages, and
a set of IDs identifying messages.

3.1 Communication structure

To enable two systems to communicate with each other, OPC UA utilizes a Server/Client
or the more recently introduced Publisher/Subscriber model and a TCP/IP or UDP
connection. If both of these systems would run safety specific applications and they
would exchange data, then this data would be transmitted over a non-safe channel. This
means that on this channel, a communication error can occur, which could falsify or alter
the data. Subsequently, the use of this modified data could lead to unexpected behavior
in the receiver and cause problems with the safety application.

To prevent this from happening, the specification presents a way that both parties can
safely communicate with each other over a non-safe channel. A safety transmission
protocol is put on top of the standard OPC UA transmission system. This protocol is
used to detect errors that might occur during the communication. Figure 3.1 shows the
extended communication layers for OPC UA Safety.
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3. OPC UA Safety

Figure 3.1: Safety layers [11]

The OPC UA layer implements the server and the client used for the communication.
Here the method and service calls take place. The application layer contains the Safety-
Application. The OPC UA Safety layer implements safe communication. It consists of
the SafetyProvider and the SafetyConsumer. It is connected directly to the application
layer through a machine-specific interface.

The communication between the SafetyProvider and the SafetyConsumer is based on a
request/response schema and uses a point-to-point communication model to transmit the
data unidirectional. Each request/response contains a Safety Protocol Data Unit (SPDU),
which holds the safety data. But before they can exchange data, basic information, such
as the IDs, is exchanged to ensure safe communication. After this initialization process,
data exchange can be performed. If the application needs bidirectional communication,
two pairs of SafetyProvider and SafetyConsumer have to be instantiated. It is also
possible to create a multicast communication link. For each SafetyConsumer, its own
SafetyProvider has to be created. Because the SafetyProvider requires low memory and
the SafetyConsumer performs all the checks to ensure no errors occurred, it is possible to
create multiple SafetyProviders on the same controller.
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3.2 Information Model

Figure 3.2 shows the information model for the SafetyProvider. The SafetyProvider is a
subtype of SafetyObjects and holds three components.

BaseObjectType

SafetyObjectsType

SafetyProviderTypeSafetyConsumerType

ReadSafetyDiagnostics

PropertyType:
OutputArguments

ReadSafetyData

PropertyType:
InputArguments

PropertyType:
OutputArguments

SafetyParametersType
Parameter

OPC UA

OPC UA Safety

Figure 3.2: Server Objects for OPC UA Safety

One of the components is the SafetyParameters for which Figure 3.3 displays the infor-
mation model. They hold important information like the SafetyProviderLevel or the
SafetyProviderID and SafetyBaseID which are exchanged at the beginning of communi-
cation and determine if fail-safe or application data is transmitted. If an application uses
the fail-safe data, it changes into a fail-safe state. The system is now in a state where no
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3. OPC UA Safety

or minimal harm can be caused to the system itself or people.

BaseObjectType

SafetyParametersType

PropertyType:
SafetyProviderLevel

PropertyType:
SafetyProviderDelay

PropertyType:
StructureSignatureVersion

PropertyType:
StructureSignatureIdentifier

PropertyType:
SafetyProviderID

PropertyType:
SafetyBaseID

OPC UA Safety

OPC UA 

Figure 3.3: Safety Parameters for SafetyProvider

The method ReadSafetyData is used to read safety data from the SafetyProvider. Table
3.1 shows the signature of the method. The arguments OutSafetyData and OutNonSafe-
tyData are application dependent and can be defined as needed.

The method ReadSafetyDiagnostics is used as a diagnostic interface for each Safe-
tyProvider and can access the received and sent SPDUs. Table 3.2 displays the signature
of the method.
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3.3. Interfaces

Type Datatype Name
in UInt32 InSafetyConsumerID
in UInt32 InMonitoringNumber
in Byte InFlags
out Structure OutSafetyData
out Byte OutFlags
out UInt32 OutSPDU_ID_1
out UInt32 OutSPDU_ID_2
out UInt32 OutSPDU_ID_3
out UInt32 OutSafetyConsumerID
out UInt32 OutMonitoringNumber
out UInt32 OutCRC
out Structure OutNonSafetyData

Table 3.1: Signatur of ReadSafetyData

Type Datatype Name
out UInt32 InSafetyConsumerID
out UInt32 InMonitoringNumber
out Byte InFlags
out Structure OutSafetyData
out Byte OutFlags
out UInt32 OutSPDU_ID_1
out UInt32 OutSPDU_ID_2
out UInt32 OutSPDU_ID_3
out UInt32 OutSafetyConsumerID
out UInt32 OutMonitoringNumber
out UInt32 OutCRC
out Structure OutNonSafetyData

Table 3.2: Signatur of ReadSafetyDiagnostics

3.3 Interfaces
OPC UA Safety uses four interfaces to interact with the communication layers. These
interfaces are described as abstract and informative. The correct implementation can
change vendor-specific. The four interfaces are:

• Safety Application Program Interface (SAPI) is accessed during runtime to exchange
safety data

• Safety Parameter Interface (SPI) is accessed during commissioning to set the safety
parameters
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• Diagnostic Interface (DI) is accessed during runtime to run diagnostics on the
communication

• OPC UA platform interface (OPC UA PI) is accessed during runtime and connects
the Safety Communication Layer to the non-safe OPC UA stack

3.4 Protocol
The protocol is based on a request/response schema. When the SafetyConsumer calls
the ReadSafetyData method, the three input arguments specified in the signature of
the method (see Table 3.1) are passed, which make up the RequestSPDU. The Safe-
tyProvider then creates the ResponseSPDU according to the signature, by copying the
SafetyConsumerID and the MonitoringNumber from the RequestSPDU directly to the
ResponseSPDU. The calculation of the SPDU_ID is shown in Table 3.3.

SPDU_ID_1 := SafetyBaseID (bytes 0..3) XOR SafetyProviderLevel_ID
SPDU_ID_2 := SafetyBaseID (bytes 4..7) XOR SafetyStructureSignature
SPDU_ID_3 := SafetyBaseID (bytes 8..11) XOR SafetyBaseID (bytes 12..15)

XOR SafetyProviderID

Table 3.3: Calculation of SPDU_ID

The CRC_SPDU sequence created for the CRC calculation is made up of two parts,
the STrailer, which consists of SafetyConsumerID, MonitoringNumber, SPDU_ID_3,
SPDU_ID_2, SPDU_ID_1, Flags (in this order), and the SData, which holds the safety
data. The data is encoded using big-endian. The calculation of the CRC is done in
reverse order, starting by the highest byte and ending at byte 0. It is important to note
that the NonSafetyData is not part of the CRC calculation.

The two state diagrams shown in Figure 3.4 and 3.5 describe, how the SafetyProvider
and SafetyConsumer handle the protocol.

Because the SafetyConsumer performs all of the safety checks, the state diagram for
the SafetyProvider is kept relatively simple and consists of only three states and three
transitions. In the initialization state, the necessary data gets initialized with 0. After the
initialization, it transitions into the state S1_WaitForRequest. There it waits for a request
of the SafetyConsumer. When receiving such a request, it fetches the RequestSPDU,
sets the MonitoringNumber and SafetyConsumerID in the SAPI and transitions into the
state S2_PrepareSPDU. There the required flags are set, and the ResponseSPDU is built
as described before. When completing this, the SafetyProvider sets the ResponseSPDU
and transitions back into state S1_WaitForRequest.

The state diagram of the SafetyConsumer consists of 9 states and 15 transitions between
them. It performs all the safety checks here, consisting of the CRC check, watch-
dog timeout, SafetyErrorIntervalTimer expired, and SPDU check. First, all the re-
quired data gets initialized to 0 in the initialization state. After this, it transitions
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Figure 3.4: State Diagram for SafetyProvider [11]

into the S11_WaitForRestart state, where the SafetyConsumer waits until the Safety
Layer is (re)started. When the SAPI.Enable is set to 1 it switches into the next state
S12_Initalize_MNR, where a MonitoringNumber gets chosen, either to a previous one if
known, or a random one within the allowed range. With the next transition into state
S13_PrepareRequest, the SafetyConsumer enters the Request/Response part. Here the
RequestSPDU is built and with the transition into state S14_WaitForChangedSPDU the
RequestSPDU is sent. In this state, the Safety Layer is waiting on the ResponseSPDU
from the SafetyProvider. If no new response is received, the SafetyConsumer changes
into the S17_Error state. Otherwise, it transitions into S15_CRCCheckSPDU, where it
performs the CRC check. If the CRC is erroneous and the SafetyErrorIntervalTimer has
not expired, it changes into S17_Error. If the CRC is erroneous and the SafetyErrorInter-
valTimer has expired, the SafetyConsumer switches back into the S13_PrepareRequest
state. Otherwise, if the CRC check is ok, it transitions into S16_CheckResponseSPDU.
Here the SafetyConsumerID, the SPDU_ID, and the MNR are checked. If those checks
are not ok and the SafetyErrorIntervalTimer has not expired, it changes into S17_Error.
If those checks are not ok and the SafetyErrorIntervalTimer has expired, it switches
back into S13_PrepareRequest. Otherwise, if all checks are ok, it transitions into
S18_ProvideSafetyData. There the safety data is provided to the application. From
there it either switches to S11_WaitForRestart or S13_PrepareRequest, depending on if
SAPI.Enable is set to 0 or 1. If the SafetyConsumer enters state S17_Error the Safety
Data is set to the fail-safe values and the bit for operator acknowledgment is set.

This is just a summary of how the SafetyProvider and SafetyConsumer implement this
protocol. The specification provides more detail on all guard conditions and activities
performed in each state (see [11]).
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Figure 3.5: State Diagram for SafetyConsumer [11]

3.5 Relevant Standards
For this specification, several standards are important. As mentioned before in Chapter
2.2, the OPC UA specifications parts 1, 2, 3, 4, 5, 6, 8, and 14 are important. Further
referenced in the specification are:

• IEC 61784-3:2017 [17] which covers general rules and profile definitions for func-
tional safety fieldbuses

• IEC 61000-6-7 [21] which gives information about immunity requirements for parts
intended to perform in safety systems in the industry

• IEC 61508 [14] which provides information about the functional safety of electronic
safety-related systems
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• IEC 61511 [16] which covers functional safety for the process industry sector

• IEC 62061 [20] which describes the functional safety of safety-related electronic
control systems

• ISO 13849-1:2015 [15] which provides general principles for the design of safety-
related parts of the control system

• ISO 13849-2:2012 [18] which covers the validation of safety-related parts of the
control system

Figure 3.6 shows the relation between those standards and the specification. An arrow
from one standard to another means that it gets referenced in that standard.

Figure 3.6: Relationship between standards [11]
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CHAPTER 4
Prototype

This chapter presents the implementation of safe communication between two safe PLCs
with regards to the specification. It takes a closer look at the used systems and how to
use OPC UA on them, before describing the example program run on them. After this,
the main motivation of this thesis is shown, the implementation of safe communication
between the two PLCs. For this, the information model presented in chapter 3 is used,
and the example program is extended to incorporate the OPC UA connection and the
fail-safe states. Further, this chapter describes some of the pitfalls when operating OPC
UA on the B&R PLCs. It closes with an evaluation of the implementation.

4.1 B&R System

The system used in this thesis is produced by the company B&R, a manufacturer of
automation technology. It’s an ETA system with the following elements: a PLC with its
modules, an input field with a button, a rotary switch, and an emergency stop button,
a light curtain, a fan, the necessary cabling and control devices. Table 4.1 shows the
modules and elements of the PLCs.

Module Identifier
CPU X20CP1586
SafeLogic X20SL8100
Bus Coupler X20BC0083
Power Supply X20PS9400
Safe Digital Output X20SO2110
Digital Input X20DI6371
Safe Digital Input X20SI4100

Table 4.1: Components of the PLC
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Figure 4.2 displays the configuration of this hardware. The order of the components
corresponds to Table 4.1. Connected to one of the safe input modules are the emergency
stop button and the light curtain, which uses 2-channel equivalent evaluation to detect
errors. The rotary switch connects to the other module, where each valid state connects
to a standard safe digital input. The button connects to unsafe inputs. The fan connects
to the safe outputs via a contactor. Figure 4.2 shows this configuration.

Figure 4.1 displays the system setup showing only the emergency stop button and the
fan from the in/outputs.

System 1 System 2
TCP/IP

Figure 4.1: System setup

4.2 Implementation

4.2.1 Example Program

As a basis to test safe communication, an example program provided by B&R in [22]
is used and the information and graphics for this section are taken from this manual.
The project as provided was not finished since some of the safety aspects were not
implemented. And to make it more convenient to work with, the project was rewritten
from structured text to ANSI C (see Listing 6.1). The example simulates the control
of a circular saw. The green start button starts and stops the saw. This button also
acknowledges errors and fail states. The light curtain prevents from reaching into the
saw and will stop it if the light curtain gets interrupted. The emergency stop button
stops the saw when pressed and keeps it stopped until the button is unlocked again. The
rotary switch changes between automatic and manual mode, which are described later on.
Figure 4.2 shows the hardware setup of this example. There are two differences between
the shown setup and the real hardware used: a fan simulates the saw and the rotary
switch only has two valid states and not 8 as shown.

The program implements the safety requirements as described in [22]. After startup
no acknowledging of the emergency stop button, the light curtain or rotary switch is
necessary. An acknowledgment is required if:

• the emergency stop button gets unlocked

• the light curtain was interrupted

• the rotary switch is in an invalid state for longer than 250 ms
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Figure 4.2: Hardware setup of the Example Project [22]

The simultaneity of the multi-channel evaluation for the emergency stop button must lie
within 200ms, for the light curtain within 300ms.

As described before, the application has two operating modes, which can be chosen by
the rotary switch: a manual and an automatic mode. In the manual mode, the light
curtain is not active, the output is only active as long as the button is pressed and a
violation of the safety requirements needs to be acknowledged with a positive pulse on
the button. In the automatic mode, the light curtain is active, the output is always set
as long as no safety violation occurs and such a violation needs to be acknowledged with
a positive pulse on the button.

The main logic of the program is developed in Automation Studio (AS) [23] and written
in ANSI C. To evaluate the safety elements of the application, the SafeDesigner (SD)
[24], an application developed by B&R to program safe PLCs, was used and the logic
was implemented as a Function block diagram (FBD). The connection between those
two programs is made in the SD in the Safe View Tab. There it is possible to assign
variables used in AS to variables used in the SD. Figure 4.3 shows an example of such an
assignment.

Figure 4.3: Assignment of variables in the Safe View
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It is important to note, that it is possible to configure the safe digital outputs with a
restart lock. This is done in the module configuration by setting the digital output to
direct as shown in Figure 4.4. If this configuration is chosen, the output needs to be
released with a delay. In this case, a delay of 100ms is chosen, which is achieved in the
SD with a timer.

Figure 4.4: Configuration of output module

In the Safe View Tab, the parameters for each module can be set. For most of the inputs
and outputs used, the default values can be applied. An exception to this are the inputs
for the light curtain. Each input channel is assigned a pulse mode which is used to choose
between the internal or external clock generation. Since the light curtain is an active
sensor, this signal needs to be deactivated for it to work correctly. Figure 4.5 displays
this configuration for SafeDigitalInput01.

Figure 4.5: Input Configuration for the Light Curtain
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4.2.2 OPC UA in Automation Studio

Configuration

Recent B&R PLCs are equipped with an OPC UA System, which can be activated
in the CPU configuration. After activating it, it is possible to access the settings of
the system. Here the port the system operates on can be set, the user authentification
changed and some general limits and settings of the OPC UA server set. An important
setting to change, when using an external information model, is the PV Model version of
the nodeset files. It is set to version 1.00 by default, but it needs to be set to 2.00 for it
to work with imported nodeset files. Such a file describes the information model using
XML.

The information model used is specified in chapter 3 and was implemented in UA Modeler
[25]. Figure 4.6 shows the OPC UA diagram of the SafetyProvider, Figure 4.7 of the
SafetyParameters implemented in UA Modeler.

Figure 4.6: SafetyProvider model in UA Modeller
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Figure 4.7: SafetyParameter model in UA Modeller

To use it in AS, the model has to be exported as an XML file, then it has to be copied into
the OPC UA folder of the configuration in AS and the file ending needs to be changed to
.uanodeset. Another thing to consider is the version of the integrated models, since with
UA Modeler by default newer, unsupported versions are used. The supported versions
are shown in Table 4.2.

NamespaceUri Version PublicationDate
http://opcfoundation.org/UA/ 1.04 2018-05-15T00:00:00Z
http://opcfoundation.org/UA/DI/ 1.01 2013-12-02T00:00:00Z
http://PLCopen.org/OpcUa/IEC61131-3/ 1.00 2010-03-24T00:00:00Z

Table 4.2: Supported Versions on B&R Systems

To use the methods described in the model, they need to be declared in AS. For this, the
method with its input and output arguments needs to be defined as an OPC UA method
in the .uam file of the project. Listing 6.2 shows this for the ReadSafetyData method.

The declared methods are then visible in the default view of the OPC UA system. To
connect the information model with the methods in AS the references need to be set.
This is done in the properties of a method in the default view. There the namespace
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and index of the method in the nodeset file are provided. Figure 4.8 shows this for the
ReadSafetyData method.

Figure 4.8: Reference for ReadSafetyData

Server & Client

Since this work requires a bidirectional communication between the two PLCs, it is
necessary that each PLC is both, Server and Client. AS contains predefined libraries
that can be used to operate the OPC UA server and communicate with it.

The AsOpcUas library provides interfaces to the OPC UA server. It contains a few
different functions, such as creating and deleting methods or getting a namespace index.
This work only needs the UaSrv_MethodOperate function. Since this function works
asynchronously it needs to be called cyclically. This function checks, whether a method is
called and once called to execute it. Figure 4.9 shows the states of this function and thus
of the server. In the first state the server checks, whether a client called the method. If
this is the case, valid data is available on the input arguments. The server then switches
into the next state where it executes the method. When this is done, it changes into the
last state and finishes up the method call. Now the output variables hold valid values for
the output arguments of the method, and they are transferred to the client.

check if method 
is called

execute method
code finish method call

method is called method completed

Figure 4.9: States of the Server

The AsOpcUac library supports the communication with the OPC UA server. It contains
different functions like connect/disconnect to a server, subscribe to a server or write a
node. This thesis only needs a few of those functions. Figure 4.10 shows the states the
client completes, where each state contains a function call to a library function. All of
those functions are asynchronous and must be called cyclically until the Done variable of
the function is set to TRUE.
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The first step of the client is to connect to the OPC UA server. Here it provides the
username and password, if necessary, and the IP-address and port. This call returns
a connection handle, which the client then uses in the following function calls. If the
connect was successful, the next step is to obtain the namespace index of the PLC with
the getNamespaceIndex function. This index is used to get the method handle. The
handle represents the node for further use in other functions, such as the method call.
After obtaining the handle, the program is ready to call the method. Here it uses the
connection handle and method handle to call the method on the server. This is done
cyclically until the program exits. On exit, it releases the method handle and the client
disconnects from the server.

If the connection between server and client is lost because a function timed out, which can
be caused by an overloaded server or a disconnected cable, then the client automatically
tries to reconnect to the server and get the same session as before. If this is not successful
then the connection must be reestablished as shown in Figure 4.10 starting in the connect
state.

connect get Namespace
Index

get Method
Handle

call Methodrelease Method
Handle

successfully connected Namespace obtained Methodhandle obtained

exit Programm

disconnect

Methodhandle released

Figure 4.10: States of the Client

4.3 Evaluation

To evaluate the functionality of the program and the connection between the PLCs a
simple example of safe communication was implemented. The goal for this example is,
to read the emergency stop button from the safe inputs from one PLC, transfer it with
OPC UA to the other PLC and use it there to control a safe output. The method used
for the data exchange is the ReadSafetyData method described in the specification and
used in the information model. For simplicity, the SafetyData variable was changed from
a struct to a bool. Another functionality shall be to detect connection errors, in which
case the PLC should go into a fail-safe state. This is implemented by setting the method
timeout value in the application. In Figure 4.11 this test setup can be seen. In addition
to the two PLCs, it also shows the stress tester and Wireshark connection, which are
used later on.
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TCP/IP

SPLC PLC

10ms 10ms10ms50ms

OPC UA
Server

OPC UA
Client SPLCPLC

10ms 10ms

Stress-
tester

Wireshark

Figure 4.11: Test setup

4.3.1 Timing Analysis

Since this example uses a Server/Client model with a TCP/IP connection, the client
needs to send a request each time it wants to read the value of the emergency stop button.
As soon as the initial connection between the server and the client is established, the
client starts sending requests to the server. It sends a new one, as soon as the server
responds or every 10ms if the server responds faster than that. In our case, the server
response takes about 50ms. This stems from the 10ms cycle time of the PLC and the five
states of the state machine the server has to get through until it sends the response. This
results in a worst-case Round Trip Time (RTT) of 80ms, which consists of 10ms until
the client sents the request, 60ms until the server responds, and 10ms until the client
reads the received value. This time is then used to set the timeout of the method call,
which is used to detect a connection error. This could be a disconnected cable, or an
overloaded server, which can not reply in time. The client then uses the received value,
or the fail-safe value in case of an error, in the program logic to control the fan connected
to the safe output. Figure 4.12 shows the requests and responses of this communication
in a sequence diagram.

Call Method

Return Safety Data~50ms

Request Safety Data

Read Safety Data

Send Response
Set Safety Data

:PLC :OPC UA
Client

:OPC UA
Server :PLC

Figure 4.12: Sequence diagram of the communication

The first test performed used different values of timeouts for the method call, namely
40ms, 60ms, and 80ms. In the first case, every request resulted in a timeout as expected

29



4. Prototype

and the application is always in a safe state. With 60ms, most of the requests got a
response and the application performed correctly, but still, sometimes a timeout occurred.
This depends on when within the cycle one PLC sents the request and when the other
PLC receives this request. That may put the RTT below or above the timeout value.
This problem disappeared almost completely when the 80ms timeout was used, since
the worst-case RTT is 80ms. But the stress test, later on, will show, that with 80ms
problems can still occur.

That behavior changes when in addition to the two PLCs, we sent requests from external
systems to the OPC UA server. Because the server needs to perform other methods or
read other attributes apart from the safety application, the response time of it for the
ReadSafetyData method call may get greater than 50ms, which would result in a greater
worst-case RTT. Thus, a timeout could also occur with 80ms. A simple test to show
this behavior is to use UA Expert [26] to call the ReadSafetyData method. When doing
so, the server queries the method call and then executes it. While this is executed, the
PLC calls the ReadSafetyData method, which is also queried and now needs to wait for
the completion of the UA Expert call. This results in a 50ms wait, which in further
consequence results in a RTT of the PLC request greater than 100ms, and therefore the
method times out and the application switches into the safe state.

4.3.2 Stress test

To test the integrated OPC UA server in the B&R PLC, a stress test of the system
was performed. The goal of this experiment was to find out, how the RTT of the
ReadSafetyData method changes, depending on the server workload. For this, the
computer as shown in Figure 4.11 created threads with OPC UA clients. These clients
would send 1000 attribute read requests per second each to the server. The tests ranged
from one to ten threads and each one was run for approximately one minute.

With Wireshark [27], the network traffic created during this test was captured and stored
in a .pcapng file. This file is then used in a python script to analyze the data (see Listing
6.3). To reduce the amount of data the script has to evaluate, the Wireshark file was
filtered, so that only the ReadSafetyData method calls (requests and responses) to the
PLC spammed with attribute reads are shown. The script then iterates over all ten files
and calculates the average RTT of the method call. Furthermore, it stores the minimum
and maximum values and calculates the 95% confidence interval. Figure 4.13 shows the
results of this test.
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Figure 4.13: Stress test results

We can see that up until five threads the RTT lays within a much tighter interval than
from six to ten threads. This can be attributed to the method timeout, which only occurs
if more than five threads are used. This timeout plus the time it takes to reconnect to
the server can increase the RTT to over 1s.

Figure 4.14 shows a cutout of Figure 4.13 to closer examine the results of the test. We
can see, that for all tests, the minimum value is about 40ms. In the tests with more
clients, these low values are captured at the beginning, where not as many requests are
queried on the server. For one to five threads the max value is just about, or slightly over
the timeout, meaning that it could be possible for the application to timeout even at a
low workload. For six to ten threads the max value as seen before can be as high as 1s.

The average RTT, represented by the green dot, for one to five clients, lays at about
51ms. For six and more, the averages vary from 90ms to 100ms. The dark green bar
represents the 95% confidence interval. For the first five tests, we can see, that this
interval is very small, as opposed to the last five, where it is more spread apart. This
interval and the average show that in general, the application will not timeout if five or
fewer clients are used, but as soon as 6 or more clients send requests, the application
changes into a safe state most of the time.
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Figure 4.14: Cutout of stress test results

The stress test showed, that the estimated worst-case RTT was underestimated. Even at
a low workload, some requests timed out, meaning that the application would change
into a fail-safe state. To fix this behavior, the timeout set for the method needs to be
increased to 100ms, which is still in a valid range for standard safety applications.
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CHAPTER 5
Conclusion and future work

Motivated by the publication of the specification OPC UA Part 15: Safety by the OPC
Foundation, this thesis presented a simplified approach for safe communication between
two PLCs. To achieve this, a closer look at the specification was provided and then some
of the ideas were used to create a safe communication example.

The example consists of two B&R PLC systems, which exchange data via OPC UA. Each
of these systems runs an application, which simulates the control of a saw system. To
enable a bidirectional communication, each PLC hosts its own OPC UA server. To make
it possible for a client to read safety data from the server, the information model from the
specification is used and the ReadSafetyData method is implemented. The application
then uses the safety data provided by the method response to decide whether or not to
change to a fail-safe state.

The evaluation of this application showed that the communication between the two PLCs
works well, but depends heavily on the cycle time of the PLC and on the timeout set
for a method call. As soon as external systems start to send requests to the server, the
functionality of the safe system could get interrupted. Depending on how many requests
are sent from the external client, the application changes to a fail-safe state, if the server
cannot respond in time.

The stress tests showed, that if more than five external clients sent 1000 read requests
per second to the server, the RTT can get as big as 1s and the average is put over 80ms,
meaning that the application will timeout most of the time. With less than five external
clients, the application works, but could still timeout, as some RTTs are still over 80ms.
To fix this behavior the timeout would need to be set to 100ms, which is still acceptable
for safety applications. The results of this stress test show that the safety function works,
but more importantly, it illustrates the need for the timing analysis of the whole system
and the worst-case RTT.
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Future work could make an extension to this application, by implementing more of
the concepts described in the specification, such as CRC checks or monitoring number.
Also, the diagnostic interface could be added to get a reading of the inner states of
the application. Because of the work the OPC Foundation is currently putting into
developing and describing the interfaces and the stack used, it might also be possible for
future theses to incorporate these interfaces and the provided stack to create a complete
safety system as described in the specification.
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CHAPTER 6
Appendix

6.1 Example Program
//check safety components for errors
bSFState_ok = diStateEStop && diStateLightCurtain && SafetyData_c.

OutSafetyData;
bSFFub_ok = !comError_SF_EStop && !comError_SF_ESPE && !

comError_SF_ModeSelector;

//set request to start saw
if(diStartStopQuit==true && diStartStopQuit_old!=diStartStopQuit &&

comMode_Auto==true && bResetRequest==false)
bCmdSaw = true;

else if(diStartStopQuit==true && comMode_Hand==true && bMode_Hand==true)
bCmdSaw = true;

//set request to stop saw
if(diStartStopQuit==true && diStartStopQuit_old!=diStartStopQuit &&

comMode_Auto==true && diStateSawOn==true)
bCmdSaw = false;

else if(diStartStopQuit==false && comMode_Hand==true && diStateSawOn==true)
bCmdSaw = false;

//safety components not ok, set request for error reset
if(bSFFub_ok==false || bSFState_ok==false){

bCmdSaw = false;
bResetRequest=true;
bMode_Hand=false;

}
comReset_SF = false;

//reset errors
if(bResetRequest==true && diStartStopQuit==true && diStartStopQuit_old!=

diStartStopQuit){
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comReset_SF = true;
bResetRequest = false;

}
if(diStartStopQuit==false && diStartStopQuit_old!=diStartStopQuit)

bMode_Hand=true;

//set saw output
doSaw = (bCmdSaw && bSFFub_ok && bSFState_ok);
diStartStopQuit_old=diStartStopQuit;

Listing 6.1: Example Programm in ANSI C

6.2 OPC UA method definition
OPCUA_METHOD ReadSafetyData

ARG_INPUT
InSafetyConsumerId : UInt32 := SafetyData.InSafetyConsumerId;
InMonitoringNumber : UInt32 := SafetyData.InMonitoringNumber;
InFlags : Byte := SafetyData.InFlags;

END_ARG

ARG_OUTPUT
OutSafetyData : Boolean := SafetyData.OutSafetyData;
OutFlags : Byte := SafetyData.OutFlags;
OutSPDU_ID_1 : UInt32 := SafetyData.OutSPDU_ID_1;
OutSPDU_ID_2 : UInt32 := SafetyData.OutSPDU_ID_2;
OutSPDU_ID_3 : UInt32 := SafetyData.OutSPDU_ID_3;
OutSafetyConsumerID : UInt32 := SafetyData.

OutSafetyConsumerID;
OutMonitoringNumber : UInt32 := SafetyData.

OutMonitoringNumber;
OutCRC : UInt32 := SafetyData.OutCRC;
OutNonSafetyData : Boolean := SafetyData.OutNonSafetyData;

END_ARG
END_OPCUA_METHOD

Listing 6.2: Method declaration of ReadSafetyData

6.3 Evaluation
#!/usr/bin/env python
from scapy.all import *
import scipy.stats
import numpy as np
import matplotlib.pyplot as plt

means = []
max_val = []
min_val = []
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yerr = []
conf_int = []
directory = "./BuRLogs/"
fileList = ["1x1000_opc.pcapng",

"2x1000_opc.pcapng",
"3x1000_opc.pcapng",
"4x1000_opc.pcapng",
"5x1000_opc.pcapng",
"6x1000_opc.pcapng",
"7x1000_opc.pcapng",
"8x1000_opc.pcapng",
"9x1000_opc.pcapng",
"10x1000_opc.pcapng"]

for filename in fileList:
packets = rdpcap(directory + filename)
idx = 1
m = []
for request in packets:

if request[IP].src == ’192.168.1.30’ and request[IP].len < 200:
for response in packets[idx:]:

if np.array_equal(np.array(response.load[16:20]), np.array(
request.load[16:20])) == True:
m += [(response.time - request.time)*1000]
break

idx += 1

means += [np.mean(np.array(m))]
max_val += [np.max(np.array(m))]
min_val += [np.min(np.array(m))]
conf_int += [scipy.stats.sem(np.array(m))*scipy.stats.t.ppf((1+0.95)/2.,

len(m))]

yerr = [np.array(means)-np.array(min_val), np.array(max_val)-np.array(means)]

fig, ax = plt.subplots()
ax.plot(np.arange(0, 12, 1), np.full((12,1), 80), ’--’)
ax.errorbar(np.arange(1, 11), means, yerr=yerr, fmt=’.’, ecolor=’g’, capthick

=1, capsize=5)
ax.errorbar(np.arange(1, 11), means, yerr=np.array(conf_int)/2, fmt=’.’,

ecolor=’g’, elinewidth=7)
ax.set_ylabel(’Round Trip Time [ms]’)
ax.set_xlabel(’Read Requests [# * 1000]’)

plt.xlim(0, 11)
plt.ylim(0, 1100)
plt.savefig("results.pdf")

plt.ylim(0, 160)
plt.savefig("results_cut.pdf")

Listing 6.3: Evaluation script
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