
Simulation of a KNX network

with EIBsec protocol extensions

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

ausgeführt von

Wolfgang Köhler

Matrikelnummer 8925973

am:

Institut für Rechnergestütze Automation

Arbeitsbereich Automatisierungssysteme

Betreuung:

Betreuer: Ao. Univ.-Prof. Dr. Wolfgang Kastner

Mitwirkung: Dipl.-Ing. Wolfgang Granzer

Wien, 01.08.2008 _______________________ ______________________

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 Tel. +43/(0)1/58801-0 ▪ ▪ http://www.tuwien.ac.at

http://www.tuwien.ac.at/
http://www.tuwien.ac.at/
http://www.tuwien.ac.at/
rau
dipl

Page 2

Kurzfassung

Systeme der Gebäudeautomation beschäftigen sich mit der automatischen Steuerung von

Heizungsanlagen, Belüftungssystemen, Licht und Beschattung. KNX/EIB ist ein verbreiteter

Standard in der Gebäudeautomation. EIBsec ist eine Erweiterung dieses Standards um

Sicherheitskonzepte wie sichere Kommunikation, Schlüsselverwaltung, Datenintegrität,

Vertraulichkeit, Aktualität und Authentifizierung sicherzustellen. Diese Konzepte sind

notwendig um KNX/EIB in sicherheitskritischen Aufgabengebieten wie Zutrittskontrollen und

Alarmierungssystemen einsetzen zu können.

In der vorliegenden Diplomarbeit werden die Konzepte von KNX/EIB vorgestellt. Das

Verhalten von KNX/EIB und dessen Erweiterung EIBsec wird an Hand einer Simulation

untersucht und ein Vergleich von für diesen Zweck verfügbaren Frameworks erstellt.

In weiterer Folge wird das Simulations-Framework OMNeT++ im Detail präsentiert, das die

Simulation eines KNX/EIB basierten Netzwerkes erlaubt. Bei der Modellierung der

Objektstrukturen wurde auf eine flexible Erweiterung des KNX/EIB Netzwerks besonders Wert

gelegt. Die Implementierung untersucht im Speziellen, wie sich das Netzwerkverhalten ändert,

wenn eine bestehende KNX/EIB Installation um das Protokoll EIBsec erweitert wird. Die durch

die Simulation gewonnenen Daten sind in beliebigen Applikationen auswertbar.

Page 3

Abstract

Building automation systems deal with the control of heating, ventilation, air conditioning,

lighting and shading. KNX/EIB is a popular standard in building automation. EIBsec is an

extension to this standard and supports secure communication, key management, data integrity,

data confidentiality, data freshness as well as authentication. These concepts are required to

implement KNX/EIB in security critical applications like access control and security alarm

systems.

In this thesis first the concepts of KNX/EIB will be introduced. The performance of KNX/EIB

and its extension EIBsec will be analysed by building a simulation. Frameworks for such a

simulation will be compared to each other.

Furthermore, the simulation framework OMNeT++, which allows the building of a KNX/EIB

based network, will be presented in detail. The modelling of the object structure takes special

care of the extensibility of the KNX/EIB network. In particular, the implementation analyses the

change in network behaviour when an existing KNX/EIB installation is extended with EIBsec.

The results generated when running the simulation can be evaluated with an arbitrary

application.

Page 4

Contents

1 Why simulating a KNX/EIB network?...8

2 Introduction to KNX/EIB...10

2.1 Purpose of KNX/EIB..10

2.2 Introduction to the KNX/EIB Protocol...11

2.2.1 KNX/EIB and the OSI reference model..11

2.2.2 Physical Layer..14

2.2.3 Data Link Layer..15

2.2.3.1 Logical Link Control (LLC)...15

2.2.3.2 Medium Access Control (MAC)...15

2.2.3.3 Addressing Types...16

2.2.3.4 Frame Formats..17

2.2.4 Network Layer..21

2.2.4.1 Unicast Communication...21

2.2.4.2 Multicast / Broadcast Communication..21

2.2.4.3 Bridges and Routers...22

2.2.5 Transport Layer..23

2.2.6 Application Layer...24

2.2.6.1 Process Data Communication...24

2.2.6.2 Management Communication...25

3 Comparison of Protocol Simulators..27

3.1 GloMoSim..27

3.2 QualNet..27

3.3 ns-2...28

3.4 OMNeT++..28

3.5 Summary..28

4 Introduction to OMNeT++...31

4.1 Overview..31

4.2 Modelling Concepts..31

4.3 The NED Language..33

4.4 Running a Simulation in OMNeT++..34

4.5 Collection and Representation of Simulation Results...35

Page 5

5 OMNeT++ Module Design..38

5.1 Module Overview...38

5.2 Basic C++ Objects..39

5.3 Basic Modules..43

5.3.1 KNX/EIB Device's Network Stack – KNXstack..44

5.3.2 KNX/EIB Device's Application – KNXappl..45

5.3.3 KNX/EIB Device – KNXdev...47

5.3.4 KNX/EIB Bus – KNXbus...50

5.3.5 KNX/EIB Line Coupler - KNXlinecoupler..57

5.3.6 Device's User Simulation – UserSim..58

5.3.7 Helper modules...63

5.3.7.1 KNXappl_gui...63

5.3.7.2 KNXterminator...64

5.4 KNX/EIB Lines..65

5.5 KNX/EIB Network...68

5.6 What needs to be simulated..70

6 Purpose of the Simulation Model...72

6.1 EIBsec Protocol Extension...72

6.2 Configuring the Simulation..74

6.3 Simulation Test Cases...76

7 Results of the Simulation..78

7.1 Simulation Results for Insecure Communication..78

7.2 Simulation Results for Secure Communication with Line ACUs...................................81

7.3 Simulation Results for Secure Communication with a Backbone ACU..........................84

7.4 Summary of Simulation Results...87

7.5 Analysis of the Results...88

7.5.1 Comparison of Insecure and Secure Communication...89

7.5.2 Comparison of Secure Communication with Line ACUs and Secure

Communication with a Backbone ACU...91

7.6 Conclusion on EIBsec Implementation...92

8 Pitfalls in the Modelling...94

9 Conclusion and Future Work..96

10 Bibliography...97

Page 6

A Appendices..100

A.1 NED file..100

A.2 UserSim Files..121

A.2.1 Insecure Communication...121

A.2.2 Secure Communication with Line ACUs...121

A.2.3 Secure Communication with Central ACU..122

Page 7

1 Why simulating a KNX/EIB network?

The Automation System Group at the Vienna University of Technology is home to research in

building automation systems (BAS), focusing on security extensions to the KNX/EIB protocol.

One such protocol security extension that has been developed is EIBsec, which needs to be

evaluated in regard to its performance.

In general, the following methods can be used to evaluate protocol extensions [01]:

Analytical methods allow to formalise the protocol in an exact, predictable and provable form.

More specific model types would be mathematical models or stochastic models. Traditionally

these are being used in economic simulations, climate forecasts, chemical process simulation.

Formal and functional verification is used for e.g. protocol verification, verification of

algorithms and simulation of digital circuits. However, the interaction between devices and their

inter-dependencies make it difficult if not impossible to formalise their behaviour and analyse

their complexity.

Prototyping can be used e.g. for proof-of-concept designs. It is somewhat limited to small

systems as it is often not possible to implement more than several devices in a laboratory

environment. It is best suited for experimental designs, examine their behaviour in a defined

environment and possibly extrapolate this behaviour to larger systems. Large scale evaluation

cannot be carried out easily as the number of prototypes – as the name implies – is limited. In

the proposed case a prototype of a security enhanced device may prove the concept of the

device and the interaction with a subset of other devices. Also the implementation of the

prototype allows the observation of unplanned side effects, e.g. environmental influences or

electrical effects. But the prototyping method will not yield a result when evaluating the effect

on a large scale network where all devices interact with each other.

Simulation allows the design and implementation of literally thousands of devices. Simulation

can combine the use of mathematical models with models of “real” events, e.g. interacting with

equipment. A category of simulators that is widely used is the discrete event simulator which

represents a chronological sequence of events. The granularity of the simulation can be adjusted

to the focus of what needs to be shown. It might not make sense to simulate every aspect of the

behaviour of a system but concentrate on the ones that are key to the results. However, not too

many parameters may be omitted, otherwise the result of the simulation may not reflect the

expected behaviour in reality.

Page 8

KNX/EIB Simulation 1 Why simulating a KNX/EIB network?

The trigger for a simulation is manifold: the network behaviour needs to be tested but the real

network cannot be built. This might be because of its dimensions or affordability. Another

example is that a new, possibly not yet implemented, component needs to be tested against a

known environment. In the present case EIBsec has been defined and a prototype device

developed to implement this enhancement. The requirement is to analyse the effect of those

extensions on a large network.

Considering the complexity of interaction between the network devices, the desired flexibility in

designing and modifying the network and the existence of a prototype device, the simulation

deems the most appropriate approach to simulate the effects on a large scale network. The

available simulators must be evaluated on how fit they are for the purpose of simulating a

KNX/EIB network protocol and network structure.

This thesis has been carried out within the project Security in Building Automation (FWF

Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung; Projekt P19673).

Page 9

2 Introduction to KNX/EIB

2.1 Purpose of KNX/EIB

A Building Automation System (BAS) [02] is a network of (programmable) devices that control

the environmental condition of a building like lighting and shading, heating, ventilation and air

conditioning (HVAC). It aims at improving control, monitoring and administration of technical

building subsystems to gain cost efficiency and building control and to improve comfort for the

occupants. Management and configuration of an integrated BAS becomes easier and allows

reduction of management tools.

Security critical subsystems like access control and security alarm systems have been

implemented as stand-alone systems. This is due to the fact that they depend on the underlying

control systems to be reliable and robust to avoid malicious manipulation of devices and traffic.

However, today the demand for a tighter integration of the traditional BAS and security control

systems exists.

The EIB (European Installation Bus) [04] is a fieldbus designed to enhance electrical

installations in homes and buildings by separating the transmission of control information from

traditional electrical wiring. Its main applications are solutions in lighting, window blinds

control and HVAC systems. EIB is based on an open specification, maintained until recently by

the EIBA (EIB Association, [05]). The newly emerged KNX standard [06] is a combination of

EIB, Batibus and EHS (European Home System), combining their best aspects. EIBA, EHS

Association and Batibus Club International formed the Konnex Association, accordingly.

KNX/EIB installations are hierarchically structured, end devices are topologically arranged in

lines and areas. Lines are interconnected with each other by line couplers (LC). Up to 15 lines

can be combined to an area, backbone couplers (BC) can combine up to another 15 areas. A

maximum of 256 devices can be addressed in a line. Thus, a completely extended KNX/EIB

system can accommodate up to 57600 devices.

Page 10

KNX/EIB Simulation 2 Introduction to KNX/EIB

Logically, KNX/EIB is a peer-to-peer system. Devices communicate with each other without the

presence of a dedicated master. In general, two types of communication can be distinguished:

management communication using unicast and broadcast and process data communication using

multicast communication.

2.2 Introduction to the KNX/EIB Protocol

2.2.1 KNX/EIB and the OSI reference model

The Open Systems Interconnection (OSI) model splits the complex tasks of data communication

into 7 defined sub-areas, referred to as layers [07]. Each layer interacts with the layer above and

below. A layer, the service provider, provides a service to the layer immediately above, the

service user. The interface between both layers defines how the service user can access the

service of the service provider, specifies the parameters and the result to be expected. A

protocol defines a set of rules and conventions that is being used by layers of the same level,

allowing communication between devices.

Page 11

Figure 2.1: KNX/EIB network with different areas and backbone line

KNX/EIB Simulation 2 Introduction to KNX/EIB

Communication between layer N and layer (N-1) via its services or its interfaces respectively

occurs via a Service Data Unit (SDU). Communication between two peer layers is done via a

Protocol Data Unit (PDU) which consists of the user data, the Interface Control Information

(ICI) and the layer specific Protocol Control Information (PCI).

Examining the KNX protocol, not all layers of the OSI protocol are necessary. Only 5 out of 7

layers are being used by the KNX standard. These are:

● Physical Layer

● Data Link Layer

● Network Layer

● Transport Layer

● Application Layer

Focusing on the communication of peer layers, there are 4 different service primitives: request

(req), indication (ind), confirmation (con) and response (res). Services need not always to make

use of each of the service primitives and can be classified as follows:

Locally confirmed services comprise of a request, an indication and a confirmation. The local

service user calls the layer N service provider. A request and the corresponding PDU is being

generated and passed on to the layer (N-1) until it is given over to the physical medium. On the

receiver side, the peer layer N is activated with an indication, the enclosed PDU is decoded and

the data passed to the layer above.

Page 12

Figure 2.2: KNX/EIB layers ↔ OSI layers

KNX/EIB Simulation 2 Introduction to KNX/EIB

Layer N on the sender side receives a confirmation from the local layer (N-1) telling whether

the underlying layer was able to process the request accordingly.

Confirmed services also consist of a request, an indication and a confirmation. With a confirmed

service, the peer remote layer generates an acknowledgement immediately after receiving the

indication. At the sender side the received acknowledgement is passed on to the local layer N as

a confirmation.

Answered services always consist of a request, an indication, a response and a confirmation. The

confirmation response is being generated at the remote service level provider as a response

which is received at the local layer N as a confirmation.

Page 13

Figure 2.3: Layer N and locally confirmed services

Figure 2.4: Layer N and confirmed services

KNX/EIB Simulation 2 Introduction to KNX/EIB

2.2.2 Physical Layer

This layer describes the mechanical, physical, electrical and logical properties of the used

network medium. Examples are the physical connector type, cabling type, cable impedance and

transmissions frequency.

KNX/EIB includes several communication media [08]:

● TP-0 (twisted pair, type 0): this communication medium has been taken over from

BatiBUS. It features a transmission rate of 4800 bit/s. KNX TP-0 certified products will

operate on the same bus as BatiBUS certified components but will not be able to

exchange information with BatiBUS devices.

● TP-1 (twisted pair, type 1): this communication medium has been taken over from EIB.

Its transmission rate is 9600 bit/s. EIB and KNX certified products will operate and

communicate with each other on the same bus they use.

● PL-110 (power-line, 110 kHz): this medium, too, has been taken over from EIB. Its

transmission rate is 1200 bit/s. The EIB and KNX PL-110 certified products will

operate and communicate with each other on the same electrical distribution network.

● PL-132 (power-line, 132 kHz): this communication medium has been taken over from

EHS. Its transmission rate is 2400 bit/s. KNX PL-132 certified components and EHS

1.3a certified products will operate together on the same distribution network but will

not communicate with each other without a dedicated protocol converter.

● RF (radio frequency, 868 MHz): this communication medium, radio frequency with a

Page 14

Figure 2.5: Layer N and answered services

KNX/EIB Simulation 2 Introduction to KNX/EIB

bit rate of 38.4 kbit/s, has been developed directly within the framework of the KNX

wireless standard.

● Ethernet: this medium can be used in conjunction with the KNX over IP specifications

which allow the tunnelling and routing of KNX frames encapsulated in UDP/IP frames.

The traditional medium of the former EIB bus is a twisted pair (TP) line, today known as KNX

TP-1. The TP-1 cable carries 29V DC voltage as well as the communication signalling. TP-1

allows free topology, up to 1000m length per physical segment. Up to 4 segments can be

concatenated with line repeaters forming a line of maximum 4000 meters.

Only the twisted pair cabling method will be covered in this thesis as the other available media

(power line, radio, etc.) have different frame formats but the simulation results are expected not

to differ significantly.

The topology of the bus can be freely chosen, loops are not allowed. Junctions in the cabling are

allowed and also used in real-world implementations. However, for the simulation model the

topology will in principal (but is not limited to) resemble a bus line.

2.2.3 Data Link Layer

This layer ensures the transmission between two devices. There are two basic functions of the

layer: first the composition of the data frame based on the information from the above layer and

error checking (LLC, Logical Link Control) and secondly the coding of the frame, ensuring that

the data is transmitted correctly (MAC, Medium Access Control).

2.2.3.1 Logical Link Control (LLC)

The LLC provides flow control and error control to the network layer.

A datagram is a data unit that can be transmitted from a sender to one or more receivers. Before

sending the datagram it must be converted to a data frame that must include the full addressing

information.

2.2.3.2 Medium Access Control (MAC)

The MAC provides channel access control mechanisms to the underlying physical layer to

which it is closely linked.

Page 15

KNX/EIB Simulation 2 Introduction to KNX/EIB

The MAC access method for KNX/EIB is Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA). Collisions are avoided by writing and listening to the bus at the same

time. If a device discovers that the signal it listens to is different from what it is sending it

ceases communication immediately. This might be the case when another device is sending a

packet with higher priority in parallel.

In addition to the bus access method, the MAC also implements some timing considerations

specific to the TP-1 specification of the KNX/EIB bus: at the sender side the data to be sent is

being received from the LLC sub-layer and sent via a transceiver to the physical medium.

However, before sending, the bus must be idle for 50 bits time, where 1 bit time is defined as

104µs (9600 bits per second). Repeated frames can be sent after that time period. If a frame is

sent for the first time the MAC needs to wait for another 3 bits time. The receiving station has –

after receipt of the datagram – to wait for 15 bits time to return the acknowledgement packet. If

the acknowledgement datagram needs to be sent by multiple stations, these stations send their

responses in parallel, where a negative acknowledgement signal prevails a positive one [09].

2.2.3.3 Addressing Types

There are two ways of addressing at the KNX/EIB protocol:

1) Individual addressing: during the engineering process at the installation time each

device needs to be configured with a unique individual address. The uniqueness must be

ensured within the whole KNX/EIB installation. In KNX/EIB the individual address

consists of

a) the device number (0-255) which uniquely indicates the device within its line,

b) the line number (0-15) which specifies the line of the device and

c) the area number (0-15) which specifies the area of the device.

Page 16

Figure 2.6: Protocol of the MAC layer

KNX/EIB Simulation 2 Introduction to KNX/EIB

Alternatively, the line number bits and area number bits can be regarded combined as a

subnetwork address. In that case individual address consists of

a) the device number (0-255) which uniquely indicates the device within its line,

b) the subnetwork address (0-255).

2) Group addressing: this logical address can be assigned to one or more devices which

will form a functional group. The group address is not bound to the physical location of

the device which means that devices within the same group can be spread over several

lines. Two structures of a group address are available that differ in their representation:

a) similar to the individual address the group address consists of a triplet of the range

(0-31), (0-7) and (0-255) that forms the group address

b) a sub-group number (0-2047) denotes the group's function and the main group

number (1-31) specifies the task area of the group.

The naming convention used for individual addresses is area.line.device where “.” is being used

as separator. For group addressing the character “/” is being used as separator in both addressing

formats. So 1.4.6 represents an individual address of a device, whereas 2/4/1 represents a group

address that may contain one or more devices. During this work we will use only the group

notation in triplet form of a/b/c.

2.2.3.4 Frame Formats

As we are aware of different addressing formats, the structure of a standard KNX/EIB TP-1 data

frame is defined as follows:

Data Frame L_Data:

Figure 2.7 shows the structure of a standard KNX/EIB data frame. Alternatively, an extended

frame format exists that allows to transport up to 254 bytes in the data field. In this case, the

structure of the Control Field differs and a new Extended Control Field has been introduced to

Page 17

Figure 2.7: KNX/EIB Data Frame

KNX/EIB Simulation 2 Introduction to KNX/EIB

allow encoding of the larger frame. Since the extended frame is not subject of the protocol

investigation in this work, it will not be used in further definitions and descriptions.

Control field (C field):

Flag R: the Repeat flag is being used in a scenario where no or a negative acknowledgement

frame has been previously sent back to the sender because one receiver did not positively

receive the data frame. To distinguish resent data frames, the repeat flag has to be set. This way

the receiving stations know that the frame has already been sent and it is the responsibility of

each receiver to correctly determine if the information is being passed on to the higher levels.

Bits P0 and P1 determine the priority of the frame. 4 priorities exist: system, urgent, normal and

low.

Source field:

The source address is always the individual address of the sending station. Every KNX/EIB

device must be assigned a unique address during the installation phase.

Page 18

Figure 2.8: Control Field

Figure 2.9: Source Field

KNX/EIB Simulation 2 Introduction to KNX/EIB

Destination field:

The destination address field is of the same format as the source address field but with the

extension of the destination address flag (DAF). A frame addressed to one physical device

(unicast message) must use the individual address of the device and needs to have the DAF set

to 0. This way only the addressed device will act upon the received frame. If one or multiple

devices are addressed with the frame (multicast or broadcast message), the destination field

holds the logical address of the recipients and the DAF is set to 1.

Note that unicast messages are sent by management communication only, e.g. setting sensor

parameters by a central monitoring or control station. Normal process communication, e.g.

switching a light actuator on or off, is always done with multicast communication to a

corresponding group address. The group address can be used by only a single device or by a

group of devices, also located on different lines and areas.

R/L field:

L0-L3 specify how many data bytes are following in the data field, the range is from 0 to 15.

The length of the data field is 1-16 bytes. The value of zero in the fields L0 to L3 represents a

data field length of 1 byte, a value of 15 represents a data field length of 16 bytes.

Page 19

Figure 2.10: Destination Address Field + DAF

Figure 2.11: R/L Field

KNX/EIB Simulation 2 Introduction to KNX/EIB

Data field:

The data field contains 1 to 16 bytes of data. The data is being forwarded to the network layer

for further processing and form the actual data transferred between devices. Note that the data

field must contain at least one byte – the protocol information from the transport layer.

P field:

The parity field contains 8 check bits. Its purpose is to detect transmission errors. The sender

creates the checksum for the frame and adds it to the frame. The receiving device checks the

frame consistency by comparing the frame contents against the checksum. When a modification

of the frame is detected, the frame is rejected and requested again by the LLC layer.

Acknowledgment Frame L_Ack:

As illustrated at the description of the MAC layer, an acknowledgement frame is being sent

upon receipt of a frame to indicate its correct or incorrect receipt. The acknowledgement frame

consists of one byte and has no additional payload. The format is:

Page 20

Figure 2.12: P Field

Figure 2.13: Acknowledgement Frame

KNX/EIB Simulation 2 Introduction to KNX/EIB

N1 N0 0 0 B1 B0 0 0

1 1 1 1 positive acknowledgement frame

1 1 0 0 busy frame

0 0 1 1 negative acknowledgement frame

Table 2.1: Table of acknowledgement frame bits and their meaning

● If a frame with a group address (DAF=1) is received incorrectly by one device, the

negative acknowledgement frame wins against probable positive acknowledgement

frames from devices which received the frame correctly.

● If a device cannot process the frame, the bits B0 and B1 are set to 0. This signalling is

dominant to other devices that send a positive acknowledgement.

● If the frame has been destroyed or is not recognised by a device, the line stays “idle”.

In all cases the frame is transmitted again by the LLC layer's protocol, with the repeat flag set.

2.2.4 Network Layer

The network layer sets up end-to-end connections between devices and provides services to

transport packets from the source to sink. Target destinations can be either logically or

individually addressed. The packets need to traverse different network lines that are linked

together with routers. The network layer provides the above lying transport layer with a

connectionless packet exchange.

Depending on the destination network address the packet is sent to either one receiver (unicast),

multiple receivers (multicast) or all receivers (broadcast) on the network.

2.2.4.1 Unicast Communication

If the network layer sends a packet to a single receiver, it uses the individual address of the

target device. Additionally, the destination address flag (DAF) is set to 0 to indicate an

individual address.

2.2.4.2 Multicast / Broadcast Communication

Multicast and broadcast messages are very similar. When addressing multiple devices, these

Page 21

KNX/EIB Simulation 2 Introduction to KNX/EIB

devices are addressed with a group address that has been defined for these devices during the

installation phase. To distinguish the logical address from the individual address, the DAF needs

to be set to 1.

A broadcast message also has its DAF set to 1 but the destination address is set to 0/0/0.

2.2.4.3 Bridges and Routers

There are 2 device classes that allow to extend the KNX/EIB network:

A bridge regenerates the line signal and allows the KNX/EIB line to be extended in length.

Basically this is the function of a repeater but in KNX/EIB they also acknowledge packets on

the data link layer. Bridges do not need an individual address assigned. The reason for the

bridge – normally a layer 2 device - to be defined in layer 3 is because it decrements the routing

counter when forwarding a frame, as described below in detail.

A router is a device that connects separate network lines and acts on layer 3 of the OSI model.

In contrast to a bridge it does not only refresh the network signal but the router also decides on

basis of the routing table whether a frame is forwarded on to another network segment.

In KNX/EIB the routing table is being defined at the installation phase of the network. Its

entries are static and are not self-modified during runtime. When receiving a frame, the router

decides upon the routing table if the frame will be forwarded to the next network segment or

not. The decision if a router acts as a line coupler or as a backbone coupler is based on the

individual address of the router which determines its location on the network [10].

Coupler type
Individual address

Area number Line number Device number

Line coupler 1 - 15 1 - 15 0

Backbone coupler 1 - 15 0 0

Table 2.2: Individual addresses of routers and associated functions

Only the group addresses need to be defined in the routing table as the individual address of the

router also denotes the routing of individual addresses. Routers have in general 2 ports. In case

of a line coupler that is one towards the line and one towards the main line, in case of a

backbone coupler that is one towards the main line and one towards the backbone line.

Page 22

KNX/EIB Simulation 2 Introduction to KNX/EIB

When a frame is forwarded by a router – and the same is also valid for a bridge - to another

network segment, the router decrements the routing counter (contained in the R/L Field) if its

value is less than or equal to 6. A routing counter value of 7 means that the counter will not be

decremented by the router, a value of 0 lets the router or bridge discard the frame as it has

reached its maximum routing hops.

2.2.5 Transport Layer

The KNX/EIB transport layer offers two methods of transferring data to the application layer:

1. Connection oriented communication: this communication type establishes a reliable

connection between sender and receiver, transports data and end communication. If a

frame is lost during communication it is being retransmitted. The communication can

also end if e.g. the receiver does not acknowledge the received frames in time.

2. Connectionless communication: this communication type sends a frame from the sender

to the receiver without prior establishment of the communication “channel”. The sender

has no control or receives feedback on whether the frame has reached its target(s).

Page 23

Figure 2.14: Routing Counter in R/L Field

Figure 2.15: Data Field, 1st byte = Transport Control Field

KNX/EIB Simulation 2 Introduction to KNX/EIB

Transport Control Field

7 6 5 4 3 2 1 0

0 0 0 0 0 0 x x Data Unack. PDU, Group PDU, Broadcast PDU

0 1 S3 S2 S1 S0 x x Data PDU

1 0 0 0 0 0 0 0 Connect PDU

1 0 0 0 0 0 0 1 Disconnect PDU

1 1 S3 S2 S1 S0 1 0 Acknowledge PDU

1 1 S3 S2 S1 S0 1 1 Negative Acknowledge PDU

Table 2.3: Transport Control Field values

For connection oriented communication only the bits S0-S3 are used as send counter of the

PDU. The send counter is incremented each time a frame is sent from the sender to the receiver

and the frame is positively acknowledged. This way the receiver can keep track of received and

expected frames.

2.2.6 Application Layer

The layers that have been discussed up to now do not provide any real functionality to the user.

The application layer implements services for e.g. process data communication, device

management and network management in utilising the layers underneath.

2.2.6.1 Process Data Communication

To implement a function like “light on” or “read temperature”, KNX/EIB devices must

implement means of process data exchange. Communication objects are being used on the

sender and receiver application side to exchange this data. Basically it is a memory area of the

device that can be addressed using standardised application layer functions and be read or

written to.

As communication objects might be “subscribed” by multiple devices, a means to reach all

devices is required. For this purpose group addressing is being used. A sending device can

address multiple receiving devices when they are listening to the same group address. However,

the sending device can only use one group address to send its data. The association between

group address and communication object is being defined in the association table. When data is

being received by a device, the application layer uses its association table to find out which

Page 24

KNX/EIB Simulation 2 Introduction to KNX/EIB

communication objects are targeted by a group address.

2.2.6.2 Management Communication

Individual Address Configuration

The device configuration is being used at the application layer when an individual address of a

device needs to be set or modified. For this purpose the device must already be set to

programming mode which is invoked normally at the device by pressing the programming

button. The device then waits for a broadcast frame which contains the device's individual

address.

Another possibility to set a device's individual address is a service that will address the device

by its unique serial number and set the individual address accordingly.

Other Services

Some other examples of services that are based on an acknowledged, connection-oriented

communication of layer 4 include

● Memory access service to read or write up to 12 bytes of memory of a device in one

transferred frame.

● Analogue/digital converter access service where the requester specifies the channel

number of the A/D converter and the number of conversions. The receiver returns the

value of the carried out conversion.

Page 25

Figure 2.16: Association table with group address and
communication object relation

KNX/EIB Simulation 2 Introduction to KNX/EIB

● Routing table access service to read and write routing tables of line couplers and

backbone couplers.

Page 26

3 Comparison of Protocol Simulators

The following protocol simulators have been considered and compared for the implementation

of the KNX/EIB protocol, especially with regard to their effectiveness to simulate the required

functionality.

3.1 GloMoSim

GloMoSim (Global Mobile Information Systems Simulation Library, [11]) is being used to build

wired and wireless simulations. Its basis is ParSec, a discrete event-based simulation system.

GloMoSim strives to implement a layered model similar to the OSI model, providing APIs for

the different levels and protocols. Measures can be applied at each level of abstraction.

GloMoSim features many ready-to-use wired and wireless protocols like CSMA, 802.11, TCP,

UDP, routing protocols like OSPF and wireless propagation models and according device

mobility simulations. It is extensible with modules written in C language. Documentation is

available online in PDF format.

Initially a DARPA project, it has been abandoned around the year 2000 as no new update is

available since that date. There has been a commercial spin-off called QualNet.

3.2 QualNet

QualNet [12] derived from GloMoSim as a commercial branch of the former DARPA project. It

has the same underlying ParSec concept of an event-based simulation system. Wired and

wireless systems can be simulated and parameterised with configuration files for the relevant

simulation layers [13]. Simulated protocols include CSMA, 802.11, 802.16, GSM, TCP, UDP,

many routing protocols as well as many protocols of the application layer (e.g. FTP, HTTP,

VoIP, GSM). It features commercial support, online documentation, extensibility in C++ (but

not for all available versions) and an active user community. Very specific for QualNet is its

extensive implementation of wireless protocols, mobility simulation and available terrain

simulation partially designed for military usage.

Page 27

KNX/EIB Simulation 3 Comparison of Protocol Simulators

3.3 ns-2

ns-2 [14] is a GPL-licensed simulation framework, mainly used at universities. It includes wired

and wireless simulation models that can be extended in C++ and OTcl, an object oriented

variant of Tcl. While C++ is more used to extend the system's functional capability, OTcl is

being used to define and extend the behaviour of the simulation. An active, mostly academic

community is present where the software is constantly developed. Like GloMoSim and

QualNet, ns-2 is also very data network centric as it supports a lot of LAN/WAN and wireless

based protocols. Extensions are mostly limited to extend routing capabilities in implementing

new protocols and to build test networks. Implementation of a completely different network like

KNX/EIB, LON, BACnet, etc. would mean a major change of the software.

3.4 OMNeT++

OMNeT++ [15, 16] is a discrete event based simulation framework and can be used for traffic

modelling of communication networks, protocol modelling, modelling queueing networks and

others. The licensing has a free-of-charge option for non-profit and academic use as well as a

commercial license (OMNEST, [17]). In contrast to the simulators discussed above, OMNeT++

provides easy ways to implement any protocol or system that can be handled as based on events.

It does not follow an IP-centric approach in its basic simulation models although TCP/IP and

wireless implementations are available and widely used. Extensions to existing protocols and

new functionality is being added in C++ modules. The network layout is being defined in

network configuration files. An active community is available that develops solutions mainly in

the 'classic' data network areas.

3.5 Summary

All simulators are capable to a different extent to simulate classic IP based networks and

wireless networks. Especially QualNet has a wealth of supported protocols and terrain

simulation for its wireless networks part. However, simulating a KNX/EIB network is not

directly supported by any simulator. The focus on the decision for a simulator was to find one

that was capable of modelling the KNX/EIB protocol to some extent that was usable for the

intended work.

Page 28

KNX/EIB Simulation 3 Comparison of Protocol Simulators

The table below illustrates aspects that have been considered when choosing the most

appropriate simulator.

GloMoSim QualNet ns-2 OMNeT++

Link http://pcl.cs.ucla.e

du/projects/glomos

im/

http://www.qualnet

.com/

http://www.isi.edu/

nsnam/ns/

http://www.omnet

pp.org/

Extensi-

bility

Yes, in C Yes, in C++ for

customisations.

Not all versions

provide source

code to write

extensions

Yes, in OTcl

scripts and C++

mechanism

implementation

Yes, C++ interface

definition

Event based Yes Yes Yes Yes

Layers

simulated

L2+, lines / radio

can be

parameterised

L2+, lines / radio

can be

parameterised

L2+, lines / radio

can be

parameterised

L2+ (partially

depending on

simple module

implementation),

lines can be

parameterised

Line &

radio

propagation

models

Radio and line

based protocols

Many radio

protocols, includes

military specific

ones, GSM,

WiMax, line based

protocols

Radio and line

based protocols;

focus on Internet

technology

Radio and line

based protocols

available through

specific simulation

models (INET,

MF)

Page 29

KNX/EIB Simulation 3 Comparison of Protocol Simulators

GloMoSim QualNet ns-2 OMNeT++

Additional

modules &

libraries

- (Military) radio

models, urban

terrain modelling

including buildings

Satellite

communication

modules, many

TCP based

contributed models

Community

provided models,

mainly IP based

routing models but

also more generic

algorithm and

protocol

simulations

License

terms

Proprietary;

academic use only.

Commercially

available via

QualNet

Commercial

license

GPL v2 Proprietary; free

academic license,

commercial

license

Community Initially a DARPA

project, abandoned

2000, turned to

commercial

product QualNet

by SNT

Professional

community,

support provided

by supplier

Active community Active community

Table 3.1: Comparison of protocol simulators

OMNeT++ has been chosen for its versatility. Not only classical networks can be simulated but

also queueing problems, file system interaction and more generic protocols like SCSI and

HTML.

Page 30

4 Introduction to OMNeT++

4.1 Overview

OMNeT++ is a discrete event simulation framework [18]. Its primary application area is the

simulation of communication networks. Several models for wired and wireless networks exist

and some new network routing algorithms are also being implemented for scientific research.

Although OMNeT++ is not a network simulator itself, it has widespread popularity as a network

simulation platform in the scientific community. The simulation environment is not limited to

network models but can simulate a range of problems that can be broken down to passing

discrete messages between objects, e.g. pipelining models, process communication, queueing

networks or hardware architectures as well.

OMNeT++ provides a component architecture for models. Components (modules) are

programmed in C++, then assembled into larger components and models using a high-level

language called NED. OMNeT++ comes also with GUI support which enables easy simulation

visualisation and interpretation of results during runtime.

4.2 Modelling Concepts

An OMNeT++ model consists of hierarchically nested modules which communicate by passing

messages through gates that connect those modules.

The top level module (system module) contains sub-modules which can also contain sub-

modules. There is no limitation to the nesting level of modules (compound modules) making it

possible to construct the simulation model according to the logical structure of the actual model

to be simulated.

Page 31

KNX/EIB Simulation 4 Introduction to OMNeT++

The modules are connected to each other via gates, which are the interfaces of the modules and

connections, that link the gates together. Modules can be connected within the same hierarchy

level in the compound module or towards the parent compound module. The gate is a

unidirectional pipe for messages. When designing bidirectional communication between

modules, gates and connections in both directions need to be defined.

Connections can be optionally assigned parameters for their speed, error rate and propagation

delay. The parameters are later used to calculate the message delays in the simulation and to

statistically provoke errors in the packets transmitted. These errors can be queried upon receipt

of a message.

Module parameters are used to pass specific information to the individual objects of the module

and are defined in the NED file or in an omnet.ini configuration file. The parameter can be a

numeric or string value as well as an XML file.

The NED file is the network definition file for an OMNeT++ simulation model. It contains the

simple and compound module definitions, the definitions of the gates of a module and the

connections between modules.

The functionality of the defined simple modules is implemented in C++. The flexibility of C++

can be used, supported by the functionality of the OMNeT++ class library. The OMNeT++

library contains e.g. the simulation objects of modules, gates, connections, parameters,

messages, container classes and data collection classes. Not only messages can be created at

runtime within the C++ code, also connections to other modules can be created dynamically at

runtime.

Page 32

Figure 4.1: Module with gates and connections

KNX/EIB Simulation 4 Introduction to OMNeT++

4.3 The NED Language

The NED language describes the relation between simple modules, compound modules, gates

and connections as well as a module's parameters.

The following NED file extract is taken from the simulation:

module KNXdev

parameters:

address: string,

table: string,

application: string;

gates:

in: in_bus, in_user;

out: out_bus;

submodules:

stack: KNXstack;

parameters:

address = address,

table = table;

appl: KNXappl;

parameters:

table = table,

application = application;

gui: KNXappl_gui;

parameters:

address = address,

application = application;

connections:

// module gates to external

out_bus <-- stack.out_bus;

in_bus --> stack.in_bus;

in_user --> appl.in_user;

// internal module gates

Page 33

KNX/EIB Simulation 4 Introduction to OMNeT++

stack.out_appl --> appl.in_appl;

stack.in_appl <-- appl.out_appl;

endmodule

The example above shows a network device definition, parameters, gates, submodules and

connections. The parameter section defines the parameters that are required to operate the

device like the hardware address, the application association table and the application type. The

gates section defines the way how the device communicates with other objects and represents

the interface of the device. The submodules section defines which submodules the object is

comprised of and also allows to parametrise the submodule's parameters. The connection

section defines which in and out gates are connected to each other, especially in regard to the

used submodules.

4.4 Running a Simulation in OMNeT++

The simulation consists of the

– NED file (.ned), containing the simple and compound modules' definitions and the gates

and connections describing the structure of the simulation,

– optional message definitions (.msg) files, which can contain various data types to add data

fields to the messages passed between modules. Message definition files are translated to

C++ classes and integrated into the simulation.

– simple module source files as C++ files (.h and .cpp) that implement the functionality of

the modules.

The OMNeT++ simulation system provides the

– simulation kernel, containing the code that manages the simulation and OMNeT's C++ class

library.

– user interface to allow interaction with the defined modules and visualisation of the

simulation model.

Page 34

KNX/EIB Simulation 4 Introduction to OMNeT++

4.5 Collection and Representation of Simulation Results

Output vectors are time series data, i.e. values with time stamps. They can be used to record

delays, round trip times of packets, queue lengths, etc. Basically it is a good representation of

what happens to certain values over the time of the simulation run. Output vectors are recorded

during the simulation from simple modules with the cOutVector() method.

The format of a (named by default) omnet.vec output vector file is demonstrated in an

example:

vector 4 "knx_3_line.line_1.bus_1" "bus_1" 1

4 0 0.0927083333333

vector 5 "knx_3_line.line_2.bus_2" "bus_2" 1

5 0 0.0927083333333

vector 6 "knx_3_line.line_3.bus_3" "bus_3" 1

6 0 0.0927083333333

vector 7 "knx_3_line.line_backbone_1.bus_b_1" "bus_b_1" 1

7 0 0.278125

4 1 0.00208333333333

5 1 0.00208333333333

6 1 0.00208333333333

7 1 0.00625

4 2 0.00208333333333

5 2 0.00208333333333

6 2 0.00208333333333

7 2 0.00625

4 3 0.00208333333333

5 3 0.00208333333333

6 3 0.00208333333333

7 3 0.00625

4 4 0.00208333333333

5 4 0.00208333333333

6 4 0.00208333333333

7 4 0.00625

Page 35

KNX/EIB Simulation 4 Introduction to OMNeT++

4 5 0.00104166666667

5 5 0.00104166666667

6 5 0.00104166666667

7 5 0.003125

4 6 0.00104166666667

5 6 0.00104166666667

6 6 0.00104166666667

7 6 0.003125

There are two types of lines: declaration lines and data lines.

The vector declaration line looks like:

vector 4 "knx_3_line.line_1.bus_1" "bus_1" 1

and shows the keyword “vector”, the vector id, module of creation (as referenced in the NED

file), name of the cOutVector object and multiplicity (single numbers or pairs will be written;

usually 1).

The contents of a data line as an example is:

4 1 0.00208333333333

and shows the vector id, simulation time and recorded value.

Scalar statistics are mainly used to compare model behaviour under various parameter settings

called “runs”. The recordScalar() method is mostly called at the end of the simulation

from within the finish() method of the simple module. It records in a (named by default)

omnetpp.sca file data like gathered information over the simulation run like bytes sent /

received, channel utilisation, channel idle time, etc. run 1 and run 2 refer to two simulation

runs with different start parameters, e.g. different line speeds or queue lengths:

run 1 "knx"

scalar "knx_3_line.line_1.bus_1" "simulated time" 34.756

scalar "knx_3_line.line_1.bus_1" "frames sent" 99

scalar "knx_3_line.line_1.bus_1" "frames rcvd" 3088

scalar "knx_3_line.line_1.bus_1" "bytes sent" 64869

scalar "knx_3_line.line_1.bus_1" "bytes rcvd" 3529448

Page 36

KNX/EIB Simulation 4 Introduction to OMNeT++

scalar "knx_3_line.line_2.bus_1" "simulated time" 34.756

scalar "knx_3_line.line_2.bus_1" "frames sent" 99

scalar "knx_3_line.line_2.bus_1" "frames rcvd" 3088

scalar "knx_3_line.line_2.bus_1" "bytes sent" 64869

scalar "knx_3_line.line_2.bus_1" "bytes rcvd" 3529448

scalar "knx_3_line.line_3.bus_1" "simulated time" 34.756

[...]

run 2 "knx"

scalar "knx_3_line.line_1.bus_1" "simulated time" 71.926

[...]

Different tools can be used to visualise the gathered data. OMNeT++ provides the following

tools:

Plove can be used to load created .vec files. In an interactive user interface, the vectors can be

narrowed down to examine and individually plot them. However, for larger amounts of vectors

one might want to use external tools to separate the vector data from each other and use them

optionally in other applications for further analysis.

Scalars visualises the generated .sca file in a block diagram and scatter plots. The scatter plot

can be used to conveniently compare data results of different simulation runs. Also here it might

be useful to extract the data with help of tools for further comparison to external applications.

Page 37

5 OMNeT++ Module Design

The simulation of the KNX/EIB network consists of the NED file, various C++ files

representing the modules defined in the OMNeT++ hierarchy and files such as UserSim.txt

that is being used to simulate the user behaviour.

The generated output files are <module_name>.log files that protocol the received data per

KNX/EIB network segment, e.g. bus_1.log. Also the line couplers (LC) and backbone

couplers (BC) protocol their filtering activity in the appropriate <coupler_name>.log files,

e.g. line_backbone_1.log. These files can be used for further analysis after the

simulation run.

To simplify the illustration of connectors in the following descriptions, a graphical

simplification will be made in the illustrations to denote a bidirectional connection between two

modules: the drawing of the incoming connection (connection towards the in gate) and

corresponding outgoing connection (connection from the out gate) will be described as:

Technically still both connections – the in and the out connection from the in and the out

gate - must be defined in the NED file as OMNeT++ is not aware of bidirectional connections.

5.1 Module Overview

The Fig. 5.2 provides a high level overview of the network model, showing the structure of the

network with its backbone line, main lines and lines, coupling devices, devices and the

messages exchanged over the bus.

Page 38

Figure 5.1: Abbreviation of connection when using incoming
and outgoing connections that correspond

KNX/EIB Simulation 5 OMNeT++ Module Design

5.2 Basic C++ Objects

The KNXPacket class provides the functionality that represents a message (or frame) passed on

through the KNX/EIB network on layer 2. This class is generated out of the message definition

outlined in the KNXmsg.msg file using the OMNeT++ tool called opp_msgc.

Page 39

Figure 5.2: OMNeT++ module overview

KNX/EIB Simulation 5 OMNeT++ Module Design

Contents of the KNXmsg.msg file:

message KNXPacket

{

fields:

unsigned char message[23];

unsigned int messagelength;

};

This simple definition reflects the KNX/EIB frame to be transported as an embedded message

in an OMNeT++ message. message is the array that holds the frame content,

messagelength denotes the valid length of the message. The KNXmsg.msg file is

processed before compilation in the following way with OMNeT++:

The KNXmsg.msg file is processed by the opp_msgc compiler which generates the file

KNXmsg_m.cc in C++ code. This file uses standard C++ data types like char, unsigned char,

int, etc. To uniformly use the UINT8 and UINT16 data type, the file is manually processed to

align the data types with the ones used throughout the other C++ code.

The resulting KNXmsg_m.cc file is part of the source files for compilation. The file is the basis

for defining the cMessage embedded object structure in OMNeT++. The cMessage embedded

object's binary data is encapsulated with OMNeT++ encapsulate() method and retrieved

from every KNXstack module which receives a message with OMNeT++ decapsulate()

Page 40

Figure 5.3: KNXmsg.msg processing

KNX/EIB Simulation 5 OMNeT++ Module Design

method. The binary data is loaded with the setMsgFromBin(UINT8 *msg, UINT8

msglength)to the KNXmessage object which provides various methods to access different

elements of the KNX/EIB frame.

Methods of KNXmessage class:

This class contains the get and set methods to get respectively set the object's values. The basic

data type used for many methods are strings as this data type allows easy interaction with the

OMNeT++ runtime environment, e.g. allows inspection and modification of objects and

parameters at runtime. A typical implementation would be that after receiving the OMNeT++

message and setting the object's values with setMsgFromBin(...), the set and get methods

can be used on the message.

KNXmessage(void) : class constructor. Initialises the message content to be empty (which is

not equal to set it to “0” as the KNX/EIB frame structure, empty message content and checksum

must be set correctly. The data length of the KNX/EIB frame is set to 0).

~KNXmessage(void) : class destructor. It has no added functionality.

string msg2hexstring(void) : converts the whole KNX/EIB frame (not only the

contents of the message) from binary values to a hexadecimal string. The string conversion is

useful for runtime output and allows to inspect the OMNeT++ message content when a message

is being transferred within the OMNeT++ simulation environment.

void hexstring2msg(string hexstring) : converts the string to a KNX/EIB frame.

All data elements of a KNX/EIB frame are required and will be converted to a KNXmessage

object. The frame is not checked for consistency, e.g. correct P-field, which allows insertion of

“malformed” frames to the network.

void setMsgFromBin(UINT8 *msg, UINT8 msglength) : copies the binary

information from a pointer to the message. This is being used when e.g. receiving a message

from OMNeT++ simulation to populate the corresponding KNXmessage object with the

content. The P-field is not being recalculated.

void updateChecksum(void) : updates the checksum of the frame. This function is

Page 41

KNX/EIB Simulation 5 OMNeT++ Module Design

invoked by all set_*() functions (except method setMsgFromBin()) to ensure frame

integrity after setting frame values. This function does not calculate a correct checksum, it sets a

predefined value instead, see Section 5.6.

void set_L_CField(UINT8 field) : sets all control field bits of a KNX/EIB frame.

void set_L_CFFrame(UINT8 frametype) : sets the control field value of a repeated

frame. Correct values are FrameNormal and FrameRepeat.

void set_L_SourceAddr(string address) : sets the source address of the frame.

void set_L_TargetAddr(string address) : set the destination address of the

frame. Depending on the format of the address string - “.” of “/” used as separators – the

destination address flag (DAF) will be set accordingly to 0 or 1.

void set_L_Class(UINT8 msg_class) : sets the frame priority of the control field.

Correct values are PrioLow, PrioNormal, PrioSystem and PrioUrgent.

void set_L_DAF(string daf) : sets the destination address flag of the frame to 0 or 1.

Note that the DAF is set automatically when setting the target address depending on its format

string.

void set_L_RouterCounter(UINT8 rc) : sets the router counter bits.

void set_L_LengthField(UINT8 lengthField) : sets the length field of the frame.

void set_L_SDU(string pdu) : sets the SDU (basically the data section of the

KNX/EIB frame) with data – a hexadecimal string - without modifying other frame information.

void setMsgPtr(void * msgptr, unsigned int length) : sets the object's

message pointer and length. This is used to interact with the OMNeT++ objects.

UINT8 get_L_CField(void) : returns the control field of the frame.

UINT8 get_L_CFFrame(void) : returns the frame type of the control field. Values are

FrameNormal and FrameRepeat.

string get_L_SourceAddr(void) : returns the source address of the frame in the

format “x.y.z”

string get_L_TargetAddr(void) : returns the destination address of the frame in the

Page 42

KNX/EIB Simulation 5 OMNeT++ Module Design

format “x.y.z” for individual addresses and format “x/y/z” for group addresses.

UINT8 get_L_Class(void) : returns the priority of the frame (PrioLow,

PrioNormal, PrioSystem and PrioUrgent).

string get_L_DAF(void) : returns the destination address flag value of the frame.

Values are 0 or 1.

UINT8 get_L_RouterCounter(void) : returns the router counter of the frame.

UINT8 get_L_LengthField(void) : returns the length of the frame field, denoting the

size of the data portion of the frame.

string get_L_SDU(void) : returns the data portion of the frame as a hexadecimal string.

UINT8 get_L_MsgLength(void) : returns the message length from the message object.

Contrary to get_L_length_Field() which reads this value from the frame data, this value

is from the object variables. Its purpose is to be able to verify any differences between the

object's and frame's data.

UINT8 * getMessagePtr(void) : returns a pointer to the message.

void print(ostream &os) : prints a human readable output of the frame's key values to

the OMNeT++ standard output stream.

5.3 Basic Modules

The following modules are defined in OMNeT++ and form the basis of the simulation of the

KNX/EIB network. First the simple modules are presented, followed by a description of their

interaction and inter-linkage.

Every OMNeT++ module has a corresponding C++ implementation file which defines the

functionality of the module. At least the following methods must be defined in the module's

C++ sources:

initialize(): initialises the module. It is a common place to read the parameters defined

in the NED file to determine the object's functionality.

handleMessage(): this method is called every time the module receives a message on any

incoming gate. The method needs to check from which gate the message is being received if

Page 43

KNX/EIB Simulation 5 OMNeT++ Module Design

there is more than one incoming gate defined. Depending on the incoming gate, the function

initiates appropriate calls to handle the message.

Optionally, the module can implement the finish() function. This function is called at the

end of the simulation run and should terminate the object properly from a simulation point of

view. It is not the destructor of the module. Within finish() certain statistical values

collected during the simulation can be written with the recordScalar() function, log files

can be finalised and closed.

5.3.1 KNX/EIB Device's Network Stack – KNXstack

The KNXstack resembles the part of a KNX/EIB device that covers the communication layers 2

to 7. All communication activity is handed in the KNXstack implementation.

The KNXstack in the NED file is defined as:

simple KNXstack

parameters:

address: string,

table:string;

gates:

in: in_bus;

out: out_bus;

in: in_appl;

out: out_appl;

endsimple

The KNXstack requires 2 parameters:

● address: sets the individual address of the device. The address must be defined in the

individual address notation format, e.g. 1.2.6 which addresses the area 1, line 2, device

6. Each device requires a unique individual address.

● table: the association table of the application layer sets the relation between

communication objects and group addresses. The contents of the application layer's

association table is shared via the KNXdev module with the KNXstack module. A valid

Page 44

KNX/EIB Simulation 5 OMNeT++ Module Design

entry is e.g. "1/1/2=lightA;1/2/3=lightB". More details are outlined

describing KNXappl in Section 5.3.2

Once a received message has been successfully decoded as a valid KNX/EIB frame, the

message is verified if it is addressed to the receiving stack and the corresponding device as

outlined later. Messages that are not addressed to the receiving stack are ignored and deleted

from the system. This corresponds to the behaviour of a KNX/EIB device that listens to the

medium, reads the frame and its addressing information and – when not being addressed –

ignores the received frame.

The KNXstack sends a KNX/EIB frame to the KNXbus for transmission. If the bus is currently

busy by another frame, the KNXbus sends back a busy indication (see collisions remark in the

KNXbus Section 5.3.4). When receiving the busy signal, the KNXstack retries to send the frame

after a defined waiting period.

5.3.2 KNX/EIB Device's Application – KNXappl

KNXappl is the application module of a KNX/EIB device. It communicates with the network

stack KNXstack via messages. OMNeT++ messages between KNXstack and KNXappl are not

binary encoded and encapsulated like the communication over the KNXbus but are sent in

strings that contain the message content hexadecimal encoded with the OMNeT++ message for

easier message tracking during the simulation.

The structure is very similar to the KNXstack simple module. It communicates with the stack

with a bidirectional gate and the corresponding connection. More details of this relationship are

described at the KNXdev module.

Page 45

Figure 5.4: KNXstack

KNX/EIB Simulation 5 OMNeT++ Module Design

The KNXappl in the NED file is defined as:

simple KNXappl

parameters:

table: string,

application: string;

gates:

in: in_appl, in_user;

out: out_appl;

endsimple

KNXappl requires 2 parameters, which are outlined by an example:

table = "1/1/2=lightA;0/0/0=lightALL", application = "switch1";

● table: this is the association table of the application layer. It is key to the configuration

of the device as it defines at which addresses the device is reacting as a communication

partner and which actions are associated with the different group addresses. The

structure of the association table as defined in Section 2.2.6.1 is reflected in the table

parameter in the following format: “group address=application object”. Multiple entries

are separated by “;”.

● application: is the application ID which is required by UserSim to send the application

the correct simulation triggers. The application ID together with the application object

ID is used to identify the corresponding application object. Application is recommended

to be unique within the network. If a specific application ID is assigned multiple times,

these applications (or their associated devices respectively) will receive the same set of

simulation event triggers. For further information how simulation events are triggered,

see UserSim Section 5.3.6.

Page 46

KNX/EIB Simulation 5 OMNeT++ Module Design

Upon receipt of a trigger message from UserSim via the gate in_user, KNXappl starts sending a

message to the stack with the appropriate group address that is looked up from the association

table.

Depending on the application parameter, different functionality is defined in KNXappl.

Currently the functionality of a light, switch and an ACU (see Section 6.1) is defined.

5.3.3 KNX/EIB Device – KNXdev

KNXdev resembles a KNX/EIB device. It is a compound module of OMNeT++ that consists of

two simple modules: KNXstack and KNXappl. Both communicate via the appropriate gates and

connections with each other. KNXdev exchanges frames with the KNXbus on one hand and

decoded frames with KNXappl on the other hand. UserSim gives “instructions” to initiate

actions on the device that are passed to the KNXappl module.

The KNXdev in the NED file is defined as:

module KNXdev

parameters:

// address -> forwarder for stack address

// application -> forwarder for application type

address: string,

table: string,

application: string;

gates:

in: in_bus, in_user;

out: out_bus;

submodules:

Page 47

Figure 5.5: KNXappl

KNX/EIB Simulation 5 OMNeT++ Module Design

stack: KNXstack;

parameters:

address = address,

table = table;

display: "p=55,125;i=block/layer,cyan";

appl: KNXappl;

parameters:

table = table,

application = application;

display: "p=55,55;i=block/process,grey";

gui: KNXappl_gui;

parameters:

address = address,

application = application;

display: "p=90,45;b=20,20,rect";

connections:

// module gates to external

out_bus <-- stack.out_bus display "m=s";

in_bus --> stack.in_bus display "m=s";

in_user --> appl.in_user;

// internal module gates

stack.out_appl --> appl.in_appl display "m=n";

stack.in_appl <-- appl.out_appl display "m=n";

display: "b=90,170;i=block/process,black";

endmodule

Note that the gates of KNXappl and KNXstack transparently extend their gates to KNXdev and

that these gates are used by KNXdev as incoming and bidirectional gates for communicating

with other modules: out_bus <-- stack.out_bus, in_bus --> stack.in_bus

and in_user --> appl.in_user are the respective definitions. Gate names can be

identical, they are specified uniquely with their <module>.<gate> name.

Page 48

KNX/EIB Simulation 5 OMNeT++ Module Design

The inner structure of KNXdev can be illustrated as below:

The structure is also resembled in the OMNeT++ application's graphical representation of the

modules when loading the simulation model:

Page 49

Figure 5.6: KNXdev

Figure 5.7:KNXdev detailed

KNX/EIB Simulation 5 OMNeT++ Module Design

The OMNeT++ screenshot shows the same structure as the NED file and Figure 5.7. The

objects in OMNeT++ can be opened and displayed in more detail – up to simple module level.

Module parameters that are set or defined in the NED file can be viewed and also modified at

runtime by opening the module properties. There is one additional module gui of type

KNXappl_gui which is described below in Section 5.3.7.1.

During the simulation, parameters are also used as a means to exchange data between modules

that share a common parent module. The dynamically created parameter group_target_addrs is

a list of addresses that are target for the application layer. The KNXdev parameter is added from

within the KNXappl module at runtime and its value is set according to the data that is read by

the KNXappl at initialisation. This enables the KNXstack simple module to use the same set of

parameters for deciding whether a packet is addressed for this device or not.

5.3.4 KNX/EIB Bus – KNXbus

The simple module KNXbus is defined in the NED file is as:

simple KNXbus

parameters:

txRate: string;

gates:

in: in[];

Page 50

Figure 5.8:KNXdev OMNeT++ representation

KNX/EIB Simulation 5 OMNeT++ Module Design

out: out[];

endsimple

The parameter txRate sets the bus transfer speed measured in bits per second. When left empty

(txRate = ""), the default value of 9600 bits/second is set.

The KNXbus is an artificially created bus that connects all devices of a KNX/EIB line together.

Although the twisted pair implementation of a KNX/EIB network does not necessarily resemble

the topology of a bus, it can be abstracted to one considering that every device on the physical

line needs to be connected to the twisted pair cable. Branches in the cable can be disregarded to

a certain extent when abstracting the model.

The KNXbus features an unlimited number of input gates in[i] and output gates out[i] that

are dynamically created when defining the devices on the bus in the NED file. From a

simulation point of view, the bus is implemented as a hub that connects all defined devices,

including the line coupling devices. The gates in OMNeT++ are unidirectional which requires

that a connection to the bus needs two components defined: an in gate and an out gate that

represent one connection. An OMNeT++ message that is being received on a specific input gate

i is being forwarded to all output gates except the output gate i that corresponds to the input gate

i. Thus, all devices connected to the bus are receiving the message except the sending one which

reflects the behaviour in a real KNX/EIB line.

Not all events that might happen in reality can be simulated with this bus abstraction. Events

like a broken twisted pair connection, a line segment that imposes a higher error rate or an

increased message passing delay cannot be easily simulated. However, the bus abstraction

allows that specific parameters can be applied to all connected links.

To create a certain amount of gates, the gate must be defined with the increment operator ++:

Page 51

Figure 5.9: KNXbus

KNX/EIB Simulation 5 OMNeT++ Module Design

module KNX_line

parameters:

[...]

gates:

[...]

submodules:

bus_1: KNXbus;

[...]

dev_1_1: KNXdev;

[...]

dev_1_2: KNXdev;

[...]

[...]

connections:

dev_1_1.out_bus --> bus_1.in++;

dev_1_1.in_bus <-- bus_1.out++;

dev_1_2.out_bus --> bus_1.in++;

dev_1_2.in_bus <-- bus_1.out++;

[...]

endmodule

In the connections section the statement dev_1_1.out_bus --> bus_1.in++

assigns a connection from the outgoing gate of device dev_1_1 named out_bus to the

incoming gate of device bus_1 named in. in++ denotes that the number of available gates of

in are incremented by one, the symbolised arrow denoted by --> specifies the direction of the

connection, in this case from out_bus to in. The corresponding connection in the opposite

direction is declared one line below. The gate names are accordingly changed from in to out,

the connection direction arrow changed from --> to <-- to signal that the message flow goes

in the other direction.

One important function of KNXbus is to collect data on the bus data transfer capacity. When

receiving a frame, the bus load is calculated according to the following scheme:

Page 52

KNX/EIB Simulation 5 OMNeT++ Module Design

Figure 5.10 shows two frames within the monitoring interval and one frame that is in between

two interval boundaries. For the two frames the time busy on the bus will be added to the bus'

network load calculation. As shown below, the frame that crosses the interval boundary will be

split into two parts (ia and ib) which account in the respective intervals for bus load calculation.

Note that the timestamp parameter for the function addStats(simtime_t timestamp,

UINT16 packetlength, UINT16 collision) expresses the start time of the frame.

The simulated load is calculated by simulating the

● frame transmission time

● time lag between frame transmission and acknowledgement frame and the bus idle time

● acknowledgement frame transmission time

where the time lag and the acknowledgement frame is already added when the function is

called:

addStats(now, msg_length + frame_overhead_bits, 0);

Page 53

Figure 5.10: KNXbus network load calculation

Figure 5.11: KNXbus network split load

KNX/EIB Simulation 5 OMNeT++ Module Design

The parameters msg_length and frame_overhead_bits are in unit bits.

The calculation is performed as: (excerpt from the code segment)

// total_packets: for object parameter display [#frames]

// total_packet_length: for object parameter display [bits]

// txRate: transfer rate parameter, set per bus [bits/second]

// stat_interval: monitoring interval for bus utilisation (=1s)

// stat_last_interval: last interval that has been

// recorded [timestamp in seconds]

// last_packetlength: sum of packetlength in last

// interval [bits]

packettime = ((double) packetlength) / ((double) txRate);

// time to transmit the packet

while ((stat_last_interval + stat_interval) <= now)

{ // one or more full intervals have passed. Update.

writeStats(stat_last_interval, stat_last_busytime,

 last_collisions);

stat_last_busytime = 0.0f;

stat_load = 0.0f;

last_collisions = 0;

stat_last_interval += stat_interval;

}

if ((stat_last_interval + stat_interval) >= (now + packettime))

{ // the interval is still the current one

stat_last_busytime += packettime;

// add packettime to busy

last_collisions += collision;

// add collision to collisions for interval

}

if ((stat_last_interval + stat_interval) < (now + packettime))

{ // the last interval is finished and needs to be recorded

Page 54

KNX/EIB Simulation 5 OMNeT++ Module Design

double t1, t2;

t1 = (stat_last_interval + stat_interval) – now;

// 1st packettime part before interval boundary

t2 = packettime – t1;

// 2nd packettime part after interval boundary

stat_last_busytime += t1;

// add to busytime for utilisation

stat_load = stat_last_busytime / stat_interval;

// compute utilisation [%] for interval

writeStats(stat_last_interval, stat_load, last_collisions);

stat_last_busytime = t2;

// new stat_load is remainder of packet

stat_last_interval += stat_interval;

// set new stat_last_interval timestamp

}

In parallel, also the collisions on the bus are registered. The term collision needs to be

interpreted as an indication that the bus is busy (occupied by another device on the same bus)

when a device tries to send a frame over the bus. KNXbus allocates the bus during the

transmission time of a packet, calculating the transmission time depending on the bus transfer

rate txRate and the packet length (including the KNX specific idle times and

acknowledgements) and blocking the bus for this time period. If a device wants to send data

during the bus is blocked, the KNXbus sends back a collision indication to the sending device's

KNXstack that indicates that the bus is busy. It is calculated as: (excerpt from the code segment)

// check for collision on the bus

// the bus is busy in the interval

// [simtime .. simtime+transfer_time+wait_time+ack_time].

// check if the bus is free

if (now < coll_last_busy_timestamp)

{ // BUS BUSY

// send a message back to receiving port to

// indicate collision to device

Page 55

KNX/EIB Simulation 5 OMNeT++ Module Design

cMessage *msg_coll;

msg_coll = new cMessage("COLL");

msg_coll->setLength(0); // status message, no length

send(msg_coll, "out", recv_gateindex);

addStats(now, 0, 1); // add the collision to stats

}

else

{ // BUS FREE

addStats(now, (UINT16)msg->length() + frame_overhead_bits,

 0); // add package to stats [bits]

// add the overhead from the frame as busy bus time

coll_last_busy_timestamp = now + ((double)(msg->length() +

 frame_overhead_bits)) / ((double)txRate);

// calculate message delay for forwarding to out ports

// due to frame length

// delay = message length [bits] / transfer speed [bits/s]

delayTime = ((double)(msg->length())) / ((double)txRate);

// send message to all out ports but receiving one

for (int g = 0; g < this->gateSize("in"); g++)

{

if (g != recv_gateindex)

{ // copy of message to be sent to other port

cMessage *msg_cpy;

msg_cpy = (cMessage *) msg->dup();

sendDelayed(msg_cpy, delayTime, "out", g);

}

}

}

It is the device's responsibility to act upon this signal and resend the packet. The collision events

are also measured and are indicating the load on the bus, representing the pending transmissions

of devices. A corresponding call of the function addStats() to record such an event is done

by setting the collision parameter to 1:

Page 56

KNX/EIB Simulation 5 OMNeT++ Module Design

addStats(now, 0, 1);

The default transmission rate for the KNXbus is assumed to be 9600 bits/second. This can be

changed by applying the txRate parameter. Changing the bus transmission rate directly affects

the bus load, allowing simulation of a high speed backbone bus and measure its load during the

simulation. Also the transmission delay – the time from receiving the frame at one of the in

gates and forwarding it to out gates – is calculated depending on the transmission rate txRate

and the length of the frame. The forwarded frames are delayed by the transmission time and

scheduled in the OMNeT++ event queue.

In the simulation, parameters are also used as a means to feed back data of the module to the

user. The parameter counters is created dynamically at runtime (thus it is not represented in the

NED file) and shows the current statistics for packets transferred over the bus. The parameter

can be watched from within the simulation run by opening the corresponding OMNeT++

object's property.

5.3.5 KNX/EIB Line Coupler - KNXlinecoupler

The KNXlinecoupler module simulates the functionality of a KNX/EIB line coupling device.

Typically it has two bidirectional ports: one towards the line, one towards the backbone.

The KNXlinecoupler in the NED file is defined as:

simple KNXlinecoupler

Page 57

Figure 5.12: OMNeT++ screenshot showing counters runtime value

KNX/EIB Simulation 5 OMNeT++ Module Design

parameters:

address: string,

routing: string;

gates:

in: in_line, in_backbone;

out: out_line, out_backbone;

endsimple

The KNXlinecoupler requires 2 parameters:

● address: the individual KNX/EIB address of the line coupler device

● routing: the routing table. It defines which group addresses will be passed on from the

line to the backbone and from the backbone to the line. A sample entry for the routing

parameter would be: "1/3/5;2/1/4" which is interpreted as the group addresses

1/3/5 and 2/1/4 will be routed through the coupling device.

Depending of the frame's destination address the frame will be passed to the backbone by the

backbone coupler or the frame will be discarded and thus be kept within the main line attached.

The functionality of the line coupler is identical to the backbone coupler. The individual address

of the coupling device determines its exact behaviour. A device address of x.0.0 implies that the

device is being located at the backbone line – the line coupler acts as a backbone coupler. A

device address of x.y.0 locates the coupling device to be on a main line, acting as a line coupler.

The individual address of a coupling device needs always to be set to 0.

5.3.6 Device's User Simulation – UserSim

The simple module UserSim does not represent any KNX/EIB specific function. Its purpose is

Page 58

Figure 5.13: KNXlinecoupler

KNX/EIB Simulation 5 OMNeT++ Module Design

to simulate user interaction with the various KNX/EIB devices defined in the simulation. A

defined OMNeT++ network is a set of modules, sub-modules and connections between these

modules. To actually simulate events, messages must be created at the start of the simulation. In

fact a simulation ends when no more messages are in the queue to be processed by OMNeT++.

The UserSim in the NED file is defined as:

simple UserSim

gates:

out: out[];

endsimple

UserSim is a means to initialise those messages used for the simulation. It parses the file

UserSim.txt when the module is initialised by OMNeT++ with the initialize()

function. After parsing the file, OMNeT++ has a set of messages in its event queue. During the

simulation, additional messages are created dynamically by modules like KNXbus, KNXstack

and others.

The NED definition shows that UserSim has only output gates. These are connected to the

various KNXdev modules. Similar to KNXbus the out[] gates are created with the increment

operator ++ when designing the NED file as shown in the example:

dev_1_1.in_user <-- user.out++.

The UserSim is connected to every KNXdev and sends events to the application module

KNXappl of the device.

Page 59

Figure 5.14: UserSim

KNX/EIB Simulation 5 OMNeT++ Module Design

The connection UserSim to KNXdev is ideally across line and backbone line boundaries.

Technically, the lines and backbone lines do have a separate instance of UserSim defined but

logically connect all to one module, sharing one configuration.

The structure of the UserSim.txt file is outlined in the following example:

0/0.01/80, switch2, lightB

1, switch2, lightB:00

2, switch2, lightB:01

3.1, switch2, lightB:00

4, switch2, lightB:01

5.1, switch2, lightB:00

6, switch2, lightB:01

0/~1.5/60, switch5, lightD:02

The format of a line is: <timestamp[s][/interval[s]/count[#]]>,<application>,<data>. Every line

describes either a single event or a series of events that will be sent to KNXdev modules. The

events are scheduled in the event queue of OMNeT++.

The parameters timestamp and interval are in seconds, count is a number, application and data

are strings. The detailed parameters are:

● timestamp: is the simulation time in seconds at which the event will be triggered. Every

simulation run starts with simulation time 0.

● interval: for count > 0 the event will be triggered again after interval seconds for count

times. Note that a point has to be used to describe the decimal sign, e.g. 0.5. There will

be a uniformly distributed spread s defined around timestamp Tn within which the event

Page 60

Figure 5.15:UserSim linked to multiple KNXdevs

KNX/EIB Simulation 5 OMNeT++ Module Design

will be triggered. The modifier “~” can be used to broaden the spread s even more, e.g.

~1.5. The spread s is set depending on interval's t value and the timestamp Tn, the

triggered event is uniformly distributed within that interval.

The behaviour is illustrated in Fig. 5.16 showing the interval t, the spread s, the

timestamp T and count x:

● count: denotes how often an event will be repeated.

● application: describes the application of the KNXdev module as defined in the NED

file. An example is “switchX” which describes the KNXdev module to work as a light

switch. To differentiate the various switches in the simulation this switch has the (not

necessarily unique) description “switchX”. If more than one KNXdev module has the

same application description, the event will be set for all such modules.

● data: data that will be passed to the application. It consists of the communication object

ID and optionally, separated with a “:” character, the application data. For example the

entry “lightD:02” addresses communication object “lightD” and sets the application

data to the hexadecimal value 02. The application addressed will look up the

communication object and create a message with the respective target group address

and use the provided application data as the frame's data field.

The example of the UserSim.txt text file from above shows line 0/0.01/80,

switch2, lightB which will be interpreted as follows: starting at simulation time 0 (at the

Page 61

Figure 5.16: UserSim timings

KNX/EIB Simulation 5 OMNeT++ Module Design

beginning of the simulation) the parameter “lightB” will be sent to all devices configured as

“switch2”. This will be repeated every 0.01 second (with a light variation as outlined in Fig.

5.16) for 80 times. The scheduled events that will be set in the OMNeT++ event queue are

timed as:

time[i] = 0 + i*0.01 (+ spreading) where i = [0..79].

The extract from the code sequence in UserSim that schedules the events is:

for (unsigned int i=0; i <= repeat_time; i++)

{ // "every_time" denotes the interval

double limit_lo = 0.0f;

double limit_hi = 0.0f;

double sched_time_2 = 0.0f;

if (modifier) // ~ modifier used

{

limit_lo = sched_time + ((double)i * every_time) -

 0.4*every_time;

limit_hi = sched_time + ((double)i * every_time) +

 0.4*every_time;

}

else

{

limit_lo = sched_time + ((double)i * every_time) -

 0.1*every_time;

limit_hi = sched_time + ((double)i * every_time) +

 0.1*every_time;

}

if (limit_lo < 0.0f) limit_lo = 0.0f; // boundary check

sched_time_2 = uniform(limit_lo, limit_hi);

msg = new cMessage((cMessage) sched_appl_par.c_str());

sendDelayed(msg, sched_time_2, "out", getGate(sched_appl));

}

Page 62

KNX/EIB Simulation 5 OMNeT++ Module Design

The line 1, switch2, lightB will be interpreted as a one time event that will be

scheduled at simulation time 1s with no repeating pattern.

Both, the one shot events and the repeated events allow a set of actions on the KNX/EIB

network. Working with the same set of parameters in the UserSim.txt file allows to run

identical simulations with comparable results. Note that when using the modifier “~”, the timed

events will be set within a larger time interval rather than one exact point in time. When

introducing new functionality into the KNX/EIB network, the additionally scheduled events can

easily be added to the UserSim.txt file. Due to the nature of how events are scheduled in

OMNeT++, there is no need to put the events in the UserSim.txt file into any sorted or

structured timeline.

5.3.7 Helper modules

Several modules are defined that do not have an immediate counterpart in KNX/EIB. They are

being used for helping with visual representations, modelling the topology or by helping in

standardising the general structure and capture the situations in which otherwise exceptions to

the design of other modules would be necessary.

5.3.7.1 KNXappl_gui

The simple module KNXappl_gui is a helper module for the visual representation of KNXdev

and KNXappl. It is implemented for a small subset of applications and allows to represent the

state of an application. As an example, a light that is turned on or off can be represented by a

lightened or darkened box. KNXappl_gui sets the specified icon according to the application

state.

The definition of KNXappl_gui in the NED file:

simple KNXappl_gui

parameters:

address: string,

application: string;

endsimple

Page 63

KNX/EIB Simulation 5 OMNeT++ Module Design

No gates are required to communicate with the module. Instead the module is addressing other

modules via OMNeT++'s parentModule() function, which allows access to parameters and

functions of the objects' parent module, directly.

5.3.7.2 KNXterminator

The KNX/EIB topology does not require a network termination. Any device on the network can

be the last device on the network. However, for some situations, e.g. when designing a single

line network to be simulated it might be required or favourable to terminate a bus or other

components. Some modules are defined with a fixed set of gates (e.g. line couplers) that – by

OMNeT++ definition – require to be connected to another module's gate. The KNXterminator

module can satisfy the formal requirement of connecting to the gates. It will receive the packets

from the gate and discard them.

The KNXterminator in the NED file is defined as:

simple KNXterminator

gates:

in: in_term;

out: out_term;

endsimple

A typical example for the usage of KNXterminator is when simulating or debugging a small bus

with a line coupler attached. When creating a line, the gates of the line coupler are defined as to

connect to a backbone to form a larger network. Terminating the KNXlinecoupler with the

module KNXterminator allows simulating the bus and routing functions without connecting it to

a backbone bus.

Page 64

Figure 5.17: KNXterminator

KNX/EIB Simulation 5 OMNeT++ Module Design

5.4 KNX/EIB Lines

A KNX/EIB line is defined as a compound module in the NED file which consists of a KNXbus

and typically of one or multiple KNXdev modules and a UserSim connected to the KNXdev

modules:

module KNX_line_1

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Coupler (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1: KNXbus;

parameters:

txRate = "9600";

dev_1_1: KNXdev;

parameters:

address = "1.1.1",

table = "1/1/2=lightA;0/0/0=lightALL",

application = "switch1";

dev_1_2: KNXdev;

parameters:

address = "1.1.2",

Page 65

Figure 5.18: KNXterminator connected to KNXlinecoupler

KNX/EIB Simulation 5 OMNeT++ Module Design

table = "1/1/2=light;1/1/7=light",

application = "light1";

dev_1_3: KNXdev;

parameters:

address = "1.1.3",

table = "1/1/7=light",

application = "light2";

dev_1_4: KNXdev;

parameters:

address = "1.1.4",

table = "1/1/7=lightB",

application = "switch2";

user: UserSim;

connections:

dev_1_1.out_bus --> bus_1.in++;

dev_1_1.in_bus <-- bus_1.out++;

dev_1_2.out_bus --> bus_1.in++;

dev_1_2.in_bus <-- bus_1.out++;

dev_1_3.out_bus --> bus_1.in++;

dev_1_3.in_bus <-- bus_1.out++;

dev_1_4.out_bus --> bus_1.in++;

dev_1_4.in_bus <-- bus_1.out++;

// Line Coupler connection

line_out++ <-- bus_1.out++;

line_in++ --> bus_1.in++;

//User simulation layer

dev_1_1.in_user <-- user.out++;

dev_1_2.in_user <-- user.out++;

dev_1_3.in_user <-- user.out++;

dev_1_4.in_user <-- user.out++;

endmodule

The example describes a line with 4 devices, dev_1_1 to dev_1_4. Each of the devices needs

Page 66

KNX/EIB Simulation 5 OMNeT++ Module Design

to be configured with the appropriate set of parameters address, table and application as defined

in their respective definitions. The defined gate line_in[] and line_out[] is used to

connect to the line coupler. Although a line only connects to a single line coupler, the gate is set

as to be of variable size due to enhanced flexibility when using the same definition to describe a

main line or a backbone line. A main line and a backbone line will connect to multiple line

couplers. The parameter numPorts describes how many line couplers are being used in the

respective segment where numPorts = 0 describes a connection to one line coupler. In the

connections section all devices need to get connected to the bus, the line couplers are

transparently connected to the gate of the line and the devices are connected to the UserSim

module.

Page 67

Figure 5.19: KNX/EIB line module structure

KNX/EIB Simulation 5 OMNeT++ Module Design

The representation of the KNX/EIB line in OMNeT++:

5.5 KNX/EIB Network

Similar to KNX/EIB line, the KNX/EIB network is only defined in NED language:

module KNX_network

submodules:

line_1: KNX_line_1;

parameters:

numPorts = 1;

lc_1: KNXlinecoupler;

parameters:

address = "1.1.0", routing = "1/1/2";

line_2: KNX_line_2;

parameters:

numPorts = 1;

lc_2: KNXlinecoupler;

parameters:

address = "1.2.0", routing="1/1/7";

Page 68

Figure 5.20: OMNeT++ screenshot of a KNX/EIB line

KNX/EIB Simulation 5 OMNeT++ Module Design

line_3: KNX_line_3;

parameters:

numPorts = 1;

lc_3: KNXlinecoupler;

parameters:

address = "1.3.0", routing="";

line_backbone_1: KNX_backbone_1;

parameters:

numPorts = 3;

connections:

// Connect line couplers to the lines

line_1.line_in++ <-- lc_1.out_line;

line_1.line_out++ --> lc_1.in_line;

line_2.line_in++ <-- lc_2.out_line;

line_2.line_out++ --> lc_2.in_line;

line_3.line_in++ <-- lc_3.out_line;

line_3.line_out++ --> lc_3.in_line;

// Connect line couplers to backbone

lc_1.in_backbone <-- line_backbone_1.line_out++;

lc_1.out_backbone --> line_backbone_1.line_in++;

lc_2.in_backbone <-- line_backbone_1.line_out++;

lc_2.out_backbone --> line_backbone_1.line_in++;

lc_3.in_backbone <-- line_backbone_1.line_out++;

lc_3.out_backbone --> line_backbone_1.line_in++;

endmodule

Page 69

KNX/EIB Simulation 5 OMNeT++ Module Design

The complete KNX/EIB network consists of 3 lines line_X and the corresponding 3 line

couplers lc_X and the backbone line that connects the 3 lines together. Note that as described

in Section 5.4 the numPorts parameter needs to be set correctly to the number of line couplers a

line connects to. In the connections section the lines are connected with their line couplers

and all line couplers are connected to the backbone.

5.6 What needs to be simulated

The simulation shall cover the following KNX/EIB characteristics:

● KNX/EIB lines and devices are resembling a real-word scenario and implement

functionality that represents existing applications (switches, light actuators) and

applications that are subject to current research.

● The KNX/EIB network must be freely designable within the KNX/EIB specifications to

build test scenarios that range from a simple single line to a multi-area network that

resembles a building automation network. Devices can be added to the lines as well as

to the main lines and backbone lines. The line couplers and backbone couplers can be

either configured as non-routing (with an empty routing table) or configured with

routing functionality.

● KNX/EIB frames are routed through the network depending on the routing tables.

● The generated KNX/EIB layer 2 frame's parameters and data are set at the sender's side

and are interpreted correctly at the receiver side.

● The load on a KNX/EIB line can be measured over time by observing the generated

Page 70

Figure 5.21: KNX/EIB backbone with
attached line couplers and corresponding lines

KNX/EIB Simulation 5 OMNeT++ Module Design

frames on the bus.

● The routing function of the line couplers and backbone couplers can be monitored to

investigate the network behaviour.

● The KNX/EIB devices can be activated by means from outside the network to trigger

device activity and e.g. simulate a user interacting with the device. The user simulation

can trigger events on

● a one-time basis or

● by setting a time interval and repeat count, where, optionally, an exact time or a

broader time interval can be set.

● Application data can be parameterised to be sent to the device to trigger different device

application functionality.

Not all protocol details of KNX/EIB will be covered by the simulation. There are some

limitations on the implementation of the simulation of the KNX/EIB protocol:

● Acknowledgement frames are not sent back to the sender. Instead the time the

acknowledgement frame is consuming the bus is considered in the bus load

calculations. This is not necessarily a limitation as KNX/EIB is very strict in the timing

on sending back acknowledgement frames.

● Checksums for frames are not being calculated with their real checksum. Instead a

standard value is set for the checksum value when the member function is called.

● When a device sends a frame, it will receive a busy signal from the bus if the bus is

currently occupied. The device will then retry to send the frame after a fixed waiting

period of 125 bits time.

Page 71

6 Purpose of the Simulation Model

6.1 EIBsec Protocol Extension

Building the structure of the OMNeT++ model allows to run simulations of a KNX/EIB based

network, measure the load of KNX/EIB lines, measure the throughput at the line couplers and

bus couplers and conclude on the performance behaviour of such a network.

As mentioned in the introductory chapters, KNX/EIB does not feature a secure transmission of

frames in regard to data confidentiality, data integrity or data freshness, where, shortly

described,

● data confidentiality describes the avoidance of disclosure of confidential information,

● data integrity means the prevention of sending data by unauthorised devices and

detection of sending modified data and

● data freshness guarantees that the data sent by a device is valid at the current point in

time, preventing the re-insertion of data at a later point in time.

EIBsec [03, 19], a security model to enhance KNX/EIB building automation systems, has been

proposed which enhances KNX/EIB data communication in the security aspects mentioned

above. It introduces an Advanced Coupler Unit (ACU) which is contained in each network

segment that features secure communication. ACUs replace the standard KNX/EIB line

couplers or backbone couplers or are realised as additional stand-alone devices.

The OMNeT++ model will be used to investigate how much additional traffic is being

introduced to the data communication when implementing secure KNX/EIB lines. Causes for

Page 72

Figure 6.1: Secure line, mixed line and insecure line

KNX/EIB Simulation 6 Purpose of the Simulation Model

additional traffic are:

● KNX/EIB frames that utilise the maximum frame size for secure communication,

● traffic introduced by key management, i.e. key revocation from the ACU to the devices,

but also

● management communication during the start-up phase of the network increases because

of the key distribution mechanism.

Specifically the key revocation mechanism [03] is implemented in OMNeT++. The protocol can

be outlined as:

The ACU key server sends a key revocation message A_Group_Invalidate to a group address.

The devices individually contact the ACU to request the new group key and group counter value

by sending an A_Join_Group_Request to the ACU. The ACU is responding with 4 frames

containing the high and low value of the group key (A_Join_Group_Response) and the high and

low value of the initial group counter value (A_Group_Resync_Response).

The means available to measure KNX/EIB bus load (see KNXbus Section 5.3.4) will be used to

compare the network load of insecure and secure lines. The following topics will be measured

by the simulation model:

● The additional network load due to secure communication,

● the additional network traffic caused by the ACU's key management when operating the

network communication.

Page 73

Figure 6.2: ACU key revocation

KNX/EIB Simulation 6 Purpose of the Simulation Model

The expected results should show an increased network traffic at the model that has the EIBsec

protocol extension applied. As a second data set we monitor the attempt to write to the bus

when the bus is busy. The number of busy waits when accessing the bus is also a good indicator

on the load of the network. The results of both simulation runs – classic KNX/EIB and

KNX/EIB with EIBsec - are compared to each other and the overhead traffic will be shown.

6.2 Configuring the Simulation

For the intended simulation a large scale network needs to be defined to measure the network

load on the segments under different conditions and configurations.

The defined network consists of 10 devices per line, 4 lines per main line and 2 main lines,

connected via a backbone line. This results in 80 devices which will be configured with 3

KNX/EIB groups per line with 5-10 members per group.

Note that the devices need to be configured individually, similar to the configuration done when

installing a real KNX/EIB network. A tool could be created that supports the automatic creation

of the framework of the NED file but details like the KNX/EIB individual addresses, group

addresses and application association tables need to be configured on a per-device basis.

Page 74

Figure 6.3: The test network

KNX/EIB Simulation 6 Purpose of the Simulation Model

To simulate some network activity, traffic will be induced via the UserSim module. By

configuring the UserSim's configuration file, devices will put constant load on the network that

is

● bound to the line where the communication is being initiated, not passing the line

coupler,

● bound to the main line so frames traverse through the line couplers but will not pass the

backbone couplers,

● traversing the backbone line to its destination on other main lines, traversing line

couplers and backbone couplers,

● broadcasted to all devices, thus being distributed throughout the whole network.

To gather representative data the network must be loaded to a certain extent. The load that is

imposed should be high enough to be recognised in the measurements but not over-utilising the

bus. For sure a few simulated activations of a light switch will not load the bus, even if 20

switches are present on the line. The UserSim needs to cover also periodically talking devices

that communicate regularly like e.g. a temperature sensor.

Some lines will be configured to have a more constant load on the bus, other lines will be

stressed with transmission peaks where the peaks can be sourced by either a single or multiple

devices. Looking at the configuration possibilities, the constant load is easy to apply as only a

single entry in UserSim allows constant load defines: 0/0.1/100 puts every 0.1 seconds a

frame on the bus. 100 frames will be created, resulting in a bus that will be loaded with frames

for 10 seconds. To increase the network load, simply the parameter interval needs to be adjusted

to a shorter time frequency, e.g. 0.05. This doubles the creation of frames. To load the bus for a

longer period of time the repeat parameter can be increased. The total time during which

packets are being created is interval * repeat. To run a simulation for 15 minutes, the

UserSim.txt entries look like:

0/1.0/900; switch1; lightA

To stress the network with transmission peaks, the following entries can be used, also

considering 90 seconds of simulation time for a single device:

0/0.1/300 ; switch1; lightA // 30 seconds load

Page 75

KNX/EIB Simulation 6 Purpose of the Simulation Model

120/0.05/240 ; switch1; lightA // 12 seconds high load

240/0.025/240; switch1; lightA // 6 seconds peak load

120/0.05/240 ; switch1; lightA // 12 seconds high load

600/0.1/300 ; switch1; lightA // 30 seconds load

The line segments will measure their network load by using the KNXbus functionality. Each

KNXbus tracks its load in the OMNeT++ data file omnet.vec collectively (which contains all

bus data) and in <bus_name>.log and <bus_name>.csv text files individually. The

.log file allows for easier investigation on the bus activities and the .csv file allows easier

data representation with external programs as it contains the bus load pre-processed as comma

separated values.

6.3 Simulation Test Cases

To test the behaviour of the KNX/EIB network, 3 test cases are set up:

● insecure communication: this represents a traditional KNX/EIB network with devices

that communicate without encryption and without a key server,

● secure communication with line ACUs: each KNX/EIB line features an ACU serving as

a key server. The devices communicate securely by encrypting their messages. The key

server will revoke the encryption key for the devices on the same line and handle the

requests of those devices for requesting new keys.

● secure communication with central ACU: one central key server is placed on the

backbone line. The devices communicate securely by encrypting their messages. The

central key server will revoke the encryption key for all devices on the network and

handle requests of the devices for requesting new keys.

The above mentioned cases are set by using three distinct UserSim files which are outlined in

Appendix 9.2. The UserSim.txt files have one common section for the activity on the

network and one separate section for the secure communication which defines the periodic key

revocation interval.

OMNeT++ is run by setting the corresponding UserSim.txt file as the input parameter for

Page 76

KNX/EIB Simulation 6 Purpose of the Simulation Model

the simulation. The result of the simulation are the .csv files created by the KNXbus modules

showing the network load of the respective line. The network load graphical representation of

some example lines (line, main line and backbone line) will be shown as the result of the

simulation.

Page 77

7 Results of the Simulation

As a result of the simulation, the following graphs will be presented that show the

● network load: the load of the network in percent. Theoretically a 100% network load

can be achieved. Practically timing constraints like wait times depending on the

protocol will limit the achievable network load.

● busy response: when the KNXstack tries to send a frame on the bus, the bus may be

busy sending another frame. The busy response on send indicates how many times

during the one second interval the bus was busy when a device tried to send data. It is

an indication on the amount of frames that are in the backlog to be sent.

To compare the insecure and the secure network, the delta graph shows the additional load that

is put on the network due to secure data communication.

7.1 Simulation Results for Insecure Communication

This network configuration features classic KNX/EIB configuration with no security.

Results for line line_1_1:

Page 78

KNX/EIB Simulation 7 Results of the Simulation

Results for main line line_1_0:

Page 79

KNX/EIB Simulation 7 Results of the Simulation

Results for the backbone line:

Page 80

KNX/EIB Simulation 7 Results of the Simulation

7.2 Simulation Results for Secure Communication with

Line ACUs

This network configuration implements the EIBsec proposed ACUs, one ACU per KNX/EIB

line. The devices on the line have their associated ACU configured.

Results for line line_1_1:

Page 81

KNX/EIB Simulation 7 Results of the Simulation

Results for main line line_1_0:

Page 82

KNX/EIB Simulation 7 Results of the Simulation

Results for the backbone line:

Page 83

KNX/EIB Simulation 7 Results of the Simulation

7.3 Simulation Results for Secure Communication with a

Backbone ACU

In contrast to the previous configuration with one ACU per KNX/EIB line, this approach

configures one single central ACU on the backbone line of the KNX/EIB bus.

Results for the line line_1_1:

Page 84

KNX/EIB Simulation 7 Results of the Simulation

Results for the main line line_1_0:

Page 85

KNX/EIB Simulation 7 Results of the Simulation

Results for the backbone line:

Page 86

KNX/EIB Simulation 7 Results of the Simulation

7.4 Summary of Simulation Results

The results of the different simulation configurations can be summarised by showing the

average and maximum network load of the lines and the average and maximum busy responses

of the lines.

network load insecure secure secure central

line 1.1
average 0.0677 0.0874 0.0877

maximum 0.1453 0.1941 0.1941

line 1.0
average 0.1821 0.2276 0.2291

maximum 0.2683 0.3450 0.3666

line 0.0
average 0.2608 0.3131 0.3151

maximum 0.3745 0.4517 0.4754

busy responses insecure secure secure central

line 1.1
average 0.5617 0.7164 0.6963

maximum 4 4 4

line 1.0
average 4.6485 5.8420 5.6874

maximum 25 29 20

line 0.0
average 6.8776 8.9166 8.6685

maximum 30 43 39

Page 87

KNX/EIB Simulation 7 Results of the Simulation

7.5 Analysis of the Results

Looking at the simulation results and comparing the different network security configurations,

the following comparison tables show the growth of increased network communication. The

growth per interval shows the growth (average and maximum) on a per-interval basis, taking the

same interval ti of the simulation time for comparison. The growth total shows average and

maximum growth over the full simulation time of 15 minutes. Network load has a value range

of either [0..1] or [0%..100%], depending on the representation. Busy responses' unit is

responses/second, the growth is indicated in percent.

network load

growth insecure

→ secure

(per interval)

growth secure →
secure central

(per interval)

growth insecure

→ secure

(total)

growth secure →
secure central

(total)

line 1.1
average 2.0% 0.0% 29.0% 0.4%

maximum 8.4% 12.9% 33.5% 0.0%

line 1.0
average 4.6% 0.1% 25.0% 0.6%

maximum 17.8% 15.1% 28.6% 6.2%

line 0.0
average 5.2% 0.2% 20.1% 0.6%

maximum 21.5% 16.6% 20.6% 5.2%

busy responses

growth insecure

→ secure

(per interval)

growth secure →
secure central

(per interval)

growth insecure

→ secure

(total)

growth secure →
secure central

(total)

line 1.1
average 0.15 -0.02 27.52% -2.80%

maximum 3 4 0.00% 0.00%

line 1.0
average 1.19 -0.15 25.68% -2.65%

maximum 25 16 16.00% -31.03%

line 0.0
average 2.04 -0.25 29.65% -2.78%

maximum 37 33 43.33% -9.30%

Page 88

KNX/EIB Simulation 7 Results of the Simulation

7.5.1 Comparison of Insecure and Secure Communication

Looking at the insecure and secure communication, we can see a general increase of the average

and maximum bus load. That is due to the increased frame length of secure communication and

the periodic key distribution mechanism of the ACUs.

On line level (e.g. line 1.1) the bus load is increasing by 2.0% on average, the maximum load

increased by 8.4%. Busy responses from the bus are steady at a low level, the frames can be sent

with little or no delay from the devices in all security modes.

At main line level (line 1.0) the increase of the bus load is significantly higher (4.6% on average

Page 89

KNX/EIB Simulation 7 Results of the Simulation

load, 17.8% on maximum load) than the increase on the line level.

This increase continues on the backbone line 0.0: average load per interval increases by 5.2%,

the maximum load per interval by 21.5%. For busy responses the increase needs to be

highlighted: 29.65% growth from insecure to secure mode counting the total busy responses

over the simulation time indicate a oncoming bottleneck on the backbone. This is accompanied

by a peak of busy responses growth of 43.33% compared to insecure network configuration.

Page 90

KNX/EIB Simulation 7 Results of the Simulation

7.5.2 Comparison of Secure Communication with Line ACUs and

Secure Communication with a Backbone ACU

For all lines – lines, main lines and the backbone line – a negative growth can be measured for

busy responses when replacing the line ACUs with a backbone line ACU. The decrease is

between -2.65% and -2.80% although the bus load is slightly increasing between 0.4% and

0.6% for the average load and 0.0% and 6.2% for the peak bus load.

Page 91

KNX/EIB Simulation 7 Results of the Simulation

As an example, the graphs for line 1.1 illustrate that the total growth of network load is near

zero (0.4%) but that the difference per interval is varying much more. However, the busy

response is lower in total growth (-2.8%) but shows very little variance.

7.6 Conclusion on EIBsec Implementation

The implementation of EIBsec puts significantly more load on the KNX/EIB network,

especially the backbone line is prone to delays if it is operated at the same speed as the lines,

Page 92

KNX/EIB Simulation 7 Results of the Simulation

typically 9600 bits/second at KNX/EIB. The simulation environment has been defined with

devices which are very frequently sending frames over the network. Any KNX/EIB

implementation that does not require high volume communication at all times but needs to

secure its communication will not encounter this possible bottleneck situation.

The decision whether to implement the ACUs in the lines or put the ACU on the backbone line

is a matter of which security requirements need to be implemented. According to the simulation

environment's results, the network load does not differ significantly when comparing placing the

ACU on the backbone line or placing multiple ACUs within the lines. If functionality like

network segment isolation is requested, a line based ACU is required. In cases where secure

communication by implementing EIBsec's encryption is required, an ACU placed on the

backbone line offers a more centralised approach without a significant effect on the network

load. However, the single ACU does not provide redundancy and is a single point of failure.

Page 93

8 Pitfalls in the Modelling

Several decisions had to be made during the design of the OMNeT++ modules and their

interaction. Some models are reflecting reality more precisely and allow more granular design

of a network. However, it needs also to be considered that when designing a large KNX/EIB

network, the amount of configuration work gets tremendous with all configuration details

necessary.

As an example the KNX/EIB bus can be taken. A first module design defined a KNXnode

module that – translated to reality – would represent the connector where a KNX/EIB device is

attached to the bus. The definition is more granular than the introduced KNXbus: KNXnodes are

connected to each other bidirectionally, each connection from module to module can be

separately configured (see Figure 8.2).

In this case, the KNXbus is transformed in a double-linked chain of KNXnodes. The end nodes

can be either be terminated with a KNXterminator simple module or, alternatively the node

could be connected to itself to indicate a termination. This self-reference could be investigated

at runtime by the module.

A detailed view on the KNXnode based structure, focusing on the device view, reveals that the

module structure of the KNXdev is not changed, compared to the implemented structure. The

KNXappl module connects as well to the UserSim module for receiving simulation events.

Page 94

Figure 8.1: KNXbus with connected KNXdevs

Figure 8.2: KNXnodes with connected KNXdevs

KNX/EIB Simulation 8 Pitfalls in the Modelling

Similar to the KNXbus, the KNXnode does not require the KNX/EIB hardware device address as

the frames are simply distributed to the next KNXnode and the KNXstack attached.

The final decision criteria on preferring the KNXbus structure to the KNXnode structure was the

more flexible way how to attach devices to the bus. The reduced configuration requirements in

the NED file allow a better overview of the line structure when looking at the OMNeT++

structure during simulation. Also evaluating how much traffic is transported over the line is

easier to manage and calculate with the KNXbus structure.

Page 95

Figure 8.3: KNXnode connectivity detail

9 Conclusion and Future Work

In this thesis, a generic simulation framework that can be used to simulate KNX/EIB based

building automation networks has been presented. As a proof-of-concept, the KNX/EIB security

extension EIBsec has been tested for its effect on the network.

However, not limited to these investigations the model can be used to verify other KNX/EIB

protocol extensions. The generic structure of the simulation framework allows to extend it to

other building automation network technologies like LonWorks [20] or ZigBee [21].

Page 96

10 Bibliography

Chapter 1

[01] A Simulation Framework for Fault-Tolerant Clock Synchronization in Industrial

Automation Networks; Fritz Praus, Wolfgang Granzer, Georg Gaderer and Thilo Sauter;

in Proc. of 12th IEEE Conference on Emerging Technologies and Factory Automation

(ETFA '07), pages 1465-1472, September 2007

Chapter 2

[02] Communication Systems for Building Automation Systems; Wolfgang Kastner, Georg

Neugschwandtner, Stefan Soucek and H. Michael Newman; Proceedings of the IEEE,

Vol. 93, No.6, June 2005

[03] Security in Networked Building Automation Systems; Wolfgang Granzer, Wolfgang

Kastner, Georg Neugschwandtner and Fritz Praus; in Proc. 6th IEEE International

Workshop on Factory Communication Systems (WFCS '06), pages 283-292, June 2006

[04] EIB: European Installation Bus; Wolfgang Kastner, Georg Neugschwandtner; Vienna

University of Technology; CRC Press; Vienna, Austria, 2005

[05] EIBA, EIB Association; http://www.eiba.com/

[06] KNX Specifications, Version 1.1; Konnex Association, Diegem, Belgium, 2004

[07] EIB – Installation Bus System; Thilo Sauter, Dietmar Dietrich, Wolfgang Kastner

(editors); Publicis, Munich, Germany, 2001

[08] Introduction to KNX and Konnex; Konnex Association, http://www.knx.org/, Diegem,

Belgium, 2004

[09] Gebäudeautomation – Kommunikationssysteme mit EIB/KNX, LON und BACnet;

Hermann Merz, Thomas Hansemann, Christof Hübner; Carl Hanser Verlag, Munich,

Germany, 2007

[10] KNX Standard, Volume 3 – Systems Specification, Part 3 - Communication, Version

1.0; Konnex Association, Diegem, Belgium, 2001

Chapter 3

[11] http://pcl.cs.ucla.edu/projects/glomosim/ ; UCLA Computer Science Department,

Page 97

KNX/EIB Simulation 10 Bibliography

University of California, Los Angeles, U.S.A.

[12] http://www.qualnet.com/ ; Scaleable Network Technologies Inc.

[13] QualNet Model Libraries and QualNet Product Family; Scaleable Network

Technologies Inc., http://www.qualnet.com/

[14] http://www.isi.edu/nsnam/ns/ ; ns-2 Network Simulator; Information Sciences Institute,

University of Southern California

[15] http://www.omnetpp.org/ ; OMNeT++ Discrete Event Simulation System, András Varga

[16] Using the OMNeT++ discrete event simulation system in education; András Varga;

IEEE Transactions on Education, 1999

[17] http://www.omnest.com/ ; Simulcraft Inc.

Chapter 4

[18] OMNeT++ Discrete Event Simulation System User Manual; András Varga,

http://www.omnetpp.org/, 2005

Chapter 6

[19] Security in Networked Building Automation Systems – Master's Thesis; Wolfgang

Granzer, Vienna University of Technology, Vienna, Austria, 2005

Chapter 9

[20] Control Network Protocol Specification; ANSI/EIA/CEA 709.1, 1999

[21] ZigBee Specification; ZigBee Alliance, 2007

Further reading:

[R1] Protocol verification as a hardware design aid; David L. Dill, Andreas J. Drexler, Alan

J. Hu, and C. Han Yang; IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages 522-525, 1992

[R2] Formal Verification Methods; Eduard Cerny, Xiaoyu Song; Département d´informatique

et de recherche opérationnelle (IRO); Course lecture “IFT6222 Spécification et

vérification formelle”; Université de Montréal, Canada, 1999

[R3] System-architecture; Konnex Association, http://www.knx.org/, Diegem, Belgium, 2004

Page 98

http://www.knx.org/
http://www.knx.org/
http://www.knx.org/

KNX/EIB Simulation 10 Bibliography

[R4] NS Simulator for beginners; Eitan Altman, Tania Jiménez; Lecture Notes 2003-2004;

Univ. de Los Andes, Mérida, Venezuela and ESSI, Sophia-Antipolis, France, 2003

[R5] The ns Manual; Kevin Fall, Kannan Varadhan (editors); A Collaboration between

researchers at UC Berkeley, LBL, USC/ISI, and Xerox PARC, 2008

Page 99

A Appendices

A.1 NED file

// Network definition file

//

// Starting here the module structure is designed

//

simple KNXbus

// the KNX bus

// implemented as a hub that forwards an incoming msg

// to all other gates

parameters:

txRate: string;

gates:

in: in[];

out: out[];

endsimple

simple KNXterminator

// Terminator to a KNX line when no LineCoupler is

// being used

gates:

in: in_term;

out: out_term;

endsimple

simple KNXstack

// implements the KNX protocol

parameters:

address: string, // KNX hw address of the device,

 // e.g. "0.0.1"

Page 100

KNX/EIB Simulation A Appendices

table:string; // table for appl. addressing

gates:

in: in_bus;

out: out_bus;

in: in_appl;

out: out_appl;

endsimple

simple KNXappl

// implements an KNX application

parameters:

table: string,

application: string;

gates:

in: in_appl, in_user;

out: out_appl;

endsimple

simple KNXappl_gui

// GUI feedback for KNXappl

parameters:

address: string,

application: string;

endsimple

simple KNXlinecoupler

// KNX bus line coupler for linking 2 bus segments.

parameters:

address: string,

routing: string;

gates:

in: in_line, in_backbone;

out: out_line, out_backbone;

endsimple

Page 101

KNX/EIB Simulation A Appendices

simple UserSim

// User simulation, sends messages to KNXappl

gates:

out: out[];

endsimple

module KNXdev

parameters:

// address -> forwarder for stack address

// application -> forwarder for application type

address: string,

table: string,

application: string;

gates:

in: in_bus, in_user;

out: out_bus;

submodules:

stack: KNXstack;

parameters:

address = address,

table = table;

display: "p=55,125;i=block/layer,cyan";

appl: KNXappl;

parameters:

table = table,

application = application;

display: "p=55,55;i=block/process,grey";

gui: KNXappl_gui;

parameters:

address = address,

application = application;

display: "p=90,45;b=20,20,rect";

connections:

Page 102

KNX/EIB Simulation A Appendices

// module gates to external

out_bus <-- stack.out_bus display "m=s";

in_bus --> stack.in_bus display "m=s";

in_user --> appl.in_user;

// internal module gates

stack.out_appl --> appl.in_appl display "m=n";

stack.in_appl <-- appl.out_appl display "m=n";

display: "b=90,170;i=block/process,black";

endmodule

//

// Starting here the network is designed

//

module KNX_line_1_1

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Connector (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1_1: KNXbus;

parameters:

txRate = "";

display: "p=335,140;b=600,20";

dev_1_1_1: KNXdev;

parameters:

address = "1.1.1",

 table = "1/1/2=lightA;0/0/0=lightALL;1/1/100=acurange",

application = "switch1";

display: "p=60,80;b=40,24";

dev_1_1_2: KNXdev;

parameters:

address = "1.1.2",

Page 103

KNX/EIB Simulation A Appendices

 table = "1/1/2=light;1/1/7=light;1/1/100=acurange",

application = "light1";

display: "p=120,80;b=40,24";

dev_1_1_3: KNXdev;

parameters:

address = "1.1.3",

table = "1/1/7=light;1/1/100=acurange",

application = "light2";

display: "p=180,80;b=40,24";

dev_1_1_4: KNXdev;

parameters:

address = "1.1.4",

table = "1/1/7=lightB;1/1/100=acurange",

application = "switch2";

display: "p=240,80;b=40,24";

dev_1_1_5: KNXdev;

parameters:

address = "1.1.5",

table = "1/1/7=lightB;1/1/100=acurange",

application = "switch3";

display: "p=300,80;b=40,24";

dev_1_1_6: KNXdev;

parameters:

address = "1.1.6",

table = "1/1/5=lightC;1/1/100=acurange",

application = "switch4";

display: "p=360,80;b=40,24";

dev_1_1_7: KNXdev;

parameters:

address = "1.1.7",

table = "1/1/3=lightD;1/1/100=acurange",

application = "switch5";

display: "p=420,80;b=40,24";

dev_1_1_8: KNXdev;

Page 104

KNX/EIB Simulation A Appendices

parameters:

address = "1.1.8",

table = "1/1/4=lightXE;1/1/100=acurange",

application = "switch6";

display: "p=480,80;b=40,24";

dev_1_1_9: KNXdev;

parameters:

address = "1.1.9",

table = "1/1/2=light;1/1/100=acurange",

application = "light3";

display: "p=540,80;b=40,24";

dev_1_1_10: KNXdev;

parameters:

address = "1.1.10",

table = "1/1/7=light;1/1/100=acurange",

application = "light4";

display: "p=600,80;b=40,24";

dev_1_1_100: KNXdev;

parameters:

address = "1.1.100",

table = "1/1/100=keyrange",

application = "acu_1_1";

display: "p=660,80;b=40,24";

user: UserSim;

display: "p=330,30;b=100,24";

connections:

dev_1_1_1.out_bus --> bus_1_1.in++;

dev_1_1_1.in_bus <-- bus_1_1.out++;

dev_1_1_2.out_bus --> bus_1_1.in++;

dev_1_1_2.in_bus <-- bus_1_1.out++;

dev_1_1_3.out_bus --> bus_1_1.in++;

dev_1_1_3.in_bus <-- bus_1_1.out++;

dev_1_1_4.out_bus --> bus_1_1.in++;

dev_1_1_4.in_bus <-- bus_1_1.out++;

Page 105

KNX/EIB Simulation A Appendices

dev_1_1_5.out_bus --> bus_1_1.in++;

dev_1_1_5.in_bus <-- bus_1_1.out++;

dev_1_1_6.out_bus --> bus_1_1.in++;

dev_1_1_6.in_bus <-- bus_1_1.out++;

dev_1_1_7.out_bus --> bus_1_1.in++;

dev_1_1_7.in_bus <-- bus_1_1.out++;

dev_1_1_8.out_bus --> bus_1_1.in++;

dev_1_1_8.in_bus <-- bus_1_1.out++;

dev_1_1_9.out_bus --> bus_1_1.in++;

dev_1_1_9.in_bus <-- bus_1_1.out++;

dev_1_1_10.out_bus --> bus_1_1.in++;

dev_1_1_10.in_bus <-- bus_1_1.out++;

dev_1_1_100.out_bus --> bus_1_1.in++;

dev_1_1_100.in_bus <-- bus_1_1.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

line_out++ <-- bus_1_1.out++;

line_in++ --> bus_1_1.in++;

//User simulation layer

dev_1_1_1.in_user <-- user.out++;

dev_1_1_2.in_user <-- user.out++;

dev_1_1_3.in_user <-- user.out++;

dev_1_1_4.in_user <-- user.out++;

dev_1_1_5.in_user <-- user.out++;

dev_1_1_6.in_user <-- user.out++;

dev_1_1_7.in_user <-- user.out++;

dev_1_1_8.in_user <-- user.out++;

dev_1_1_9.in_user <-- user.out++;

dev_1_1_10.in_user <-- user.out++;

dev_1_1_100.in_user <-- user.out++;

display: "b=650,160;m=w";

endmodule

Page 106

KNX/EIB Simulation A Appendices

module KNX_line_1_2

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Connector (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1_2: KNXbus;

parameters:

txRate = "";

display: "p=335,140;b=600,20";

dev_1_2_1: KNXdev;

parameters:

address = "1.2.1",

 table = "1/1/2=lightA;0/0/0=lightALL;1/2/100=acurange",

application = "switch1";

display: "p=60,80;b=40,24";

dev_1_2_2: KNXdev;

parameters:

address = "1.2.2",

 table = "1/1/2=light;1/1/7=light;1/2/100=acurange",

application = "light1";

display: "p=120,80;b=40,24";

dev_1_2_3: KNXdev;

parameters:

address = "1.2.3",

table = "1/1/7=light;1/2/100=acurange",

application = "light2";

display: "p=180,80;b=40,24";

dev_1_2_4: KNXdev;

parameters:

address = "1.2.4",

table = "1/1/7=lightB;1/2/100=acurange",

Page 107

KNX/EIB Simulation A Appendices

application = "switch2";

display: "p=240,80;b=40,24";

dev_1_2_5: KNXdev;

parameters:

address = "1.2.5",

table = "1/1/7=lightB;1/2/100=acurange",

application = "switch3";

display: "p=300,80;b=40,24";

dev_1_2_6: KNXdev;

parameters:

address = "1.2.6",

table = "1/1/5=lightC;1/2/100=acurange",

application = "switch4";

display: "p=360,80;b=40,24";

dev_1_2_7: KNXdev;

parameters:

address = "1.2.7",

table = "1/1/3=lightD;1/2/100=acurange",

application = "switch5";

display: "p=420,80;b=40,24";

dev_1_2_8: KNXdev;

parameters:

address = "1.2.8",

table = "1/1/4=lightXE;1/2/100=acurange",

application = "switch6";

display: "p=480,80;b=40,24";

dev_1_2_9: KNXdev;

parameters:

address = "1.2.9",

table = "1/1/2=light;1/2/100=acurange",

application = "light3";

display: "p=540,80;b=40,24";

dev_1_2_10: KNXdev;

parameters:

Page 108

KNX/EIB Simulation A Appendices

address = "1.2.10",

table = "1/1/7=light",

application = "light4";

display: "p=600,80;b=40,24";

dev_1_2_100: KNXdev;

parameters:

address = "1.2.100",

table = "1/2/100=keyrange",

application = "acu_1_2";

display: "p=660,80;b=40,24";

user: UserSim;

display: "p=330,30;b=100,24";

connections:

dev_1_2_1.out_bus --> bus_1_2.in++;

dev_1_2_1.in_bus <-- bus_1_2.out++;

dev_1_2_2.out_bus --> bus_1_2.in++;

dev_1_2_2.in_bus <-- bus_1_2.out++;

dev_1_2_3.out_bus --> bus_1_2.in++;

dev_1_2_3.in_bus <-- bus_1_2.out++;

dev_1_2_4.out_bus --> bus_1_2.in++;

dev_1_2_4.in_bus <-- bus_1_2.out++;

dev_1_2_5.out_bus --> bus_1_2.in++;

dev_1_2_5.in_bus <-- bus_1_2.out++;

dev_1_2_6.out_bus --> bus_1_2.in++;

dev_1_2_6.in_bus <-- bus_1_2.out++;

dev_1_2_7.out_bus --> bus_1_2.in++;

dev_1_2_7.in_bus <-- bus_1_2.out++;

dev_1_2_8.out_bus --> bus_1_2.in++;

dev_1_2_8.in_bus <-- bus_1_2.out++;

dev_1_2_9.out_bus --> bus_1_2.in++;

dev_1_2_9.in_bus <-- bus_1_2.out++;

dev_1_2_10.out_bus --> bus_1_2.in++;

dev_1_2_10.in_bus <-- bus_1_2.out++;

dev_1_2_100.out_bus --> bus_1_2.in++;

Page 109

KNX/EIB Simulation A Appendices

dev_1_2_100.in_bus <-- bus_1_2.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

line_out++ <-- bus_1_2.out++;

line_in++ --> bus_1_2.in++;

//User simulation layer

dev_1_2_1.in_user <-- user.out++;

dev_1_2_2.in_user <-- user.out++;

dev_1_2_3.in_user <-- user.out++;

dev_1_2_4.in_user <-- user.out++;

dev_1_2_5.in_user <-- user.out++;

dev_1_2_6.in_user <-- user.out++;

dev_1_2_7.in_user <-- user.out++;

dev_1_2_8.in_user <-- user.out++;

dev_1_2_9.in_user <-- user.out++;

dev_1_2_10.in_user <-- user.out++;

dev_1_2_100.in_user <-- user.out++;

display: "b=650,160;m=w";

endmodule

module KNX_line_1_0

parameters:

numPorts: numeric const; // = 4, [0..3]

gates:

// connectors to the Line Couplers (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1_0: KNXbus;

parameters:

txRate = "";

display: "p=245,120;b=312,20";

Page 110

KNX/EIB Simulation A Appendices

dev_1_0_1: KNXdev;

parameters:

address = "1.0.1",

table = "0/0/0=keyALL",

application = "keyserver1";

display: "p=112,65;b=40,24";

user: UserSim;

connections:

dev_1_0_1.out_bus --> bus_1_0.in++;

dev_1_0_1.in_bus <-- bus_1_0.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

for i=0..numPorts-1 do

line_out[i] <-- bus_1_0.out++;

line_in[i] --> bus_1_0.in++;

endfor;

//User simulation layer

dev_1_0_1.in_user <-- user.out++;

display: "b=455,140;m=w";

endmodule

module KNX_line_2_1

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Connector (LC)

in: line_in[];

out: line_out[];

submodules:

bus_2_1: KNXbus;

parameters:

txRate = "";

display: "p=335,140;b=600,20";

Page 111

KNX/EIB Simulation A Appendices

dev_2_1_1: KNXdev;

parameters:

address = "2.1.1",

 table = "1/1/2=lightA;0/0/0=lightALL;2/1/100=acurange",

application = "switch1";

display: "p=60,80;b=40,24";

dev_2_1_2: KNXdev;

parameters:

address = "2.1.2",

 table = "1/1/2=light;1/1/7=light;2/1/100=acurange",

application = "light1";

display: "p=120,80;b=40,24";

dev_2_1_3: KNXdev;

parameters:

address = "2.1.3",

table = "1/1/7=light;2/1/100=acurange",

application = "light2";

display: "p=180,80;b=40,24";

dev_2_1_4: KNXdev;

parameters:

address = "2.1.4",

table = "1/1/7=lightB;2/1/100=acurange",

application = "switch2";

display: "p=240,80;b=40,24";

dev_2_1_5: KNXdev;

parameters:

address = "2.1.5",

table = "1/1/7=lightB;2/1/100=acurange",

application = "switch3";

display: "p=300,80;b=40,24";

dev_2_1_6: KNXdev;

parameters:

address = "2.1.6",

table = "1/1/5=lightC;2/1/100=acurange",

Page 112

KNX/EIB Simulation A Appendices

application = "switch4";

display: "p=360,80;b=40,24";

dev_2_1_7: KNXdev;

parameters:

address = "2.1.7",

table = "1/1/3=lightXD;2/1/100=acurange",

application = "switch5";

display: "p=420,80;b=40,24";

dev_2_1_8: KNXdev;

parameters:

address = "2.1.8",

table = "1/1/4=lightE;2/1/100=acurange",

application = "switch6";

display: "p=480,80;b=40,24";

dev_2_1_9: KNXdev;

parameters:

address = "2.1.9",

table = "1/1/2=light;2/1/100=acurange",

application = "light3";

display: "p=540,80;b=40,24";

dev_2_1_10: KNXdev;

parameters:

address = "2.1.10",

table = "1/1/7=light;2/1/100=acurange",

application = "light4";

display: "p=600,80;b=40,24";

dev_2_1_100: KNXdev;

parameters:

address = "2.1.100",

table = "2/1/100=keyrange",

application = "acu_2_1";

display: "p=660,80;b=40,24";

user: UserSim;

display: "p=330,30;b=100,24";

Page 113

KNX/EIB Simulation A Appendices

connections:

dev_2_1_1.out_bus --> bus_2_1.in++;

dev_2_1_1.in_bus <-- bus_2_1.out++;

dev_2_1_2.out_bus --> bus_2_1.in++;

dev_2_1_2.in_bus <-- bus_2_1.out++;

dev_2_1_3.out_bus --> bus_2_1.in++;

dev_2_1_3.in_bus <-- bus_2_1.out++;

dev_2_1_4.out_bus --> bus_2_1.in++;

dev_2_1_4.in_bus <-- bus_2_1.out++;

dev_2_1_5.out_bus --> bus_2_1.in++;

dev_2_1_5.in_bus <-- bus_2_1.out++;

dev_2_1_6.out_bus --> bus_2_1.in++;

dev_2_1_6.in_bus <-- bus_2_1.out++;

dev_2_1_7.out_bus --> bus_2_1.in++;

dev_2_1_7.in_bus <-- bus_2_1.out++;

dev_2_1_8.out_bus --> bus_2_1.in++;

dev_2_1_8.in_bus <-- bus_2_1.out++;

dev_2_1_9.out_bus --> bus_2_1.in++;

dev_2_1_9.in_bus <-- bus_2_1.out++;

dev_2_1_10.out_bus --> bus_2_1.in++;

dev_2_1_10.in_bus <-- bus_2_1.out++;

dev_2_1_100.out_bus --> bus_2_1.in++;

dev_2_1_100.in_bus <-- bus_2_1.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

line_out++ <-- bus_2_1.out++;

line_in++ --> bus_2_1.in++;

//User simulation layer

dev_2_1_1.in_user <-- user.out++;

dev_2_1_2.in_user <-- user.out++;

dev_2_1_3.in_user <-- user.out++;

dev_2_1_4.in_user <-- user.out++;

dev_2_1_5.in_user <-- user.out++;

dev_2_1_6.in_user <-- user.out++;

Page 114

KNX/EIB Simulation A Appendices

dev_2_1_7.in_user <-- user.out++;

dev_2_1_8.in_user <-- user.out++;

dev_2_1_9.in_user <-- user.out++;

dev_2_1_10.in_user <-- user.out++;

dev_2_1_100.in_user <-- user.out++;

display: "b=650,160;m=w";

endmodule

module KNX_line_0_0 // root level backbone, connecting the

 // other main lines

parameters:

numPorts: numeric const;

gates:

// connectors to the Backbone Couplers

// (BCs equivalent to LCs)

in: line_in[];

out: line_out[];

submodules:

bus_backbone: KNXbus;

parameters:

txRate = "";

dev_0_0_100: KNXdev;

parameters:

address = "0.0.100",

table = "0/0/0=keyALL",

application = "acu_0_0";

display: "p=112,65;b=40,24";

user: UserSim;

connections:

dev_0_0_100.out_bus --> bus_backbone.in++;

dev_0_0_100.in_bus <-- bus_backbone.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

Page 115

KNX/EIB Simulation A Appendices

for i=0..numPorts-1 do

line_out[i] <-- bus_backbone.out++;

line_in[i] --> bus_backbone.in++;

endfor;

//User simulation layer

dev_0_0_100.in_user <-- user.out++;

display: "b=455,140;m=w";

endmodule

//

// Connecting the lines together, set numPorts parameter

//

module KNX_network_1 // main line 1

parameters:

numPorts: numeric const;

gates:

// connectors to the Backbone Couplers (BC)

in: line_in[];

out: line_out[];

submodules:

line_1_0: KNX_line_1_0; // bus

parameters:

numPorts = 5; // LC=4 + BC=1 = 5

// connections exposed from bus to extern

line_1_1: KNX_line_1_1; // "devices"

parameters:

numPorts = 1;

line_1_2: KNX_line_1_2;

parameters:

numPorts = 1;

line_1_3: KNX_line_1_3;

parameters:

numPorts = 1;

Page 116

KNX/EIB Simulation A Appendices

line_1_4: KNX_line_1_4;

parameters:

numPorts = 1;

lc_1_1_0: KNXlinecoupler;

parameters:

address = "1.1.0", routing = "";

lc_1_2_0: KNXlinecoupler;

parameters:

address = "1.2.0", routing = "";

lc_1_3_0: KNXlinecoupler;

parameters:

address = "1.3.0", routing = "";

lc_1_4_0: KNXlinecoupler;

parameters:

address = "1.4.0", routing = "";

connections:

// Connect line couplers to the lines

line_1_1.line_in++ <-- lc_1_1_0.out_line;

line_1_1.line_out++ --> lc_1_1_0.in_line;

line_1_2.line_in++ <-- lc_1_2_0.out_line;

line_1_2.line_out++ --> lc_1_2_0.in_line;

line_1_3.line_in++ <-- lc_1_3_0.out_line;

line_1_3.line_out++ --> lc_1_3_0.in_line;

line_1_4.line_in++ <-- lc_1_4_0.out_line;

line_1_4.line_out++ --> lc_1_4_0.in_line;

// Connect line couplers to backbone

lc_1_1_0.in_backbone <-- line_1_0.line_out++;

lc_1_1_0.out_backbone --> line_1_0.line_in++;

lc_1_2_0.in_backbone <-- line_1_0.line_out++;

lc_1_2_0.out_backbone --> line_1_0.line_in++;

lc_1_3_0.in_backbone <-- line_1_0.line_out++;

lc_1_3_0.out_backbone --> line_1_0.line_in++;

lc_1_4_0.in_backbone <-- line_1_0.line_out++;

lc_1_4_0.out_backbone --> line_1_0.line_in++;

Page 117

KNX/EIB Simulation A Appendices

for i=0..numPorts-1 do

line_out[i] <-- line_1_0.line_out++;

line_in[i] --> line_1_0.line_in++;

endfor;

endmodule

module KNX_network_2 // main line 2

parameters:

numPorts: numeric const;

gates:

// connectors to the Backbone Couplers (BC)

in: line_in[];

out: line_out[];

submodules:

line_2_0: KNX_line_2_0; // bus

parameters:

numPorts = 5; // LC=4 + BC=1 = 2

// connections exposed from bus to extern

line_2_1: KNX_line_2_1; // "devices"

parameters:

numPorts = 1;

line_2_2: KNX_line_2_2;

parameters:

numPorts = 1;

line_2_3: KNX_line_2_3;

parameters:

numPorts = 1;

line_2_4: KNX_line_2_4;

parameters:

numPorts = 1;

lc_2_1_0: KNXlinecoupler;

parameters:

address = "2.1.0", routing = "";

Page 118

KNX/EIB Simulation A Appendices

lc_2_2_0: KNXlinecoupler;

parameters:

address = "2.2.0", routing = "";

lc_2_3_0: KNXlinecoupler;

parameters:

address = "2.3.0", routing = "";

lc_2_4_0: KNXlinecoupler;

parameters:

address = "2.4.0", routing = "";

connections:

// Connect line couplers to the lines

line_2_1.line_in++ <-- lc_2_1_0.out_line;

line_2_1.line_out++ --> lc_2_1_0.in_line;

line_2_2.line_in++ <-- lc_2_2_0.out_line;

line_2_2.line_out++ --> lc_2_2_0.in_line;

line_2_3.line_in++ <-- lc_2_3_0.out_line;

line_2_3.line_out++ --> lc_2_3_0.in_line;

line_2_4.line_in++ <-- lc_2_4_0.out_line;

line_2_4.line_out++ --> lc_2_4_0.in_line;

// Connect line couplers to backbone

lc_2_1_0.in_backbone <-- line_2_0.line_out++;

lc_2_1_0.out_backbone --> line_2_0.line_in++;

lc_2_2_0.in_backbone <-- line_2_0.line_out++;

lc_2_2_0.out_backbone --> line_2_0.line_in++;

lc_2_3_0.in_backbone <-- line_2_0.line_out++;

lc_2_3_0.out_backbone --> line_2_0.line_in++;

lc_2_4_0.in_backbone <-- line_2_0.line_out++;

lc_2_4_0.out_backbone --> line_2_0.line_in++;

for i=0..numPorts-1 do

line_out[i] <-- line_2_0.line_out++;

line_in[i] --> line_2_0.line_in++;

endfor;

endmodule

Page 119

KNX/EIB Simulation A Appendices

module KNX_network_0

// connect all KNX main lines together on root backbone

parameters:

numPorts: numeric const; // = 0;

// change when main lines have been added

gates:

// connectors to the Backbone Couplers (BC)

in: line_in[];

out: line_out[];

submodules:

line_0_0: KNX_line_0_0;

parameters:

numPorts = 2; // BC=2

network_1: KNX_network_1;

parameters:

numPorts = 1;

network_2: KNX_network_2;

parameters:

numPorts = 1;

lc_1_0_0: KNXlinecoupler;

parameters:

address = "1.0.0", routing = "";

lc_2_0_0: KNXlinecoupler;

parameters:

address = "2.0.0", routing = "";

connections:

// connect line couplers to the lines

network_1.line_in++ <-- lc_1_0_0.out_line;

network_1.line_out++ --> lc_1_0_0.in_line;

network_2.line_in++ <-- lc_2_0_0.out_line;

network_2.line_out++ --> lc_2_0_0.in_line;

// Connect line couplers to backbone

lc_1_0_0.in_backbone <-- line_0_0.line_out++;

Page 120

KNX/EIB Simulation A Appendices

lc_1_0_0.out_backbone --> line_0_0.line_in++;

lc_2_0_0.in_backbone <-- line_0_0.line_out++;

lc_2_0_0.out_backbone --> line_0_0.line_in++;

for i=0..numPorts-1 do

line_out[i] <-- line_0_0.line_out++;

line_in[i] --> line_0_0.line_in++;

endfor;

endmodule

network knx_network : KNX_network_0

parameters:

numPorts = 0;

endnetwork

A.2 UserSim Files

A.2.1 Insecure Communication

0/3.0/300, switch1, lightA:02ffffffffffffff

0/3.0/300, switch1, lightALL:02ffffffffffffff

0/1.0/900, switch2, lightB:01ffffffffffffff

0/~1.0/900, switch2, lightB:02ffffffffffffff

0/1.5/600, switch4, lightC:02ffffffffffffff

0/~1.5/600, switch5, lightD:02ffffffffffffff

A.2.2 Secure Communication with Line ACUs

0/3.0/300, switch1, lightA:02ffffffffffffffffffffffffffff

0/3.0/300, switch1, lightALL:02ffffffffffffffffffffffffffff

Page 121

KNX/EIB Simulation A Appendices

0/1.0/900, switch2, lightB:01ffffffffffffffffffffffffffff

0/~1.0/900, switch2, lightB:02ffffffffffffffffffffffffffff

0/1.5/600, switch4, lightC:02ffffffffffffffffffffffffffff

0/~1.5/600, switch5, lightD:02ffffffffffffffffffffffffffff

// ACU activities

// Initiate key distribution to devices

0/240/4, acu_1_1, acurange:10010101

0/240/4, acu_1_2, acurange:10010101

0/240/4, acu_1_3, acurange:10010101

0/240/4, acu_1_4, acurange:10010101

0/240/4, acu_2_1, acurange:10010101

0/240/4, acu_2_2, acurange:10010101

0/240/4, acu_2_3, acurange:10010101

0/240/4, acu_2_4, acurange:10010101

A.2.3 Secure Communication with Central ACU

0/3.0/300, switch1, lightA:02ffffffffffffffffffffffffffff

0/3.0/300, switch1, lightALL:02ffffffffffffffffffffffffffff

0/1.0/900, switch2, lightB:01ffffffffffffffffffffffffffff

0/~1.0/900, switch2, lightB:02ffffffffffffffffffffffffffff

0/1.5/600, switch4, lightC:02ffffffffffffffffffffffffffff

0/~1.5/600, switch5, lightD:02ffffffffffffffffffffffffffff

// ACU activities

Page 122

KNX/EIB Simulation A Appendices

// Initiate key distribution to devices

0/240/4, acu_0_0, keyALL:10010101

Page 123

	1Why simulating a KNX/EIB network?
	2Introduction to KNX/EIB
	2.1Purpose of KNX/EIB
	2.2Introduction to the KNX/EIB Protocol
	2.2.1KNX/EIB and the OSI reference model
	2.2.2Physical Layer
	2.2.3Data Link Layer
	2.2.3.1Logical Link Control (LLC)
	2.2.3.2Medium Access Control (MAC)
	2.2.3.3Addressing Types
	2.2.3.4Frame Formats

	2.2.4Network Layer
	2.2.4.1Unicast Communication
	2.2.4.2Multicast / Broadcast Communication
	2.2.4.3Bridges and Routers

	2.2.5Transport Layer
	2.2.6Application Layer
	2.2.6.1Process Data Communication
	2.2.6.2Management Communication

	3Comparison of Protocol Simulators
	3.1GloMoSim
	3.2QualNet
	3.3ns-2
	3.4OMNeT++
	3.5Summary

	4Introduction to OMNeT++
	4.1Overview
	4.2Modelling Concepts
	4.3The NED Language
	4.4Running a Simulation in OMNeT++
	4.5Collection and Representation of Simulation Results

	5OMNeT++ Module Design
	5.1Module Overview
	5.2Basic C++ Objects
	5.3Basic Modules
	5.3.1KNX/EIB Device's Network Stack – KNXstack
	5.3.2KNX/EIB Device's Application – KNXappl
	5.3.3KNX/EIB Device – KNXdev
	5.3.4KNX/EIB Bus – KNXbus
	5.3.5KNX/EIB Line Coupler - KNXlinecoupler
	5.3.6Device's User Simulation – UserSim
	5.3.7Helper modules
	5.3.7.1KNXappl_gui
	5.3.7.2KNXterminator

	5.4KNX/EIB Lines
	5.5KNX/EIB Network
	5.6What needs to be simulated

	6Purpose of the Simulation Model
	6.1EIBsec Protocol Extension
	6.2Configuring the Simulation
	6.3Simulation Test Cases

	7Results of the Simulation
	7.1Simulation Results for Insecure Communication
	7.2Simulation Results for Secure Communication with Line ACUs
	7.3Simulation Results for Secure Communication with a Backbone ACU
	7.4Summary of Simulation Results
	7.5Analysis of the Results
	7.5.1Comparison of Insecure and Secure Communication
	7.5.2Comparison of Secure Communication with Line ACUs and Secure Communication with a Backbone ACU

	7.6Conclusion on EIBsec Implementation

	8Pitfalls in the Modelling
	9Conclusion and Future Work
	10Bibliography
	AAppendices
	A.1NED file
	A.2UserSim Files
	A.2.1Insecure Communication
	A.2.2Secure Communication with Line ACUs
	A.2.3Secure Communication with Central ACU

