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Kurzfassung

Systeme der Gebäudeautomation (GA) beschäftigen sich mit der automatischen
Steuerung von gebäudetechnischen Subsystemen. Darunter fallen beispielsweise
Anlagen zur Steuerung von Heizung, Lüftung und Klima (HLK). Zugriffsschutz
und -sicherheit waren in der GA bislang unterbewertete Themen, da man davon
ausging, dass der Angriff auf ein bestehendes Subsystem ohne physikalischen Zu-
gang nicht möglich ist. Durch die Anbindung von GA an das Internet ist dieser
physikalische Zugang nunmehr jedoch nicht mehr notwendig.

Aus diesem Grund ist die vorliegende Diplomarbeit dem Zugriffsschutz und
der Zugriffssicherheit in der Gebäudeautomation gewidmet. Unterschiedliche
Konzepte und Mechanismen, die zum Schutz und Sicherheit von Systemen dieses
Bereiches herangezogen werden können, werden einleitend vorgestellt. Poten-
tielle Szenarien für Bedrohungen und Angriffspunkte werden identifiziert sowie
entsprechende Gegenmaßnahmen diskutiert.

In weiterer Folge werden bestehende Netzwerke der Gebäudeautomation und
deren integrierte Sicherheitskonzepte analysiert. Besonderes Augenmerk wird
auf ein weit verbreitetes System namens EIB/KNX gelegt. Da die Sicherheits-
konzepte in EIB/KNX nur rudimentär vorhanden sind, wird eine Erweiterung
namens EIBsec vorgestellt. EIBsec unterstützt Datenintegrität, Vertraulichkeit,
Aktualität und Authentifizierung. Weitere Kernpunkte, wie Schlüsselverwaltung
und automatische Verteilung von Software Patches, sind ebenso Bestandteil von
EIBsec.
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Abstract

Building Automation Systems (BAS) are concerned with automated control of
building subsystems such as Heating Ventilation and Air Conditioning (HVAC).
In this domain security issues have been underrated over the past years, since
physical access to the subsystem of interest was typically mandatory for an at-
tack. However, especially since the integration of BAS with the Internet, things
have changed.

This thesis gives a survey on security in building automation systems. After
a brief introduction, different security concepts and mechanisms are presented.
Next, possible threats, attacks and available countermeasures are discussed.

Furthermore, the security mechanisms of currently available networks for BAS
are analysed. Finally, an extension to a popular building automation network is
presented. EIBsec extends EIB/KNX to support several security mechanisms that
guarantee data integrity, confidentiality and freshness, as well authentication. Is-
sues such as key management and distribution of software updates are also ad-
dressed.
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Außerdem möchte ich mich noch bei Michaela bedanken, die mich während
der gesamten Arbeit unterstützte.
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Chapter 1

Introduction

1.1 Motivation
Building automation systems have their historical root in a time where security
was a neglected topic. Due to the fact that security threats were rare, no special
security mechanisms were implemented. Therefore, available solutions provide
no or only rudimentary protection against malicious attacks.

In other IT domains, the situation is very similar. Consider, for example,
Internet-related protocols like TCP/IP, POP and FTP. These protocols were de-
veloped in a time where nobody thought about security. The developers did not
consider security as an important issue and therefore security countermeasures
were not implemented. Nowadays, the Internet is flooded with viruses, trojan
horses and worms. Since the used protocols cannot avoid these security threats,
security extensions (like SSL) and special software programs (like anti-virus or
firewalls) became necessary.

In the past, building automation systems were isolated. An interconnection to
other foreign networks was typically uncommon and therefore ”security by ob-
scurity” was mostly sufficient. With the spreading of the Internet, many building
automation systems began to support an interconnection to other public WANs.
This interconnection provides new opportunities for potential attackers. Since a
physical access to the internal network is no longer needed, it is easier to attack
the building automation system from the outside. Therefore, it is necessary to
protect these interconnection points against malicious attacks.

Even if the building automation system is isolated from other systems, there
are still possibilities to gain unauthorised access from the inside. It is also im-
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portant to note that a protection against security attacks from foreign networks is
typically not enough. If an attacker bypasses this ”single wall of protection”, the
attacker has full access to the internal network. Therefore, it is essential to protect
the building automation system against security threats from the inside too.

Hence, security is getting more and more important in the building automation
domain. Therefore, this thesis discusses security in building automation systems.
It also presents security extensions for a popular building automation network
protocol.

1.2 Guide through the Thesis
The main aim of this thesis is to give an overview about security in building au-
tomation systems. First, Chapter 2 defines what a building automation system is.
Additionally, basic terms and definitions are explained which are necessary for the
rest of this thesis. In Chapter 3, basic security concepts and mechanisms are ex-
plained. In addition to a detailed description, the importance of these mechanisms
for the building automation domain is discussed. The next chapter (Chapter 4)
shows how a malicious user is able to attack a building automation system. While
Chapter 4 gives an overview about security threats and countermeasures, the next
Chapter 5 analyses the security architecture of available building automation so-
lutions. Finally, the last chapter (Chapter 6) takes a closer look at EIB/KNX. The
security mechanisms in EIB/KNX are analysed and at the end of Chapter 6, a
possible secure EIB/KNX architecture called EIBsec is presented.
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Chapter 2

Building Automation Systems

This chapter contains important definitions and explanation of terms which are
necessary for the study of security aspects of building automation systems.

2.1 What is a Building Automation System?
It is important to explain what automation of a building means. Depending on
the purpose of the building, the people who work in the building or the machines,
processes and produced goods have different demands. To fulfil these demands,
a technical infrastructure is necessary. This technical infrastructure is known as
building services ([1]). To control these building services, different control sys-
tems are needed.

As mentioned in [1], building automation is concerning the control of building
services. Therefore, a control system which provides automatic control of build-
ing services is called a building automation system. The goal of such a building
automation system is to make a building as ”intelligent” as possible. Due to this
automatic control, such buildings are often referred to as intelligent buildings. In
earlier days, this automation was often achieved in a centralised way. Centralised
means that automatic control is done by a single controller or control station.

Nowadays, computer networks are getting more and more important. A lot
of research is done into network technology. In the field of building automation,
a trend towards the use of network technologies can be observed. Due to the
disadvantages of centralised solutions (performance bottle necks, single point of
failure, ...), a distributed model is often more practical. A distributed approach
needs a network which can be used by the different devices to communicate with
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each other. Such a network is applied to a building automation design it is also
referred to as a building automation network.

A building automation system is a special type of an industrial automation
system (for further details see [1]). Therefore, a lot of properties are very similar.
It is important to note that there are still differences between a building automation
system and an industrial automation system. As these differences can affect the
system behaviour significantly, they must be carefully taken into account.

Automatic control has a lot of advantages. First, the use of a building automa-
tion system makes it easier to maintain the systems in the building. Additionally,
it is possible to modify the system behaviour even if the installation of the system
has been finished. For example, in an intelligent building it is possible to change
the configuration of the lighting system without changing the physical wiring. The
system operator can simply reassign the binding between the light switch and the
ceiling light without changing the electrical wiring.

Another advantage of the use of a building automation system can be the im-
provement of the energy efficiency. With such systems, it is possible to take the
relationship of different systems (e.g. heating, ventilation and air conditioning)
into account. Therefore, optimisations are possible. For example, if somebody
opens the window the control system can turn off the heating for this room.

Additionally, with such systems it is possible to control and monitor the sys-
tems in a building from a centralised control center. Such a control center pro-
vides a global view of the whole system. So, for the system operator it is easier
to monitor and maintain the building automation system. Especially, in a large
building such a centralised approach can reduce the costs of maintenance (for ex-
ample because of the global view, a system error can be detected and corrected
easier). Furthermore, the building automation system can be maintained remotely
(for example through a HTML interface from the internet).

Disadvantages on the other hand are that the construction costs of a build-
ing automation system are higher. Additionally, the employees who maintain the
building automation system must be familiar with the automation system. There-
fore, the system operators must be well-trained. Sometimes further training is
necessary. Due to the high lifetime of buildings, the operational costs are much
higher than the installation costs. Therefore, it is more practicable to use building
automation systems.

It is important to distinguish between the automation of large buildings and
smaller ones (for example homes). Large buildings (for example large office
buildings, warehouses, schools, churches, ...) are more complex and have hun-
dreds or even thousands of devices. Due to these large number of devices, building
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systems are harder to administrate and harder to maintain. Therefore, the use of a
building automation system is more economic. Due to the decreasing installation
costs, the automation of smaller buildings like homes becomes more important re-
cently. Nowadays, it is not uncommon to integrate a building automation system
in single-family houses.

2.2 Systems in a Building
Depending on the demands of the building, a building automation system must
control different types of building services. Based on [1], this thesis distinguishes
between four different types of systems in a building. These four different types
are shown in Figure 2.1.

Figure 2.1: Different types of systems

As mentioned in Figure 2.1, a system can be classified as less critical or as
critical. To explain the difference between critical and less critical systems, it is
important to define the terms failure, fault and error. A failure is an event that
denotes a deviation between the actual service and the specified one ([22]). For
example, an incorrect sensor value is a failure. An error denotes an incorrect
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internal state ([22]). For example, a wrong data element is an error. The cause of
an error, and therefore the indirect cause of a failure is called a fault ([22]). For
example, such a fault can be a broken wire (physical fault) or an implementation
flaw (design fault). To avoid such faults, the system must be safe and secure (for
further details about failures, faults and errors and their classification see[22]).

The classification into critical and less critical systems depends on the dam-
age, which could be caused by a system failure. There are systems where a failure
and its failure costs are not that critical. For example, if a light is broken, it will
not result in a catastrophe. Such a system is classified as a non critical system. It
is important to note that this classification depends on the environment too. Nor-
mally, a broken light will not end in a catastrophe. For example, in an operating
room the situation is different. If the light fails, this could be a disaster. It is ob-
vious that such a lighting system should be classified as a critical system. Or if
the whole lighting system of a cinema fails, the visitors could panic. Additionally,
the cinema must be closed until the lighting is repaired. If the cinema must be
closed, this will cause a lot of economical costs for the cinema. Again, the term
non critical would be unsuitable for such a system. Therefore, a building automa-
tion system cannot strictly be classified as critical or non critical. It depends on
the building type and the particular building service which should be served. Gen-
erally, the term non-critical is impractical. Since every system has its critical part,
it is better to use the term less critical instead.

As shown in Figure 2.1, an HVAC (heating, ventilation and air conditioning)
system is classified as a less critical system. HVAC systems are the most common
type of building systems. An HVAC control system regulates the room tempera-
ture and controls the air flow. The main aim of such a control system is to pro-
vide a comfortable environment. The human needs of the people in the building
should be satisfied as good as possible. To get the relevant information, sensors
(both indoor and outdoor) are needed. Additionally, the dependencies between
these values must be considered too. For example, the air flow and the humidity
influence the room temperature too. It is important to note that there are a lot
of variables which cannot be measured. For example, every person has a differ-
ent sensation about temperature which cannot be directly measured with sensors.
Even the clothing of the people influences this sensation and therefore the control
of the HVAC system too. So, the controlling of an HVAC system is not a trivial
task. Automatic control of an HVAC system also helps to save energy. To achieve
this, it is important to exchange information between different control systems.
For example, the solar radiation and the lighting system influence the temperature
too. It is important that these energy saving mechanisms do not decrease the user
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comfort. The goal is to maximise the user comfort and to decrease energy costs at
the same time.

The lighting system is another typical less critical system. Two different types
of lighting systems exist. The artificial lighting is responsible for switching and
dimming luminaires. Additionally, the lighting can be controlled automatically
without manual operations. Sensors can be used to detect the presence of people.
If somebody enters the room, the light is turned on automatically. This scheme
does not only increase the user comfort. It can also save energy. For example, the
lighting system can be configured to turn off the light automatically, if nobody is
in the room.

The lighting system may not only consist of switches and lights. A daylight-
ing system regulates the amount of daylight which enters the building. To achieve
this, blinds are used to control the shading of the building.

If a system failure can cause damage, the system is classified as a critical sys-
tem. A critical system should be safe and secure. To achieve these requirements,
critical systems should be fault tolerant and fail safe. This means that if an un-
avoidable fault occurs, only a part of the system should be affected. Additionally,
the consequences and the damage should be as little as possible. Furthermore, it
should be guaranteed that the system enters a fail safe state where no catastrophe
will result. Due to the relationship between security and safety, a critical system
should be protected against security attacks too.

It is important to distinguish between safety and security critical systems. The
main difference between safety and security is the type of protection. Safety mea-
sures reduce the risk against unintended system states which can cause damage.
For example, a fire alarms system is a typical safety system. Security measures
protect the system (the building) against malicious attacks caused by humans. For
example, an intrusion detection system is a typical security system. Therefore, the
fault nature is the main difference between safety and security. For the rest of this
thesis, a maliciously introduced fault is called a security attack. The term fault
is used to denote an unintended fault which is not a malicious attack.

Security and safety issues are closely related. The security of a building should
be guaranteed, even if the building itself is not safe anymore. Consider, for ex-
ample, a large building that has a vault. Normally, a fire alarm will open all
emergency doors of a building. If a part of the building catches fire (even if the
cause is not a malicious attack), the security alarm system of the building must not
fail. It is important that only the doors of the affected part of the building will be
opened. Otherwise, an intruder could raise an alarm in an unprotected part of the
building (for example, a room which is easily accessible) and prompt the alarm
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system to open the emergency doors to the vault. It is also important that a safety
system must not shutdown, if someone attacks the building automation system. If
someone tries to gain unauthorised access to the building, this security attack must
not shutdown safety systems. Consider, for example, an access control system of
a laboratory which can only be entered with protective clothing. It is essential
that the access control system is still working even if a security attack happens.
Otherwise, the safety of the system cannot be guaranteed anymore. So, a safety
system like the access control system mentioned above can only guarantee safety
in all unpredictable situations, if the safety system itself is secure enough.

The alarm system is a typical critical system. An alarm system monitors
the state of the building and compares the current state with a reference one. If
there is an unexpected difference between these states, the system raises an alarm
or initiates other alarm actions. The most important goal of these systems is to
distinguish clearly between alarm and non-alarm situations. As mentioned before,
fault tolerance and security are the most important requirements.

Depending on the state which should be monitored, different types of alarm
systems exist. On the one hand, there are so called safety alarm systems. Fire
alarm, water leakage and smoke detection systems are typically safety alarm sys-
tems.

On the other hand, security alarm systems protect and monitor the building
against unwanted intrusion and damage caused by humans. Typical security alarm
systems are intrusions detection (e.g. glass break sensors, audio surveillance,...)
and motion tracking systems. It is obvious that the control system itself must be
secure. The security of a building can only be guaranteed if the control system
itself is secure enough. For example, if a burglar is able to disable the sensors and
cameras of the intrusions detection system, the security of the building cannot be
guaranteed. Even, if there are thousands of sensors and cameras, the system itself
must be protected against security attacks. Otherwise, the intruder could bypass
the security system.

An access control system is a special type of a critical system. The main
aim of these systems is to gain or deny the access to restricted areas. Again, two
different types of access control systems exist.

On the one hand, a security access control system has to verify the identity of
the persons who want to gain access. If the identity has been successfully proved,
the privileges of the person for the requested area are checked. If the person has
the required access rights, the access will be granted (otherwise it will be denied).
With such systems it is not only possible to make simple ”access granted/access
denied” decisions. Depending on the privileges of the person, it is possible to
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restrict the access to particular areas. To achieve this, the elevator of a building
could be controlled by the access control system. For example, office employees
are only allowed to gain access to the office floors. Other floors like the research
center are restricted to employees who have the necessary rights. Like the security
alarm system, the access system itself must be secure. To avoid unauthorised
access, it must be prohibited that someone bypasses the access control mechanism
or that someone fakes the identity of an authorised person.

On the other hand, a safety access control system verifies whether it is safe
enough to grant access to a particular part of the building. A typical example
of a safety access control system is a chemical laboratory. The access control
system of such a laboratory has to verify whether the user satisfies the required
safety requirements. For example, it could be necessary to wear a protecting suit
to enter the laboratory safely. The access control system must guarantee that
only employees that wear such a protecting suit are allowed to gain access to
the laboratory.

In the past, the control mechanisms of these building services were imple-
mented as separate systems. These different systems were isolated and therefore
no interaction was possible between these systems. Nowadays, interaction be-
tween different systems is getting more popular. With the combination of differ-
ent systems, the whole building automation system becomes more flexible and the
possibilities of such systems have improved. For example, if the access control
system is combined with the lighting system, it is possible to highlight the way
through the building which the person has to go.

This interaction increases the complexity of the automation system. This
means that interaction points must be carefully designed. Therefore, these points
should be limited to a necessary amount.

It is often not allowed to combine life safety systems like the fire alarm system
with other building automation system. To reduce the error probability, such crit-
ical systems must be implemented as an isolated, independent system. If in future
a separation is not needed anymore, it could be possible that all different build-
ing services are controlled with one ”All-in-One building automation system”. In
order to achieve this, these systems must be fault tolerant and secure enough.

2.3 Network Topology
The standard system model for building automation systems is shown in Figure
2.2. For our purposes, this model has been simplified (for further details see [13]).

16



In this model, the system functionality is divided into three levels. These three
different functionality levels are ordered hierarchically.

Figure 2.2: Three-level functional hierarchy

The field level is the lowest one. This level directly interacts with the physical
environment. The main aim of this level is to collect the necessary data, transmit
data to the automation level and act upon the environment.

The collected data is transmitted to the automation level. Automatic control
is done in this level. This means that the data which is collected at the field level
is processed. Depending on the entities which are involved, two different types of
communication are possible. Horizontal communication means the process data
is exchanged between different processing entities. Additionally, the automation
level also prepares the data values for the management level. If data is transmitted
to the management level, this type of communication is called vertical commu-
nication.

The management level provides a global view of the whole system. This level
is responsible for manual controlling and logging. The operator of the system has
the possibility to configure and to monitor the building automation system (for
example from a workstation in the control center). Additionally, the management
level is responsible for collecting statistical data (logging) and archiving it. Inter-
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connections to other networks are also possible at this level (for example to other
WANs or to an office LAN).

Normally, automation systems are designed distributed. A distributed scheme
has a lot of advantages like better fault tolerance (no single point of failure), less
bottlenecks, less latencies in control loops and loose coupling (if one node fails
only a part of the system is affected). It is important to note that distributed sys-
tems are more complex and therefore harder to design. It can also be observed
that at higher levels the amount of data which must be transmitted increases.
Compared to the packets at the management level, the data packets at the field
level are very small (often only a few bytes). Therefore, the required bandwidth
is significantly smaller than the bandwidth at higher levels. For example, at the
management level LANs and WANs with several MBits/sec or even GBits/sec are
used whereas field bus networks have a few KBits/sec. It is important to note that
time constraints become more important at the field level (for further details see
Section 2.4).

As mentioned before, each level of this functional hierarchy represents a part
of the system functionality. Each device of the building automation system im-
plements a particular function. Today, the trend goes towards so called intelligent
devices. In addition to the standard functionality, an intelligent device performs
additional tasks too. In terms of building automation, such an intelligent device
implements functionality from more than one level. For example, a field device
like a sensor often performs automation tasks too (intelligent sensor). Therefore,
this three level functional hierarchy is implemented as a flatter, two-level archi-
tecture (see Figure 2.3). This two-level model consists of a control network level
and a common backbone. This thesis will take this two-level model as basis for
further considerations.
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Figure 2.3: Two-level Model

The control network consists of intelligent sensors and actuators. Compared
to an ordinary sensor or actuator, such an intelligent device implements more
functionality. Therefore, a separate automation network is often not necessary.
It is important to note management devices like logging servers or maintenance
workstations still have requirements which cannot be fulfilled by this control net-
work. For example, typical control networks do not have the necessary network
bandwidth to meet the throughput requirements of the management devices which
are needed.

Therefore, the different control networks are interconnected by a backbone
network. This backbone has the necessary bandwidth and performance to satisfy
these needs. With this approach, it is not only possible to integrate the neces-
sary management nodes. The backbone network can also link different control
networks together. It is even possible to interconnect control networks that use
different network protocols.

At the intersection point between the control network and the backbone, inter-
connection devices (for further details see Section 2.5) are used. These devices
are responsible for routing (router) the traffic between the different networks as
well as translating (gateway) the network messages (for further details see Section
2.5). Therefore, each interconnection device contains a database which contains
the mapping table. Additionally, a gateway can perform other tasks too. For exam-
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ple, a gateway could provide an HTML interface which can be used to configure
the gateway or to monitor the network traffic. A gateway could act as a logging
device, too. Since these interconnection devices are installed at critical points
of the network, they must be fault tolerant and carefully protect against security
attacks.

Depending on the amount of network segments that the interconnection de-
vice connects, it has two or more network interfaces. If a device transmits a data
packet to a device that is located in a foreign control network, the interconnection
device is responsible for routing this packet to the interconnection device of the
destination control network. In this thesis, this type of communication is referred
to as bottom-up communication.

At the backbone side, different management devices establish connections to
the interconnection device to perform management tasks. For example, a logging
server connects to the different gateways to retrieve statistical data. This type of
communication is called top-down communication.

If an interconnection device interconnects two different networks (with differ-
ent network protocols), the required network services must be mapped on services
of the foreign network. As these services are very protocol-specific, a mapping of
the services is hard or even impossible. Since the effort to do such a mapping is
very high, a scheme called tunneling is often used (see Figure 2.4).

Figure 2.4: Tunneling

Tunneling means the whole data packet is transmitted through a logical tun-
nel. With this approach, the packet from the control network remains untouched.
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Untouched means the protocol specific data (header, trailer) of the packet and the
data itself is not modified. The data packet is put into a ”backbone packet” and
then it is transmitted through the tunnel to the destination tunneling router. It is
like putting a letter into an envelope. The destination router unpacks the packet
and the untouched packet is sent to the destination device. With this scheme, it is
possible to use networks as backbone which cannot provide all required network
services. Today, nearly every bigger building (especially office buildings) has an
IP network installed. Therefore, it is very popular to use the already existing IP
network as backbone network. So, no additional network has to be installed.

A disadvantage with the tunneling approach is the control networks are not
decoupled. Due to the transparent transmission, the different networks stay de-
pendent. Using gateways, the systems would be decoupled. Therefore, real time
constraints between networks which are connected through a logical tunnel are
often harder to guarantee.

Normally, control networks and backbone networks are designed for different
needs. Since maintenance and administration are performed at single points in the
network (for example a central logging server), the backbone network needs more
bandwidth than the control network for example. So, these differences between
the control network and the backbone must be taken into account (for further
details see Section 2.4).

2.4 Control Network

2.4.1 Demands on the Protocol
As mentioned in Section 2.3, compared to the backbone network the network
protocol of the control network has to meet different demands.

First, the bandwidth requirements are different. At the control level the trans-
mitted packets are smaller (often only a few bytes). Therefore, less bandwidth is
needed (even a few KBits/sec are often enough).

At the control level, real time (RT) considerations must be taken into account.
It is often necessary to guarantee a maximum delay. In some situations it is un-
acceptable, if someone turns on the light and it takes a few hundred milliseconds
or even seconds until the light really goes on for example. Compared to industrial
automation, these real time requirements are not so hard. In industrial automation,
timing constraints are often more important. Sometimes, events and results must
be produced in a specified interval. In the industrial domain, it is often necessary
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to meet hard deadlines1. Otherwise, a catastrophe could be the result. In build-
ing automation systems, these real time requirements are more moderate. It is
important to note that they can still exist and so they must be considered. There-
fore, common network protocols which are based on CSMA/CD (Carrier Sense
Multiple Access with Collision Detection) protocols are often not practical.

As already mentioned, another important requirement is fault tolerance and
safety. No system is perfect so it is important to protect the system against faults
and their consequences. Therefore, it is essential to detect the faults in an early
state. If the avoidance of such a fault is impossible, the consequences must be
isolated. It is important that only a part of the system will be affected (a possible
approach is described in Section 3.6). A single fault should not bring down the
whole system. The affected part of the system should reach a fail-safe state where
no critical results can happen. Additionally, it is sometimes necessary to guarantee
a minimum of system performance. For example, if the lighting system fails, it is
essential that the fire alarm system is still working. If a system provides such a
minimum level of service in case of a failure, the system is called fail-operational.
Especially, for critical systems these considerations are fundamental.

It is important to note that not only protection against faults caused by unpre-
dictable system states is an important issue. Nowadays, security in building au-
tomation systems is getting more and more important. This means that protection
mechanisms against attacks which are caused by humans must be implemented
too. Better would be to design the system itself secure. As mentioned in Section
1, the importance of security was and is often played down and it is not consid-
ered with the appropriate importance as much as it should be. Therefore, this
thesis will discuss this important topic extensively.

2.4.2 Network Services and Types of Communication
The network protocol must provide basic network services. First, it must be pos-
sible to add new devices easily. This means that integrating a new device in an
existing network must be possible without too much configuration effort. For ex-
ample, if the device connects to an existing network, a new network address must
be assigned to this device. Additionally, the device must get enough information
about the network and its topology (for example gateway addresses, QoS infor-
mation, ...). Otherwise, the new device cannot talk to other network nodes. To
provide this integration of new devices in an easy way, so called plug-and-play

1Deadline means the exact point in time at which a result must be produced.

22



features are beneficial (for example, see [44]).
Furthermore, the network must provide different types of communication ser-

vices. First, it must be possible to exchange data between two network nodes
directly. In building automation systems, it must be possible to configure and
maintain the devices remotely. To achieve this, a so called management system is
necessary. This management system provides services which are used to config-
ure and change the behaviour of the devices. For example, with these management
services the system integrator can change configuration parameters remotely. Fur-
thermore, the management system often provides a service to upload a new user
application to the different devices. For the rest of this thesis, this type of com-
munication (often referred to as vertical communication) is called management
communication. The corresponding network messages are called management
messages.

To exchange management messages between two devices, a so called point-
to-point connection is necessary. For example, a Client/Server connection is a
typical point-to-point connection. Depending on the demands on the connection,
connection-less or connection-oriented communication is necessary.

The values from the sensors itself must also be exchanged between the devices.
This process data must be processed and transmitted to the actuators (horizontal
communication). In this thesis, the transmission of process data is called process
data communication. The corresponding network messages are called process
data messages.

A building automation system often needs the possibility to send data values
to a group of devices. For example, if a light switch controls more than one light,
it must be possible to send the changing events to the corresponding device group
efficiently. In this sense, efficiently means without too much communication ef-
fort. Therefore, a simple point-to-point connection to each device of the receiver
group is not practical. A better approach is to use communication services like
broadcast and multicast2. Compared to point-to-point communication, only a
single message is needed to transmit the necessary data to more than one network
node. Especially in building automation networks, this type of communication is
very useful. In building automation systems, a publisher/subscriber model is often
used for event notification. Many different types and variants exist. [24] describes
these models in detail. This thesis will use a change-of-value (COV) model for
further considerations. If a device wants to receive a particular event, this device

2Multicast is a special type of broadcast. Only the members of a logical group receive the
messages with multicast .
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subscribes to this event. If the event occurs (change-of-value), the responsible
device (publisher) sends a multicast message to all subscribers.

Additionally, some process data may be exchanged directly between two de-
vices (for example a manual override). For this type of process data communica-
tion, point-to-point connections are used.

Figure 2.5: Management Communication vs. Process Data Communication

2.4.3 Control Network Media
In the field of building automation, different network media exist. It is important
to distinguish between wired and wireless media. Wired media are best-known
and mostly used. A wired medium uses physical cables as transmission channels.
Generally, there are three important properties which influence each other.

First, different network topologies exist. The most common ones are ring,
bus, star and free topology. Due to the required flexibility, many building automa-
tion solutions provide the opportunity to use free topology. With this topology,
the electrical engineer is more flexible in placing the physical cables.

Another important property of the network medium is the maximum cable
length. Normally, the length of one network segment is limited. If such a network
segment is too small, repeaters can be used to extend the length of a network
segment. These repeaters amplify the signal and so a larger transmission length
can be achieved. It is important to note that normally a repeater does not decouple
the network segments. So the maximum amount of repeaters is also limited.

The maximum bandwidth is also an important property. It varies depending
on the maximum cable length, the topology and the type of the physical cable
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itself from a few KBit/sec up to MBit/sec (A bandwidth of a few GBit/sec is
possible but still uncommon and not necessary in the control level of building
automation systems.). It is important to distinguish between the maximum the-
oretical bandwidth and maximum amount of user data which can be transmitted
over the channel. Due to the protocol efficiency3 and the byte coding, this max-
imum amount of user data is always lower than the theoretical bandwidth of the
channel.

Another difference is the type of the physical cable itself. The most important
cable types are twisted-pair (TP), coaxial, powerline and fibre optic.

Figure 2.6: Different network media

Fibre optic is normally used for high-speed communication and therefore un-
common in the control level4. Therefore, fibre optic is rarely used (due to the
cable costs, even at the backbone level twisted-pair is more common).

Every building has an electrical power supply network. Therefore, it is ad-
vantageous to use this existing network. If a powerline network is used as control
network too, no additional network has to be installed. So installation costs can be
saved. Unfortunately, a lot of problems have to be solved. First, these powerline
networks are not designed to operate in high frequency range. A lot of other home
appliances (for example microwave, washing machine and other white goods) are
connected to this power supply network too. These devices generate impulses

3To manage the network communication, headers and trailers are added to the user data. These
headers and trailers are unimportant for the application itself, but they consume network bandwidth
too. Additionally, the protocol uses control messages which must be transmitted too (for example
to establish a connection).

4LONWorks supports fibre optic.
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and wideband noise which disturb the communication of the building automation
system (an analysis of noise in powerline networks is given in [23]). Therefore,
new modulation techniques have to be developed (for further details see [15] and
[14]). Additionally, the powerline network must be separated from foreign pow-
erline networks. The powerline network must be isolated to avoid an interference
of other powerline networks. Eavesdropping must be prohibited too. Due to the
radiation of the powerline medium, it is even possible to eavesdrop without phys-
ical access to the medium. Therefore, it is essential to encrypt the transmission
channel (for further details, see Section 3.2).

Twisted-pair plays the most important role even in the field of building au-
tomation. Due to the decreasing costs of twisted-pair cables, it is more prac-
tical to install a separate network (especially if a new building is put up from
scratch). Compared to powerline, twisted-pair is more reliable and robust. There-
fore, twisted-pair is the most common medium. In earlier days coaxial cables
were used. However, today coaxial cables are very uncommon and twisted-pair is
used instead.

Wireless technologies are getting more popular recently. Due to further de-
velopment, wireless technologies are flexible enough to become an alternative to
hard-wired media. With a wireless communication approach, cabling and instal-
lation costs can be reduced. It is also possible to integrate moveable devices (for
example a portable controller device or a position sensor mounted on a transport
vehicle). To achieve this benefit, it must be possible to run the devices on batteries
even for months or years. It is important to note that most wireless standards need
a lot of power. Therefore, they are not practical for small embedded devices.

Due to that reason, the most common standard IEEE 802.11 (known as WLAN)
is not suitable for small embedded devices at the control level of building automa-
tion systems.

Another important short radio technology is Bluetooth. Bluetooth is a low
cost and low power wireless technology which is designed for small devices.
Bluetooth consumes less power than IEEE 802.11 (for example class 3 Bluetooth
devices5 need less than 1 mW).

Sometimes this power consumption is still too much for small embedded de-
vices which run on batteries. Therefore, other technologies like IEEE 802.15.4
(for further details see [17]) and Zigbee6 are more practical.

5The Bluetooth specification 1.1 defines three different device classes. This classification de-
pends on the maximum range and the power consumption of the device. For further details see
[16].

6Zigbee is based on IEEE 802.15.4. Additional layers were added to provide additional features
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In addition to these mentioned radio technologies, a lot of standards have their
own wireless solution. For example, both LONWorks and KNX support wireless
communication.

Since no physical cable is needed, safety and security issues must be carefully
taken into account. In this field, a lot of development is done.

2.5 Device Classes
A building automation system consists of different network devices. As men-
tioned in Section 2.3, these devices are located at different network levels. At
these levels, the devices must perform different tasks. Therefore, each network
node must meet its individual requirements. Depending on these requirements,
different types of building automation devices exist. Due to these types, the de-
vices can be divided into different device classes. Based on the two-level model in
Section 2.3, a classification into three different device classes is the most practical
one for this thesis.

Field Class Interconnection
Class

Management
Class

Devices Sensors, Actua-
tors, Intelligent
Devices

Gateways,
Routers

Webserver, Log-
ging Server,
Workstation

Memory low middle much
Computing
Power

less less more

Environmental
Factors

possible rough normally mild normally mild

Data Traffic less middle middle or high
Communication
Model

peer-to-peer mostly peer-to-
peer

mostly Clien-
t/Server

Table 2.1: Device Classification

Typical field class nodes are devices that are located at the control level. These
devices interact directly with the physical environment. They are responsible for

like security and routing. For further details see [18].
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data acquisition, data processing and for controlling the behaviour of the environ-
ment. To achieve this, different types of sensors and actuators are used. In earlier
days, these devices were simple and therefore they provided only basic function-
ality. Today, the trend goes towards intelligent sensors and actuators. This means
that such intelligent sensors and actuators provide additional functionality. To
achieve this, microcontrollers are embedded in such devices that perform these
additional tasks. For example, the network interface is often included in the em-
bedded device. Additionally, a lot of configuration parameters can be changed to
modify the behaviour of the device (for example changing the scaling of a sen-
sor). Furthermore, different user programs can be uploaded into the memory of
the embedded device. These user applications can be written in higher program-
ming languages (for example in C). With this approach, it is possible to change
the behaviour of the device. So, the integrator of the building automation system
can choose which automation task the device should perform.

As mentioned in Section 2.3, these intelligent devices perform automation
and control tasks too. Cost-effectiveness is essential in this class of devices. Since
normally a lot of field class devices are used in building automation system, each
device should be as cheap as possible. Additionally, due to the limited installation
space the devices must be as small as possible. Therefore, most intelligent field
devices contain small, low cost microcontrollers. This means that such embedded
devices have limited memory resources and limited computing power. Further-
more, field devices should run stable for several years or even decades. This
means that mechanical parts like cooling fans should be avoided. Therefore, only
passive cooling systems are possible which means microcontrollers with limited
computing power must be used7.

Additionally, environmental factors like temperature and humidity must be
taken into account. For example, outdoor sensors must be water resistant and
insensitive against high temperatures8. Due to these reasons, the hardware of field
class devices must be robust and resistant against these environmental factors.
Therefore, they must be enclosed in a safe containment to avoid damage.

As mentioned in Section 2.3, at the control level, the transmitted data pack-
ets are smaller than in higher levels. This means that the field class devices do
not need handle high data volumes. Therefore, the memory and the input/output

7Microcontrollers with higher clock rates dissipate more heat. Therefore, the CPU must be
cooled enough to avoid thermal damage.

8For example depending on the allowed ambient temperature three different IC classes exist:
”commercial” from 0◦C to 70◦C, ”industrial” from -40◦C to 85◦C and ”military” from -55◦C to
125◦C.
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buffers can be smaller. Furthermore, it is not necessary to use 32 bit or even 64 bit
microcontrollers. In most cases, a 16 bit architecture is still enough (sometimes
even 8 bit architectures are used).

Normally, field class devices use a peer-to-peer model for communication.
Compared to a Client/Server model, a peer-to-peer approach is more practical
at the control level. The advantages of peer-to-peer communication are better
fault tolerance, better distribution of the traffic, less latencies in control loops
and loose coupling. Unfortunately, peer-to-peer communication is more complex
and therefore these systems are harder to design. A detailed comparison of these
models is given in [63].

The devices of the interconnection class are responsible for the network com-
munication. These devices interconnect different networks and network segments.
Additionally, they are responsible for the correct routing of the data packets. Typ-
ical devices are repeaters, routers, proxies, bridges and gateways. These intercon-
nection devices operate at different layers. Depending on this layer, these devices
have different names (repeater, bridge, router, gateway, proxy,...). For this thesis,
a distinction between routers and gateways is enough.

Depending on the networks that the device interconnects, two different types
of devices exist. If a network device interconnects two different network types
(here, different network types means different network protocols), the data packets
must be translated (for further details see Section 2.3). If a device performs such
a mapping, it is called a gateway.

If the protocols on both sides of the device are identical, a translation is not
necessary. These devices are called routers. Routers are responsible for routing
the network traffic. The data packets are only forwarded to the network segments
in which the destination device is located. With this approach, the network traffic
is decreased. To extend the maximum network segment length, routers reconstruct
the physical signal too.

Like field class nodes, an interconnection device normally contains low cost
hardware components. Compared to workstations, they have a low clock rate. As
routing is not a very complex task, this limited computing power is still enough.
The memory requirements depend on the task the interconnection device has to
perform. It is common to add additionally functionality to this type of devices.
Since these devices are located at topological important points in the network, they
are ideal for performing logging or monitoring tasks. Therefore, interconnection
devices often need more memory than field class devices.

Compared to field class devices, interconnection devices are normally located
at central points in the building (for example in a switch cabinet or in a 19” rack).
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This means that the environmental factors can be seen more relaxed. It is still im-
portant that these devices are robust and maintenance-free. So, it is recommended
to embed the device in a safe containment (for example to protect it against dust).

Due to the fact that interconnection devices are responsible for interconnecting
different networks, the data traffic is a little bit higher than in field class devices.
To avoid performance bottlenecks, it is necessary to design the network carefully.
Especially, the distribution of the interconnection devices is essential because it
influences the network traffic significantly.

As mentioned in Section 2.4, an interconnection device can act as a server and
a client (bottom-up and top-down communication). So compared to the field class
devices, the communication model is not a strict peer-to-peer one. At the back-
bone side, the management nodes communicate through point-to-point connec-
tions with the gateways (Client/Server model). For process data communication
a peer-to-peer model is used. To avoid bottlenecks and introducing single points
of failure, more or less self-contained network segments are interconnected in a
hierarchical manner.

The management class consists of devices that are necessary to configure and
maintain the building automation network. They perform network management
tasks like configuring network nodes or logging and storage of statistical data.
Additionally, interconnections to other networks are possible (for example office
networks, Intranet, Internet,...).

These management devices are normally located at the backbone. At this level,
they have a global view of the whole network. It is important to note that it is also
possible to integrate management devices at the control level. For example, an
intrusion detection system can be installed at the control level to detect abnormal
network traffic in a particular network segment (for further details see Section
3.7).

Management devices can be classified into two subclasses. Most of the devices
are located at fix points in the network. These devices are stationary. Typical
stationary devices are server stations (webserver, logging server, database server)
and workstations (normal PCs, Terminals).

On the other hand, there are special devices that have not a fixed location in the
network. Additionally, they are not always connected to the building automation
system. This means that such a device joins the network, performs a particular
task and disconnects after it has finished its job. In this thesis, such devices are
called temporary devices. For example, a notebook or the PDA of a system
operator can be such a temporary device. The system operator connects with his
temporary device (wireless or at special access points) and performs configuration
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or maintenance tasks. When he has finished his work, he closes the connection
and the device does not belong to the network anymore. To achieve this, the net-
work management must provide services which make an integration of temporary
devices easy. Again these mechanisms can be used to gain unauthorised access to
the network. Hence, it is important to protect these mechanisms carefully.

Compared to the number of field devices and gateways, the amount of man-
agement devices is much smaller. Therefore, the device costs are not so important.
So, devices with a better performance can be used. This means that management
devices normally have more computing power and more memory. If such a device
is used to configure or monitor the system by humans, normal PCs are used.

Management devices are located in a relaxed environment. Server stations are
normally integrated in special containments (switch cabinet or 19” rack). Man-
agement workstations are located in an environment which is similar to an office.
Therefore, no extra considerations must be taken into account. Like all other de-
vices in a building automation system, management devices should be long-lived.
As normal PCs are often used as management devices, these devices can replaced
more easily in case of a failure.

As mentioned before, a management device usually uses point-to-point con-
nections. The management device establishes a connection to the particular device
and performs configuration and maintenance tasks. So, these management devices
normally use a Client/Server model for communication (management connection;
see Section 2.4.2).

The amount of network traffic depends on the tasks that the devices have to
perform. For example, in big building automation systems collection of detailed
statistical data can produce a lot of network traffic. Therefore, management de-
vices are often located at the backbone level where a higher network bandwidth is
available.
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Chapter 3

Security Theory and Concepts

As mentioned in Section 2.4, security is getting more and more important in build-
ing automation systems. Therefore, mechanisms must be implemented to protect
building automation systems against security attacks. After a brief introduction
into building automation systems, it is time to take a closer look now how these
systems can be protected against security attacks.

Therefore, this chapter gives a general overview about basic security concepts
and their importance for building automation systems. In this chapter different
security mechanisms are going to be discussed. Additionally, it will be pointed out
how these concepts can be implemented in existing building automation systems.

3.1 Introduction into Security
First, it is necessary to explain basic security definitions and terms. In the ter-
minology of information technology, security means the protection of services
against malicious attacks. To protect a system against such attacks, it is necessary
to define a security policy. This policy is a formal specification that describes
which actions are allowed and which actions are prohibited. Additionally, the
policy must define which entities1 are permitted to initiate certain actions.

To fulfil the security requirements which are defined in the security policy, dif-
ferent security mechanisms must be implemented. These security mechanisms
protect the different services against security attacks.

1An entity can be a single person, a devices or a service.
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To do a malicious attack, the attacker2 must find a way to break into the system.
Such a security attack is only possible, if a vulnerability exists. A vulnerability
is the opportunity to cause damage ([19]). A weak cryptographic algorithm (for
example an algorithm that uses short keys or that uses a simple mathematic func-
tion), a badly designed protocol (for example a network protocol which transmits
cleartext passwords) or an insecure implementation (for example implementations
with security holes like buffer overflows) can be vulnerabilities. To find a way to
gain access to a system, the attacker must find such a vulnerability. After the
attacker has found one, the attacker will try to exploit it. An exploit takes advan-
tage of a specific vulnerability. Such an exploit is often a piece of software which
provides the attacker the opportunity to gain unauthorised access to the system.

3.1.1 Security Threats
The author of [19] distinguishes between four different types of security threats.
These four types are:

• Interception
• Interruption
• Modification
• Fabrication

Interception means an unauthorised entity has the possibility to access a service
or data. For example, if an unauthorised person listens to the control network
of a building automation system and tries to intercept data packets, this threat is
classified as interception. Another typical example is when data is illegally copied
(for example stealing the routing table of gateways to get more information about
the network topology).

All kind of attacks with the objective of making a service or data unavailable
are classified as interruption. Denial-of-Service attacks are typical interruption
threats. For example, an attacker can try to flood a remote device with network
packets. If the attacked device is not able to handle this amount of incoming pack-
ets, it will become unavailable (for example the internal message buffers overflow)
. This class of attacks will be discussed in detail in Section 4.2.3.

A threat is classified as modification, if an unauthorised entity changes or
tampers the behaviour of a service or the content of the data. In terms of building

2An attacker not only needs to be a human. In this thesis, an ”attacker” can also be a piece of a
software or a host computer. Therefore, in the rest of this thesis, the neuter pronoun ”it” is going
to be used.
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automation, an example of modification would be where a sensor value is changed
during transmission. Another example is where the application itself (the program
code of the application) and therefore the behaviour of the device are modified.

Fabrication is referred to actions where additional data or an additional ser-
vice is added which have not been specified. For example, the lighting system is
modified in a way that an unauthorised person is able to switch off all lights in
a building with a single action. Replaying of network messages is also a kind of
fabrication. For example, if an attacker retransmits a previously sent ”open-door”
message, this kind of attack is classified as fabrication.

3.1.2 Objectives of Security Mechanisms
As mentioned before, different security mechanisms are necessary to protect the
building automation system against security threats. Depending on the type of
protection, the security mechanisms must achieve different objectives. The author
of [21] distinguishes between eight different security objectives:

• Confidentiality
• Integrity
• Availability
• Authentication
• Authorisation
• Auditability
• Non-repudiability
• Third-party protection
One of the most important objectives is confidentiality. This means that the

disclosure of confidential information must be avoided. It must be guaranteed
that only entities with the required privileges have access to confidential data. As
mentioned before, these access rights must be defined in the security policy. For
example, in an access control system, the confidential part of the user database
(for example passwords)3 must be protected against unauthorised disclosure. If
the security mechanisms are using keys and passwords, these must be kept secret
too.

Another important objective is integrity. If a security mechanism guarantees
the integrity of data, the modification by unauthorised entities must be prohibited.
For example, in a public backbone network of a building automation system, it

3This user database contains information about the user accounts like access rights, passwords
or other authentication properties.
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is necessary to avoid unauthorised modification of the data packets. Injection of
new messages and replaying of old ones must be prohibited as well.

Even if the integrity and confidentiality of the transmitted data is guaranteed,
the services and the data itself must be available. Therefore, the availability of the
data is important, too. Availability means if services or process data are needed
by an entity, the requested services and the corresponding data must be available
whenever required. An attacker must not be able to deny the possibility to use
services or data. To achieve this, an avoidance of denial-of-service attacks is
necessary.

As mentioned before, it must be specified which entities are allowed to ini-
tiate actions and which entities are not allowed. To achieve this basic security
concept, it is essential to prove the identity of the involved entities. Therefore, an
authentication mechanism is necessary. For example, to guarantee in an access
control system, that only an authorised entity is allowed to open a particular door,
the identity of the initiator must be proven. After the identity has been success-
fully verified, it must be guaranteed that no other user is able to steal this identity.
So, these identities and especially the currently valid ones must be managed in a
secure manner. Authentication is one of the most important security mechanisms
because it provides a base for a lot of other security mechanisms.

If the identity has been proven, it must be decided whether the entity has the
necessary privileges to perform the requested operations. To achieve this, an au-
thorisation mechanism is necessary. Authorisation is strongly related to authenti-
cation because without proving the identity, an authorisation does not make sense.
Authorisation is also known as access control. It is important to note that au-
thorisation is usually more than simple a ”access/deny” decision. Authorisation
mechanisms often have to distinguish between different access levels. The entity
needs to reach at least the access level that is required to perform the requested
action. For example, in a building automation system only the system operator
has the necessary privileges to change the full behaviour of a device (for example
the right to upload a new user application). Other field devices are only allowed to
change certain configuration parameters (for example the scaling of a sensor). To
achieve this, the necessary information is often stored in an access control matrix
which is saved in a database (for further details see Section 3.3.5).

Another important objective is auditability. To reconstruct the history of a
system, it is necessary to store all relevant actions which are executed on the sys-
tem. This approach of storing relevant actions is also referred to as logging. With
this stored data, it is possible to detect security attacks in an earlier stage. For ex-
ample to guess a password, an attacker tries many different passwords (brute force
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attack). If such ominous actions are detected, further attacks can be avoided. A
system that detects suspicious actions is called intrusion detection system (for fur-
ther details see Section 3.7). The system logs can also be used to discover system
failures. Depending on the size of the system, storing all actions is impossible.
Therefore, it is essential to store only the information which is security relevant.
Furthermore, it must be guaranteed that the attacker cannot modify the system
logs. If the attacker is able to remove the corresponding entries of the system
logs, he can cover its tracks.

Non-repudiability means to prove the identity of the entity that initiates an
action, even if the initiator does not cooperate. This means that an initiated action
cannot be denied later by the entity which was involved. Such a proof is often
regulated by law. For example, if a safety system is shutdown, the identity of the
person who initiated the shutdown must be proven irrefutably.

Third party protection means to avoid damage of other, external systems by
use of the own system. It must be prohibited that an attacker uses the resources of a
foreign host to attack another third party system. For example, distributed Denial-
of-Service attacks use the system resources of different systems to get enough
bandwidth to shutdown high performance systems. Worms are other well-known
attack methods that use foreign system resources to attack third party systems are
worms. After the worm has infected a system, it uses the resources of the infected
system to attack other third party systems.

3.2 Securing the Transmission Channel
A network offers the possibility to exchange data between different network nodes.
The data packets are transmitted over the network through a transmission channel.
To guarantee the integrity and confidentiality of these data packets, these trans-
mission channels must be protected. A transmission channel which is protected
against interception, modification and fabrication is called a secure channel. A
secure channel does not necessarily protect against interruption. A protection
against interruption (for example against Denial-of-Service attacks) is not a trivial
task. It is often necessary to implement additional security mechanisms to avoid
such attacks (for further details see Section 4.2.3).
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3.2.1 Protection against Interception
To achieve a secure transmission, it is necessary to encrypt the data messages. To
encrypt the data packets, cryptographic algorithms are necessary.

The main objective of a cryptographical method is to encrypt a message m
which is transmitted from a sender S to a receiver R. The original form of the
message is called plaintext P , whereas the encrypted form is called ciphertext C.
To get C from P , a mathematic function called encryption method E is used. This
method E generates together witch a key K (KE denotes the encryption key) C
from P , that means:

C = E(KE, P )

To obtain P from C, a decryption method D is needed. This mathematic function
D computes together with the decryption key KD P from C, that means:

P = D(KD, C)

Figure 3.1 summarises the encryption/decryption process.

Figure 3.1: Encryption and Decryption of Messages

In the past, the algorithm itself was kept secret. This technique is very inse-
cure. If the algorithm becomes public, the cryptographic method is not secure any-
more. Therefore, modern cryptographic algorithms use another approach. These
techniques keep the key secret, while the algorithm itself is made public. It is im-
portant that a cryptographic method becomes not weaker even if the source code
of the algorithm is made public.
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One of the most important characteristics is the key length of the algorithm.
Attackers often try to guess valid keys. To achieve this, all possible keys must
be tested whether they are valid or not (brute force attack). Therefore, it is often
better to choose longer keys. If the key length increases, the amount of different
keys also increases. This means that the attacker has to try more possibilities to
find a valid one. A long key means the effort to encrypt and to decrypt messages
increases. Especially in building automation system, this could cause problems.
As mentioned in Section 2.5, field class devices have little computing power and
therefore cryptographic methods that use long keys cannot run on small embedded
devices.

In addition to that, the key length is often limited by the algorithm. A lot
of algorithms were developed in a time where the performance of the available
computers was too small to guess passwords in a reasonable time. Due to the
increasing computing power, these brute force attacks need less time. Therefore,
it is possible that a cryptographic algorithm becomes weaker the longer it is used.

Depending on the used encryption and decryption keys, two different types
of cryptographic systems exist. If the encryption key and the decryption key are
identical (KE = KD = K), the cryptographic algorithm is called symmetric.
This means that

C = E(K, P ), P = D(K, C)

Both S and R must know this key K. K must be exchanged in a secure
manner and must be kept secret. Depending on the input data, two different types
of symmetric algorithm exist. Stream ciphers process the input data bit- or byte-
wise, whereas block ciphers encrypt the input block-wise.

Three examples of important symmetric algorithms are:
• RC4
• DES
• AES
Rivest Cipher 4 (RC4) is a byte-wise algorithm (for further details see [64]).

Compared to other symmetric systems, RC4 needs limited computing power and
limited memory. Because of that, it can be used in 8 bit microcontrollers.

The Data Encryption Standard (DES) is a block cipher (for further details
see [31]). It has been used as a standard encryption algorithm for years. Due
to the short key length (56 Bit), nowadays it is insecure for many applications.
Therefore, it should not be used in new applications. However, to make DES
stronger, the algorithm can be applied three times in a row. This form is also
known as Triple DES.
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Due to the weakness of DES, the Advanced Encryption Standard (AES)
was intended to replace DES and Triple DES (for further details see [30]). As
mentioned before, Triple DES is stronger than DES. Compared to DES, Triple
DES is very slow in software and therefore impractical for small devices. As
shown in Appendix A, AES is much faster (both in hardware and software) than
DES and at least as secure as Triple DES. As it was developed by Joan Daemen
and Vincent Rijmen, it is also known as the Rijndael cipher. It is a block cipher
and its key size is 128, 192 or 256 Bits.

While symmetric systems use the same key for encryption and decryption,
asymmetric algorithms use separate ones. This means that each entity needs a
key pair KE, KD to encrypt and decrypt messages. In other words,

C = E(KE, P ), P = D(KD, C)

Depending on the usage of the algorithm, one key is kept private whereas the
other one is made public. Therefore, asymmetric algorithms are also referred to
as public-key systems. For the rest of this thesis, K+

A shall denote the public key
of entity A and K−

A shall denote the private key.
Three well-known public-key systems are:
• RSA
• ElGamal
• Elliptic curve cryptography (ECC)
The security of RSA (named after the developers Ron Rivest, Adi Shamir and

Len Adleman) is based on the fact that it is very difficult to factorise two large
numbers into their prime factors (for further details see [29]). RSA is used in
many cryptographic systems (for example in GnuPG; see [25]).

In the year 1985 Taher Elgamal developed the so called ElGamal algorithm
(for further details see [28]). It uses the fact that it is very difficult to calculate
discrete logarithms over a finite field. Since 1997 it is freely available and as a
result of this, it has been used in many applications (for example in GnuPG; see
[25]).

Elliptic curve cryptography (ECC) is based on the fact that it is very difficult
to solve the discrete logarithm problem for the group of an elliptic curve over
finite fields. ECC methods are at least as secure as RSA. Compared to RSA, ECC
algorithms use smaller keys and therefore they are faster. For further details see
[26].

Symmetric systems are much faster than asymmetric ones. Therefore, they
can run on small embedded devices which have limited computing power. For ex-
ample, RC4 can even be used on 8 bit microcontrollers. Additionally, symmetric
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algorithms need limited memory than asymmetric ones. As mentioned in Section
2.5, field class devices have limited hardware resource and therefore symmetric
algorithms are more appropriate in the building automation domain.

As mentioned in Section 2.4.2, in building automation systems group commu-
nication models like multicast and broadcast are often used to exchange process
data. If this communication in a group of members must be protected against in-
terception and modification, the process data communication must be encrypted.

If a symmetric algorithm is used, there are two possibilities. The simplest
way is to share one key between all group members. As soon as one member
is compromised, the key is not secure anymore and hence a new key must be
generated. Especially, if a group has a lot of members, the risk that the key gets
compromised increases.

Another solution is to use a separate key for every possible transmission chan-
nel. This means that each pair of group members have their own secret key. If one
key becomes public, only one pair of members must generate a new key, while
the other members can keep their shared keys. In a network group with n nodes,
n(n − 1)/2 keys are necessary with this approach. Hence an implementation of
this scheme is nearly impossible, if a communication group has a lot of members.

It is important to take the relationship between the group members into ac-
count. For example, if a publisher/subscriber model is used, communication is
normally performed between the publisher and the different subscribers. This
means that it is not necessary that every possible pair of group members must
have its own key. Since two subscribers that only receive change-of-value events
do not need to communicate with each other, they do not need to share a secret
key. For example, in a lighting system a light switch does not normally communi-
cate with another light switch. Therefore, shared keys are only necessary between
the switches and the light itself.

Another problem is the key exchange itself. It must be guaranteed that every
member of the communication group gets the key in a secure manner. Again, if
the group contains a lot of members, such a key exchange can be very compli-
cated. If an asymmetric algorithm is used, every member of the communication
group needs one key pair. This means that in a group of N members, every mem-
ber needs its own public/private key pair. A problem with this approach is the
distribution of the public keys. If A wants to communicate with B, B must know
the public key K+

A of A and vice versa. Therefore, a so called key management
facility is necessary (for further details see Section 3.3). As mentioned before,
asymmetric algorithms are slower than symmetric ones. Therefore, it is often
impossible to run asymmetric cryptographic algorithms on embedded devices.
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To combine the benefits of symmetric and asymmetric cryptographic systems,
a hybrid solution is often used. This means that one communication participant
generates a secret session key. To exchange this session key, an asymmetric algo-
rithm is used. After this secret session key has been exchanged in a secure manner,
a faster symmetric method can be used for further data transmission. This scheme
has another important advantage. If the connection and therefore the session is
closed, the session keys becomes invalid. This means that if a new session is
started, the old key which was stolen in the session before is not valid anymore.
Therefore, if an attacker gets the session key, only a single session is affected.
Generally, the time interval where a secret key is valid should be limited.

An example of a public-key solution is the well-known Diffie-Hellman key
exchange (see [32]). With this scheme it is possible to exchange a shared key
across an insecure channel. This key exchange protocol works as follows:

Entity A and B want to establish a secure connection across an insecure chan-
nel. First, they agree on two numbers g and p where g is a fixed primitive element
of a finite field GF (p) (for example p = 23 and g = 3). This two numbers can
be made public. Then A chooses a secret number a (for example a = 6) and af-
terwards A sends ga mod p to B (in our example 36 mod 23 = 16). B chooses
also a secret number b (for example b = 15) and sends gb mod p to A (this means
315 mod 23 = 12). Now, A calculates (gb mod p)a mod p = gba mod p (this
means 126 mod 23 = 9) and B calculates (ga mod p)b mod p = gab mod p
(this means 1615 mod 23 = 9) . Due to the fact, that gba mod p = gab mod p
is true, both sides have now a shared key (in this example 9). It is important to
realise that the private numbers a and b have never been transmitted across the
network. An illustration of this key exchange algorithm is shown in Figure 3.2.
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Figure 3.2: Diffie-Hellman key exchange

The Diffie-Hellman key exchange is based on the fact that it is very difficult to
calculate logarithms over a finite field GF (p) with a prime element p. This means
that it is very easy to calculate y = gx mod p, but it is very difficult to calculate
x = logg y mod p. As p, g can be made public and a, b must be kept secret, the
Diffie-Hellman key exchange is regarded as a public-key system.

3.2.2 Protection against Fabrication
An encryption protects the transmission against unwanted interception. It is im-
portant to note that it is still possible to replay messages even if the attacker does
not know the plain version of the message (replay attack). For example, in a
building automation system an attacker can simply replay an encrypted ”Open
door” message which was sent previously. If the receiver does not discover such
a replayed message, the receiver will perform the requested action. To do such a
replay attack, the attacker must get enough information about the network traffic.
If the intruder listens to the network long enough, it is possible to guess the mean-
ing of different messages. Or the attacker can simply replay different messages
and observe what consequences these replayed messages have.

To avoid such a fabrication, messages often contain a so called nonce. A nonce
is a number which is used only once. This nonce uniquely identifies the message.
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Due to this nonce, two messages which contain the same user data (for example
”open door”) are not identical. To achieve this requirement, it is necessary that the
set from which these numbers are chosen is large enough. To have a ”perfectly
secure” nonce, the set must be large enough to guarantee that each nonce is unique
during the whole life cycle of the system. To avoid interception of this nonce, it is
encrypted, too.

To achieve this protection against replay attacks, a counter is often used as a
nonce. This counter is incremented after each transmission. If the counter is large
enough, two messages with the same user data will always be different. So, if an
attacker intercepts a previously sent message and replies it later, the receiver will
be able to detect this replayed message. It is important to keep the counters on both
sides synchronised. Otherwise, a correct message would be identified as an invalid
one. A problem with this approach is the loss of messages. If a message gets
lost and if the sender does not recognise it, the counters will get asynchronous.
A possible solution is to accept counter values in a specified interval (N, N + e),
where N denotes the current counter value and e is the amount of messages, which
can get lost.

Figure 3.3 illustrates an encrypted communication between two entities that
use a counter to protect the transmission against replay attacks. Both the sender S
and the receiver R initialise their counters with the same value N1. Then S sends
an encrypted message which contains the message itself and the counter N1. R
receives the message and decrypts it. After it has been decrypted, R compares
the received counter values with the current valid one. If they are identical, the
message is a valid one. Now, both S and R increase their counters.

During the transmission of this message, an attacker intercepts it. Later on,
the attacker replies this message. Again, R receives the message and decrypts it.
Now, the received counter and the current valid one are not identical. And so, R
has detected this replayed message and R will discard the message.

Finally, S sends a new message. B receives the message and compares the
received counter with the reference one. If they match, B can be sure that this
message is not a replayed one.
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Figure 3.3: Protection against Fabrication

3.2.3 Protection against Modification
If the data packets are encrypted and if a nonce is added to the user data, the
transmission is protected against interception and fabrication. Anyhow, there are
still possibilities to disturb the communication between two entities.

As mentioned before, a nonce helps to discover replayed messages. With this
approach, the receiver can detect a previously sent messages and so it can discard
the replayed message. Unfortunately, it is still possible to modify the message. If
an entity receives such a modified message, this message can be misinterpreted
and hence it could cause damage. Even if the attacker does not exactly know
the consequences of the modification, he can try to send many different modi-
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fied messages and hope that such a message disturbs the normal operation of the
receiver.

To protect the data packets against unwanted modification, a digest can be
used. A message digest h (also called digital fingerprint) is generated by a one-
way hash function H . In other words (l(x) denotes the length of the binary string
x),

h = H(m),∀m : l(h) = const

A cryptographically secure hash function must have the following properties (see
[20] and [21]):

• It is computationally infeasible to find m from h. On the other hand, it must
be very easy to calculate h from m.

• The output h must have a fixed length for all different inputs m (even if the
length of m is different).

• A modification of only one bit of m must lead to a modification of about
half of the bits of h.

• If an input m and the corresponding output h is given, it must be computa-
tionally infeasible to find another input m′ such that h = H(m) = H(m′).

• If only the hash function H is given, it must be computationally infeasible
to find two inputs m and m′ such that H(m) = H(m′).

Cyclic redundancy check (CRC) algorithms are used to calculate a checksum.
This checksum can be used to detect transmission failures. Due to the linear
structure of the used CRC polynomials, it is easy to change the input m without
changing the checksum h. Therefore, the checksum must be encrypted too or a
strong cryptographic hash function should be used instead.

The most widely used cryptographic hash functions are MD5(for further de-
tails see [33]) and SHA. Since many collisions were found in MD5, it should not
be used anymore. It is recommended to use a SHA instead. Depending on the
length of the output, the Secure Hash Standard (SHS) defines different types of
SHA algorithms (SHA-0, SHA-1 and SHA-2). Generally, it is more secure to use
a higher number of hash bits (for further details see [34]).

To protect the transmission of messages against unwanted modification, one
of these hash functions can be used. To achieve this, the sender calculates the
message digest of the message. To protected this calculated digest against modi-
fication, the sender encrypts it. Otherwise, an attacker could modify the message
and calculate a new message digest.

After the sender has encrypted the message digest, this encrypted digest is
sent together with the user data to the receiver. It is important to note that the user
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data itself does not need to be encrypted. To detect an unauthorised modification,
only the digest has to be encrypted. After the receiver has received the message
it decrypts the received message digest. Additionally, it calculates the digest of
the received user data. If the calculated and the received digest are identical, the
receiver can be sure that nobody has modified the message.

Figure 3.4 illustrates this concept.

Figure 3.4: Protection against Modification

There are two ways, how this encryption can be achieved. First, it is possible
to use a symmetric encryption. If the message digest is encrypted using a shared
secret key, the receiver can be sure that only an owner of this secret key is able to
calculate the hash value. Without knowing this secret key, an attacker is not able
to calculate a new message digest.

Another possibility is to use a public key system. This scheme works as fol-
lows. The sender of a message calculates the hash value of the message. To
protect this digest against modification, the sender encrypts it with its private key.
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When the message arrives at the receiver, the receiver can decrypt the digest by
using the public key of the sender. As long as the validity of the public key can
be guaranteed, the receiver can be sure that nobody has modified the digest. As
the digest is uniquely tied to the private key, this encryption digitally signs the
message. Therefore, such an encrypted message digest is also called a digital
signature.

3.3 Authentication and Key Management
In the previous section, methods and concepts were presented which guarantee
the integrity and confidentiality of the transmitted data. With these methods, the
communication participants can be sure that the data packets are transmitted over
a secure channel. It is important to note that there is still a problem that remains
unsolved. Even, if message integrity and confidentiality are guaranteed, it must be
proven that the participants are what they claim to be. To achieve this, the identity
of both communication participants must be verified. For example, in an access
control system it must be guaranteed that only an authorised entity is allowed to
open a door. Therefore, the sender of an ”open door” message must prove its
identity.

It is obvious that authentication and message integrity/confidentiality is closely
related. In many cases, authentication makes only sense, if the message integrity
and confidentiality can be guaranteed. For example, if the communication pro-
tocol of an access control system supports authentication, the sender of an ”open
door” message can prove its identity. If the integrity of the message cannot be
ensured, it could be possible that an attacker has modified the received message.

It is important to note that a communication protocol that guarantees message
integrity without implemented authentication mechanism does not make sense.
As shown in the above example, it is essential to verify the identity of the com-
munication participants. Otherwise, it cannot be ensured whether the sender of an
”open door” message has the necessary access rights to open the door.

There are several ways to verify the identity of a communication participant.
These different of authentication mechanisms are explained in the next sections
of this chapter. Based on [35] and [20], this thesis distinguishes between four
different types of authentication protocols.
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3.3.1 Authentication based on secret tokens
First, a so called secret token can be used to prove the identity of a communication
participant. This secret token is sent to the entity which wants to verify the identity
(see Figure 3.5).

Figure 3.5: Authentication based on a secret token

For example, a PIN code, a username/password pair or a passphrase can be
used as secret tokens. It is quite obvious that these secret tokens must be protected
against interception. If the secret token is not transmitted over a secure channel,
an attacker can simply intercept the secret token.

3.3.2 Authentication based on secret keys
As mentioned before, the use of a secret token which is transmitted in cleart-
ext, is insecure and should be avoided. A more secure approach is to encrypt all
messages that have to be sent during the authentication phase. If a symmetric
algorithm is used, the shared secret key K can be used to prove the identity of
the communication participants. This means that if an entity receives a message
which is encrypted with a shared secret key K, the receiver of the message can be
sure that only an owner of the key K can encrypt the content of this message.

The main disadvantage is that this method only proves that an owner of the
key has sent the encrypted messages. This means that if an attacker steals the
secret key, the attacker is able to authenticate successfully. As long as only the
communication participants know the secret key, it can be verified whether the
participants are what they claim to be.
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As mentioned in the Section 3.2, an encryption only protects against unwanted
interception. Therefore, a nonce is often used to avoid replay attacks. Figure 3.6
shows a possible authentication protocol which is based on a shared secret key.

First, the entity A sends an identity token A to B. This identity token is only
used to inform B that A wants to prove its identity. This token can be transmitted
in cleartext since it does not influence the security behaviour of the protocol. After
B receives this token, it generates a nonce N1 which is sent to A. A encrypts the
received nonce N1 with the shared secret key K and sends the encrypted version
of N1 back to B. To verify the identity of A, B decrypts the received nonce and
compares it with the original one. As long as only A and B know the secret key
K, B can be sure that A has sent the message. Additionally, if A wants to verify
the identity of B, A generates also a nonce N2 and transmits it to B. After B has
received the nonce N2, B encrypts it using the secret key K. Now, B sends this
encrypted version back to A. After A has received the encrypted version of N2,
A can also verify the identity of B by decrypting the nonce. To achieve this, A
decrypts the nonce and then compares it with the original one.

Figure 3.6: Authentication based on a shared secret key

Designing a secure protocol is not always a trivial task. [20] illustrates this by
giving an example how an optimisation of an authentication protocol can make it
vulnerable to security attacks.
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Consider the following example which is discussed in [20]. To decrease the
amount of necessary messages which have to be sent, the authentication protocol
mentioned above (Figure 3.6) can be optimised. For example, entity A can send
its identity token A and its generated nonce N2 together in one message. Addi-
tionally, entity B can send its response C1 together with the nonce N1. As shown
in Figure 3.7, this optimisation would reduce the amount of necessary messages
to three.

Figure 3.7: Optimisation of the Authentication Protocol in figure 3.6

This version of the protocol has a potential vulnerability (Figure 3.8). Consid-
ering the situation, where an attacker X wants to fake the identity of A without
having the secret key of A. Suppose that X wants to authenticate to an entity B.
X sends the identity token A together with a generated nonce N1. B responds
with another nonce N2 and the encrypted version of N1. To verify the identity of
A, B waits until X responds with the encrypted version of N2. As X does not
have the shared secret key K, X cannot encrypt N2 and therefore it cannot finish
the authentication process.

To fool B, the attacker starts a second session. It sends the identity token A
together with the nonce N2, which it has to encrypt to finish the first session. B
encrypts N2 and sends it back to X . Now, X has the encrypted version of N2

and so X can finish the first session by sending the encrypted version of N2 to B.
Since the response from the second session is reflected, this type of attack is also
called reflection attack.
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Figure 3.8: Reflection attack

This example shows how difficult it is to optimise a security protocol. As men-
tioned in Section 2.5, especially the control level of a building automation system
contains small embedded devices which have limited hardware resources. To save
memory and to decrease the execution time, it is often necessary to optimise the
software implementations. It is essential that an optimisation will not impact the
security of the protocol(for further detail see 3.4).

3.3.3 Authentication using a third party
Authentication methods which are based on shared keys have one disadvantage.
These methods use symmetric algorithms to prove the identity of the communica-
tion participants. As mentioned in Section 3.2.1, there are two possibilities how
a group of network nodes can use a symmetric algorithm to encrypt the transmis-
sion.

First, all members of a group can share one secret key. If an authentication
protocol uses this approach, the identity of a communication participant cannot
be clearly verified. This means that if a member of a group receives a message
that is encrypted with a shared group key, the receiver knows that only an owner
of the key is able to encrypt this message. As all members of the communication
group know this key, it cannot be exactly determined which group member has
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encrypted the message. The receiver can only be sure that a group member has
sent this message (of course if nobody has stolen the key). Therefore, this scheme
is not suitable for proving the identity of a single network node.

Another possibility is to use a separate key between each pair of group mem-
bers. This means that if a group has N members, it is necessary to have N(N −
1)/2 keys. It is obvious that for large N , this approach is impossible. Therefore,
an alternative has to be found.

One possible solution is to use a trusted third party which manages the secret
keys. Since this third party manages the different keys, it is often called Key Dis-
tribution Center (KDC). This KDC is responsible for the distribution of session
keys. If an entity wants to set up a connection with another entity, it must retrieve a
session key. To achieve this, the entity sends a request to the corresponding KDC.
The KDC generates a session key and sends this session key to both communi-
cation participants. With this approach, each entity only needs one shared key.
This key is used to establish a secure connection to the KDC. It is not necessary
to share a secret key with another entity.

Figure 3.9 illustrates this scheme. Suppose, entity A wants to set up a con-
nection to entity B. First, A sends the identity tokens A and B to the KDC. The
KDC receives them and generates a session key KA,B which can be used by A
and B to set up a secure channel. After the session key has been generated, the
KDC encrypts this session key using KA,S (C1). Additionally, the KDC encrypts
the session key with KB,S to get C2. Now, these two encrypted versions of KA,B

are transmitted to A. To get the session key KA,B, A decrypts C1 using its shared
key KA,S . Additionally, A sends C2 to B. As C2 offers B the possibility to com-
municate with A, C2 is also called a ticket. After B has received the ticket, B can
decrypt C2 with KB,S . Now, A and B both have the same secret key and so they
can communicate through a secure channel. As long as the secret keys KA,S and
KB,S are kept secret, only A, B and the KDC know the session key. Therefore,
the identity of A and B can be verified.
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Figure 3.9: Authentication using a KDC

The protocol mentioned above should only explain the basic concept of a pro-
tocol that uses a KDC. It is obvious that there are a lot of problems which have to
be considered. For example, there is no protection against replay attacks.

A more secure example of an authentication protocol which uses a central
key server is called Needham-Schroeder protocol. It is named after its developers
Needham and Schroeder (for further details see [36]). It has a lot of mechanisms
implemented which make the authentication process more secure. For example,
it uses a nonce to avoid replay attacks. A mutation of this protocol is used in
Kerberos.

3.3.4 Authentication based on a public key system
Another possibility is to use a public key system for authentication. As mentioned
in Section 3.2.1, in a public key system every entity has its own public/private key
pair. These authentication mechanisms are based on the fact that a message which
is encrypted using a public key can only be decrypted with the corresponding
private key and vice versa.

Suppose that entity A wants to verify the identity of an entity B. To achieve
this, A encrypts a nonce N using the public key K+

B of B and sends the encrypted
nonce to B. B decrypts the received message with its private key K−

B and sends
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the nonce N back to A. Since only the private key K−
B of B can decrypt a message

that was encrypted with the public key K+
B of B, B has proven its identity. If B

wants to verify the identity of A, B could achieve this exactly the same way.
Figure 3.10 illustrates this method. It is important to note that it is also possible

to send the nonce in plaintext. If this approach is used, B encrypts the received
nonce using its private key. Then it sends the encrypted nonce back to A. To
verify the identity of B, A decrypts the nonce using the public key of B. If the
nonce is valid, B has proven its identity.

It is important to note that these examples show only the basic concept of this
scheme. There are still a lot of security problems which have to be considered.

Figure 3.10: Authentication based on a public key system

As mentioned in Section 3.2.1, asymmetric algorithms are much slower than
symmetric ones. Therefore, it is more common to use hybrid solutions. This
means to exchange the session key and to verify the identity of the participants,
an asymmetric algorithm is used. After the identities have been proven and after
the session key has been exchanged, a symmetric algorithm is used for further
communication.

Figure 3.11 shows, how such a hybrid protocol can be realised. This solution
works as follows. Entity A generates a nonce N1. This nonce is encrypted together
with the identity token A using the public key K+

B of B. Then the encrypted
message C1 is sent to entity B. B receives the message and decrypts it with the
corresponding private key K−

B . Now, B generates a nonce N2 and a session key
K. At that point, B encrypts the decrypted nonce N1 together with the nonce N2

and the session key K using the public key K+
A of A. This encrypted message

C2 is transmitted to A. To get N1, N2 and K out of the received message C2, A
decrypts C2 using its private key K−

A . Now, A is able to verify the identity of B.
As long as the public key of B was the valid one and as long as only B knows the
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private key K−
B , A can be sure that B has sent the message. To finish the protocol,

A encrypts the received nonce N2 with the session key K and sends the encrypted
version of N2 to B. After B has received the message, B is able to verify the
identity of A. At that point, both communication participants have proven their
identity. For the rest of this session, they can use the shared session key K to
encrypt further messages.

Figure 3.11: Authentication based on a hybrid system

As shown in the described example, an asymmetric algorithm can be used
easily to prove the identity of the communication participants. Anyway, there are
still problems which have to be considered.

First, this approach works only as long as the private keys of the entities are
kept secret. If someone steals the private key of an entity, the identity cannot
be proven anymore. Therefore, it is necessary to implement a mechanism which
makes it possible to generate a new key pair. Additionally, if a new key pair is
generated, the new public key must be distributed across the network.

Another problem is the distribution of the public keys. In a public key system
it must be guaranteed that a public key belongs to the corresponding entity. A
communication participant must be sure that it gets the correct public key.

To solve these problems, a key management facility is necessary. This facility
has the objective to maintain and to distribute the public keys in a secure manner. It
must also provide services which make it possible to revoke the validity of a public
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key and to upload a new one. Section 3.3.6 shows how such a key management
can be realised.

3.3.5 Authorisation
As mentioned at the beginning of this chapter, a security policy defines which
entities are allowed to initiate certain actions. In the previous section, authen-
tication techniques were discussed which make it possible to verify the identity
of the communication participants. After the initiator of a request has proven its
identity, it is necessary to check whether the entity has the necessary access rights
to perform the requested action. For example, in a building automation system
only the system operator is allowed to change configuration parameters of a field
device. Therefore, it is necessary to verify whether the initiator of the request has
the necessary access rights to change these parameters.

To achieve this, an authorisation4 mechanism is necessary. This authorisation
mechanism has the objective to decide whether an entity (called subject S) is
allowed to perform an action a on a particular device (called object O). A common
solution is to store these access rights in an access control matrix. A row of such
a matrix represents a subject whereas a column represents an object. To verify
whether a subject S is allowed to initiate an action a on an object O, this action a
must be listed in the entry M [s, o] of the corresponding access control matrix M .
In other words, the matrix entry M [s, o] lists all actions of object O which subject
S is allowed to perform.

A building automation system normally has a lot of devices. If an access
control matrix is used to store the necessary access rights, this matrix can become
very large. Additionally, a device does not need the whole access control matrix.
Depending on the task which a device has to perform, only a part of the matrix is
relevant for the particular device. Therefore, it is more efficient to distribute the
access control matrix.

If the access control matrix is distributed column-wise, each device gets is
own access control list. This list defines which entity is allowed to perform which
actions. With this approach, the devices need not store the whole access control
matrix. Each device stores and maintains its associated access control list. If
an entity wants to perform a particular action on a device, the device verifies the

4Some publications distinguish between access control(verifying access rights) and authorisa-
tion (granting access rights). These two terms are strongly related to each other. In this thesis, the
term authorisation is used as a synonym for both .
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identity of the initiator. After the initiator has proven its identity, the device checks
the access control list whether the initiator has the necessary access rights. If the
initiator is listed in the access control list and it has the necessary access rights,
the action is executed. Figure 3.12 illustrates this approach.

Figure 3.12: Access Control List

Another possibility is to distribute the access control matrix row-wise. This
means that each subject has its own list of actions which it is allowed to perform
on a particular device. The subject itself maintains this list of capabilities.

A capability is used like a ticket. It gives the owner the right to perform a
certain action. If an entity wants to initiate an action, it sends the necessary ca-
pability together with the request to the particular device. The device receives the
capability and verifies the authenticity of the received capability. If the capability
is valid, the requested action is executed. It is obvious that this capability must be
protected against unauthorised modification. Otherwise, an attacker could modify
an existing capability and gain unauthorised access. Figure 3.13 illustrates this
basic concept.

Figure 3.13: Capability List
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3.3.6 Key Exchange and Key Management
Authentication protocols which use a third party or which are based on a pub-
lic key system have one disadvantage. These protocols need a key management
facility to manage the keys.

There are two ways to realise a key management. First, it is possible to use
a centralised key server (centralised approach). This key server has the objec-
tive to maintain and to distribute the keys. Depending on the used cryptographic
algorithms, two different types of keyservers exist.

As mentioned in Section 3.3.3, a key distribution center (KDC) manages
the shared, secret keys which are needed by symmetric algorithms. If an entity
wants to communicate with another entity, it sends a request to the KDC. The
KDC generates a session key and sends it back to the entity. It is obvious that the
communication between the entity and the KDC itself must be secured. Therefore,
each communication participant needs a shared secret key which allows the entity
to set up a secure channel to the KDC (for a detailed description see Figure 3.9 in
Section 3.3).

If a public key system is used, it is not necessary to exchange a shared secret
key between the involved communication participants. Unfortunately, there is
still one problem which has to be solved. If an entity wants to encrypt a message
with the public key of the receiver, the sender must be sure that the public key
belongs to the entity that it purports to belong to. Again, a trusted third party can
be used to solve this problem. If a public key system is used, this trusted third
party is called certification authority (CA). It has the objective to maintain and
to distribute the public keys in a secure manner. If an entity is interested in a
public key, it sends a request to its trusted CA. This CA sends a certificate back to
the entity. This certificate contains the requested public key and the identity token
of the owner of the public key. For example, in a building automation system
the unique device number in the network could be used as identity token. To
prove the authenticity of such a certificate, the whole certificate is digitally signed
by the CA. As mentioned in Section 3.2.3, this means that a message digest is
appended to the message. This message digest is encrypted with the private key
of the CA. To verify the authenticity of the certificate, the entity tries to decrypt
the message digest using the public key of the CA. Additionally, it calculates the
message digest of the received certificate. If the decryption is successful and if
the decrypted message digest and the calculated one are identical, the identity of
the CA has been proven. Figure 3.14 illustrates this concept.
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Figure 3.14: Certification Authority

It is important to note that each entity needs a set of trusted keys. If a KDC is
used to distribute session keys, each entity must share a secret key with the KDC.
Without this key, it is not possible to set up a secure channel to the KDC. If a public
key system is used, each entity must trust the authenticity of the CA’s public key.
Without the public key of the CA, it is not possible to verify the authenticity of
the certificate.

There are many different ways to solve this problem. One possible solution
is to integrate the required keys into the client application itself. For example, a
set of trusted public keys is integrated in the binaries of web browsers. In a build-
ing automation system, these keys could be uploaded to the device at installation
time. To protect these initial keys against security attacks, it is important to avoid
unauthorised modification (for further details see 4.2.1).

As mentioned in Section 2.3, such a centralised solution has a lot of disad-
vantages. The whole authentication process depends on the reliability of the key
server. If the key server fails and an entity needs a new key, an authentication
cannot be performed anymore (single point of failure). This means that the KDC
must be fault tolerant and it must be carefully protected against security attacks.
For example, if an attacker finds a way to gain unauthorised access to the key
server, all stored keys are not secure anymore. Another problem is that every net-
work node which wants to retrieve a key must establish a connection to the key
server. If the amount of nodes and the session requests per time unit are very high
, these connections could lead to a lot of network traffic. Therefore, these key
servers are often bandwidth bottlenecks.
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One possible solution is to replicate the key servers. Replication is often
used to increase the fault tolerance and to distribute the incoming network traf-
fic. Replication means the services or the data is redundantly available. In this
case, replicating the key server means multiple copies of the server are available.
This redundancy improves the fault tolerance. If one replica fails, another replica
can assume the job. It is important to note that the protection against security
attacks has not been improved. If an attacker gains unauthorised access to one
of the replicas, the attacker has still access to the stored keys. As the attacker
has more physical possibilities to attack the key server, replication makes the key
server more vulnerable to security attacks.

Figure 3.15: Replication of Key Servers

Another possibility is to divide the network into different domains. Each
domain has its own key server and therefore each key server is responsible for
the corresponding keys of its domain. These key servers are arranged in a tree-
structured hierarchy. This means that if an entity wants to get the key of another
entity that is not in the same domain, the key server forwards the request to the re-
sponsible key server of the foreign domain. To achieve this, each key server must
know the public keys of its parents. Figure 3.16 shows an example, how such a
hierarchy of key servers could look like.
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Figure 3.16: Hierarchical Organisation of Key Servers

The main benefit of this approach is that if an attacker gains unauthorised ac-
cess to one of the key servers, only the keys of the particular domain are affected.
This scheme of dividing the network into domains (Defence-in-Depth) is often
used. For further details see Section 3.6.

All the solutions mentioned above use a central server (or a set of servers)
to manage the keys. To avoid the disadvantages of these centralised solutions, a
distributed approach can be used. An example of a distributed solution is a model
called web of trust. In a web of trust no central key server is necessary to verify
the authenticity of the required public keys. To achieve this approach, each entity
has its own list of public keys which the entity trusts. This scheme works as
follows. If an entity wants to set up a secure channel, it needs the public key of
other communication participant. To get the public key, the entity first tries to find
the key in its list of trusted public keys. If the list does not contain the required
public key, the entity has to ask other network nodes. To avoid that an attacker
responds with an invalid public key, the entity only asks network nodes that the
sender already trusts. Suppose that an entity A needs the public key of B. A does
not already have the public key, so it asks the trusted entity C whether C knows
the public key of B. If C has it and A trusts C (this means that A already has the
public key of C), A can set up a secure channel to C. Now, C is able to securely
transmit the public key of B to A.

It is obvious that this approach is hard to realise. To get a particular public
key, it is necessary to find a trusted entity which knows the key. This means that
the time which is needed to find the public key is not bounded. Therefore, this
web of trust approach seems less appropriate in building automation systems.
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3.4 Security in Development Process
As mentioned at the beginning of this chapter, it is essential to implement security
mechanisms to protect the system against security attacks. To achieve an effective
protection, security must be incorporated into the development process. It is im-
portant to consider security in each phase of the development process, even at the
beginning. Unfortunately, a lot of developers start to implement the functionality.
If the implementation of the core components has been finished, different security
mechanisms are added. This way of adding security features is not the best one.

3.4.1 System development life cycle
It is essential to include security considerations in each phase of the life-cycle
of the development process. This system development life cycle is a formal
approach for the development of computing applications. In [37], this life-cycle
is divided into six phases. Figure 3.17 illustrates this classic approach.

Figure 3.17: System development life cycle ([37])

In the first phase (requirements analysis), the application requirements must
be figured out. This means that the objectives and the problems which the system
has to solve must be analysed. In this phase, it is important to analyse the security
requirements too. Therefore, the security objectives must be clearly identified.
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As mentioned at the beginning of this chapter, this is done by defining a security
policy. This security policy specifies which operations are allowed and which
must be permitted. This policy is the base for further security considerations. In
later phases, the security policy helps to verify whether the necessary security
requirements have been satisfied.

In the design phase, the different possibilities to fulfil the application require-
ments are analysed. These different ways and mechanisms how the system can be
realised must be compared to each other. After this comparison, the most efficient
way which meets the requirements must be chosen. In this phase of the devel-
opment process, the different security mechanisms must also be selected. Based
on the security policy of the requirements analysis, available security mechanisms
which meet the specified security requirements must be analysed. To achieve this,
it is often advantageous to perform a risk analysis (for further details see [38]).
This analysis of risks helps to find the best way that fulfils the specified security
requirements.

After the mechanisms have been chosen, the application software is developed
(development phase). It is important to distinguish between the development of
software for building automation systems and the development of IT software (for
example web applications, database software, office applications,...).

As mentioned in Section 2.5, a lot of field and interconnection class devices
have little computing power and limited memory. Therefore, different develop-
ment techniques are necessary. Nowadays, systems of the IT domain (for example
workstations) have a lot of memory and a high clock rate. Therefore, the develop-
ers do not need to think about memory usage and runtime. At this higher level of
abstraction, hardware considerations are less important. Most of the applications
which are designed for building automation systems will run on embedded devices
where it is important to take the algorithm complexity and the memory usage into
account. The developers must have the necessary qualification and experience to
design such software components for embedded devices.

To satisfy these needs, they must be familiar with the used hardware as well.
The developers must know the relationship between hardware and software. The
development tools (for example C compiler, debugger, ...) which were supplied
by the manufacturer of the hardware are more or less mature. Therefore, it could
be necessary to write parts of the software code in assembler. It is important to
note that these low level development tools must be used with care. High level de-
velopment tools have implemented special mechanisms that provide a higher level
of abstraction. These mechanisms avoid typical implementation mistakes. For ex-
ample, many higher programming languages use automatic memory management,
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which does not support the usage of pointers. Therefore, implementation mistakes
like buffer overflows are less likely. It is important to note that low level develop-
ment tools which are used to develop embedded software do not avoid such im-
plementation mistakes. Therefore, the software engineers themselves must avoid
such vulnerabilities.

Embedded Device Traditional System
Hardware low clock rate, low

memory
high clock rate, high
memory

Programming Language Assembler, C, maybe
C++

higher OO languages
(C#, Java, ...)

Abstraction Level low high

Table 3.1: Differences in Development Process

In the testing phase, the developed software components are verified. It must
be tested whether the application satisfies the specified requirements. Addition-
ally, it must be verified whether the system fulfils the necessary security require-
ments which have been defined by the security policy. Generally, the members
of the development team should not be responsible for performing these tests. A
better approach is to use a separate testing team. If a tester is not directly involved
in the development of the application, he will be unprejudiced. Therefore, it is
more likely that one of these independent testers will find flaws and vulnerabil-
ities. Additionally, a separate testing team can perform the tests without having
the fear of having to change the system.

After the application meets all specified requirements, the system must be
implemented (implementation phase). In the building automation domain, this
phase is also referred to as system integration. In this phase, the project engi-
neer must integrate the developed software applications as well as the hardware
components. This means that the different network nodes must be installed and
the software applications must be uploaded to the corresponding network devices.
Additionally, the engineer must perform different configuration task. For exam-
ple, an individual network address must be assigned to each network device. If
the used security mechanisms need an initial setup, this setup must also be per-
formed in this phase. For example, if an authentication mechanism that is based
on a KDC is used, each node must get a secret key which it shares with the KDC.
Therefore, at installation time, the project engineer must distribute these secret
keys in a secure manner.
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After the integration and the configuration of the entire system has been fin-
ish, a system test is necessary. This system test has the main objective to verify
whether the system as a whole meets the specified requirements. Especially, the
integrated security mechanisms must be tested whether they satisfy the security
requirements that have been defined in the security policy.

After this integration, the system must be maintained in order to keep the it
operable (maintenance phase). It is obvious that an application is never free
of vulnerabilities. Therefore, it must be possible to correct these software bugs.
Additionally, it is sometimes necessary to implement extra features which are not
defined in the specification. To achieve these software changes, it is necessary to
perform a software update (for further details see Section 3.5).

3.4.2 Design Issues
As mentioned in Section 2.1, a modern building automation systems (better a
building automation network) is normally designed distributed. Compared to cen-
tralised solutions, the design of a distributed approach is more complex. Espe-
cially, the protection against security attacks can be more complicated if a dis-
tributed solution is used. Therefore, there are some design issues which help to
make the system more secure.

To avoid unauthorised access, the particular service or data must be protected.
[20] describes three different design principles how an entity can be protected
against unauthorised access. First, the data or the service itself can be protected.
This means that the entity itself avoids invalid operations. For example, a micro-
controller of an embedded device can deny the write access of different memory
blocks (read-only memory).

Another solution is to protect the entity against unauthorised requests. This
means that the message interface of the entity verifies whether a request is valid
or not. For example, in a fire alarm situation it must be avoided that someone
activates the elevator. To achieve this, the message interface of the elevator device
could inhibit such requests.

Another approach is to protect the entity against unauthorised users. With
this scheme, the identity of the initiator must be verified. If the initiator proves its
identity, the receiver of the request can determine whether the entity has the neces-
sary access rights to perform the requested operation. For example, in a building
automation system only the system operator is allowed to change configuration
parameters of field class devices.

Figure 3.18 illustrates these three possible solutions.
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Figure 3.18: Avoidance of unauthorised access

There are several ways to make a system secure. First, it is possible to add
a security layer. This layer is responsible for protecting of system against ma-
licious attacks. It is important to note that the security of a system can only be
guaranteed, if the mechanisms which the security layer relies on are secure. For
example, consider a system where the security layer depends on the underlying
operating system. The security of this system can only be ensured, if the operat-
ing system itself is secure.

Another important issue is the weakest link. A system is only as secure as its
weakest link. Consider a system which uses strong security mechanisms. If it is
possible to bypass these strong security mechanisms and if it is possible to find a
way to gain unauthorised access without too much effort, the entire system is not
very secure. If such a weak link exists, it is only a matter of time until an attacker
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finds this weak link. For example, if the transmitted data is encrypted using a
strong cryptographic algorithm, the messages are protected against interception
but if the key is exchanged in an insecure manner (for example by transmitting
the key in cleartext), the protection against interception cannot be guaranteed any-
more. As a result of this, it is important to avoid all possibilities of violation of
the security of the system.

In many building automation systems, special hard- and software is used. As
the details about the hard- and software design is kept secret, the developers as-
sume that nobody has detailed knowledge about the used technologies (”security
by obscurity”). They think, without this knowledge, the attackers would not be
able to find vulnerabilities. Such a conclusion is very dangerous. If vulnerabilities
are not known, it does not mean that there are no vulnerabilities. For example, if a
cryptographic algorithm is weak and insecure, it will not become securer, even if
the source code is not available. It is only a matter of time until an attacker finds
a vulnerability. For example, an attacker can use reverse engineering techniques
to get the necessary information about the system. A better approach is to use
security mechanisms which are public. This means that the security mechanism
must not get weaker even if the source code is publicly available.

Another important issue is the use of standard cryptographic algorithms.
Whenever it is possible, standard cryptographic algorithms should be used instead
of newly developed ones. Developing secure cryptographic algorithm needs a lot
of time, effort and expertise. Therefore, the development of new cryptographic al-
gorithms should be avoided. As mentioned in Section 3.2.1, a lot of standardised
cryptographic algorithm exists. These methods were developed and tested by ex-
perts who have several years of experience. Most of these standardised algorithms
are public software. Therefore, it is recommended to use existing algorithms.

3.5 Update Policies
Building automation systems should run stable for many years or even decades.
To achieve this, the system must be maintained in order to keep it operable. Since
software is never error-free, it is possible that implementation mistakes and new
vulnerabilities will be found. To correct these software bugs, it must be possible
to install software patches. Sometimes, the operation environment changes and
therefore it is necessary to add additional functionalities. So, it must be possible
to add new software features without too much effort.

To satisfy these needs, an update mechanisms must be integrated. As a result
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of the fast grow of the Internet, it is common nowadays to perform online up-
dates. For example, an office workstation has normally a permanent connection
to the Internet. Therefore, it is very easy to update such a workstation online. In
a building automation system, this online update scheme is not always easy to
achieve. It is obvious that it is not possible to connect each network node directly
to the Internet.

One possible solution is to integrate a central server, which distributes the
update packages to the different devices. This update server has the objective to
distribute new software packages. For example, an IP gateway could act as such
an update server.

Figure 3.19: Online Update Server

As mentioned in Section 3.3.6, a centralised solution has a lot of disadvan-
tages. For example, if a single server is used to update each device, such an
update can be very time-consuming.

Therefore, it is more practical to use a distributed scheme. Similar to the key
server approach (for further details see Section 3.3.6), each network domain has
its own update server. Again, these update servers are arranged in a tree-structured
hierarchy. On the top of this tree structure, the root update server is located. This
server is connected to the Internet or another WAN to receive the new software
packages. Figure 3.20 illustrates this concept.

68



Figure 3.20: Hierarchical Organisation of Update Servers

3.6 Security Zones
In earlier days, building automation systems were isolated from other systems.
An interconnection to other networks (for example to an office LAN or to another
WAN) was uncommon. Some systems provide the opportunity to access the net-
work via dial-up modems. These dial-up connection were used to maintain and
configure the system remotely. It is obvious that these dial-up connections must
protected against unauthorised usage. Otherwise, an attacker could take advantage
of this dial-up mechanism.

Due to the assumed isolation, no protection mechanisms against security at-
tacks were implemented. As long as an attacker has no physical access to the
building, the attacker has no possibility to gain unauthorised access. As soon as
the attacker has found a way into the building, there are no protection mechanisms
that avoid a security attack (attack from the inside). Especially, on public places
it is very difficult to protect the system against such attacks from the inside (for
example, in a theater, shopping mall,...).

Nowadays, this isolation is no longer (if it ever was) valid. Modern building
automation systems have an interconnection to other foreign networks. For exam-
ple, an IP gateway provides the possibility to interconnect the building automation
system with an IP network. This interconnection to other heterogeneous networks
provides a lot of benefits. For example, an IP gateway could provide an HTML in-
terface which can be used to maintain and to configure the system. It is important
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to note that these gateways offer the possibility to attack the building automation
system from a foreign network. This means that the attacker does not need to
have physical access to the network. To avoid such attacks from ”the outside”, it
is necessary to monitor and to restrict the access from such insecure networks.

There are two basic approaches to protect a network against security attacks
from foreign networks. First, it is possible to put a single, insurmountable wall
around the system. This approach is also called hard perimeter. Figure 3.21
illustrates this scheme.

Figure 3.21: Hard perimeter approach

This security approach is often used to avoid unauthorised access from other
networks. To achieve such a protection, a firewall is often used. Such a firewall
has the objective to restrict the access to the internal network. It monitors and in-
spects the network traffic and verifies whether a connection request from a foreign
network is allowed or not. Based on a set of rules, the firewall decides whether a
connection is passed or rejected.

Depending on the way how the firewall inspects the incoming data packets,
two different types of firewalls exist. The first type is called packet-filtering
gateway. A packet-filtering gateway inspects only the header of the incoming and
outgoing messages. Based on the header and on a set of specified rules, a packet-
filtering gateway decides whether a packet is passed or dropped. For example,
such a firewall could prohibit the access from certain devices. To achieve this, the
firewall checks the source address of the messages which is encoded in the header
of the network message. If the source address does not belong to the set of valid
addresses, the particular data packets are dropped.

The second type of firewall is called application-level gateway. These gate-
ways inspect the content of the data packets as well. Application-level gateways
are more flexible than packet-filtering firewalls. Since these firewalls inspect the
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content too, more complex rules can be defined. For example, in a building au-
tomation system, the access to the system via a foreign network can be limited.
The application-level gateway could allow performing monitoring task whereas it
could discard requests which have the objective to change configuration parame-
ters.

As mentioned before, application-level gateways are more powerful. Com-
pared to packet-filtering gateways, more complex rules can be defined. To get
the necessary information, it is necessary to have detailed knowledge about the
used protocols. Sometimes it is even necessary to observe the current internal
state of a connection (for example, whether a connection has already been estab-
lished or authentication has been performed or not). As this internal state must be
logged, these gateways need more memory. In addition to that, the inspection of
the message content requires more time. Since interconnection devices of build-
ing automation systems have limited hardware resources, it could be possible that
these devices cannot fulfil these demands.

The hard-perimeter approach mentioned above has a lot of disadvantages. This
scheme only protects the network against malicious attacks from the outside. It
does not avoid security attacks from the inside. Behind this single wall of pro-
tection, no more security mechanisms exist. If the attacker bypasses this security
wall, the attacker has gained unauthorised access to the system. Additionally, it
is very unrealistic that this single wall protects the system against all kinds of at-
tacks. Even the best designed system has its weaknesses. So, it is only a manner
of time before an attacker finds a vulnerability. Therefore, it is very dangerous to
rely on this single protection mechanism. If this single wall fails, the attacker has
access to the entire system.

A more secure solution is an approach called defence-in-depth. In the defence-
in-depth approach, the system which should be protected against malicious attacks
is divided into several security zones. Each zone has different types of security
mechanisms implemented. It is important to note that these different zones can
be ordered hierarchically. This means that it is possible to define outer and inner
zones. The outer zones contain less valuable devices, whereas critical parts of the
systems are located in the innermost zones. This concept is illustrated in Figure
3.22.
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Figure 3.22: Defence-in-depth

In [40], a few defence-in-depth principles are described. The first one is called
layered defence. In the defence-in-depth concept, the different security zones are
like shells which are placed around the system. This means that if an attacker
bypasses the first security layer, a second one still protects the critical parts of the
system. It is important to note that an attacker from the outside can only see the
first security layer. As long as this first layer does not fail, the second defence
mechanism does not come into play. So, the attacker cannot begin to attack the
security mechanisms of the inner zones.

This approach has another important benefit. If an attacker has already ac-
cess to the outer security zone (for example, the attacker uses a valid user ac-
count), only the resources inside this zone are affected. More critical parts of
the system are placed in another zone which has additional security mechanisms
implemented. As long as there is still a security layer between the attacker and
the resource, the resource is protected against attacks even from the inside of the
system.

To achieve this layered defence, different security zones implement different
security mechanisms. Therefore, it is common to define a separate security policy
for each security zone. It is essential to clearly define the demands on each zone.
It must be determined for example which parts of the system must be placed into
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inner zones and which devices can be located in the less valuable, outer zones.
It is also important to implement protection mechanisms on multiple places.

This means that all different possibilities to gain unauthorised access must be
avoided. Consider, for example, a building automation system which has an in-
terconnection to an IP network. Suppose, the IP gateway is carefully protected
against malicious attacks. As long as there are no other ways to gain access to the
system, the system seems to be secure. Unfortunately, if there is an additional con-
nection to the outside (for example in the case of an IP outages a dial-in modem
can be used to maintain the system remotely) which is not sufficiently protected,
the security of the system cannot be guaranteed anymore. It is essential that this
way is also carefully protected (even if it is used infrequently). Otherwise, it is
only a matter of time until an attacker uses this way to gain unauthorised access.

To provide an effective protection against security attacks, defence-in-depth
solutions should also support mechanisms to detect an intrusion. These intrusion
detection mechanisms (for further details see 3.7) are necessary to inform other
security layers that an attack is occurring. If such intrusion detection mechanisms
are not integrated, the different zones are independent from each other and so the
intruder can attack each security layer independently. With intrusion detection
systems, a security attack can be recognized and defensive reactions can be per-
formed. More details about such intrusion detection systems are explained in the
next section.

The usage of defence-in-depth is not restricted to networks. It is also possible
to use defence-in-depth for software applications. This means that the software
itself has implemented several security layers. Consider, for example, a software
implementation which provides a message interface to change the content of a
database. This message interface itself verifies the incoming requests and checks
whether they are valid or not. The underlying operation system has implemented
additional security mechanisms (for example a memory protection) and therefore
it provides a second security layer (for further details on defence-in-depth of soft-
ware applications see [41]).

3.7 Intrusion Detection
It is obvious that each system has its weakness. So, it is always be possible that
there is still a way left open to gain unauthorised access. To rely on the assump-
tion that nobody will ever find a vulnerability is very dangerous. Therefore, a
protection against security attacks is not always enough. It is also important to im-
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plement mechanisms that discover intruders. Intrusion detection does not only
include the detection of attackers that have already gained unauthorised access. It
is also essential to discover abnormal activities which indicate a security violation.
As mentioned in the previous section, if a defence-in-depth approach is used, such
an intrusion detection system (IDS) must be integrated.

There are two different kinds of intrusion detection systems. Depending on
the observed activities, host-based and network-based intrusion detection systems
exist (see Figure 3.23).

Figure 3.23: Network-based and host-based intrusion detection systems

A host-based intrusion detection system tries to discover abnormal activities
on a single host. Host-based intrusion detection systems can use different possi-
bilities to detect an intruder. In [38], four different methods are described. Three
of these methods are suitable in building automation systems as well and therefore
these three will be discussed in the following paragraphs.

First, it is possible to observe the actions which are performed by an entity.
These user profiling methods are based on the fact that each user has a charac-
teristic profile. For example, a user normally accesses the same files, uses some
commands more than others and so forth. An intruder can be detected by com-
paring the current activities against the expected ones. Consider, for example, a
field class device in a building automation system which acts as a light switch. If
someone uses this device to perform abnormal operations (for example an attacker
uses the device to open a door), these ominous actions indicate that something is
going wrong.

74



Another kind of host-based intrusion detection is called intruder profiling.
Similar to user profiling, intrusion detection systems which use intruder profiling
methods try to detect activities which an intruder normally performs. This means
that the intrusion detection system searches for actions which are characteristic
for an intruder (for example abnormal memory access).

As mentioned before, host-based intrusion detection systems work on a single
host. Especially, security-relevant and important hosts of the network should be
secured by such a host-based intrusion detection system. In a building automation
system, interconnection class devices can be such important network nodes. For
example, it could be advantageous to integrate an intrusion detection system in a
gateway that interconnects the building automation system with a foreign network
(see Figure 3.23).

Host-based solutions have one disadvantage. They can only observe the ac-
tivities which are performed on a host. A network-based intrusion detection
system observes the network traffic and therefore these systems are able to dis-
cover abnormal activities which do not only affect a single host. Consider, for
example, an attacker that wants to gain access to a field class device of a building
automation system. To avoid that the attack raises suspicions, the attacker tries
only one password each time (for example a default password or the empty pass-
word). If the attempt was unsuccessful, the attacker tries to connect to the next
device. A host-based intrusion detection system is not able to detect this attack
because a single request does not indicate a security attack. On the other hand, a
network-based intrusion detection system is able to detect these ominous requests
by monitoring the network traffic.

In a building automation system, such a network-based intrusion detection
system can be used to observe the network traffic. For example, such a system
can discover abnormal management communication. As mentioned in the previ-
ous sections, an avoidance of Denial-of-Service attacks can be very difficult. A
possibility to detect Denial-of-Service attacks is the use of an intrusion detection
system. If a Denial-of-Service attack is detected, the intrusion detection system
can try to cut off the network segment that is the source of the attack (for further
details see Section 4.2.3).
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Chapter 4

Security Threats and possible
Solutions in BAS

In the previous chapters, basic terms and definitions were explained. In Chapter
2 a brief introduction into building automation systems was given. Chapter 2 ex-
plained what a building automation system is and gave an overview about the most
important concepts. In the following Chapter 3, basic security mechanisms and
concepts were discussed. Chapter 3 gives an overview about the existing security
mechanisms. Additionally, their importance for building automation systems was
discussed.

Now, it is time to take a closer look at the different security threats in a building
automation system. As mentioned in Section 2.3, in a building automation system,
the functionality is normally implemented using a two-level architecture. This
two-level model consists of a control network and a backbone network. Based on
this two-level model, an intruder has two possibilities to attack a building automa-
tion system.

On the one hand, it is possible to attack the building automation system from a
foreign network. This means that the attacker tries to gain unauthorised access to a
device which interconnects the building automation system to a foreign WAN (for
example with the Internet). Additionally, it is also possible to attack the backbone
network itself. These attacks are also called attacks from the outside. These
attacks are discussed in Section 4.1.

On the other hand, it is also possible to perform an attack from the inside. To
achieve such an attack, the intruder can attack the control network itself or he can
attack a field class device. In both cases the attacker must have physical access to
the control network. Attacks from the inside are discussed in Section 4.2.
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Figure 4.1 summarises these types of threats. It is important to note that a
device which interconnects the control network with the backbone network can be
attacked from both sides. First, it can be attacked from the control network. This
type of attack will be discussed in Section 4.2.1. A device can also be attacked
from the backbone network (see Section 4.1.1). The rest of this chapter will take
a closer look at these different possibilities how a building automation system can
be attacked.

Figure 4.1: Possible Threats in a Building Automation System

4.1 Threats from the Outside
As mentioned above, attack from the outside means the attack is performed from
a foreign network. Due to the fact that the attacker does not have physical access
to the network, the attacker must find a way to gain access to the internal building
automation network.

To achieve this, the attacker has two possibilities. First, the attacker can try
to attack the gateway which interconnects the building automation network to the
foreign network. This possibility is described in the next Section 4.1.1.

Another alternative approach is to attack the backbone network itself. Espe-
cially, if a tunneling mechanism (for further details see Section 2.3) is used, an
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attacker could try to attack the logical tunnel. This kind of attack is explained in
Section 4.1.2.

4.1.1 Attacking Interconnection Devices
Modern building automation systems normally have an interconnection to a for-
eign network (for example to a WAN like the Internet). With this interconnection,
it is possible to maintain and configure the system remotely. For example, a web-
server could provide an HTML interface which can be used to monitor the build-
ing automation system. To provide such a connection, an interconnection device
is necessary. This device handles the interconnection between the foreign network
and the building automation network. If the network protocols are not identical,
such an interconnection device must perform a protocol conversion between the
foreign network and the building automation network.

It is obvious that these interconnection devices must be carefully protected
against security attacks. If the building automation system is isolated and the
system can only be accessed through such a device, the attacker has to find a
weakness in the implementation of the interconnection device. Therefore, several
security mechanisms are necessary to protect an interconnection device against
malicious attacks.

Based on [12] and [10], at least three security mechanisms are necessary to
protect an interconnection device against security attacks. These three mecha-
nisms are:

• Access Protection
• Authentication and Authorisation
• Securing the connection to the gateway

First, it is necessary to protect an interconnection device against unauthorised
access (access protection). The most commonly used method is to use a packet-
filtering firewall. As mentioned in Section 3.6, such a firewall provides only basic
protection. Based on a set of rules, a packet-filtering firewall decides whether a
data packet is passed or dropped. Therefore, such a firewall is not always suffi-
cient.

In [12], a more secure approach is explained. This remote login scheme
works as follows. Suppose, a remote host wants to perform certain tasks remotely.
First, the remote host establishes a secure connection to the first dedicated ma-
chine. This machine is responsible for verifying the identity of the remote host.
Therefore, the first dedicated machine sends a request for authentication. After the
remote host has proven its identity, the first dedicated server requests the second
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dedicated server to establish a secure connection to the remote host. It is important
to note that this second server only accepts connections from the first dedicated
server. All other incoming request are dropped and so a remote host cannot open
a connection to this second server directly. After the first dedicated server sends
a request to the second one, the second server establishes a secure connection to
the remote host. Since this second dedicated server has a permanent connection
to the gateway behind the firewall, the second dedicated server acts as a proxy
for the gateway behind the firewall. The second dedicated server forwards the in-
coming traffic to the gateway and so, the remote host is able to communicate with
the gateway. The gateway behind the firewall only accepts connections from the
second dedicated server. Again, all other incoming requests are dropped.

It is important to note that neither the gateway nor the second dedicated server
can be accessed directly. The main advantage of this scheme is that a remote
host can only access the first server directly. As the second dedicated server only
accepts connections from the first dedicated server, the second server is not acces-
sible from the foreign network. This means that the second server is invisible to
the foreign network. Figure 4.2 illustrates this approach.

Figure 4.2: Remote Login Scheme

Anyhow, if it is still possible to gain unauthorised access, the whole building
automation system is affected. This means that if an attacker bypasses this sin-
gle wall of protection, the intruder has full access to the whole system. To avoid
this problem, a defence-in-depth approach can be used. As mentioned in Section
3.6, in the defence-in-depth approach, the network is divided into several security
zones. If such a scheme is used, the interconnection device that provides a con-
nection to a foreign network should be located in the outermost zone. The main
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benefit of this concept is that critical parts of the system which are placed in inner
zones are still protected, even if an attacker has successfully gained access to the
interconnection device. In Section 6.2.2 a secure architecture called EIBsec is ex-
plained. This architecture shows how a defence-in-depth approach can be used in
a building automation system.

One of the most important mechanisms to protect the interconnection device is
authentication. The interconnection device must determine whether the remote
host is allowed to initiate the requested operations. To achieve this, it is necessary
to verify the identity of the initiator (client authentication). Otherwise, an attacker
could perform illegal actions. It is also necessary to verify the identity of the in-
terconnection device (server authentication). The remote host must be sure that
the received responds are really coming from the interconnection device. Other-
wise, an attacker could intercept the request from the remote host and send a faked
respond back to the host. Consider, for example, a security alarm system which
provides an HTML interface. With this HTML interface, a remote user is able to
monitor the building. To avoid an unauthorised use of this HTML interface, the
access to this interface must be restricted. Therefore, the remote user must prove
its identity (client authentication). Additionally, the webserver must also prove
its identity (server authentication). If the identity of the webserver is not verified
by the remote user, an intruder is able to pretend that everything is ok. So, the
attacker is able to hide an intrusion.

To verify the identity of both communication participants, an authentication
protocol must be implemented. As mentioned in Section 3.3, many different au-
thentication protocols exist. Due to the fact that the attacker does not need to have
physical access to the building automation system, the attacker can use its own
hardware resources to perform a malicious attack. This means that the attacker
has enough time and performance to find valid secret keys or passwords. Since
the remote host and the interconnection device have normally enough computing
power and memory, a strong authentication mechanisms should be chosen (for ex-
ample an authentication protocol that uses a strong cryptographic algorithm and
long keys).

After the identities of both communication participants have been verified, it
must be determined whether the remote host has the necessary access rights. To
achieve this, an authorisation mechanism must be implemented. In Section 3.3.5,
different possibilities were explained how such a mechanism can be realised.

Independent of the chosen authentication and authorisation protocols, three
different possibilities to provide authentication exist. First, only the interconnec-
tion device verifies whether the remote user is allowed to perform the requested
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operation. This means that the interconnection device is responsible for verify-
ing the identity of the remote host. Once the identity has been proven and the
remote user has the necessary access rights, the request is forwarded to the partic-
ular device in the internal network. The main drawback of this method is that the
building automation system is not protected against unauthorised access from the
inside.

Another possibility is to use a decentralised approach. This means that the
field device itself has to verify the identity of the remote host. Using this approach,
the interconnection device forwards the requests directly to the particular device.
It does not verify whether the remote user is allowed to perform the requested
operation. The field device itself must verify whether the remote host has the
necessary access rights. The main disadvantage is that each device must maintain
its own access control list. Additionally, if a cryptographic algorithm is used, the
device must store a certain number of keys. Since field class devices normally
have limited memory and limited computing power, this approach is typically not
suitable for use in building automation systems.

A better approach is to use a gateway as a proxy. This scheme works as fol-
lows. First, the remote device establishes a connection to the gateway. The gate-
way verifies the identity of the remote host and checks whether the host has the
required access rights. After the request has been verified, the proxy performs a
conversion of this request. Then, the proxy establishes a connection to the par-
ticular device and forwards the converted request to it. To be sure that the com-
munication participants are what they claim to be, the proxy and the field device
prove their identities. It is important to note that there is no direct connection
between the remote host and the field device. The main benefit of this approach
is that the proxy maintains all remote connections. The proxy decouples the two
networks. Therefore, the field devices of the building automation system do not
need to worry about remote users and hosts. Figure 4.3 illustrates this approach.
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Figure 4.3: Proxy

It is obvious that an authorisation mechanism is not enough to protect the com-
munication between the gateway and the remote host. Therefore, it is necessary
to secure the transmission channel between the remote host and the gateway.
To achieve this, it is necessary to implement a security protocol which provides a
secure channel between the remote host and the gateway. As explained in Section
3.2, several mechanisms are possible to guarantee that a transmission channel is
protected against security attacks.

A common approach is to use an existing security protocol. Due to the fact that
these interconnected networks are often IP networks, IP based security protocols
like SSL/TLS1 and VPN2 can be used. These protocols are placed on the top of
IP or TCP. With these protocols, it is possible to communicate through a secure
channel (for further details see [42] and [43]). For example, in [45] the use of TLS
to protect the remote field bus access is discussed.

4.1.2 Attacking Backbone Tunnels
A common approach is to use a backbone network to interconnect different control
networks. At the intersection points, interconnection devices are located. These
devices are responsible for routing the network traffic between the backbone net-
work and the different control networks. If the connected control networks use
different network protocols, a protocol conversion is necessary.

As mentioned in Section 2.3, a scheme called tunneling is frequently used.
With this approach, all protocol layers of the control network are transmitted over

1Secure Sockets Layer/Transport Layer Security
2Virtual Private Network
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the backbone network. To achieve this, a logical tunnel is established between the
interconnection devices of the control networks.

It is very popular to use an IP based network as backbone network. For ex-
ample, an already existing office LAN can be used as backbone. This means that
the backbone network must share the network resources with other systems (for
example with an office LAN). Therefore, it is obvious that this logical tunnel must
be protected against security attacks. It must be avoided that somebody intercepts
or modifies the data packets which are transmitted through the tunnel. Addition-
ally, an attacker must not be able to insert additional data packets (for example
replaying previously sent messages). Therefore, a secure tunnel is necessary.

Figure 4.4 shows a possibility how such a tunnel can be attacked. Since the at-
tacker is located between the two communication participants, this kind of attack
is called Man-in-the-Middle attack. Consider, for example, a security alarm
system that has the main objective to detect unauthorised intrusion. To achieve
this, several glass break sensors are installed. If such a sensor indicates a broken
window, it sends a ”glass broken” message to the alarm annunciator (for example
a signal lamp). As this device is not located in the same network segment, it is
necessary to transmit this message over the backbone network. To hide the bur-
glary, the intruder could perform a Man-in-the-Middle attack. This means that the
intruder intercepts the ”glass broken” message. To fool the alarm system, he sends
a ”glass OK” message to the alarm device. Without any security mechanisms, the
alarm device is not able to detect an unauthorised modification of the received
messages.
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Figure 4.4: Man in the Middle Attack

To achieve a secure tunnel, several security mechanisms are needed. As men-
tioned in Section 3.2, it is necessary to protect the tunnel against unauthorised
interception, modification and fabrication. In Section 3.2, different mechanisms
were discussed which can be used to provide a secure tunnel. Again, if the back-
bone network is publicly accessible, strong cryptographic algorithms should be
used. Therefore, the tunneling router must have enough computing power and
memory to be suitable for using these algorithms.

Nowadays, many buildings have already an IP network (for example an office
LAN) installed. Therefore, in a building automation system, it is advantageous to
use this existing network as backbone network. So, it is obvious to use existing
tunneling techniques which are based on IP (for example VPN). It is important
to note that these IP based technologies were not developed for the use in the
automation domain. This means that technologies like VPN do not satisfy the
necessary requirements.

In [6] and [5], the problem mentioned above has been discussed. In the au-
tomation domain, a VPN solution does not always fulfil the necessary needs. VPN
was designed for the use in networks where real time, safety and security require-
ments are more moderate. Therefore, the term Virtual Automation Network
(VAN) has been defined. A VAN is more than a VPN. A VAN is a heterogeneous
network which consists of different kinds of networks (for example the Internet or
other wired or wireless LANs).

Compared to a VPN solution, the demands on a VAN are stronger. As men-
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tioned in [6] and [5], in the automation domain, it is often necessary to fulfil
real-time requirements. Ethernet-TCP/IP solutions (like VPN) are often not suit-
able for these real time requirements. Especially, hard real time constraints cannot
be guaranteed. As mentioned in Section 2.4.1, in a building automation system,
these real time requirements are more moderate. Anyway, they can still exist and
therefore they must be taken into account.

Additionally, in a VAN, the safety and security requirements are stronger.
Therefore, existing solutions are often not sufficient. To satisfy these needs, other
solutions have to be found. For example, it is more secure to use a defence-in-
depth approach instead of a traditional hard-perimeter one. For further details see
[6] and [5].

4.2 Threats from the Inside
Another possibility to attack a building automation is to gain physical access to
the control network. In the past, building automation systems were isolated from
other, foreign networks. The system designers thought that as long as the physical
access to the network is prohibited, the system is secure. So, no special security
mechanisms were integrated.

This assumption (”security by obscurity”) is very dangerous. Even if the ac-
cess to the building is restricted, there are still possibilities to gain physical access
to the building automation system. Especially, if a wireless medium or powerline
is used, it is very easy to listen to the network without physical access. It is im-
portant to note that even if a wired medium like twisted pair is used, there are still
possibilities to get access to the network medium.

One possibility is to use social engineering techniques. These techniques try
to fool employees and legitimate users to get confidential information about the
network. For example, an attacker could claim to be an administrator. If the
identity is not verified and the access to the building is granted, the attacker has
gained physical access.

At public places, a physical access to the network is easier to achieve. Since
these places are public accessible, the access is not restricted and so, it is very easy
for an attacker to gain access. It is obvious that it will attract attention, if someone
tries to gain physical access to the network medium. For example, a clever hacker
could develop a special wireless device. Such a ”hacker device” (see Figure 4.5 )
can be attached to the bus. This special device acts like a ”mini gateway”. On the
one side, it is attached to the control network of the building automation system
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and on the other side the hacker can establish a remote, wireless connection to
this device. With this wireless connection, the attacker is able to sniff and send
messages remotely. The attacker does not need to be physical in front of the
device or in the same room. It is very important to keep the ”hacker devices”
smart. If it is small enough, the chance that someone recognises it is smaller. As
this example shows, physical security is hard to achieve. This does not only apply
to public places. Even in restricted areas, an attacker will find a ways to install
such a ”hacker device”.

Figure 4.5: Attack with a wireless hacker device

As shown in the examples mentioned above, attacks from the inside are at least
as dangerous as attacks from the outside. Therefore, the rest of this chapter takes
a closer look at these kinds of attacks. Again, there are two possibilities. First, the
field device itself can be attacked (Section 4.2.1). Second, an attacker could try to
gain physical access to the control network medium. This possibility is explained
in Section 4.2.2.

4.2.1 Attacking BAS Nodes
If an attacker has gained physical access to the building, the intruder is able to try
to attack the control network.

One possibility is to try to attack a field class device. If the attacker has such a
device under its control, the attacker has gained unauthorised access to the control
network. This means that the intruder is able to perform further security attacks.

To avoid this, the field nodes must be protected twice. Most field class devices
provide two external communication interfaces. Through these interfaces, it is
possible to communicate with the device. Since normally a control network inter-
connects the different field class devices, field nodes have a network interface.
This interface provides the opportunity to communicate with the device remotely.
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For example, to configure or to maintain the device remotely, a management node
can establish a management connection to the device.

Most field class devices have a second, local interface. Through this inter-
face, it is possible to connect the device to another external device. For example,
a sensor can be directly connected to a field device via a standard 4..20 mA inter-
face. Another example of a local interface is a RS232 interface which can be used
to connect the field device to a management node directly. It is important to note
that even if the sensor is fully integrated into the containment of the field device,
there is still an interface between the raw sensor and the microcontroller. Figure
4.6 shows these different kinds of interfaces.

Figure 4.6: Different field device interfaces

To gain access to such a field device, the attacker has two possibilities. First,
the attacker can try to attack the device remotely. This means that the attacker
attempts to gain unauthorised access through the network interface. To achieve
this, the attacker must have access to the control network medium. This access can
be performed by attacking the control network itself (for further details see next
Section 4.2.2) or by attacking a gateway (for further details see Section 4.1.1).
To avoid such attacks, it is necessary to protect the network interface (network
protection).

It is also necessary to avoid that an attacker is able to gain physical access to
the device (physical protection). This means that an unauthorised person must
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not be able to modify the containment of the device. Otherwise, the attacker is
able to communicate with the device through the local interface. Consider, for
example, a sensor which is connected to the field device through a local interface.
It must be avoided that an attacker intercepts or modifies the raw sensor data that
the sensors transmits to the local interface. Another example is a field device that
provides a local management interface (for example RS232). Through this inter-
face, it is possible to configure or maintain the device. It is essential to protect this
interface against unauthorised usage. Otherwise, an attacker could use this local
interface to perform management operations (for example changing configuration
parameters).

To avoid such physical access by an unauthorised user, it is necessary to
enclose the hardware in a safe containment. This containment must be stable
enough to avoid easy, physical access. Additionally, seals or sensors can be used
to detect attempts to damage the containment3.

The field device must only be accessible through well-defined interfaces. These
interfaces (both, local and network interfaces) must be protected against mali-
cious attacks. To achieve this, an authentication and authorisation mechanism
must be integrated. Such a mechanism is responsible for verifying the identity of
the entity which wants to access the interface. Additionally, it must be checked
whether the entity has the necessary access rights to perform the requested oper-
ation. Consider, for example, a management system which provides the opportu-
nity to access the memory of the microcontroller directly. This management sys-
tem provides commands like Memory_Write() or Memory_Read(). With
these commands, it is possible to modify or read out the content of the of the
memory. It is obvious that it must be guaranteed that only authorised entities are
allowed to use these memory manipulation commands. Otherwise, an attacker
could simply read out confidential memory content (for example secret keys or
passwords).

In Section 3.3, several authentication mechanisms were discussed. These
methods have one common drawback. All devices need an initial secret that must
be known at installation time. For example, if a password based approach is used,
each device must have an initial password that can be used to authenticate the first
time. To solve this problem, default passwords can be used. It is important to note
that these default passwords must be changed as soon as possible. Otherwise, an

3For example some EIB/KNX field devices provide the opportunity to detect a removal of the
application module. If an attacker removes the application module the device sends a special group
message which indicates the unauthorised removal.
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attacker can use such well-known default passwords to gain access. If a KDC or a
public key based authentication method is used, every device must have an initial
set of keys. One possible solution is to integrate the required keys into the binaries
of the application.

Furthermore, it is sometimes necessary to initialise the device. To achieve
this, it must be possible to reset the device. It is important to note that an attacker
can use this reset mechanism for his own purposes. Consider, for example, a
mechanism that resets the password to the default value. If an attacker knows this
default password, the attacker can simply perform a device reset. After this reset,
the default value is set and so the attacker can gain access to the device. To avoid
such an attack, it is essential to prohibit an unauthorised activation of this reset
mechanism. For example, if the reset button is located at the front of the device,
even the strongest security mechanism becomes useless. A possible solution is to
put the reset button into the containment. If the containment is protected against
unauthorised, physical access (for example by locking it), an attacker cannot use
the reset mechanism to clear passwords or other secrets.

As mentioned in Section 2.5, field class devices have limited system resources.
Compared to normal workstations, field devices contain low cost microcontrollers.
Therefore, these microcontrollers have limited memory and limited computing
power. Additionally, field devices often use a 8 or 16-Bit microcontroller. It is
obvious that computationally intensive algorithms cannot run on such small em-
bedded devices. In [46] and [47], the performance of the most important crypto-
graphic algorithms was estimated. The authors of these papers performed different
tests. They analysed different symmetric and asymmetric algorithms (RSA, triple
DES, AES), the Diffie-Hellman key exchange algorithm and the hash functions
MD5 and SHA1. These tests were performed on 8 and 16-Bit CPUs. Appendix A
lists the results of these tests.

The results of these performance tests show that asymmetric algorithms are too
slow to run on small embedded devices. Especially, the decryption process takes
several seconds or even minutes. The usage of such an asymmetric algorithm
leads to a delay which is not acceptable in the building automation domain. For
example, if an asymmetric algorithm like RSA is used to encrypt the process data
communication between the light switch and the light source, it will take several
seconds or even minutes until the light is really turned on.

Therefore, if the hardware resources of the field devices are limited, a sym-
metric algorithm must be used. As shown in Table A.4 in appendix A, AES is
much faster than triple-DES. Since AES is at least as secure as triple-DES, AES
should be always preferred.
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If the available memory and computing power are still insufficient, another
solution has to be found. One possibility is to use a separate dedicated hardware
component which acts as an en-/decryption unit (Figure 4.7). Such a unit is at-
tached to an existing microcontroller and has the main aim to encrypt and decrypt
all data packets. The sensor sends the raw sensor value to the microcontroller.
The microcontroller takes the received value, processes it (for example performs
a scaling) and forwards the value to the secure data en-/decryption unit. This unit
encrypts the data packet and forwards it to the bus medium. On the other end of
the transmission channel, the secure data en-/decryption unit of the receiver de-
crypts the packet and forwards it to the actuator. It is obvious that the sender and
the receiver must use the same unit.

Figure 4.7: Secure data transmission with En-/Decryption Unit

There are several ways how such a secure data unit can be realised. An exam-
ple is given in [2], where a smart card is used to en-/decrypt the data packets.

The solution mentioned above has one drawback. As encryption is performed
after the microcontroller processes the data, a plaintext version of the measured
sensor values is stored in the memory of the microcontroller. This means that if
an attacker is able to read out the content of the memory (for example through
the management system), it is possible to obtain a plaintext version of the sensor
values.

A possible solution is illustrated in [10]. Using this solution, the data packets
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are encrypted before they are read by the microcontroller. This means that the en-
/decryption unit is placed between the sensor and the microcontroller. With this
approach, the microcontroller never stores the plain version of the data. Unfortu-
nately, there is still one problem which remains. Since only the encrypted form of
the sensor value is available, the microcontroller cannot process it anymore (for
example perform a scaling of the value).

Another possibility is to put the microcontroller and the en-/decryption unit
into a safe containment. This containment must avoid an unauthorised physical
access. As mentioned before, a seal or a sensor can be used to detect malicious
damage. Additionally, the management system must be protected to avoid unau-
thorised usage. For example, it must be guaranteed that the content of the memory
is only modified or read out by authorised entities.

4.2.2 Attacking the Control Network Medium
As mentioned at the beginning of this section, an attacker has two possibilities to
attack a building automation system from the inside. In the previous section, it
was shown how a single field device can be attacked and how such an attack can
be avoided.

Another possibility is to attack the control network medium of the building
automation system directly. To achieve this, the attacker must gain physical access
to the control network medium. For example, an intruder could try to locate the
physical network cable, intending to attach to the medium.

After the attacker has gained access to the medium, the attacker has four pos-
sibilities to disturb the network communication. In Section 3.1.1, these four dif-
ferent threats are described. Figure 4.8 illustrates these threats.
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Figure 4.8: Possible Security Threats at the Control Level

To protect the control network against these security attacks, it is necessary
to provide a secure channel. As mentioned in Section 3.2.1, such a secure chan-
nel avoids an unauthorised modification, fabrication and interception. To achieve
such a protection, several security mechanisms are necessary. Another important
issue is protection against interruption (for example Denial-of-Service attacks).
Mechanisms which help to avoid and detect these attacks are discussed in the next
Section 4.2.3.

As mentioned in the previous section, field devices contain low cost hardware
components which have limited memory and limited computing power. There-
fore, it is not possible to use standard techniques to protect the transmission chan-
nel of a control network. For example, a lot of these well-known security protocols
(like TLS) use an asymmetric encryption scheme which is not suitable for small
embedded devices. As shown in appendix A, a symmetric algorithm is much
faster than an asymmetric one. Therefore, it is often necessary to use security
mechanisms which are based on symmetric algorithms.

In [48], a security protocol called SPINS is described. This protocol was de-
signed for the use in sensor networks which contain small, wireless sensors that
run on batteries. The main objectives of SPINS are to provide data confidential-
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ity, data authentication, data integrity and data freshness4. To guarantee that the
protocol is suitable for small embedded devices, SPINS uses only symmetric algo-
rithms. Additionally, the memory requirements are kept as small as possible. To
satisfy these needs, the different cryptographic primitives (encrypted messages,
hash values, random data,...) are generated out of one single algorithm. So, it is
possible to implement the protocol stack of SPINS on devices that have limited
memory capacity. The protocol itself works as follows.

SPINS assumes that the senor network consists of one or more base stations
and several sensor nodes. The base station acts like a server and provides an in-
terface to the outside network. The protocol itself consists of two building blocks:
SNEP and µTESLA. SNEP provides data confidentiality, authentication, integrity
and freshness for point-to-point communication whereas µTESLA is responsible
for providing authentication for broadcast communication.

As mentioned above, SNEP secures two-party communication. At the begin-
ning, each sensor node retrieves an initial, secret master key. This master key χAS

is shared between the node A and the base station S5. Since this master key is
symmetric, the keys χAS and χSA are identical. The master key is used to calcu-
late other secret keys which are needed by the protocol. These keys are:

• Encryption keys KAS and KSA:
The keys KAS and KSA are used to encrypt the data packets. To derive these
keys from the master key, a pseudo-random function F is used. These keys
are calculated as follows: KAS = FχAS

(1) and KSA = FχAS
(3).

• MAC6 Keys K ′
AS and K ′

SA:
These two MAC keys are used to calculate the message digest of a data
packet. Again, a pseudo-random function F is used to retrieve these keys.
These keys are calculated as follows: K ′

AS = FχAS
(2) and K ′

SA = FχAS
(4).

To achieve data confidentiality, the messages are encrypted using the corre-
sponding shared, secret key. This means that if an entity A wants to send con-
fidential data to the base station S, it encrypts the data using the calculated key
KAS . Since S is also able to calculate the key KAS (A and S share the same mas-
ter key), S can decrypt the message. If a base station S wants to send confidential
data to an entity A, it uses the secret key KSA to encrypt the transmitted data.

This basic protection against interception is not enough. To avoid replay at-
tacks, another mechanism is necessary. Therefore, SNEP uses a counter to achieve

4Data freshness ensures that an attacker is not able to replay an old message.
5The SNEP protocol assumes that a sensor node communicates only with its corresponding

base station. A communication between two sensor nodes is not possible.
6Message Authentication Code
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data freshness. This counter uniquely identifies each message. The counter guar-
antees that multiple encryptions of the same plaintext are always different. This
means that the attacker is not able to replay previously sent messages . To achieve
this, the counter size must be large enough to guarantee that each counter is unique
during the whole life cycle of the system (for further details see 3.2.2).

A common approach is to transmit the counter value together with the data.
The main drawback of this approach is that the total message length increases.
This means that more energy is needed to transmit the message. Therefore, SNEP
uses two counters which are shared by the two communication participants (one
for each direction). After a message has been transmitted or received, both par-
ticipants increment the corresponding counter. The counter itself is used as input
parameter for the encryption algorithm. So, it is not necessary to transmit the
counter together with the user data. The whole message is calculated as follows
(C denotes the encrypted version of message P and NA→S denotes the corre-
sponding counter):

A → S : C = E(KAS, NA→S; P )

S → A : C = E(KSA, NS→A; P )

The mentioned counter mechanism has one drawback. If a message gets lost, the
counters of the communication parties will get asynchronous. A possible solution
is to implement a counter exchange protocol. If an entity recognises that the
counters are not synchronous anymore, the entity can initiate a counter exchange.
A detailed description of such a protocol can be found in [48].

To provide data integrity and two-party authentication, a MAC is used. To
calculate this MAC, a one-way hash function is used (for further details see 3.2.3).
For security reasons, SNEP uses a separate key to calculate the MAC. The MAC
is calculated as follows (H denotes the used one-way hash function and || denotes
the concatenation function):

A → S : M = H(K ′
AS, NA→S||C)

S → A : M = H(K ′
SA, NS→A||C)

The encrypted message C and the MAC M are transmitted together to the receiver.
Figure 4.9 summarises the different steps of SNEP.
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Figure 4.9: SNEP

As mentioned before, SNEP provides only a two-party authentication. In
a building automation system, broadcast and multicast is often used as process
data communication. Therefore, an authenticated broadcast protocol is necessary.
Most available solutions are based on asymmetric algorithms (for example digital
signatures). As asymmetric algorithms are too slow to run on embedded devices,
another solution has to be found. Therefore, the second security building block
called µTESLA is responsible for providing an authenticated broadcast. µTESLA
is similar to the standard TESLA protocol (for further details on TESLA see [65]).
Compared to the standard TESLA protocol, µTESLA uses only symmetric cryp-
tographic algorithms. Therefore, it can be run on small embedded devices (for a
detailed description of the µTESLA protocol see [48]).

To save memory space, SPINS uses only one single block cipher algorithm
to generate all necessary primitives. This single block cipher (in [48] RC5 was
chosen) is used as pseudo-random generator, encryption/decryption function and
MAC calculator.

To save additional memory space, the block cipher algorithm mentioned above
is used for encryption and decryption. As mentioned above, SPINS was designed
to be suitable for small devices that run on batteries. Sending and receiving of
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messages consume a lot of power, especially if a wireless network medium is
used. Therefore, it is essential to keep the message length as small as possible. As
mentioned before, a counter is used to avoid replay attacks. To avoid an increase
of the message length, the required counter value is not added to the content of
the message. Figure 4.10 illustrates this concept. Suppose, an entity A wants
to transmit a data packet to a base station S. First, a so called one time pad is
generated. To get this pad, the current counter value NA→S is encrypted using the
shared secret key KAS . This one time pad is XORed with the plaintext P . After
S has received the cipher text C, S calculates the same one time pad. To get the
plaintext out the received message C, C is XORed with the generated one time
pad.

Figure 4.10: Encryption and decryption in SNEP

To calculate the MAC, the same cryptographic algorithm is used. Due to se-
curity reasons, a separate key K ′ is used to calculate the MAC. To get a MAC
with a fixed length l, the following scheme is used. The first l bits of the input are
encrypted using the secret key K ′. Then, the result is XORed with the next l bits.
These bits are encrypted once again. This mechanism is iterated until the whole
message has been processed. Figure 4.11 illustrates this approach.
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Figure 4.11: MAC generation in SNEP

As mentioned before, the protocol needs a pseudo-random function to cal-
culate the necessary keys. To reduce code space, the MAC function is used to
compute pseudo-random numbers (for further details see [48]).

4.2.3 Denial-of-Service Attacks
To disturb the network communication, an attacker could try to perform a so called
denial-of-service (DoS) attack. A DoS attack has the objective to make a service
or data unavailable. To achieve this, the attacker is trying to waste network and
system resources in order to avoid the target from performing its expected func-
tion. For example, to interrupt the communication between two network nodes, an
intruder could try to consume as much network bandwidth as possible. Another
example is where an attacker tries to overflow the internal buffers of a network
node. For example, if the attacker establishes too many connections, the internal
buffer may overflow and the node is not able to handle incoming requests any-
more.

As mentioned in the previous sections, additional security mechanisms are
necessary to protect the system against DoS attacks. To achieve an effective pro-
tection, it is necessary to detect abnormal operations which may indicate a DoS
attack. Therefore, an integrated intrusion detection system can help to discover
such a possible DoS attempt. It is important to note that a detection is not al-
ways sufficient. If a DoS attack has been discovered, it could be too late to avoid
damage. Therefore, it is necessary to implement mechanisms which protect the
network against DoS attacks.

In [11], different kinds of DoS attacks are described. Each layer of the net-
work architecture is vulnerable to other types of DoS attacks. Table 4.1 gives an
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overview about these different attacks. Additionally, the corresponding network
layer and examples of defence mechanisms are listed.

Layer Attack Defence
Physical Jamming Frequency Hopping

Tampering Safe Containment
Link Collision Error Correction Codes

Exhaustion Rate Limiting
Unfairness Small Frames

Network Neglect and Greed Redundancy
Homing Encryption
Misdirection Authentication
Black-Hole Authentication

Transport Flooding Client Puzzle
Resynchronisation Authentication

Table 4.1: Different kinds of DoS attacks

One of the most well-known attacks on wireless networks is called jamming7.
Jamming means an attacker tries to interfere the radio frequencies that the wireless
network is using to transmit the data packets. This jamming causes a disruption
of the communication between the other network nodes. Frequency hopping can
help to avoid this kind of attack. If the attacker is able to follow the hopping or a
wide section of the frequency band is jammed, jamming is still effective. Another
possible solution is to report the attack to the neighbour and to reroute the traffic.
For a detail description of this solution see [11].

Another kind of attack is called tampering. Tampering means the attacker
tries to attack the network node physically. As mentioned in Section 4.2.1, a safe
containment can be used to detect such physical attacks.

At the link layer, an attacker could force a checksum mismatch. To achieve
this, the attacker simply needs to introduce a collision in at least one octet of the
transmitted data. This change causes a disruption of the whole data packet and
therefore a checksum mismatch. Error-correction codes can help to detect and
correct such a corruption. It is important to note that these error-correction codes
can only correct a small amount of errors. This means that if the attacker disrupts

7It is important to note that jamming can also be performed on wired media. For example after
an attacker has gained physical access to the network medium, he could try to send a disturbing
signal.
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more data than the code can correct, a corruption of the data packet cannot be
avoided. A full defence against such attacks is often not possible.

Another type of attack is also known as exhaustion. If a CSMA/CD protocol
is used, an attacker could attempt to generate a collision. Such a collision causes
a retransmission of the whole data frame. If the network node runs on batteries,
these retransmissions could result in the exhaustion of the battery. To avoid this,
time-division multiplexing can be used. Another possible solution is to introduce
rate limiting (for further details on rate limiting see [11]).

Unfairness is another type of DoS attack. The attacker uses the priority mech-
anisms to transmit high-priority messages. This means that low priority messages
have to wait until the transmission of higher ones have been finished (starvation).
A possible solution is to use small frames. Using small frames means the attacker
can reserve the network channel only for a short time.

At the network layer, an attacker can use the routing mechanisms to disturb
the communication. Such a DoS attack that affects the routing of a network is
called neglect and greed. Instead of routing the data packets, an attacked network
node randomly drops the data packets. Additionally, the malicious node can still
acknowledge the dropped packets. Especially, networks that use dynamic source
routing are vulnerable to this kind of attacks. To avoid such attacks, multiple
routing paths or sending redundant messages can be used.

In a building automation system, some nodes implement special functional-
ity. These nodes provide services that are needed by other entities (for example
routers, key servers, ...). To interrupt the communication, an attacker could try
to attack these vital devices. An attack which has the main aim to make a vital
service unavailable is called homing. To avoid homing attacks, it is essential to
protect these special devices against malicious attacks. To find the location of
such devices, the attacker has to observe the network traffic. Based on this net-
work traffic, the attacker can detect the presence of such a device. To hide these
important nodes, the attacker must not be able to analyse the network traffic. To
achieve this, the data packets must be encrypted. It is important to note that the
headers of the packets must be encrypted too. Otherwise, the attacker is able
to get relevant information (for example, source and destination address, routing
information,...).

Another possibility is to route the message along a wrong path (misdirection).
To achieve this, an attacker could fabricate additional routing information. Again,
network protocols that use dynamic source routing are particularly vulnerable to
such attacks. To avoid an adding of additional routing information, it must be
guaranteed that only authorised users are allowed to change routing information.
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Therefore, an authentication mechanisms could be used to protect routers and
gateways against unauthorised access.

In distance-vector based network protocols, so called black holes can be used
to disturb the routing of the network traffic. If a malicious node pretends zero-cost
routes, other nodes will route their traffic in the direction of this node. Since the
network traffic is routed to this malicious nodes, this point is called a black hole.
Again, authentication can be used to avoid such black holes.

Another well-know DoS attack is called flooding. In this case, the attacker
tries to overflow the internal buffers of the target node. For example, an attacker
could establish many connections to a node. For each incoming connection re-
quest, the node must allocate resources to store necessary information about this
open connection. If there are too many open connections, the memory will get
insufficient. So, the node is not able to handle connection requests anymore.

To avoid such flooding attacks, a so called client puzzle ([49]) can be used.
A client puzzle makes a request for the client at least as expensive (in terms of
computational costs) as for the server. This scheme works as follows. If a client
wants to establish a connection, the client sends a request to server. If the server
is busy, the server sends back a puzzle which the client has to solve. After the
client has solved the puzzle, it sends the solution to the server. The server verifies
the solution and if the solution is correct, the server accepts further requests. To
achieve an effective protection against DoS attacks, the effort to solve the puzzle
must be higher than the effort to verify the solution. For example, in [50], a hash
value is used as puzzle. The client has the aim to find the input value which
produces this hash value. To achieve this, the client has to solve this problem by
brute force. As it is very easy to verify whether the solution is valid or not, the
client must pay more computing costs than the server (for further details see [49]).

It is obvious that the complexity of the client puzzle depends on the computing
power of the involved network nodes. As mentioned in Section 2.5, in a building
automation system, field class devices have limited computing power. If a client
puzzle is used to avoid DoS attacks, it is important to note that an attacker could
use a high performance device (for example a management device or a PDA) to
perform a DoS attack. This means that the puzzle must be difficult enough to
guarantee that it takes more time to solve the puzzle than the server needs time to
verify the result. It is important to note that it must still be possible that other field
devices are able to solve the puzzle in a reasonable time. If the attacker has much
more computing power than a field class device, it is difficult to define a client
puzzle which satisfy these mentioned needs. Therefore, a client puzzle is always
not suitable to avoid DoS attacks.
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In the header of the transport layer, details about the current state of the con-
nection is stored (for example sequence numbers, control flags, routing informa-
tion,...). An attacker could take advantage of these header information. The at-
tacker could attempt to send invalid messages which cause a desynchronisation
of these values. For example, an attacker could send messages with invalid se-
quence numbers to force the communication participants to perform a resynchro-
nisation. Again, authentication can be used to solve this problem.

Sometimes it is not possible to achieve a full protection against DoS attacks.
Anyhow, to reduce the resulting damage, it is necessary to isolate the affected
part of the network. To achieve this, a defence-in-depth approach can be used. If
a DoS attack is detected, the affected network segment must be separated from
the rest of the network. If the malicious nodes can be isolated, the rest of the
network can be kept operable. To achieve this, it must be possible to decouple the
corresponding network segment. For example, a gateway or router can cut off the
affected network segment and reroute the network traffic.

As mentioned before, security has to be considered right at the beginning of
the development. Therefore, the software design itself must take security consid-
erations into account. It must be ensured that the security of a system can always
be guaranteed, even under a DoS attack. This means that the system must change
in a failsafe state. Consider, for example, a security alarm system that consists of
several sensor (see Figure 4.12). These sensors are responsible for detecting unau-
thorised intrusion (for example presence detectors or glass break sensors,...). A
possible, naive solution is shown in the left part of Figure 4.12. If a sensor detects
a possible intrusion (for example a glass break sensor detects a broken window),
the sensor sends a message to the alarm annunciator. As long as the delivery of
the message can be guaranteed, this scheme works fine. If a DoS attack interrupts
the communication channel between the sensor and the alarm annunciator, the
message cannot be delivered anymore. So, the intrusion cannot be detected. A
more secure approach is to periodically send the current state of the sensor. If the
alarm annunciator does not receive any messages from the sensor, it knows that
something is going wrong. To be on the safe side, the alarm annunciator could
signal this abnormal behaviour.
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Figure 4.12: Non-Fail-Safe vs. Fail-Safe Scheme

As mentioned in this section, DoS attacks are hard to handle. Especially in
control networks that consist of field devices with limited system resources, pro-
tection against DoS is not a trivial task. Therefore, it is essential to consider
security rights at the beginning of development.

102



Chapter 5

Security Concepts in Building
Automation Solutions

In the previous section, it was shown how a building automation system can be
attacked. Different security threats and their importance were analysed. To avoid
malicious attacks, several security mechanisms must be implemented. Therefore,
possible solutions and concepts that help to discover or avoid security attacks were
presented.

In this chapter, a closer look at available building automation solutions is
taken. This chapter gives an overview about existing solutions and their imple-
mented security mechanisms. After providing a brief introduction into these solu-
tions, the implemented security concepts will be analysed.

Therefore, the next Section 5.1 includes a description of Echelons LonWorks.
In the following Section 5.2, the security features of BACnet will be analysed.
Finally, the last section of this chapter will take a closer look on the EIB/KNX
standard.

5.1 LonWorks
LonWorks was developed by Echelon Corp. It consists of the LonTalk commu-
nication protocol, a controller (Neuron Chip) and a management tool. In 1999,
LonTalk has become the formal standard ANSI/EIA-709 (for further details see
[54]).

LonTalk supports different network media. It is possible to use twisted pair,
powerline and fibre optic as network medium. Wireless solutions (radio fre-
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quency) are also available but no standard profile for these wireless media exist
yet.

The most common network medium is twisted pair. Depending on the used
topology and necessary bandwidth, different twisted pair profiles exist. The most
popular profile (FT 10) allows a maximum bandwidth of 78.1 KBits/s. It allows
free topology and a maximum cable length of 500m. In addition to FT10, higher-
speed profiles (for example TP-1250 with a bandwidth of 1.25 MBits/s) are also
available. All twisted-pair media use a predictive p-persistent CSMA scheme.
Compared to CSMA/CD protocols (for example Ethernet), this scheme ensures a
minimum data rate even under heavy load.

In a LonWorks system, it is also possible to use an IP based network as back-
bone. To achieve this, LonWorks/IP has been defined which is part of the stan-
dard ANSI/EIA-852 (for further details see [55]).

A LonWorks network can be divided into different domains. Each domain has
a unique domain ID which is up to 48 bits long. To reduce the message length,
this ID can be shorter than 48 bits. Each domain can be divided into up to 255 dif-
ferent subnets. Each subnet can contain up to 127 LonWorks nodes. The different
domains are interconnected via so called domain gateways. Due to the design of
the address space in LonWorks, such a domain gateway operates at the application
layer. It is responsible for transferring the data between the different domains. It is
important to note that these devices do not provide a protocol conversion. Strictly
speaking, a domain gateway act as a proxy and therefore the term gateway is not
appropriate. To interconnect the different subnets, routers are used. These routers
are responsible for routing the network traffic between the different subnets.

Each domain can contain up to 256 multicast groups. The members of a par-
ticular group do not need to be in the same subnet. They can be located in different
ones. Generally, the LonTalk protocol supports unicast, multicast and broadcast
(both subnet and domain broadcast) communication. In addition to an unacknowl-
edged mode, a reliable, acknowledged unicast and multicast transmission mode is
also available. It is important to note that if acknowledged multicast is used, a
domain can only contain 64 different groups.

In addition to this logical addressing scheme, each node has a world-wide
unique node ID. This node ID is 48 bits long and can be used by management
services. Normal data transmission uses the logical addressing scheme mentioned
above.

In LonTalk, distributed applications typically communicate using network
variables. Such a network variable is an abstract object which represents a data
value in the network. A network variable may be connected to multiple devices.
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The main benefit of such a network variable is that whenever the value of the
network variable is changed locally within the node software, the system soft-
ware automatically creates and transmits a data packet. On the other hand, if the
device receives a data message, the value of the appropriate network variable is
automatically updated (for further details see [51]).

For further details on LonWorks and LonTalk see [1] and the mentioned stan-
dards ANSI/EIA-709 ([54]) and ANSI/EIA-852 ([55]).

5.1.1 Security Concepts
It is important to note that LonTalk only provides an authentication service. Data
encryption is not supported. Since all messages are transmitted in plaintext, data
confidentiality cannot be guaranteed.

The integrated authentication mechanism is implemented at the transport and
session layer of the protocol. It is a four step challenge-response mechanism
which provides a basic form of data authentication. This mechanism works as
follows:

Suppose, an entity A wants to send an authenticated message M to an entity
B. To start the challenge-response mechanism, A sets the authentication bit of
the message M and sends it to the receiver. After B has received the message,
B generates a 64 bit random number N . This random number N is sent back to
the sender A. Immediately after B has transmitted the random number, B takes
this random number N together with the received message M and calculates a
64 bit hash value using a one-way hash function H and an authentication key K
(48 bit long). After having received the random number N , A also computes this
64 bit hash value using the same authentication key K. This 64 bit hash value
is sent back to B. To verify the authentication of the message, B compares the
calculated hash value with the received one. If the two hash values are identical,
the authenticity has been proven. Figure 5.1 illustrates this challenge-response
mechanism.
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Figure 5.1: Authentication in LonTalk

To achieve this authentication mechanism, LonTalk provides different authen-
tication service primitives (for further details see [54]). It is important to note that
the received message is always passed together with a notification to the applica-
tion layer. This notification informs the application layer whether the authentica-
tion was successful or not. This means that the application itself is responsible for
processing the result of the authentication process.

If network variables are used and authentication is required, both communi-
cation participants must activate authentication in the description of the network
variable. Additionally, the sender of the value of the network variable must set the
authentication bit to initiate the challenge response protocol.

It is obvious that this protocol provides only a basic form of authentication.
One drawback of the LonTalk authentication protocol is that the authentication bit
of the first message must be set to initiate the challenge-response protocol. This
means that the receiver has no opportunity to force the sender to prove its identity.

Another problem is that only the sender is able to prove its identity. With this
authentication scheme, it is not possible to verify the identity of the receiver. So,
the sender cannot be sure that the receiver is what it claims to be.

The usage of the authentication protocol is restricted to acknowledged uni-
cast and multicast. This means that if an unacknowledged transmission mode or
broadcast is used, the identity of the sender cannot be verified.

As shown in Figure 5.1, four messages are needed to complete the authenti-
cation process. Another drawback of this scheme is that these four messages are
always necessary to perform authentication. Even if a sender transmits multiple
data packets to the same receiver, the challenge-response mechanism must be per-
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formed for each data packet. It is not possible to establish a session which requires
only performing the challenge-response protocol at the beginning of the session.

Another problem with authenticated multicast is that each receiver generates
its own random number and sends the random number to the sender. To prove
its identity, the sender must respond to all receivers with the corresponding hash
value. This means that if a multicast group contains n members, the sender must
calculate n− 1 hash values.

The authentication protocol is vulnerable to DoS attacks. As mentioned be-
fore, the receiver computes the hash value immediately after the random number
is calculated. To start a flooding attack (for further details see 4.2.3), the attacker
sends a lot of messages with a set authentication bit. For each message, the re-
ceiver generates a random number and calculates the necessary hash value. As it
is time-consuming to calculate these hash values, these incoming messages will
result in a DoS attack.

Another security flaw is the cryptographic algorithm itself. Since the algo-
rithm is not publicly available, it cannot be verified whether the algorithm is se-
cure or not. The algorithm uses 48 bit keys which is too short to be secure enough.
Therefore, the used cryptographic algorithm can be thought as being weak.

Another problem is the key distribution. The LonTalk protocol does not pro-
vide a mechanism to distribute the secret keys in a secure manner. Since the keys
must be transmitted in plaintext, the initial key distribution has to be done in a
secure environment to ensure that nobody intercepts the keys. A possible solution
is to connect the device directly to the management node.

The authentication protocol has another drawback. It is only possible to store
one authentication key. This means that all entities that want to communicate with
each other must share the same authentication key. To use authenticated multicast,
all members of the group must have the same key. But it is important to note that
the identity of the sender cannot be verified exactly. The receiver can only ensure
that an owner of the key has calculated the hash value. Therefore, the receiver
only knows that a member of the group has computed the hash value.

5.2 BACnet
In 1987, the American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) project committee began with the development of BAC-
net (Building Automation and Control networking protocol). The main objective
was to provide a solution for building automation systems of all sizes and types.
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In 1995, the development has been finished and BACnet was published as an
ANSI/ASHRAE standard. Later in 2003, BACnet has become a CEN and ISO
standard ([53]). Since the first release, the BACnet specification is under further
development.

BACnet does not define the underlying network layers (layer 1 and 2). To
achieve compatibility, BACnet supports five different network technologies which
have been standardised. These five network types are:

• Ethernet
• ARCNET
• Master-Slave/Token-Passing (MS/TP)
• LonTalk
• Point-to-Point (PTP)

As shown above, LonTalk is also supported. It is important to note that only
BACnet specific messages can be used.

In 1999 BACnet/IP was introduced. Basically, two mechanisms exist to use
BACnet over IP networks. First, it is possible to use a tunneling approach. A
special device called B/IP PAD1 encapsulates the BACnet message into a UDP
packet. This packet is transmitted to the destination B/IP PAD where it is recon-
verted into a BACnet message.

Another possibility is to use UDP directly as link layer protocol. To achieve
this, BACnet Virtual Link Layer (BVLL) was defined which provides the oppor-
tunity to use UDP as data link layer protocol. To support broadcast communica-
tion, a special device called BACnet Broadcast Management Device (BBMD) is
required.

In a BACnet system, a physical network line is called a segment. To extend
the maximum cable length, repeaters and bridges can be used to link different seg-
ments. An interconnection of such segments is called a network. These BACnet
networks can linked together to form an internetwork. To achieve this intercon-
nection, BACnet routers are used. These routers are responsible for routing the
data packets between the different networks.

Each BACnet network has a unique 2 byte BACnet network number. To iden-
tify the node in a network, each network member has a local address which is up to
255 bytes long. This local address is used by the link layer of the network. There-
fore, the exact length of the local address depends on the used network medium.
For example, if Ethernet is chosen as network medium, the MAC address is used
as local address.

1BACnet/Internet Protocol Packet-Assembler-Disassembler
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In BACnet, the used data primitives are called objects (BACnet objects).
An object is a collection of data elements which forms a particular function of
the system. Such an object has a set of properties. Each property represents a
definite data value. For example, a ”temperature object” can consist of a prop-
erty current value and other properties like min value, max value and
resolution.

The BACnet standard currently defines 25 different object types. Each node
can have several objects. The Device object which contains general informa-
tion about the node must be present in each node. As mentioned above, each
object can have several properties. In the BACnet standard, nearly 200 different
properties are defined. Three of these properties must be present in each object.
These three standard properties are object-identifier, object-name
and object-type.

To perform operations on these objects, BACnet provides different services
(BACnet services). The BACnet standard currently defines 40 different applica-
tion services which are divided into five different categories. These five categories
are:

• Alarm and Event
• File Access
• Object Access
• Remote Device Management
• Virtual Terminal

To access and manipulate BACnet objects, the services ReadProperty, Write
Property, ReadPropertyMultiple and WritePropertyMultiple can
be used. From these services, only the ReadProperty service must be imple-
mented in each device.

BACnet uses a client/server model. To handle events, BACnet provides three
different handling methods. These three methods are ”Intrinsic Reporting”, ”Al-
gorithmic Change Reporting” and ”Change of Value”. For further details on BAC-
net see [1] and [52].

5.2.1 Security Concepts
The BACnet protocol provides limited security mechanisms that guarantee data
confidentiality and data integrity. Additionally, authentication mechanisms are
supported which can be used to verify the identity of peer entities, data origin
and operators. The necessary mechanisms are defined in clause 24 in the BACnet
standard (see [52]).

109



To achieve the mentioned security objectives, a cryptographic algorithm and
an authentication mechanism are used. To encrypt data packets, BACnet uses the
symmetric DES algorithm. The authentication mechanism is based on a trusted
keyserver which is responsible for generating and distributing session keys. These
session keys are used to encrypt the transmitted data between two entities. To
establish a secure connection to the keyserver, each node must have a secret key.
The distribution of these private keys2 is not defined in the BACnet standard.

Figure 5.2 illustrates the basic authentication mechanism. To obtain a ses-
sion key, A sends the device identifiers A and B to the keyserver S. This is
done by using the RequestKey service. To protect the request, A encrypts
the message with its private key KAS which is shared between the entity A and
keyserver S. After S has received the request, it generates a 56 bit session key
KAB. Then, S encrypts the session key together with the BACnet address of B
using the private key KAS . This encrypted message is sent to A using the ser-
vice AddListElement. This service adds the session key to the List Of
Session Keys property of the Device object of entity A. Additionally, the
session key is also transmitted to B. To achieve this, S sends the encrypted ver-
sion of KAB and the BACnet address of A to B.

After both communication participants have received the session key, message
encryption or authentication can be performed. To perform peer authentication,
the Authentication service can be used. Peer authentication is shown in
Figure 5.2 and works as follows:

Entity A generates a random number N which is encrypted using the session
key KAB. Then, A sends this encrypted random number to entity B. B decrypts
it and performs an inversion of the most and least significant bit of N . Then
B encrypts this transformed random number N ′ using the session key KAB and
sends it back to A. To verify the identity of B, A decrypts the received message
and tests whether the modification is valid. Figure 5.2 illustrates this scheme.

2It is important to note that in BACnet, a private key is a symmetric, secret key. In this context,
a private key is not the same as an asymmetric private key which is used in a public key system.
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Figure 5.2: Authentication in BACnet

Clause 24 of the BACnet standard defines different security mechanisms. These
mechanisms are:

• Peer Authentication
• Message Initiation Authentication
• Message Execution Authentication
• Operator Authentication
• Data Confidentiality
• Enciphered Session
Peer authentication uses the authentication service explained above. It is

used to verify the identity of a BACnet node (for further details see Figure 5.2).
Message Initiation Authentication is used to verify the identity of the ini-

tiator of a sent message. To achieve this, the authentication service is extended.
In the authentication request, the Expected Invoke ID parameter specifies
which request should be authenticated.

The Message Execution Authentication service is similar to the Message
Initiation Authentication service mentioned above. This service has
the main aim to verify the identity of the server which should execute the requested
operation. Again, the "Expected Invoke ID parameter is used to identify
the request which should be authenticated.

The Operator Authentication service can be used to verify the identity of an
operator. To log onto a particular device, the authentication service is extended.

111



In the authentication request, the parameters operator name and password
must be used to specify the user name and the password of the operator. There are
two possibilities to verify the password. First, the verification of the operator name
and password can be done locally. If the entity has not the capability to verify the
name and password locally, the keyserver can be used to validate the password.
To achieve this, the authenticate request can be forwarded to the keyserver. After
the keyserver has verified the password, the result of the verification is sent back.

To send confidential data, the communication participants must receive a ses-
sion key from the keyserver. With this session key, it is possible to encrypt the data
packets. Figure 5.2 illustrates this mechanism.

The BACnet protocol provides a mechanism to start and to end an enciphered
session. Again, the authentication service is used. To start an enciphered session,
the Start Enciphered Session parameter of the authentication request
must be set to true. To verify the identity of the initiator, the message initiation au-
thentication service should be used. After the initiator has proven its identity, the
enciphered session can be started. To end the session, the Start Enciphered
Session parameter must be set to false. Again, the message initiation authenti-
cation service should be used to verify the identity of the initiator of the request.

The main drawback of the security mechanisms mentioned above is that only
DES is supported. Since DES uses short keys (56 bit), brute force attacks can be
used to find valid keys. Therefore, DES is not secure and AES should be used
instead (for further details see Section 3.2.1).

Another problem is the initial key distribution. The BACnet standard does
not specify the generation and distribution of these private keys. In the BACnet
standard, these mechanisms are considered as ”local matters”.

The implementation of the keyserver is also not defined by the BACnet stan-
dard. The exact implementation is left open. The keyserver holds a copy of all
private keys. Therefore, it is obvious that the keyserver must be protected against
all kinds of malicious attacks.

The authentication protocol itself has several security flaws. As mentioned in
[56] and [57], the authentication mechanism is vulnerable to the following security
attacks3:

• Man-in-the-Middle Attacks
• Type Flaws4

3Unfortunately, in [57] the exact methods how these attacks are performed are not discussed in
detail.

4To cause a misinterpretation of the content of a message, the attacker tries to change a well-
known sequence of bits. For example, keys and nonces are such typical well-known sequences.
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• Parallel Interleaving Attacks5

• Replay Attacks
• Implementation Dependent Flaws

One problem of the mechanism is that the freshness of the session keys cannot
be guaranteed. As mentioned before, each session key is added to the List Of
Session Keys property of the Device object. The BACnet specification does
not define a finite lifetime of these session keys. Again, it is a ”local matter”.
This means that if the freshness of the session keys is not verified, an attacker can
use an old session key to communicate with a particular device. Therefore, it is
essential to implement a mechanism to limit the lifetime of the session keys.

To solve the problem mentioned above, it is essential to use a stronger cryp-
tographic algorithm (for example AES). To increase the security of the authenti-
cation mechanism, the protocol must be improved. For example, Kerberos can be
used as a replacement of the standard BACnet keyserver (for further details see
[56] and [57]).

5.3 EIB/KNX
The European Installation Bus (EIB) was developed as a field bus for installations
in homes and building. Until 2002, the EIB specification was maintained by the
EIB Association. In 2002, EIB was merged with Batibus and EHS (European
Home System) and the KNX standard (see [58]) was defined. Additionally, the
Konnex Association was formed which is responsible for the maintenance of the
KNX specification. Since the definition of the KNX standard, EIB is also referred
to as EIB/KNX.

EIB/KNX supports different network media. It supports the use of twisted-
pair (TP) and powerline as well as a wireless solution (radio frequency). The
most common type is TP1 which allows a maximum bandwidth of 9.6 KBits/s
and free topology.

An IP tunneling mechanism called EIBnet/IP is also available. This mecha-
nism provides the opportunity to use an IP based medium as backbone network.
To achieve an encapsulation of the messages, IP tunneling routers are necessary.

To extend the maximum cable length of a physical segment, line repeaters can
be used. An interconnection of one or more segments is called a line. A line can
contain up to 254 devices. Up to 15 lines can be connected by a main line. Such

5This attack uses messages from one session in another concurrent session. An example of
such an attack is shown in Section 3.3 (see Figure 3.8).
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an interconnection of lines is called a zone. Up to 15 zones can be linked by a
backbone line. To perform the interconnection, couplers are needed (line couplers
and backbone couplers).

Each device has an individual address which is 2 bytes long. The first four bits
of this address contains the zone ID and the second four bits the line ID. The last
eight bits (the second byte) denotes the node ID which is used to identify the node
in a line.

This individual address is used for unicast communication. Unicast communi-
cation is mainly used to transmit management messages. A connection-oriented,
reliable form is also available. Additionally, multicast communication is also sup-
ported. With the multicast service, it is possible to send a message to a group of
nodes. To identify the group, each group has an individual group address (2 bytes
long).

This group communication mechanism is very efficient. Each node has a list
of group addresses which the node belongs to (group address table). If a multicast
message is received, the node tests whether the group address table contains the
address of the received message. If the address is listed in the table, the incom-
ing multicast message is processed. Otherwise, the node will ignore it. A node
can subscribe to any group. It is important to note that the other group members
as well as the sender of a group message do not need to know which nodes ex-
actly belong to the group. If a node wants to join a group, it simply adds the
corresponding group address to its group address table.

If a group message is sent, each member of the group acknowledges the re-
ception of the message. Due to the bit coding of the acknowledgment frame, a
negative acknowledgment always dominates on the bus. This means that a neg-
ative acknowledgment will always override a positive one. Therefore, all group
members can send the acknowledgment frame at the same time.

EIB/KNX uses a shared variable model. The application related variables
which are visible via the network are called group objects. Such a group object
can be readable, writable or both. For example, a group object can be the state of
a light switch (readable) or the output value of a relay (writable).

Each group object can belong to multiple groups. The group communication
mechanism mentioned above is used to send or receive the data values of a group
object. If a data value of a group object changes, the node sends a corresponding
group message. To receive updates of a group object, it simply adds the corre-
sponding group address to its group address table. In addition to this event driven
approach, a polling mechanism is also available.

The most important standard component in an EIB/KNX system is the Bus
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Coupling Unit (BCU). A BCU consists of a microcontroller (MC68HC05 family)
and a transceiver which is responsible for the bus access. The system software of
the BCU implements the network stack. Additionally, it provides an application
environment to handle simple user applications.

Each BCU provides a local interface which is called Physical External Inter-
face (PEI). Via this interface, it is possible to attach application modules. Such an
application module can be a simple light switch or a RS232 interface as well as an
additional embedded device. To communicate via this interface, several protocols
exist. For a detailed description of these different protocols see [59].

To maintain and configure an EIB/KNX system, a management tool called
EIB Tool Software (ETS) is available. With this tool, it is possible to perform
management tasks (for example assigning node addresses) as well as uploading
user applications.

For additional information about EIB/KNX see [1] and [60] as well as [39].

5.3.1 Security Concepts
EIB/KNX does not support mechanisms that guarantee data confidentiality, data
integrity, data authentication and data freshness. It provides only a basic access
control scheme which is based on cleartext passwords.

This basic access protection mechanism can be used to avoid an unauthorised
use of management procedures. To achieve this, 255 different access levels can be
defined. Each of these access levels have different privileges. Access level 0 has
the most privileges and access level 255 the least ones. For each of these access
levels, a 4 byte password called key can be specified.

It is important to note that this access protection mechanism is only available
on the BCU 2 (with a mask version of 2.0 or higher). Older BCUs (mask version
< 2.0) do not support access protection. Additionally, current implementations of
the BCU 2 system software only supports four access levels. The access protection
mechanism of the BCU 2 can be used to protect the global access to a BCU 2 as
well as the access to the memory and to EIB objects.

To restrict the global access to a BCU 2, four different access levels are avail-
able. Table 5.1 summarises these different levels.
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Access Level Usage
0 loading application programs
1 loading address table and association table
2 loading application parameters
3 access level without or failed authorisation

Table 5.1: Different Access Levels in EIB/KNX

Memory allocation is done by defining memory control blocks (MCB). In
these MCBs, a required read and write access level can be specified (4 bit write
access level and 4 bit read access level). The mandatory access levels can be used
to restrict the read and write access of the specified memory area. If a remote user
wants to access the content of the memory, the system software checks whether
the current access level is lower or equal than the required access level.

The read and write access to EIB objects can also be restricted. To achieve
such a protection, it is possible to specify a required read and write access level.
This can be done for each object separately. Again, if a remote host wants to
access an EIB object, the system software checks whether the current access level
is sufficient to perform the requested operation.

To gain access to a remote device, the following steps are necessary. Con-
sider, for example, an entity A wants to connect to a remote device B to perform
certain management tasks. To open a connection, A must send an A Connect
request. After the connection has been established, A sends an A Authorize
Request message. This request contains the key for the required access level.
B searches its list of keys and determines the access level for which the received
key is valid. Afterwards, B stores this access level as the current access level.
This access level is valid during the whole session. Then, B sends back an A
Authorize Response message which contains this current access level. Af-
ter A has received this response, it is possible to perform further operations (for
example an A Memory Read request). After A has finished its tasks, it sends
an A Disconnect message to B which closes the connection. This means that
B sets its current access level to the level which has the lowest access rights (if
a BCU 2 is used, the current access level is set to 3). Figure 5.3 illustrates this
example.
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Figure 5.3: Access Protection in EIB

To change the key of a specified access level, the A Key Write service can
be used. It is important to note that the current access level must be lower or equal
than the access level which is specified in the request. Therefore, it is necessary to
perform an authorisation request before the new key can be set. This means that
the remote host must establish a connection (with the A Connect request) and
then an A Authorize Request message must be sent. To delete a key, the
value 0xFFFFFFFF must be set as new key. This value is reserved for the empty
password.

It is obvious that the mechanism mentioned above provides only a basic access
protection. This access control mechanism has a lot of security flaws. One of the
biggest problem is that the keys are transmitted in cleartext. Therefore, a key can
be intercepted very easily (for further details see Section 6.1.2).

In Chapter 6, the security mechanisms of EIB will be analysed in detail. In
addition to this analysis, different security flaws will be discussed. Additionally,
at the end of Chapter 6, a possible solution will be presented.

5.4 Summary
The security mechanisms of LonWorks and EIB/KNX are not sufficient to fulfil
the security requirements of a modern building automation system. As mentioned
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in Chapter 4, a building automation system must be protected against different
malicious attacks. It is important to note that the implemented security concepts
of LonWorks and EIB/KNX cannot achieve an effective protection against these
security threats.

As mentioned above, LonWorks supports data authentication. Compared to
EIB/KNX, the integrated authentication mechanism provides authentication and
integrity of data messages. It is important to note this mechanism is still to weak.
Especially, the cryptographic algorithm seems to be insecure. Additionally, the
protocol itself has security flaws and therefore further development is necessary.

EIB/KNX supports only an access protection mechanism which is only suit-
able to protect the system against a very limited class of malicious attack. There-
fore, the rest of this thesis will take a closer look at security in EIB.

The security architecture in BACnet is more advanced. In addition to authen-
tication and data integrity, an encryption of the transmitted data is also supported.
Anyhow, the used cryptographic algorithm is obsolete and therefore it should be
replaced by a modern one (for example AES). Additionally, the protocol itself
must be improved to avoid certain security flaws.

A big problem which has not been solved by any of these three systems is the
generation and distribution of initial secrets. Even if the architecture of the system
itself is secure, a mechanism must be available which provides the opportunity to
distribute the initial secrets (for example the shared secret key between node and
keyserver) in a secure manner.

Table 5.2 gives an overview about the different security architectures. As
shown in the previous sections, further development has to be done to provide
a secure environment which is suitable for security critical applications.

System Authentication Integrity Confidentiality Freshness
LonWorks 64 bit MAC

(48 bit key)
64 bit MAC
(48 bit key)

- Random num-
ber (64 bit)

BACnet DES DES DES Random Num-
ber

EIB/KNX 32 bit pass-
word

- - -

Table 5.2: Security Mechanisms in Building Automation Solutions

118



Chapter 6

Practical Experience: Security in
EIB/KNX

As mentioned in the previous chapter, EIB/KNX provides only a basic access
control mechanism. The implementation of this access protection is very rudimen-
tary. An encryption mechanism that guarantees data confidentiality is missing as
well as mechanisms that provide data integrity, authentication and data freshness.
Therefore, the rest of this thesis will take a closer look at the security architecture
of EIB/KNX.

The first part of this chapter examines the access control mechanism of EIB/KNX.
An EIB test system was used to analyse the access protection in detail. Based on
this analysis, different security flaws and problems will be discussed.

In the second part of this chapter, a possible solution of a secure EIB/KNX
architecture is presented. Based on the practical experience of the analysis, se-
curity mechanisms are shown which fulfil the requirements of critical security
applications.

6.1 Attacking password protection of BCU 2
As mentioned in Section 5.3, the security architecture of EIB/KNX is very rudi-
mentary. The EIB/KNX protocol provides only an access control mechanism
which is based on passwords. It is important to note that only BCU 2 (that means
BCUs with a mask version higher or equal 2.0) supports this mechanism. Older
BCUs do not provide this access control facility.

The main aim of this section is to analyse this access control mechanism.
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To perform the necessary tests, an experimental EIB/KNX environment at the
Automation Systems Group at the Technical University in Vienna was used. With
this test system, the access protection of a BCU 2 was analysed and different
vulnerabilities were determined. Figure 6.1 shows this test platform.

Figure 6.1: Experimental EIB/KNX environment

To analyse the protocol, two BCUs with mask version 2.0 were available
(Siemens 5WG11142AB02 and Merten 6902 99). Additionally, the standard man-
agement tool ETS3 was also analysed. In addition to this Windows based tool, a
Linux based EIB environment was available. This environment was also devel-
oped at the Automation Systems Group and consists of different Linux drivers
(both kernel drivers and user mode divers; for further details see [67]) as well
as miscellaneous EIB tools. With these drivers and tools, it is possible to access
the EIB bus (via TPUART1 or BCU). Additionally, a free development environ-
ment for BCUs was available. Using this BCU SDK, it is possible to develop user
applications for BCU 1 and BCU 2 (for further details see [27] and [69]).

In addition to these available tools, an EIB/KNX testing tool was developed.
With this tool, it is possible to observe the network traffic. Additionally, the tool

1Twisted Pair - Universal Asynchronous Receive Transmit
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provides the opportunity to send EIB messages. This tool was written in Java and
uses the Linux BCU 1 kernel driver to access the EIB/KNX network medium.
Figure 6.2 shows a part of the user interface (for further details see [66]).
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Figure 6.2: EIB Testing Tool
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6.1.1 Brute Force Attack
Independent of the used system, an attacker has always the possibility to guess a
password. To find a valid key, all different possible keys must be tested whether
they are valid or not. This form of attack is called brute force attack.

In EIB/KNX, the access control mechanism uses 32 bit keys. This means that
there are 232 different keys which must be tested whether they are valid or not.
Although, each BCU 2 could have a different set of keys, the management tool
ETS uses a single key for the whole network. This means that the user can only
choose one key which is used for all BCUs. Therefore, a brute force attack is
appropriate to gain unauthorised access. If an attacker is able to guess one key,
this key is valid for the whole network and therefore the attacker is able to gain
access to any BCU.

To evaluate whether a brute force attack is suitable or not, the time it takes to
try all possible keys must be calculated. To verify whether a key is valid or not,
the following steps are necessary. First, the attacker must send an A Connect
message to establish a connection to the target of the attack. Afterwards, the
attacker must send an A Authorize Requestmessage which contains the key
that should be tested. The target receives this authorisation request and responds
with a transport layer acknowledgment (T ACK PDU). Then, the target sends an A
Authorize Response back to the attacker. This response contains the access
level for which the key is valid. To avoid a retransmission of the A Authorize
Response, the attacker must also send back a T ACK PDU. Otherwise, the target
will retransmit it.

To determine the time it takes to find a valid key, the transmission time of
these five mentioned messages must be calculated. The maximum theoretical
bandwidth of TP1 in EIB/KNX is 9.6KBits/sec. This means that the bit time
is 104µsec. A single character called octet is transmitted as an UART character.
TP1 uses a 8e1 UART encoding scheme. This means that it takes 13 bit times to
transmit a single UART character (1 start bit, 8 data bits, 1 even parity bit, 1 stop
bit and 2 idle bit times). Therefore, the transmission time of a single character is
1352µsec.

The timing of a standard message cycle is shown in Figure 6.3. First, the data
frame is transmitted. The length of such a data frame is variable. Then the bus
must be kept idle for 15 bit times (Idle 1;1560µsec). After this idle time, the
receiver of the data frame must respond with an acknowledge frame which is 1
octet long. After this acknowledge frame, the bus must be kept idle again (Idle
2). The idle time depends on the priority of the next frame. If the priority of the
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message is system or urgent, the bus must be kept idle for at least 50 bit times
(5200µsec). Otherwise, at least 53 bit times are mandatory (5512µsec).

Figure 6.3: Message Cycle in EIB

As mentioned above, the length of a data frame is variable. Depending on
the message type, a standard short frame is between 8 and 23 octets long. For a
detailed description of the frame format see [39] or [60].

Based on this standard message cycle, the transmission time of the required
messages can be calculated as follows:

• A Connect:
An A Connect message is 8 octets long. This means that the transmission
time of the data frame is 10816µsec. Together with the acknowledge frame
and the idle times 1 and 2, the transmission of an A Connect messages
takes 18952µsec ' 19ms (high priority).

• A Authorize Request:
Since an additional application control field (1 octet) and 5 octets user data
(key + one additional octet) is necessary, an A Authorize Request is
14 octets long. Therefore, this message requires together with the acknowl-
edge frame and the two idle times 27040µsec ' 27ms (high priority).

• A Authorize Response:
An A Authorize Response message contains the valid access level.
Therefore, such a message is 10 octets long (1 octet application control field
and 1 octet for the current valid access level). Therefore, an A Authorize
Response message requires together with the acknowledge frame and the
two idle times 21632µsec ' 22ms (high priority).

• T ACK PDU:
This data frame is used as transport layer acknowledge. Since the frame
has no application data, a T ACK PDU is 8 octets long. Therefore, it has the
same length as an A Connectmessage and therefore it takes 18952µsec '
19ms (high priority).

To verify whether a key is valid or not, the above messages must be trans-
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mitted over the network. First, the attacker must send an A Connect message
(needs 19ms). As the same connection can be used during the whole attack, the
connection must be established only once. Therefore, this message can be ig-
nored for further calculations. To verify the key, an A Authorize Request
message must be sent (needs 27ms). This message is acknowledged using a T
ACK PDU packet (19ms). Then, it sends an A Authorize Response which
needs 22ms. To avoid a retransmission, the attacker must also response with a T
ACK PDU (19ms). This means that testing one key needs about 87ms. Since a
key is 32 bits long, 232 different keys exist. Therefore, testing all possible keys
will take 232 ∗ 87ms ' 12years. Since the statistical expectation is 50%, there is
an average of 6 years required.

It is important to note that the calculation mentioned above assumes that no
collisions occur. This means that no other messages may appear which is very
unrealistic in a working system. Additionally, the processing time of the requests
is also ignored.

As shown in Section 6.1.4, the management tool ETS uses only one access key
for the whole network. It is not possible to specify a separate key for each BCU.
Therefore, it is possible to reduce the time it takes to find a valid key by performing
a parallel attack. To achieve a parallel attack, several BCUs are attacked at the
same time. It is important to note that the BCUs must be located in different
network segments. Otherwise, a single attack will consume the whole network
bandwidth.

A brute force attack produces a lot of network traffic. This increased network
traffic influences the behaviour of the whole network and therefore such an attack
attracts attention. So, a brute force attack is not suitable to find a valid key.

6.1.2 Protocol Vulnerabilities
As mentioned in the previous section, a brute force attack takes too much time.
Therefore, other possibilities have to be found.

As mentioned in Section 5.3, the security architecture of EIB/KNX is very
rudimentary. EIB/KNX does not support security mechanisms that provide data
confidentiality, integrity, freshness and authentication. It is only possible to pro-
tect a BCU 2 against unauthorised access. One of the biggest problems of the
access control mechanism is that the keys are transmitted in plaintext over the
network. Both the A Authorize Request service and the A Key Write ser-
vice contain the authentication key in plaintext. If an attacker has access to the
network, the attacker can simply intercept such a message. To achieve this, a net-
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work sniffer is necessary. For example, an attacker could switch a BCU into bus
monitoring mode2. In this mode, the BCU forwards all received network messages
(independent of the destination address) to the PEI interface. So, the attacker is
able to analyse the traffic. If an A Authorize Request or an A Key Write
is transmitted over the network, the attacker can simply extract the key out of the
received messages.

A program example of an EIB/KNX key sniffer is shown in Appendix B.1.
To access the bus medium, the Linux BCU 1 kernel driver is used. This driver
provides the opportunity to communicate with a BCU 1 via the PEI16 serial in-
terface (for further details about this interface see [59]). To intercept the network
traffic, the attached BCU is switched into bus monitoring mode. In this mode all
received network messages are directly forwarded to the PEI interface. After an
A Authorize Request or an A Key Write message has been received, the
corresponding key is written to <stdout>.

Another drawback of the unicast communication service of EIB/KNX is that
parallel connections are not supported. If one node has established a connection to
a particular device, all other connection requests to this device are ignored. This
means that a BCU cannot handle more than one connection at the same time. It is
important to note that an open connection only blocks connection-oriented mes-
sages. Group message can always be received even if a management connection
is established. An attacker can use this restriction to perform a DoS attack. To
achieve such an attack, the attacker simply establishes a connection to the target
of the attack. As long as the attacker keeps up the connection, no other device is
able to open a connection. It is important to note that the attacker does not need to
know a valid access key to open a connection. If the remote node does not send an
A Authorize Request, the access level with the lowest privileges is assumed
(for example, in BCU 2, access level 3 is reserved for access level without autho-
risation). All other incoming connection requests are ignored, even if the initiator
of the request knows the key of an access level that has more privileges.

Another security flaw of the access control mechanism is that it is possible to
inject messages into an already established connection. After the access key of the
A Authorize Request has been verified, the desired access level is stored as
current access level. This current access level is valid during the whole session.
For the rest of the session, only the source address of a message is verified. If the
source address of a message is identical to the source address which was used in

2The system software of a BCU offers different operation modes. The bus monitoring mode is
one of these modes. For further details see [39].
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the A Connect message, the device accepts the message. If the addresses are
not identical, the message is ignored. There is no other mechanism available that
verifies the identity of the data origin. As the source address can be spoofed very
easily, it is not possible to verify the authenticity of further messages. For exam-
ple, after a node has changed the current access level using the A Authorize
Request service, an attacker can simply spoof the source address and inject
other management messages.

The weakness mentioned above can also be used to perform another form of
DoS attack. Since the source address is not protected, the attacker can close the
connection at any time using the A Disconnect service. To achieve this, the
attacker spoofs the source address3 of the A Disconnect message and sends
this faked disconnect request to one of the communication participants. As the
receiving device believes that the other device wants to tear down the connec-
tion, it will close the connection. An ”EIB virus” could take advantage of this
weakness. Consider, for example, an ”EIB virus” which infects several BCUs. In
addition to deleting the user application, a malicious user application is uploaded.
This application intercepts the network traffic. If a node A sends an A Connect
message to another node B, the virus detects this and immediately sends an A
Disonnect message to B (with the spoofed source address of A). B will tear
down the connection and so A is not able to send any further connection oriented
messages. This means that if the virus infects one single BCU in a line, it is
not possible to establish a connection to any other device. As soon as a device
sends an A Connect message, the virus immediately sends an A Disconnect
message which closes the connection immediately.

Another drawback is that the access control mechanism is only available for
unicast communication. This means that only management services like A Memory
Read or A Property Read can be protected against unauthorised invocation.
There is no protection against malicious modification of group messages. For
example, an attacker can simply send an A Groupvalue Write message to
modify the value of a group object. To guarantee the security of an EIB/KNX
system, it is essential to protect process data communication too.

3To fake the source address of a message, the physical address must be changed. To achieve
this, the new address must be written to memory 0x117 (if a BCU is used).
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6.1.3 BCU 2 System Software
After the access protection protocol was examined, the implementation of this
mechanism has to be verified. To achieve this, it is necessary to take a closer look
at the internal structure of the BCU 2 system software. Since the source code of
the system software is not public available, the memory of the BCU 2 has to be
read out.

As mentioned in [61], the program code of the system software is located at
memory 0x5000 - 0x7fff. Additionally, the memory area 0x04e0-0x04ff is also
reserved for the system software. It is important to note that the management
service A Memory Read cannot be used to read out these memory areas. The
message system of the system software protects these memory areas and so, an
access via A Memory Read is not possible. Therefore, another possibility has to
be found.

To read out the necessary memory areas, a BCU 2 user application was writ-
ten. This application called Memread reads out a specified memory area. The
memory content is split into several pieces. These pieces are encapsulated into
group messages which are transmitted over the network. To get the memory con-
tent, the group messages are simply intercepted using an EIB network sniffer.

The source code of this application can be found in appendix B.2. The applica-
tion Memread was written using the BCU SDK. This development environment
provides programming tools which are based on the GNU utilities. Using the
BCU SDK, the code fragments can be written in C. Additionally, the BCU SDK
provides several tools which can be used to upload the image of the application
(for further details see [27]).

To analyse the received memory dump, the byte code must be disassembled.
To convert the machine code into assembler instructions, the tool objdump from
the BCU SDK was used. To get the correct alignment of the instructions, it is
essential to find the correct entry point. According to the specification of the MCU
(BCU 2 contains a Motorola MC68HC705BE12 MCU4), the reset vector which
is located at memory 0x7fff is loaded after power up. This means that the reset
vector contains the address of the first instruction which is executed after power
up. Regarding BCU 2, this reset vector contains the value 0x781e. This means
that the first instruction which is executed after power up is located at 0x781e.

In addition to this reset vector, a MC68HC705BE12 MCU has seven different
interrupt vectors. These interrupt vectors are located at memory 0x7ff0-0x7fffd.

4Microcontroller Unit
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Each interrupt vector contains the address of the first instruction which is executed
after the corresponding interrupt occurs.

Beginning from these entry points, the machine code can be disassembled.
After the machine instructions were disassembled, the obtained assembler instruc-
tions were analysed. It is obvious that without detailed knowledge about the inter-
nal structure of the system software, the analysis of the raw assembler instructions
is a very complex task. Therefore, it was very difficult to get useful information
about the system architecture. [61] gives a brief introduction to the system ar-
chitecture of the BCU 2 system software. It is important to note that this help
file only provides information about the user relevant part of the system software
(for example information about API callbacks, user timers, ...). Furthermore, the
used MC68HC705BE12 MCU was specially designed for EIB/KNX. Therefore,
it is very difficult to find details about the internal structure of the microcontroller
(only a data sheet is available; for further details see [68]). For example, the exact
location of the input registers (timer register, counter registers, ...) was not known.

Anyhow, the following information has been determined during analysis:
• Memory location of access keys:

As mentioned above, the system software of BCU 2 supports four different
access levels. Access level 3 is a synonym for free access which is always
available. Therefore, no key can be specified for level 3. For each of the
remaining three levels (see Table 5.1), a 4 byte key can be specified. These
three keys are located at:

- Key for Access Level 0: 0x049c-0x049f
- Key for Access Level 1: 0x04a0-0x04a3
- Key for Access Level 2: 0x04a4-0x04a7

It is important to note that the user application has full access to these mem-
ory locations. As the microcontroller directly executes the instructions of
the user application, the system software cannot restrict the access to the
internal memory. Therefore, the user application can modify or delete the
access keys.

• Current Access Level:
After the device receives an A Authorize Request, it verifies the re-
trieved key. If the key is valid, the system software stores the desired access
level as current access level. As mentioned in the previous section, a BCU
cannot handle more than one connection at the same time. Therefore, only
one current access level exists. This current access level is located at mem-
ory 0x87. Again, the user application can modify or read the current access
level directly. Additionally, the system software provides an API function
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called U GetAccess (located at memory 0x5096). This routine copies the
current access level to the accumulator. After a reset, the system software
initialise this current access level. This is done by a subroutine that is lo-
cated at 0x6388. This subroutine iterates through all three access levels and
checks whether a key is set to empty or not5. After this check, the number
of the lowest access level which has an empty key is stored as current access
level.

As mentioned in Section 5.3, the A Key Write service can be used to change
the key of a specified access level. To delete a key, the key must be set to the
value 0xffffffff using an A Key Write message. During the analysis, another
possibility was found. At memory 0x10d, the RunError register is located.
This register contains error flags which indicate runtime errors. These different
flags are set by the system software and can be used for error analysis purposes
(for further details see [61]). This register can also be used to clear all three
access keys. If the management service A Memory Write is used to clear the
most significant bit of the RunError register, all three access keys are set to
0xffffffff. It is important to note that only access level 2 is necessary to use this
feature. If a user has gained access using the key of access level 2, it is still
possible to delete the keys of access level 0 and 1. This means that the key of
access level 2 that has lower privileges than access level 0 and 1 is sufficient to
perform a deletion of all keys. The analysis shows that the management tool ETS
3 uses this ”magical feature”. Therefore, it can be assumed that this mechanism
is not an implementation flaw. A description of this feature cannot be found in
any documentation. Neither the EIB/KNX specification nor the BCU 2 help file
mention this feature.

6.1.4 Implementation Flaws in ETS 3
To configure and maintain EIB/KNX systems, a Microsoft Windows-based man-
agement tool called ETS is available. After the access control mechanism and
the system software of the BCU 2 were analysed, it is necessary to examine how
the management tool ETS uses this access protection mechanism. Therefore, the
current available version 3 of ETS was analysed in detail.

First, it is important to note that only one single key can be specified (this key
can be specified in the project properties). Using the ETS6, it is not possible to

5A value of 0xffffffff denotes the empty key.
6In the rest of this chapter, the term ETS is used as a synonym for ETS version 3.0b.
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define a separate key for each BCU 2. It is obvious that this approach is not very
secure. If an attacker is able to retrieve this single key, the attacker is able to gain
access to any BCU. A more secure solution is to use a separate key for each node.

Additionally, the ETS uses the same key for all three different access levels.
It is not possible to define a separate key for each level. This means that the ETS
does not distinguish between different access levels. However, if another tool is
used to set separate keys for each access level, it is possible that the ETS cannot
handle these BCUs anymore. For example, if the key for access level 1 or 2 is
empty and the key for access level 0 is set to a non-empty value, the ETS cannot
connect to such a BCU. If the ETS wants to authenticate to a BCU 2, it tries the
empty key first. If the BCU 2 responses with access level 3, the ETS sends another
authorisation request. This request contains the key which the user has defined in
the project properties. If the BCU 2 responses with access level 2 or 1, the ETS
aborts the transmission with an ”Internal Error” message.

Additionally, another software bug was found. The ETS is not able to set keys.
If a new user application is uploaded, the ETS performs several steps. First, the
ETS opens a connection to the target device. After the connection has been es-
tablished, the ETS sends an A Authorize Request. As mentioned above, the
ETS tries the empty key first. If the BCU responds with access level 3, the user
specific key is sent. If the access is granted, the ETS initiates several initialisa-
tion operations (for example, initialise the memory control blocks, unloading the
object table, ...). Afterwards, the ETS clears all keys by clearing the RunError
register (for further details see Section 6.1.3). Then, the ETS uploads the image
of the user application. After the upload of the image has been finished, the ETS
closes the connection. It is important to note that the keys are not set by the ETS 3
after a new image is uploaded. It is obvious that this software bug must be fixed.
Otherwise, an EIB/KNX network that is configured and maintained using ETS
cannot use the access protection mechanism.

As mentioned in this section, the ETS does not provide the necessary facilities
to support the access protection mechanism. Therefore, it is necessary to improve
the current ETS implementation. Otherwise, the access protection mechanism
cannot be used in a reasonable way.
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6.2 A possible Approach of a Secure EIB/KNX Ar-
chitecture (EIBsec)

As mentioned in this section, EIB/KNX is not suitable for providing a secure
environment. The supported access control mechanism does not fulfil the require-
ments of a security critical application. As shown in Table 5.2, EIB does not guar-
antee data confidentiality, integrity and freshness. The access control mechanism
provides only a very rudimentary form of protection. It is not suitable for most
applications. Therefore, a stronger authentication mechanism is often necessary.

6.2.1 Previous Work
To satisfy the needs mentioned above, different security mechanisms have to be
developed. At the TU München, a secure communication protocol called Secure
EIB (SEIB) was developed (for further details see [62]). This security extension
protects group communication against malicious attacks. It guarantees data con-
fidentiality, integrity and freshness as well as data authenticity. It is based on the
SNEP protocol which was explained in Section 4.2.2. SEIB uses AES to encrypt
the content of group messages and a CRC checksum which is 32 bit long. To pro-
tect group communication against replay attacks, a 128 bit counter is used. This
counter is long enough to guarantee that each counter value is unique during the
whole life cycle of the system (see [62]). The used encryption scheme is similar
to the one which is used in SNEP (see Figure 4.10). The encrypted counter is
XORed with the plaintext which should be securely transmitted over the network.
The advantage of this scheme is that the counter value is not transmitted over the
network. So, the counter value does not waste any octets of the application part of
the message (for further details see Section 4.2.2).

The frame format of a SEIB message is shown in Figure 6.4. As shown in
this figure, only the transport control field, the application control field and the
application data are encrypted. The rest of the message (including control field,
source and destination address, network control field and layer 2 checksum) is
transmitted in plaintext. The most important benefit of this approach is that en-
crypted SEIB messages can also be routed by devices which do not support the
SEIB protocol. As the header information which is necessary to route a packet
is available in plaintext, a line coupler that does not support SEIB is still able to
route SEIB messages.
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Figure 6.4: SEIB frame format

To use this secure group communication facility, each group needs a secret
master key. This master key is necessary to generate the encryption key and the
initial counter (for further details see Section 4.2.2). At installation time, this
master key must be distributed to all group members. This distribution must be
performed in a secure environment. Otherwise, an unauthorised user could obtain
the master key during transmission. In SEIB, a master key can only be uploaded
in physical mode. This means that the user must have a physical access to the
particular device. For example, to prove the physical access to a device, the user
must press the programming button of the device for several seconds. It is obvious
that an unauthorised physical access to the device must be prohibited. Otherwise,
an attacker could use this mechanism to upload a new master key.

As shown above, SEIB protects the process data communication against mali-
cious attacks. There are still a few problems which remain unsolved. First, SEIB
does not provide mechanisms to protect management communication. As men-
tioned above, the access control mechanism of EIB is not suitable to guarantee a
secure transmission of management messages. Therefore, it is essential to protect
management communication too.

Another drawback of SEIB is that the used key management is very rudimen-
tary. SEIB does not support mechanisms to revoke insecure keys. Additionally,
it is not possible to distribute a new key in an easy and secure manner. If the
group key becomes public, the administrator must generate and distribute a new
key manually. As mentioned above, the administrator must have physical access
to upload a new key (physical mode). If the group has a lot of members, the
distribution of a new key can be very time-consuming.

Another drawback is that the lifetime of the used keys is not limited. The
different master keys are distributed at installation time. As long as the adminis-
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trator does not distribute a new group key manually, a group key will remain valid.
There is no possibility to limit the lifetime of the keys.

Due to these mentioned problems, the rest of this chapter will explain another
possible solution called EIBsec. In addition to a secure process data communi-
cation, this solution protects management communication too. Additionally, it
provides a key management infrastructure that provides the opportunity to gener-
ate and distribute new group and session keys in a secure manner.

6.2.2 System overview
As mentioned above, neither the access control protection of EIB/KNX nor secu-
rity extensions like SEIB provide the required features to make EIB/KNX suitable
for the use in security critical environments. Therefore, another possible secure
architecture of EIB/KNX called EIBsec is explained in this chapter.

EIBsec should support the following mechanisms:
• data confidentiality, integrity and freshness
• authentication
• protection of management and process data communication
• key management
• basic intrusion detection
• basic update mechanism

To guarantee data confidentiality, integrity and freshness, EIBsec uses the encryp-
tion mechanism of SEIB. This encryption mechanism protects group communica-
tion against malicious attacks.

In contrast to SEIB, EIBsec protects management communication too. To
provide a secure management communication, the transmission data is encrypted
using session keys. During the session establishment, the secret key must be re-
trieved from a trusted third party (keyserver). It is important to note that the
session key is only valid during a single session. If the session is closed, the key
becomes invalid and so, it cannot be used anymore.

In addition to the encryption scheme mentioned above, EIBsec also provides
an authentication mechanism. This mechanism can be used to verify the identity
of both communication participants.

Another important feature of EIBsec is the integrated key management. The
key management facility is responsible for:

• key generation and distribution:
The used key management infrastructure must support mechanisms to gen-
erate and distribute the necessary keys in a secure manner. To achieve this,
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EIBsec provides services which can be used to manage session keys (for se-
cure management communication) as well as group keys (for secure process
data communication).

• key revocation:
If a secret key becomes insecure, it must be possible to revoke this key.
Therefore, EIBsec supports a mechanism which can be used to revoke group
keys7.

• key lifetime limitation:
Due to security reasons, the lifetime of a secret key should be limited.
Therefore, EIBsec provides a mechanism to limit the lifetime of group
keys8.

In addition to the security mechanisms mentioned above, EIBsec supports a
simple form of network-based intrusion detection as well as a basic update mech-
anism. These mechanisms can be used to observe the network traffic and to dis-
tribute software patches.

The most important component in EIBsec is called Advanced Coupler Unit
(ACU) which is similar to a standard EIB/KNX line or backbone coupler. Com-
pared to a standard coupler, an ACU performs additional tasks. An ACU consists
of the following four building blocks:

• Coupler Unit
• Keyserver Unit
• Update Unit
• Intrusion Detection Unit

The coupler unit implements the standard coupler functionality. Like a line or
backbone coupler, the coupler unit is responsible for routing the network traffic.

The keyserver unit implements the functionality of the necessary keyserver.
The keyserver is responsible for the distribution and generation of session and
group keys. It is also possible to revoke group keys and to limit their lifetime.
Additionally, the group membership can be maintained (for further details see
Section 6.2.4).

The update unit is responsible for distributing software updates. This feature
can be used to correct implementation flaws of the system software of field devices
(for further details see Section 6.2.6).

The intrusion detection unit performs the intrusion detection mentioned above.

7To revoke an insecure session key, the session is simply closed.
8Due to the fact that a session is only valid for finite time interval, the lifetime of a session key

is also limited.
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This unit is responsible for the detection of abnormal network traffic (for example
DoS attacks) which may indicate a security attack. If such an abnormal situation
has been observed, the intrusion detection unit informs other ACUs about this
detected behaviour (for further details see Section 6.2.5).

It is obvious that such an ACU must be protected carefully against malicious
attacks. To avoid a centralised approach, EIBsec uses a defence-in-depth solu-
tion. As mentioned in Section 5.3, the EIB/KNX network topology follows a
three-level tree structure (lines, main lines, backbone). Therefore, it is practical to
distribute the functionality mentioned above (keyserver, update server, intrusion
detection unit) across this tree structured network. Figure 6.5 illustrates this ap-
proach. Each network segment (lines, main line or backbone) has its own ACU.
In addition to the functionality of a normal line or backbone coupler, such an
ACU distributes secret keys and software patches to its corresponding network
segment. Additionally, it observes the traffic of the network segment to detect
possible abnormal behaviour.

Figure 6.5: Topology of EIBsec

Figure 6.5 shows the topology of EIBsec. The rest of this chapter gives a
detailed description of the different building blocks of EIBsec.
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6.2.3 Secure Management Communication
To configure and maintain a field device remotely, it is necessary to establish
a connection to the particular device. It is obvious that this unicast connection
must be protect against security attacks. Additionally, it is necessary to verify the
identity of both communication participants.

To satisfy the needs mentioned above, EIBsec uses an encryption mechanism
which is similar to the one that is used in SEIB. In contrast to SEIB, EIBsec uses
session keys to encrypt the messages. During session establishment, the necessary
session key is retrieved from the keyserver. It is important to note that this session
key is only valid during this single session. After the connection has been closed,
the session key becomes invalid. To be sure that the communication participants
are what they claim to be, the identities of both communication participants are
also verified during this initial session establishment.

The protocol used is similar to the Needham-Schroeder protocol which is used
in Kerberos. A detailed description of this protocol is given in [20]. Since the
Needham-Schroeder protocol is vulnerable to malicious reuse of old session keys,
a more secure variant is described in [20]. A variant of the latter is used in EIBsec.

Applying the protocol in [20] to EIB/KNX without further modification causes
unacceptable overhead (see Figure 6.6). Suppose that an entity A wants to set up a
connection to entity B. To initiate the session establishment, A sends an A Init
Connect Request message to B. B receives this request and sends back a
nonce9 N1 (using an A Init Connect Response message). This nonce is
used to avoid a malicious reuse of an old session key. To protect this nonce against
an unauthorised modification, B encrypts the response using its secret key (which
is shared between B and S).

After having received this encrypted nonce, A sends an A SessionKey
Request message to its keyserver S. Since S needs the encrypted nonce N1, the
session key request must contain this encrypted nonce. As A does not have the
secret key of B, A is not able to decrypt the nonce. Therefore, it must transmit
the encrypted A Init Connect Response message as a whole to S. It is
important to note that EIBsec uses AES-128 algorithm (for further details see
Section 6.2.8) to encrypt messages. As AES-128 has a fixed block size of 128
bits (16 octets), each data block must be 16 octets long. Therefore, the encrypted
nonce is also 16 octets long. Since the user data of the session key request is 22
octets long (16 octets encrypted nonce, 4 octets nonce of A and 2 octets address

9A nonce is 32 bits long. Therefore, 232 different values exist. For further details see Section
6.2.8.
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of B), A must send two messages to S.
After having received the message, the keyserver S generates a session key.

This generated key must be distributed to both communication participants. It
is important to note this session key is only sent to A. Instead of sending the
session key to B, the keyserver sends a so called ticket together with the session
key to the initiator A. This scheme guarantees that A does not send an encrypted
message to B as long as B has not received the session key. If the keyserver S
sends the session key to both participants, it is possible that A may want to set up
a connection to B before B receives the session key. With the ticket scheme, this
situation can be avoided.

This ticket looks as follows (N2 denotes the nonce with was generated by B):

T = E(KBS, A||KAB||N2))

Therefore, the response which the keyserver sends back to the initiator is (N1

denotes the nonce with was generated by A):

E(KAS, N1||B||KAB||T )

Such a ticket is 22 octets long (16 octets session key, 2 octets address of A and
4 octets nonce). As AES-128 uses a fixed block size of 128 bits, a ticket must
be extended to 32 octets. As shown above, the response of the keyserver must
contain the ticket and the session key. Since an EIB message can only contain
14 octets user data, this response must be split. To avoid replay attacks and to
identify the response, each message must contain the nonce of A and the address
of B. Therefore, there are only 8 octets left to transmit the session key and the
ticket (14 octets user data - 4 octets nonce - 2 octets address). This means that the
keyserver S must sent 6 messages to transmit the session key and the ticket to A.

After having received these messages, A can set up a secure connection to B.
To achieve this, A sends an A Auth Connect Request. This request contains
a nonce and the ticket which A has received from the keyserver. As the ticket is
32 octets long and the nonce is 4 octets long, A must sent 4 messages.

After having received these messages, the identity of both communication par-
ticipants must be proven. To achieve this, EIBsec uses the same mechanism and
therefore it will be explained later in this section.

Figure 6.6 illustrates this protocol.
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Figure 6.6: Protocol [20] in EIB

It is obvious that this scheme is too ineffective and therefore EIBsec uses an-
other solution. Figure 6.7 illustrates the protocol which is used in EIBsec. Sup-
pose, for example, an entity A wants to set up a secure connection to B. To achieve
this, A and B need a session key. Therefore, A sends an A SessionKey
Request (see Figure C.3) message to the corresponding ACU S. This message
contains the individual address of B and a nonce N1.

To avoid that a malicious user sends an old session key to B, a nonce is used.
Compared to the protocol in [20], the ACU itself sends the A Init Connect
Request (see Figure C.1) to B. After having received this request, B sends a
nonce N2 to the ACU. Since B transmits N2 directly to the ACU, A does not need
to send the encrypted nonce to ACU. Therefore, only one message is required
to send an A SessionKey Request primitive. After having received the A
Init Connect Response (see Figure C.2) message, the ACU generates a 128
bit session key KAB.

This session key must be distributed to both communication participants. In-
stead of using a ticking scheme like in [20], the session key is sent to both com-
munication participants. As the length of the user part of a standard EIB/KNX
message (short frame format) is limited to 14 bytes, the session key must be split.
Therefore, the lower bytes of KAB are transmitted using the A Key Response
Low service (see Figure C.5) whereas the higher bytes are sent using an A Key
Response High message (see Figure C.6). To avoid replay attacks, these mes-
sages contain the corresponding nonce which was previously sent to the ACU.
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Without such a nonce, an attacker could reuse an old session key.
Using this scheme, only 4 messages (2 for each participant) are required (see

Table 6.1). Therefore, this approach reduces the amount of necessary messages.
To avoid that A sends an A Auth Connect Request message before B has
received the session key, the ACU shall transmit the session key to B first. Ad-
ditionally, the transmission to A shall be delayed. It is important to note that this
delay can be set to a fixed value (in order of a few hundreds msec.). If A sends
an encrypted message to B before B has received the session key, A can simply
retransmit the message until the B has received the key.

After both entities have received the session key, A can establish a secure
connection to B. To verify the identity of B, A sends an A Auth Connect
Request message (see Figure C.7) to B. This message contains a nonce N3

and is encrypted using the session key KAB. B receives this nonce and gener-
ates another nonce N4. Afterwards, B performs a conversion of N3 (for example,
N ′

3 = N3 − 1) and transmits the converted nonce N ′
3 together with the generated

one N4 back to A (using A Auth Connect Reply; see Figure C.8). This con-
version proves that B is capable to decrypt the message. After having received
this encrypted message, A verifies if the converted nonce N ′

3 is correct. If N ′
3 is

valid, the identity of B has been verified. To prove the identity of A, A converts
the received nonce N4 and transmits it back to B using a A Auth Connect
Response message (see Figure C.9). Again, A encrypts this message using the
session key KAB.

After both communication participants have proven their identity, A and B are
able to communicate through a secure channel. To achieve this, all further mes-
sages are encrypted in counter mode. This counter mode is a special encryption
mechanism which can be used after a session has been established. A detailed
description is given in Section 6.2.8.
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Figure 6.7: Authentication in EIBsec

Compared to the protocol in [20], the EIBsec authentication protocol is more
suitable for the use in EIB/KNX. As shown in Table 6.1, the amount of necessary
messages are reduced.

Message Protocol [20] EIBsec
A Init Connect Request 1 1
A Init Connect Response 1 1
A SessionKey Request 2 1
A SessionKey Response
(to Initiator)

6 2

A SessionKey Response
(to second P.)

0 2

A Auth Connect Request 4 1
A Auth Connect Reply 1 1
A Auth Connect Rsponse 1 1
Summary 16 10

Table 6.1: [20] Protocol in EIB vs. EIBsec

It is important to note that this session key is only valid until the connection
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is closed. A connection can be closed by sending an A Disconnect message10.
Additionally, a connection timeout (in order of a few seconds) should guarantee
that the connection closes automatically.

As mentioned in Section 6.2.2, each network segment has its own keyserver.
Therefore, each keyserver stores only the secret keys of the devices that are located
in its segment. So, if the two communication participants which want to retrieve
a session key are located in different segments, the ACU that handles the request
does not have the private key of the second participant. To process the request, the
ACU must get the key from another ACU. Therefore, each ACU must have the
private key of its parent ACU and its child ACUs.

Figure 6.8 illustrates a possible solution how such a request can be forwarded.
Suppose that entity A (with the individual address 1.1.1) wants to establish a ses-
sion to entity B (with the individual address 1.2.2). To obtain a session key, A
sends an A SessionKey Request to the corresponding ACU S1.1.0 which has
the individual address 1.1.0 (message 1). S1.1.0 receives this request and sends
an A Init Connect Request to B (not included in Figure 6.8). B receives
this request and generates a nonce. This nonce is encrypted using the secret key
KBS1.2.0 (S1.2.0 denotes the ACU which has the address 1.2.0). As B and S1.1.0 are
not located in the same line, S1.1.0 does not have the secret KBS1.2.0 . Therefore,
S1.1.0 is not able to decrypt the received A Init Connect Response (not in-
cluded in Figure 6.8).

To retrieve the secret key KBS1.2.0 , S1.1.0 sends an A PrivateKey Request
(see Figure C.4) message to its parent ACU S1.0.0 (message 2). This request con-
tains a nonce and the address of the request secret key. To avoid an unauthorised
modification, the request is encrypted using the secret key KS1.1.0S1.0.0 which is
shared by S1.1.0 and S1.0.0. S1.0.0 receives the request and verifies whether it has
the requested key. As B is not located in the main line 1, S1.0.0 sends another A
PrivateKey Request message to the child ACU S1.2.0 (message 3). Since
S1.2.0 has stored the requested private key, it sends this private key back to S1.0.0

using an A Key Response Low (see Figure C.5) and an A Key Response
High (see Figure C.6) message (message 4). S1.0.0 receives the secret key of B
and transmits the key to S1.1.0 (again using A Key Response Low and A Key
Response High; message 5). After having received the secret key, S1.1.0 is able
to decrypt the A Init Connect Response message (not included in Figure
6.8). Now, S1.1.0 can generate a session key KAB and transmit this key to both

10To avoid a malicious use of this A Disconnect service, the message must also be encrypted
(in counter mode).
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communication participants (message 6 and 7). After A and B have received the
session key, A can set up a secure channel to B (message 8). Figure 6.8 illustrates
this example.

Figure 6.8: Forward Session Key Request

6.2.4 Secure Process Data Communication
To guarantee data confidentiality, integrity and freshness as well as data authen-
tication of group messages, the group communication services must also be pro-
tected against malicious attacks. As mentioned at beginning of this section, SEIB
provides such a protection. To ensure a secure transmission of group messages,
the corresponding messages (A GroupValue Read, A GroupValue Write
and A GroupValue Response) are encrypted in counter mode. To use this
counter mode, a secret group key is needed. This group key is shared between the
different group members. A detailed description of this counter mode is given in
Section 6.2.8.

As explained at beginning of this section, the key management of SEIB is very
rudimentary. Therefore, EIBsec provides additional services that help to manage
the group membership.

Using EIBsec, it is not necessary to distribute the necessary group keys at
installation time. Each field device can obtain the required group key from its
corresponding ACU. Again, the different ACUs are responsible for managing the
group key distribution.

To obtain a group key the following steps are necessary. Consider, for ex-
ample, an entity A wants to send and receive group messages of a group G.
To achieve this, A must retrieve the corresponding group key KG. Therefore,
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A sends an A Join Group Request message (see Figure C.10) to its corre-
sponding ACU. This message contains the group address and a nonce. The ACU
receives this request and verifies whether the entity has the necessary access rights
to join the group. With this optional mechanism, the ACU is able to manage the
group membership. This means that it is possible to specify which entities are
allowed to receive and transmit group messages. After the access rights have
been verified, the ACU sends the group key together with the received nonce and
the group address to A. Due to the fact that the group key is 128 bits long, two
response messages (A Join Group Response Low see Figure C.11 and A
Join Group Response High see Figure C.12) must be transmitted. Since A
does not know the exact counter value necessary to encrypt a message in counter
mode, the ACU also sends the current counter value to A. This is done by send-
ing an A Group Resync Response Low (see Figure C.14) and an A Group
Resync Response High (see Figure C.15) message. After having received
the group key and the current counter value, A is able to receive and transmit
group messages. It is important to note that the encryption and decryption of
group messages is performed in counter mode (for further details see Section
6.2.8). Therefore, each member of a group must increment the counter after a
message has been received or transmitted. Figure 6.9 illustrates this mechanism.

Figure 6.9: Group key retrieval in EIBsec

As mentioned above, encryption and decryption of group messages are per-
formed in counter mode. It is essential that the group counters of all group mem-
bers are synchronous11. If an entity loses a group message, the counter of the

11To achieve this, each group members must process all group messages of the corresponding
group. This means that a write-only device (for example a light switch) must also receive group
messages. If another group member transmits a group message, the write-only device must also
increment its group counter.
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entity will get loss of synchronisation. One possible solution is described in Sec-
tion 6.2.8. If an entity recognises that its counter is not synchronous anymore (for
example if the CRC signature is invalid), it can try a small number of counter in-
crements. If this fails, it is possible to send an A Group Resync Request (see
Figure C.13) to its ACU. The ACU receives this request and sends back the cur-
rent counter value using A Group Resync Response Low (see Figure C.14)
and A Group Resync Response High (see Figure C.15). Again, a nonce is
used to avoid replay attacks. To provide such a synchronisation mechanism, the
ACU must keep track of the sent group messages. This means that the ACU must
also count the received group messages.

EIBsec also provides the opportunity to revoke a group key. To achieve this,
the ACU has to send a special group message. This A Group Invalidate
(see Figure C.16) message informs all group members about the revocation of the
group key12. After the ACU has sent such an A Group Invalidate message,
the corresponding group key is not valid anymore. Therefore, each group member
must request a new one. This is done by using the A Join Group Request
service mentioned above. It is important to note that it is the responsibility of
each group member to get the new group key.

This mechanism can also be used to limit the lifetime of group keys. The
ACU can periodically invalidate group keys using the A Group Invalidate
service. Thus, it is possible to limit the lifetime of group keys and to force the
generation of new ones.

6.2.5 Intrusion Detection Management
As mentioned at the beginning of this section, EIBsec also provides a basic in-
trusion detection service. To achieve this, each ACU has an integrated intrusion
detection unit. This unit observes the network traffic and tries to discover abnor-
mal behaviour13.

Figure 6.10 illustrates how an ACU can inform its parent ACU about a de-
tected intrusion. Consider, for example, ACU A has detected an abnormal be-
haviour. To inform its parent ACU B, A must establish a session with B. This
is done by using the challenge-response mechanism of the authentication proto-

12To avoid the use asynchronous group counters and obsolete group keys, the ACU should also
send an A Group Invalidate message to all group after a power off.

13The exact implementation of the detection mechanism is not specified in this version of EIB-
sec. This section shall only explain how an ACU can inform other ACUs about the detected
intrusion.
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col of EIBsec (for further details see Section 6.2.3 and Figure 6.7). Due to the
fact that each ACU shares a secret key with its parent ACU, it is not necessary to
exchange a session key. Therefore, all further messages are encrypted in counter
mode using the shared secret key KAB.

After the session has been established, A sends an A IDS Alert (see Figure
C.20) message to B. In order to inform B about the detected intrusion. To achieve
this, it contains an IDS code (2 octets long) as well as 8 octets additional infor-
mation about the detected intrusion. After having received the A IDS Alert
message, B could perform further countermeasures. For example, B could de-
couple the affected line until the threat has been eliminated by A.

To inform B that the problem has been solved, A can send an A IDS Clear
(see Figure C.21) message to B. This message contains the IDS code which
indicates eliminated intrusion. Figure 6.10 shows this concept.

Figure 6.10: Intrusion Detection in EIBsec

6.2.6 Update Mechanism
If implementation flaws in the system software of a device have been found, it
must be possible to correct these problems. As a building automation system can
consist of hundreds or even thousands of devices, a manual software update is
not easy to achieve. Therefore, a mechanism must be supported which provides
the opportunity to distribute software patches in an easy and secure manner. EIB-
sec supports such an update mechanism. Using this mechanism, it is possible to
distribute software patches automatically.
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As mentioned at the beginning of this section, each ACU has an integrated
update unit. This update unit receives software updates and distributes them to
the corresponding devices. To initiate an update, the administrator must upload
the software patches to the root ACU (see Figure 6.5). The root ACU can be the
backbone coupler or an IP gateway. This root ACU distributes the software patch
to its child ACUs. If a child ACU receives such a forwarded software update, it
distributes the patches to the corresponding devices. Additionally, it forwards the
update to its child ACUs.

Figure 6.11 illustrates how a software update can be transmitted to another de-
vice. It is important to note that the used mechanism to forward a software update
to a child ACU and the mechanism to distribute an update to a field device are
identical. To transmit a software update to another device B, the initiator A must
establish a session to B. This is done by using the challenge-response mechanism
of the authentication protocol of EIBsec (for further details see Section 6.2.3 and
Figure 6.7). Due to the fact that each ACU shares a separate secret key with all
child ACUs and devices of its network segment, the generation of a session key is
not necessary. Again, all further messages are encrypted in counter mode.

After the session has been established, A sends an A Software Update
Init (see Figure C.22) message. This message contains the version number14

of the system software which should be updated. The version number is used
to identify the version of the system software. It avoids that a patch is applied
to a wrong device. It is important to note that this version number and the mask
version do not have to be identical. Additionally, the message contains the amount
of software patches which will be sent in this session.

After this initialisation, the individual patches are transmitted to B. A software
patch is sent using an A Software Update Patch (see Figure C.23) message.
This message contains the address and the length of the memory block as well as
the new content of the memory which should replace the old one. As the length
of an EIB/KNX message is limited, one single patch can only contain seven bytes
data. If the receiver of the software update is an ACU, it distributes the patches
to the devices. To verify whether the software version of a device is correct,
the current valid software version of the target device (which is stored together
with the secret key of the device) is compared with the version number of the
A Software Update Init message. If the version numbers are identically,

14This version number must uniquely identify the system software. To achieve this, several
identification IDs are necessary. For example, this version number could consist of a manufacturer
ID, a device ID and a software ID.

147



the ACU sends the software patch to the corresponding device using the same
mechanism. Additionally, it forwards the update to its child ACUs.

If the receiver of the patches is a device which has the correct software version,
the device replaces the specified memory content. After the software update has
been finished, the device should be reset. This can be done by the device itself (for
example by jumping to the reset routine) or by sending an A Restart message.
Figure 6.11 summarises such a software update.

Figure 6.11: Software Update in EIBsec

It is obvious that a software update can only be performed if the system soft-
ware is located in a programmable memory area. If the software software is stored
in a one time programable ROM area, such an update is not possible. For example,
the system software of the BCU 1 and 2 is located in such a ROM.

6.2.7 Initial Key Distribution
To retrieve a session key or a group key, it is necessary to communicate with the
ACU in a secure manner. Therefore, the ACU encrypts the requested key using
a symmetric algorithm. For example, the contents of A Key Response Low
and A Join Group Response Low are encrypted to avoid an unauthorised
modification of the transmitted key. To perform such an encryption, each field
node must share a secret key with the ACU.

At installation time, these shared secret keys must be distributed. This means
that each node must obtain such a secret key. Otherwise, it is not possible to set
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up a secure channel to the ACU. It is obvious that this initial key distribution must
be performed in a secure environment. It must be avoided that an unauthorised
user intercepts or modifies such a key during the initial key distribution.

It is also important to note that an attacker must not read out or change this
secret key. This means that it must be avoided that an attacker uses the ”key
upload” mechanism to set a new secret key. Additionally, the read access to the
memory where the key is stored must also be protected. For example, it must be
guaranteed that an attacker is not able to use the A Memory Read service to read
out the secret key.

As a secret key is 128 bits long and a standard EIB/KNX message can only
contain 14 bytes of user data, the secret key must be split. To upload the secret
key, EIBsec provides two services. A Set SecretKey Low (see Figure C.17)
can be used to upload the lower 8 bytes of the key whereas A Set SecretKey
High (see Figure C.18) is used to send the higher 8 bytes. In addition to the se-
cret key, the remote user must send a password. This 6 byte password15 is used
to verify if the remote user is allowed to change the secret key. After having re-
ceived an A Set SecretKey Low or an A Set SecretKey High message,
the entity verifies whether the password is valid or not. If the password is cor-
rect, the new secret key is set. To change this password, the user must send an A
Set Password (see Figure C.19) message. This message contains the old and
the new password. If the old password is correct, the receiver of this request will
change the password to the new value. To be able to change the password for
the first time, the default password of a new BCU should be a standard value (for
example 0xffffffffffff). It is essential that this default password is changed as soon
as possible. Otherwise, an attacker could use this default password to change the
secret key.

This explained mechanism has one drawback. The messages mentioned above
are transmitted in plaintext. Thus, a malicious user could simply intercept the
secret key or the password. Therefore, an additional protection mechanism is
necessary. To upload a secret key in EIBsec, three different modes are available.
Depending on the required security level, it is possible to choose separately one
of these modes for each BCU. These three modes are:

• bus mode
• local mode
• direct mode

15As shown in Section 6.1.1, even 4 bytes are long enough to make a brute force attack infeasi-
ble.
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If the bus mode is chosen, the EIB bus medium can be used to upload the secret
key. Due to security reasons, the key distribution process must be performed in
a secure environment. Otherwise, an attacker is able to intercept the key or the
password during transmission. Therefore, this mode should only be chosen if it
can be guaranteed that unauthorised users are not able to access the bus medium
during key distribution. One possible solution is to connect the device directly to
the management tool. In addition to the password protection mentioned above, the
user must also have physical access to the particular device. One possible solution
is to demand that the programming button of the BCU must be pressed for a few
seconds. As mentioned at the beginning of this section, SEIB uses this scheme.
In SEIB, a new secret key can only be uploaded, if the device is in physical mode.

If the local mode is chosen, the EIB bus medium cannot be used to upload a
secret key. A device in local mode only accepts key upload requests via the local
interface (for example via the PEI). It is obvious that this mode can only be chosen
if the device has an accessible local interface. The upload process is identical to
the one described above. Compared to the bus mode mentioned above, the secret
key is never transmitted over the EIB bus and so, a user who has access to the
network medium is not able to intercept the key during transmission. Therefore, if
the bus medium cannot be protected against unauthorised users, this mode should
be used instead of the bus mode.

The direct mode provides the strongest form of security. If a device is in direct
mode, neither the EIB bus nor the local interface can be used to upload a secret
key. This means that the manufacturer of the device must provide a opportunity to
upload a new secret key. One possibility is to upload the secret key directly into
the EEPROM of the microcontroller. However, it is obvious that this mode is very
inflexible and hard to achieve.

6.2.8 Implementation
To protect transmission data against malicious attacks, the messages must be en-
crypted. Like SEIB, EIBsec only encrypts the transport control field, the applica-
tion control field and the application data (see Figure 6.4). As mentioned above,
this approach has the main advantage that couplers that do not support EIBsec are
able to route such encrypted messages.

To encrypt the transmitted data, EIBsec provides two different modes. The
first mode called normal mode performs only an encryption of the message. If
this mode is used, the user itself is responsible for protecting the message against
replay attacks (for example by adding a nonce). In normal mode, no counter
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is included in the message. Additionally, the layer 7 CRC signature is also not
added to the message. Therefore, all 14 octets user data can be used. Figure 6.12
illustrates this mode.

Figure 6.12: Normal encryption mode in EIBsec

The second encryption mode is called counter mode. This mode is similar
to the counter mode which is used in SNEP and SEIB (see Figure 4.10). If this
mode is used, a counter is automatically added. This counter protects the message
against replay attacks. It is important to note that the counter must be long enough
to guarantee that each message is unique during the whole life cycle of the system.
Like in SEIB, the used counter is 128 bits long which is long enough to satisfy
this need. To avoid the transmission of the counter value, the encryption scheme
of SNEP is used. This means that the encrypted counter value is XORed with the
message. Figure 6.13 illustrates this concept. Like in SEIB, a CRC 32 signature is
also added to the user part of the message. Therefore, only 10 octets of user data
can be used.

Figure 6.13: Counter encryption mode in EIBsec
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To perform an encryption in the counter mode mentioned above, a secret key
K and a initial counter N value are necessary. These are derived from a master
key which is shared between the communication participants. Depending on the
communication service, the session key or the group key is used as master key.
The secret key and the initial counter value is calculated as follows (E denotes the
encryption function of AES):

K = E(KM , 1)

N = E(KM , 2)

As mentioned in Section 4.2.2, both communication participants increment the
counter after a message was encrypted or decrypted. It is important to note that
the counter values of both participants must be synchronised. Otherwise, it is not
possible to decrypt the received message correctly. However, sometimes messages
may get lost and therefore the counter values will get asynchronous. To solve this
problem, it must be possible to synchronous the counter. One possible solution is
to try a small number of counter increments. For example, if an entity recognises
that the current counter value N is not valid, it can try to decrypt the message
using value N + 1 and N + 2. If this fails, another solution has to be found (for
example, using the A Group Resync Request as shown in Section 6.2.4).

In contrast to this 128 bit counter, a nonce is only 4 octets long. Such a nonce
is used to avoid replay attacks if a message is encrypted in normal mode. For
example, during session establishment several nonces are used to avoid replay
attacks. In EIBsec, such a nonce is 4 octets long. This is long enough to guarantee
that each nonce is unique during the whole lifetime of the system. Consider, for
example, a device needs every second a new nonce. This means that the device
requests a new session key every two seconds or a new group key every second.
Since a nonce is 32 bits long, there are 232 different values. This means that each
device can run 136years without using a nonce twice. Since a normal device
will not request session and group keys in such an interval, a 32 bit nonce is long
enough to guarantee that the nonce is unique during the whole lifetime of the
system.

Regarding performance and memory requirements, field class devices have
limited memory and limited computing power. Thus, asymmetric algorithms are
too slow to run on such embedded devices. Therefore, it is essential to use a
symmetric algorithm. As shown in appendix A, symmetric algorithms like triple-
DES and AES are fast enough for even 8 bit microcontrollers. As mentioned in
Section 3.2.1, DES is not secure anymore and therefore triple-DES or AES should

152



be used instead. Due to the fact that AES is faster and more secure, EIBsec uses
AES. It is important to note that AES uses a fixed block size of 128 bits. Therefore,
the length of the encrypted data should be a multiple of 128 (otherwise it must be
extended).

A BCU 2 uses a Motorola MC68HC705BE12 MCU as microcontroller. As
mentioned in [62], this MCU does not fulfil the performance and memory re-
quirements. Therefore, another microcontroller has to be chosen. For example, in
[62], a MSP430 is used instead.

6.2.9 Performance Considerations
Compared to normal group communication, the secure variant of EIBsec produces
some overhead. This overhead has the following reasons:

• Each device must retrieve the necessary group key.
• To limit the lifetime of group keys, the ACU must invalidate the group key

periodically.
• If the counter of a device gets asynchronous, the device must retrieve the

current counter value.
• Every encrypted message must be 23 octets long.
If a device wants to receive and transmit encrypted group messages, the device

must request the corresponding group key. To get such a group key, a communi-
cation with the ACU is necessary. As mentioned in Section 6.2.4, the device
must send an A Join Group Request message (15 octets long). After having
received the request, the ACU sends back the desired group key using A Join
Group Response Low (23 octets long) and A Join Group Response High
(23 octets long). To be able to decrypt group messages in counter mode, the
ACU must also send the current counter value to the device (A Group Resync
Response Low (23 octets long) and A Group Resync Response High (23
octets long)). This means that a group key request causes 112 octets of network
traffic (including 1 octet for each layer 2 acknowledge).

To determine the bus allocation time, the transmission time of these five men-
tioned messages must be calculated. These transmission times are calculated
as follows (for further details about the timing of a standard message cycle in
EIB/KNX see Section 6.1.1):

• A Join Group Request:
As mentioned above, an A Join Group Request is 15 octets long. To-
gether with the acknowledge frame (1 octet) and the idle times 1 (1560µsec)
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and 2 (5200µsec), the transmission of this message takes 28392µsec '
28ms (high priority).

• A Join Group Response Low, A Join Group Response High, A
Group Resync Response Low and A Group Resync Response High:
These messages are 23 octets long. Together with the acknowledge frame
(1 octet) and the idle times 1 (1560µsec) and 2 (5200µsec), the transmission
of such a message takes 39208µsec ' 39ms (high priority).

Due to the transmission times calculated above, the bus allocation time is 185ms.
It is important to note that the calculated time only includes the time it takes to
transmit the necessary messages over the network. Other considerations like the
execution time of the AES algorithm are not included in this calculation.

It is obvious that this key retrieval is only necessary, if the group communica-
tion is protected using EIBsec. If the unprotected group communication service
of EIB/KNX is used, these messages are not necessary.

Due to security reasons, the lifetime of secret keys should be limited. There-
fore, the ACU must invalidate the group key periodically. To achieve this, the
ACU sends an A Group Invalidate message (23 octets). This message in-
forms all group members about the invalidity of the current group key. After the
ACU has invalidated the group key, it generates a new one. It is important to
note that each group member is responsible for getting a new group key. This
means that after a group key has been invalidated, each group member must re-
quest a new one. This is done by using the A Join Group Request service
mentioned above.

It is obvious that the network traffic which is caused by such a group key
revocation depends on the amount of group members and the specified lifetime
of the key. This means that each group key revocation causes 24 + 112N (N
denotes the amount of group members) octets of network traffic (23 octets for A
Group Invalidate, 1 octet layer 2 acknowledge and 112 octets for each key
retrieval). Thus, if TG denotes the lifetime of group key G in hours, a limitation
of the lifetime of group key G causes 23+112N

TG
octets/h network traffic.

To calculate the bus allocation time, the transmission time of the required
network messages must be calculated. As shown above, a message that is 23
octets long takes 39ms. Since a single key request takes 185ms, a group key
revocation takes 39+185Nms (N denotes the amount of group members). Again,
other considerations like execution time of algorithms are not included in this
calculation.

In EIBsec, the group messages are encrypted in counter mode. To be able to
decrypt a message which is encrypted in counter mode, the corresponding counter
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must be synchronous. However, it is possible that the counter gets asynchronous
(for example if a message gets lost). A possible solution is explained in Section
6.2.8. To compensate lost messages, the device tries a small number of counter
increments. If this fails, the device can retrieve the current counter value by send-
ing an A Group Resync Request message to the ACU (15 octets). The ACU
receives this request and sends back the current counter value of the requested
group by using an A Group Resync Response Low (23 octets long) and an
A Group Resync Response High (23 octets long) message. Thus, a counter
resynchronisation request causes 64 octets network traffic (including one octet
layer 2 acknowledge for each message).

The calculation of the bus allocation time is similar to the one described above.
Since an A Group Resync Request message is 15 octets long, it takes 28ms
to transmit this message. To transmit the counter value, the ACU sends an A
Group Resync Response Low and an A Group Resync Response High
message. Each message is 23 octets long and therefore it takes 78ms to transmit
the counter value (39ms for each message). So, the transmission time of a counter
resynchronisation request is 106ms. Again, considerations like execution time of
algorithms are not included.

Table 6.2 gives an overview about the results of the calculations mentioned
above (N denotes the amount of group members).

Service Octets Bus Allocation Time
Key Request 112 (per node and

group)
180 ms (per node and
group)

Key Revocation 24+112N (per group) 39+180N ms (per
group)

Counter Resynchroni-
sation

64 (per node) 106 ms (per node)

Table 6.2: Network Traffic and Bus Allocation Time of EIBsec Services

As mentioned above, EIBsec uses AES-128. AES-128 has a fixed block size
of 128 bits and therefore the content which should be encrypted must be at least
128 bits long. In EIBsec, only the transport field (octet 6), the application control
field (octet 7) and application data are encrypted (see Figure 6.4). Since at least
16 octets are needed by AES-128 (due to the fixed block size), each message must
contain 14 octets of user data. Even, if a group value of 1 bit is transmitted (for
example, the state of a light switch), the group message must be 23 octets long
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(instead of 8 octets).
Table 6.3 compares the network traffic and the bus allocation time of standard

EIB/KNX group messages and EIBsec group messages (l denotes the message
length in octets and tbus denotes the bus allocation time of one message). In this
table, the amounts of group messages which can be transmitted in one minute
are also shown ( n

min
). Additionally, differences (column differences) between the

possible standard EIB/KNX group messages per minute and the possible EIBsec
messages per minute are also calculated.

Due to the fact that AES-128 has a fixed block size of 128 bits, an EIBsec
group message is always 23 octets long. The length of a standard EIB/KNX mes-
sage depends on the used data type. For example, if the data type 4-Octet
Float Value is used, a corresponding group message is 12 octets long.

Data Type standard EIB/KNX EIBsec Difference
l tbus

n
min

l tbus
n

min

1 bit 8 19 3158 23 39 1538 -51%
8 bit 9 20 3000 23 39 1538 -49%
2 octets 10 22 2727 23 39 1538 -44%
4 octets 12 24 2500 23 39 1538 -38%

Table 6.3: Standard EIB/KNX group messages vs. EIBsec group messages

It is important to note that an EIBsec group message can only contain up to
10 octets. Due to the fact that group messages are encrypted in counter mode, a
32 bit CRC signature is included in each message (see Figure 6.13). Instead of
14 octets of user data, only 10 octets are available. This means that the data type
String which needs 14 octets cannot be used in EIBsec. However, if the data
type String is needed, the length must be restricted to 10 octets.

As shown in this chapter, EIBsec causes some additionally network traffic.
The most critical service is the key revocation. The bus allocation time of the key
revocation service is 38 + 185Nms per group. This means that if the building
automation system has a lot of groups and the amount of group members is very
high, this key revocation can produce a lot of network traffic. For example, a key
revocation of a group with 5 group members needs about 1 second. To minimise
an interference with the normal network traffic, the key revocation should be per-
formed for each group separately. Additionally, the key revocation should be done
when the system is not under heavy load (for example, late at night).
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As shown in Table 6.3, each EIBsec group message is 23 octets long. There-
fore, the amount of messages which can be transmitted in one minute is smaller.
Anyhow, using EIBsec about 1500 group messages can be transmitted in one
minute. This should be enough for most applications.
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Chapter 7

Conclusion

At the beginning of this thesis, basic terms and definitions were explained. In
Chapter 2, an overview about building automation systems was given. In the fol-
lowing Chapter 3, security concepts and the importance for building automation
systems were explained.

After this brief introduction, different types of attacks were discussed. As
mentioned in Chapter 4, a malicious user is able to attack the system from the
outside or from the inside. Attacks from the outside (for example attacking an IP
gateway) are well-known and several solutions exist. It is important to note that
attacks from the inside are at least as dangerous as threats from foreign networks.
Many systems rely on the assumption that isolation makes a system more secure.
Therefore, today’s building automation systems only provide rudimentary security
mechanisms. But if an intruder has gained physical access to the control network,
the intruder has full access to the system.

In Chapter 5, different building automation solutions were analysed. As men-
tioned in this chapter, LonWorks and EIB/KNX only provide rudimentary secu-
rity features. The security architecture of LonWorks supports only a basic form of
authentication. As shown in Section 5.1, this authentication mechanism is vulner-
able to several security attacks. EIB/KNX uses an access control mechanism to
protect devices against unauthorised access. The big problem of this mechanism
is that the password is transmitted in plaintext. It is also important to note that nei-
ther LonWorks nor EIB/KNX can guarantee data confidentiality. Therefore, the
security architecture of LonWorks and EIB/KNX is not suitable for most secu-
rity critical application. In contrast to LonWorks and EIB/KNX, BACnet uses an
encryption mechanism that guarantees data confidentiality. Additionally, BACnet
supports an authentication mechanism which uses a central keyserver. Due to the
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fact that the used algorithm (DES) is obsolete and that several security flaws were
found in the authentication protocol, the scope of BACnet is also limited.

The last part of this thesis (Chapter 6) took a closer look at EIB/KNX. Af-
ter a detailed analysis of the access control mechanism of EIB/KNX, a secure
EIB/KNX architecture called EIBsec was described. This architecture provides
the following features:

• secure management communication
• secure process data communication
• key management using distributed keyservers
• topology uses defence-in-depth approach
• optional intrusion detection and update mechanism

It is important to note that this solution has not been implemented yet. To evaluate
the usability of this architecture, a detailed performance analysis should also be
performed. Therefore, further development has to be done.

As mentioned in Section 6.2.5, the exact implementation of the intrusion de-
tection mechanism is not defined in this version of EIBsec. In the current version,
it is only specified how a device can inform other devices about a detected intru-
sion. Since many different intrusion detection mechanisms exist, the usability of
these available solutions must be analysed. Therefore, further development has to
be done in this field.

Since wireless technologies are getting more and more important, the security
issues of these technologies must also be analysed. In EIB/KNX, a wireless so-
lution called KNX Radio Frequency (RF) is available. It is important to note that
such a wireless solution provides new opportunities for attackers. Therefore, it
should be verified whether EIBsec provides the necessary security mechanisms to
protect wireless communication against malicious attacks.

As mentioned in this thesis, security is getting more and more important in the
building automation domain. Since most available solutions do not support the
necessary mechanisms to satisfy today’s security requirements, further develop-
ment in this respect is necessary.
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Appendix A

Performance of Cryptographic
Algorithms

A.1 RSA

Data size: 200 Bits
Program: Part of GnuPG 1.0.7
CPU: H8/3048 19 Mhz 16-Bit
All values are taken from [46].

Key Length Encryption Decryption
1024 ∼ 0.65 sec. ∼ 90 sec
2048 ∼ 1.5 sec. ∼ 590 sec.

Table A.1: Performance of RSA - 16 Bit CPU

Data size: 200 Bits
CPU: ATmega128 8 Mhz 8-Bit
All values are taken from [47].

Key Length Encryption Decryption
1024 0.43 sec. 10.99 sec
2048 1.94 sec. 83.26 sec.

Table A.2: Performance of RSA - 8 Bit CPU
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A.2 Diffie-Hellmann Key Exchange

Program: Part of GnuPG 1.0.7
All values are taken from [46].

Prime size public value shared value total
1024 ∼ 190 sec. ∼ 280 sec ∼ 470 sec

Table A.3: Performance of Diffie-Hellmann Key Exchange

A.3 Symmetric Algorithms

Data size: 200 Bytes
CPU: DS80C390 36 Mhz 8-Bit
All values are taken from [46].

Algorithm Processing Time
3DES ∼ 500 msec.
AES < 100 msec.

Table A.4: Performance of 3DES and AES

A.4 Hash Functions

Data size: 200 Bytes
CPU: DS80C390 36 Mhz 8-Bit
All values are taken from [46].

Algorithm Processing Time
MD5 ∼ 100 sec.
SHA1 ∼ 190sec.

Table A.5: Performance of MD5 and SHA1
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Appendix B

Source Code of Algorithms

B.1 EIB Key Sniffer: sniff.c

# i n c l u d e <stdlib.h>
# i n c l u d e <stdio.h>
# i n c l u d e <limits.h>

# i n c l u d e <errno.h>
# i n c l u d e <fcntl.h>
# i n c l u d e <signal.h>

# i n c l u d e <unistd.h>

# d e f i n e STANDARDDEVICE "/dev/mkoegler/eib0"

// file descriptor
i n t eib_fd=-1;

/*
* Usage message

*/
void usage() {
fprintf(stdout,"Usage: sniffkey [-d device]\n");
exit(3);

}

/*
* Closes the eib file descriptor

*/
void freeRessources() {

i f (eib_fd!=-1)
{
close(eib_fd);
eib_fd=-1;

}
}
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/*
* print error message

*/
void bailOut(char* message) {
fprintf(stdout,"Error: %s \n",message);
freeRessources();
exit(5);

}

/*
*captures SIGALRM & SIGINT

*/
void signalHandler( i n t sig) {

sw i t ch (sig) {
case SIGALRM:

fprintf(stdout,"Error: no bcu found \n");
freeRessources();
exit(4);
break;

case SIGINT:
freeRessources();
exit(2);
break;

d e f a u l t:
break;

}
}

/*
* main

*/
i n t main( i n t argc ,char **argv) {

i n t c;
unsigned char *buffer=malloc(32);
i n t size;
char *device;

// get command parameters
i f (argc>3)
{

usage();
}
i f (argc==1)
{

device=STANDARDDEVICE;
}
e l s e
{

i f ((c=getopt(argc, argv, "d:"))!=EOF)
{

sw i t ch (c) {
case ’d’:

device=optarg;
break;

d e f a u l t:
usage();
break;
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}
}
e l s e
{

usage();
}

}

// open EIB device
i f ((eib_fd=open(device,O_RDWR))==-1)
{

bailOut("Can’t open device");
}

// switch to busmonitor mode
// To achieve this, use PC_SETVALUE (0x46) to write 0x90 to $60
i f (write(eib_fd,"\x46\x01\x0\x60\x90",5)!=5)
{

bailOut("Cant write to BCU\n");
}

whi le (1) {
// read message
i f ((size=read(eib_fd,buffer,32))==-1)
{

bailOut("Cant receive packet from eib");
}

i f ((size==18)&&((buffer[10]&3)==3)&&(buffer[11]==0xD1))
{

// A_Authorize_Request found
printf("Found Request to Destination %d.%d.%d with key 0x%x%x%x%x\n",

buffer[7]>>4,buffer[7]&0xF,buffer[8],buffer[13],
buffer[14],buffer[15],buffer[16]);

}
}

re turn 0;
}

B.2 BCU 2 application: Memread
Memread.config

Device {
PEIType 0;
BCU bcu20; // use bcu20 for a BCU 2.0
Title "Memread";
on_init init;

FunctionalBlock {
Title "Memread";
ProfileID 10000;
Interface {
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Reference { send };
Abbreviation send;
DPType DPT_String_8859_1;

};

};

GroupObject {
Name send;
Type MAXDATA;
Sending true;
Title "Output";
StateBased true;

};

Timer {
Name timeout;
Type UserTimer;
Resolution RES_133ms;
on_expire timer_interrupt;

};

include { "memread.c" };
};

Memread.c

i n t i;
s t a t i c unsigned char *ptr;

void init() {
ptr=0x5000;
timeout_set(5);

}

void timer_interrupt() {
i f (ptr>0x7FFF)

re turn ;

send[0]=0;
send[1]=(( i n t)ptr>>8)&0xFF;
send[2]=( i n t)ptr&0xFF;

f o r (i=0;i<10;i++,ptr++)
{
send[i+3]=*ptr;

}
send_transmit();

timeout_set(5);
}

Memread.config.ci

175



<?xml v e r s i o n="1.0"?>
<DeviceConfig
xmlns:ns1="http://www.w3.org/2001/XMLSchema-instance"
xmlns=
"http://www.auto.tuwien.ac.at/˜mkoegler/eib/xml/configdesc.xsd"
v e r s i o n="0.0.0"
ns1:schemaLocation=
"http://www.auto.tuwien.ac.at/˜mkoegler/eib/xml/configdesc.xsd">

<ProgramID>XXX</ProgramID>
<PhysicalAddress>1.1.98</PhysicalAddress>
<InstallKey>FFFFFFFF</InstallKey>
<Key id="0">FFFFFFFF</Key>
<Key id="1">FFFFFFFF</Key>
<Key id="2">FFFFFFFF</Key>
<GroupObject id="id1">

<!--Output-->
<Priority>low</Priority>
<SendAddress>0/0/1</SendAddress>

</GroupObject>
</DeviceConfig>
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Appendix C

EIBsec

C.1 Additional EIBsec Commands

Table C.1: SEKA Commands Part 1
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Table C.2: SEKA Commands Part 2

C.2 Frame Formats
Legend:
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C.2.1 Secure Management Communication

Figure C.1: A Init Connect Request

Figure C.2: A Init Connect Response

Figure C.3: A SessionKey Request

Figure C.4: A PrivateKey Request

Figure C.5: A Key Response Low
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Figure C.6: A Key Response High

Figure C.7: A Auth Connect Request

Figure C.8: A Auth Connect Reply

Figure C.9: A Auth Connect Response

C.2.2 Secure Process Data Communication

Figure C.10: A Join Group Request
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Figure C.11: A Join Group Response Low

Figure C.12: A Join Group Response High

Figure C.13: A Group Resync Request

Figure C.14: A Group Resync Response Low

Figure C.15: A Group Resync Response High
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Figure C.16: A Group Invalidate

C.2.3 Initial Key Distribution

Figure C.17: A Set SecretKey Low

Figure C.18: A Set SecretKey High

Figure C.19: A Set Password

C.2.4 Intrusion Detection

Figure C.20: A IDS Alert
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Figure C.21: A IDS Clear

C.2.5 Software Update

Figure C.22: A Software Update Init

Figure C.23: A Software Update Patch
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