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Kurzfassung

Systeme  der  Gebäudeautomation  beschäftigen  sich  mit  der  automatischen  Steuerung  von 

Heizungsanlagen,  Belüftungssystemen,  Licht  und Beschattung.  KNX/EIB ist  ein verbreiteter 

Standard  in  der  Gebäudeautomation.  EIBsec  ist  eine  Erweiterung  dieses  Standards  um 

Sicherheitskonzepte  wie  sichere  Kommunikation,  Schlüsselverwaltung,  Datenintegrität, 

Vertraulichkeit,  Aktualität  und  Authentifizierung  sicherzustellen.  Diese  Konzepte  sind 

notwendig um KNX/EIB in sicherheitskritischen Aufgabengebieten wie Zutrittskontrollen und 

Alarmierungssystemen einsetzen zu können.

In  der  vorliegenden  Diplomarbeit  werden  die  Konzepte  von  KNX/EIB  vorgestellt.  Das 

Verhalten  von  KNX/EIB  und  dessen  Erweiterung  EIBsec  wird  an  Hand  einer  Simulation 

untersucht und ein Vergleich von für diesen Zweck verfügbaren Frameworks erstellt.

In weiterer Folge wird das Simulations-Framework OMNeT++ im Detail präsentiert, das die 

Simulation  eines  KNX/EIB  basierten  Netzwerkes  erlaubt.  Bei  der  Modellierung  der 

Objektstrukturen wurde auf eine flexible Erweiterung des KNX/EIB Netzwerks besonders Wert 

gelegt. Die Implementierung untersucht im Speziellen, wie sich das Netzwerkverhalten ändert, 

wenn eine bestehende KNX/EIB Installation um das Protokoll EIBsec erweitert wird. Die durch 

die Simulation gewonnenen Daten sind in beliebigen Applikationen auswertbar.
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Abstract

Building automation  systems  deal  with  the  control  of  heating,  ventilation,  air  conditioning, 

lighting and shading.  KNX/EIB is  a popular  standard in  building automation.  EIBsec is  an 

extension to this standard and supports secure communication, key management, data integrity, 

data confidentiality,  data freshness as well as authentication. These concepts are required to 

implement  KNX/EIB in security  critical  applications  like  access  control  and security  alarm 

systems.

In this thesis first the concepts of KNX/EIB will be introduced. The performance of KNX/EIB 

and its extension EIBsec will  be analysed by building a simulation. Frameworks for such a 

simulation will be compared to each other.

Furthermore, the simulation framework OMNeT++, which allows the building of a KNX/EIB 

based network, will be presented in detail. The modelling of the object structure takes special 

care of the extensibility of the KNX/EIB network. In particular, the implementation analyses the 

change in network behaviour when an existing KNX/EIB installation is extended with EIBsec. 

The  results  generated  when  running  the  simulation  can  be  evaluated  with  an  arbitrary 

application.
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1 Why simulating a KNX/EIB network?

The Automation System Group at the Vienna University of Technology is home to research in 

building automation systems (BAS), focusing on security extensions to the KNX/EIB protocol. 

One such protocol security extension that has been developed is  EIBsec,  which needs to be 

evaluated in regard to its performance.

In general, the following methods can be used to evaluate protocol extensions [01]:

Analytical methods allow to formalise the protocol in an exact, predictable and provable form. 

More specific model types would be  mathematical models or  stochastic models. Traditionally 

these are being used in economic simulations, climate forecasts, chemical process simulation. 

Formal  and  functional  verification is  used  for  e.g.  protocol  verification,  verification  of 

algorithms and simulation of digital circuits. However, the interaction between devices and their 

inter-dependencies make it difficult if not impossible to formalise their behaviour and analyse 

their complexity.

Prototyping can  be used e.g.  for  proof-of-concept  designs.  It  is  somewhat  limited to  small 

systems as  it  is  often not  possible  to  implement  more than several  devices  in  a laboratory 

environment. It is best suited for experimental designs, examine their behaviour in a defined 

environment and possibly extrapolate this behaviour to larger systems. Large scale evaluation 

cannot be carried out easily as the number of prototypes – as the name implies – is limited. In 

the proposed case a prototype of a security enhanced device may prove the concept  of  the 

device  and  the  interaction  with  a  subset  of  other  devices.  Also  the  implementation  of  the 

prototype allows the observation of unplanned side effects,  e.g.  environmental  influences or 

electrical effects. But the prototyping method will not yield a result when evaluating the effect 

on a large scale network where all devices interact with each other.

Simulation allows the design and implementation of literally thousands of devices. Simulation 

can combine the use of mathematical models with models of “real” events, e.g. interacting with 

equipment. A category of simulators that is widely used is the  discrete event simulator which 

represents a chronological sequence of events. The granularity of the simulation can be adjusted 

to the focus of what needs to be shown. It might not make sense to simulate every aspect of the 

behaviour of a system but concentrate on the ones that are key to the results. However, not too 

many parameters may be omitted, otherwise the result of the simulation may not reflect the 

expected behaviour in reality.
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KNX/EIB Simulation 1  Why simulating a KNX/EIB network?

The trigger for a simulation is manifold: the network behaviour needs to be tested but the real 

network cannot  be  built.  This  might  be  because of  its  dimensions  or  affordability.  Another 

example is that a new, possibly not yet implemented, component needs to be tested against a 

known  environment.  In  the  present  case  EIBsec has  been  defined  and  a  prototype  device 

developed to implement this enhancement. The requirement is to analyse the effect of those 

extensions on a large network.

Considering the complexity of interaction between the network devices, the desired flexibility in 

designing and modifying the network and the existence of a prototype device, the  simulation 

deems the most  appropriate approach to simulate the effects on a large scale  network.  The 

available simulators must  be evaluated on how fit  they are for  the purpose of  simulating a 

KNX/EIB network protocol and network structure.

This  thesis  has  been  carried  out  within  the  project  Security  in  Building  Automation (FWF 

Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung; Projekt P19673).
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2 Introduction to KNX/EIB

2.1 Purpose of KNX/EIB

A Building Automation System (BAS) [02] is a network of (programmable) devices that control 

the environmental condition of a building like lighting and shading, heating, ventilation and air 

conditioning (HVAC). It aims at improving control, monitoring and administration of technical 

building subsystems to gain cost efficiency and building control and to improve comfort for the 

occupants.  Management and configuration of an integrated BAS becomes easier and allows 

reduction of management tools.

Security  critical  subsystems  like  access  control  and  security  alarm  systems  have  been 

implemented as stand-alone systems. This is due to the fact that they depend on the underlying 

control systems to be reliable and robust to avoid malicious manipulation of devices and traffic. 

However, today the demand for a tighter integration of the traditional BAS and security control 

systems exists.

The  EIB  (European  Installation  Bus)  [04]  is  a  fieldbus  designed  to  enhance  electrical 

installations in homes and buildings by separating the transmission of control information from 

traditional  electrical  wiring.  Its  main  applications  are  solutions  in  lighting,  window blinds 

control and HVAC systems. EIB is based on an open specification, maintained until recently by 

the EIBA (EIB Association, [05]). The newly emerged KNX standard [06] is a combination of 

EIB, Batibus and EHS (European Home System), combining their best aspects.  EIBA, EHS 

Association and Batibus Club International formed the Konnex Association, accordingly.

KNX/EIB installations are hierarchically structured, end devices are topologically arranged in 

lines and areas. Lines are interconnected with each other by line couplers (LC). Up to 15 lines 

can be combined to an area,  backbone couplers (BC) can combine up to another 15 areas. A 

maximum of 256 devices can be addressed in a line. Thus, a completely extended KNX/EIB 

system can accommodate up to 57600 devices.
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KNX/EIB Simulation 2  Introduction to KNX/EIB

Logically, KNX/EIB is a peer-to-peer system. Devices communicate with each other without the 

presence of a dedicated master. In general, two types of communication can be distinguished: 

management communication using unicast and broadcast and process data communication using 

multicast communication.

2.2 Introduction to the KNX/EIB Protocol

2.2.1 KNX/EIB and the OSI reference model

The Open Systems Interconnection (OSI) model splits the complex tasks of data communication 

into 7 defined sub-areas, referred to as layers [07]. Each layer interacts with the layer above and 

below. A layer,  the  service provider,  provides a  service to the layer immediately above, the 

service user.  The  interface between both layers defines how the service user can access the 

service  of  the  service  provider,  specifies  the  parameters  and  the  result  to  be  expected.  A 

protocol defines a set of rules and conventions that is being used by layers of the same level, 

allowing communication between devices.

Page 11

Figure 2.1: KNX/EIB network with different areas and backbone line



KNX/EIB Simulation 2  Introduction to KNX/EIB

Communication between layer N and layer (N-1) via its services or its interfaces respectively 

occurs via a Service Data Unit (SDU). Communication between two peer layers is done via a 

Protocol Data Unit (PDU) which consists of the user data, the  Interface Control Information 

(ICI) and the layer specific Protocol Control Information (PCI).

Examining the KNX protocol, not all layers of the OSI protocol are necessary. Only 5 out of 7 

layers are being used by the KNX standard. These are:

● Physical Layer

● Data Link Layer

● Network Layer

● Transport Layer

● Application Layer

Focusing on the communication of peer layers, there are 4 different service primitives: request 

(req), indication (ind), confirmation (con) and response (res). Services need not always to make 

use of each of the service primitives and can be classified as follows:

Locally confirmed services comprise of a request, an indication and a confirmation. The local 

service user calls the layer N service provider. A request and the corresponding PDU is being 

generated and passed on to the layer (N-1) until it is given over to the physical medium. On the 

receiver side, the peer layer N is activated with an indication, the enclosed PDU is decoded and 

the data passed to the layer above.
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KNX/EIB Simulation 2  Introduction to KNX/EIB

Layer N on the sender side receives a confirmation from the local layer (N-1) telling whether 

the underlying layer was able to process the request accordingly.

Confirmed services also consist of a request, an indication and a confirmation. With a confirmed 

service, the peer remote layer generates an acknowledgement immediately after receiving the 

indication. At the sender side the received acknowledgement is passed on to the local layer N as 

a confirmation.

Answered services always consist of a request, an indication, a response and a confirmation. The 

confirmation response is being generated at the remote service level provider as a response 

which is received at the local layer N as a confirmation.
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2.2.2 Physical Layer

This  layer  describes  the  mechanical,  physical,  electrical  and  logical  properties  of  the  used 

network medium. Examples are the physical connector type, cabling type, cable impedance and 

transmissions frequency.

KNX/EIB includes several communication media [08]:

● TP-0 (twisted pair,  type  0):  this  communication medium has  been taken over  from 

BatiBUS. It features a transmission rate of 4800 bit/s. KNX TP-0 certified products will 

operate  on  the  same bus  as  BatiBUS certified  components  but  will  not  be  able  to 

exchange information with BatiBUS devices.

● TP-1 (twisted pair, type 1): this communication medium has been taken over from EIB. 

Its transmission rate is 9600 bit/s. EIB and KNX certified products will operate and 

communicate with each other on the same bus they use.

● PL-110 (power-line, 110 kHz): this medium, too, has been taken over from EIB. Its 

transmission  rate  is  1200  bit/s.  The  EIB  and  KNX  PL-110  certified  products  will 

operate and communicate with each other on the same electrical distribution network.

● PL-132 (power-line, 132 kHz): this communication medium has been taken over from 

EHS. Its transmission rate is 2400 bit/s. KNX PL-132 certified components and EHS 

1.3a certified products will operate together on the same distribution network but will 

not communicate with each other without a dedicated protocol converter.

● RF (radio frequency, 868 MHz): this communication medium, radio frequency with a 
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KNX/EIB Simulation 2  Introduction to KNX/EIB

bit rate of 38.4 kbit/s, has been developed directly within the framework of the KNX 

wireless standard.

● Ethernet: this medium can be used in conjunction with the KNX over IP specifications 

which allow the tunnelling and routing of KNX frames encapsulated in UDP/IP frames.

The traditional medium of the former EIB bus is a twisted pair (TP) line, today known as KNX 

TP-1. The TP-1 cable carries 29V DC voltage as well as the communication signalling. TP-1 

allows  free  topology,  up  to  1000m length per  physical  segment.  Up to  4  segments  can  be 

concatenated with line repeaters forming a line of maximum 4000 meters.

Only the twisted pair cabling method will be covered in this thesis as the other available media 

(power line, radio, etc.) have different frame formats but the simulation results are expected not 

to differ significantly.

The topology of the bus can be freely chosen, loops are not allowed. Junctions in the cabling are 

allowed and also used in real-world implementations. However, for the simulation model the 

topology will in principal (but is not limited to) resemble a bus line.

2.2.3 Data Link Layer

This layer ensures the transmission between two devices. There are two basic functions of the 

layer: first the composition of the data frame based on the information from the above layer and 

error checking (LLC, Logical Link Control) and secondly the coding of the frame, ensuring that 

the data is transmitted correctly (MAC, Medium Access Control).

2.2.3.1 Logical Link Control (LLC)

The LLC provides flow control and error control to the network layer.

A datagram is a data unit that can be transmitted from a sender to one or more receivers. Before 

sending the datagram it must be converted to a data frame that must include the full addressing 

information.

2.2.3.2 Medium Access Control (MAC)

The MAC provides  channel  access  control  mechanisms to  the  underlying physical  layer  to 

which it is closely linked.
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KNX/EIB Simulation 2  Introduction to KNX/EIB

The  MAC  access  method  for  KNX/EIB  is  Carrier  Sense  Multiple  Access  with  Collision 

Avoidance (CSMA/CA). Collisions are avoided by writing and listening to the bus at the same 

time. If a device discovers that the signal it listens to is different from what it is sending it 

ceases communication immediately. This might be the case when another device is sending a 

packet with higher priority in parallel.

In addition to the bus access method, the MAC also implements some timing considerations 

specific to the TP-1 specification of the KNX/EIB bus: at the sender side the data to be sent is 

being received from the LLC sub-layer  and sent  via  a  transceiver  to  the  physical  medium. 

However, before sending, the bus must be idle for 50 bits time, where 1 bit time is defined as 

104µs (9600 bits per second). Repeated frames can be sent after that time period. If a frame is 

sent for the first time the MAC needs to wait for another 3 bits time. The receiving station has – 

after receipt of the datagram – to wait for 15 bits time to return the acknowledgement packet. If 

the acknowledgement datagram needs to be sent by multiple stations, these stations send their 

responses in parallel, where a negative acknowledgement signal prevails a positive one [09].

2.2.3.3 Addressing Types

There are two ways of addressing at the KNX/EIB protocol:

1) Individual  addressing:  during  the  engineering  process  at  the  installation  time  each 

device needs to be configured with a unique individual address. The uniqueness must be 

ensured within the whole KNX/EIB installation. In KNX/EIB the individual address 

consists of

a) the device number (0-255) which uniquely indicates the device within its line,

b) the line number (0-15) which specifies the line of the device and

c) the area number (0-15) which specifies the area of the device.
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Alternatively, the line number bits and area number bits can be regarded combined as a 

subnetwork address. In that case individual address consists of

a) the device number (0-255) which uniquely indicates the device within its line,

b) the subnetwork address (0-255).

2) Group addressing: this logical address can be assigned to one or more devices which 

will form a functional group. The group address is not bound to the physical location of 

the device which means that devices within the same group can be spread over several 

lines. Two structures of a group address are available that differ in their representation:

a) similar to the individual address the group address consists of a triplet of the range 

(0-31), (0-7) and (0-255) that forms the group address

b) a  sub-group number  (0-2047)  denotes  the  group's  function  and  the  main  group 

number (1-31) specifies the task area of the group.

The naming convention used for individual addresses is area.line.device where “.” is being used 

as separator. For group addressing the character “/” is being used as separator in both addressing 

formats. So 1.4.6 represents an individual address of a device, whereas 2/4/1 represents a group 

address that may contain one or more devices. During this work we will use only the group 

notation in triplet form of a/b/c.

2.2.3.4 Frame Formats

As we are aware of different addressing formats, the structure of a standard KNX/EIB TP-1 data 

frame is defined as follows:

Data Frame L_Data:

Figure 2.7 shows the structure of a standard KNX/EIB data frame. Alternatively, an extended 

frame format exists that allows to transport up to 254 bytes in the  data field. In this case, the 

structure of the Control Field differs and a new Extended Control Field has been introduced to 
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allow encoding of the larger frame. Since the extended frame is not subject of the protocol 

investigation in this work, it will not be used in further definitions and descriptions.

Control field (C field):

Flag R: the  Repeat flag is being used in a scenario where no or a negative acknowledgement 

frame has  been previously sent  back to  the  sender  because one  receiver  did  not  positively 

receive the data frame. To distinguish resent data frames, the repeat flag has to be set. This way 

the receiving stations know that the frame has already been sent and it is the responsibility of 

each receiver to correctly determine if the information is being passed on to the higher levels. 

Bits P0 and P1 determine the priority of the frame. 4 priorities exist: system, urgent, normal and 

low.

Source field:

The  source address is always the individual address of the sending station. Every KNX/EIB 

device must be assigned a unique address during the installation phase.
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Destination field:

The  destination address field is of the same format as the  source address field but with the 

extension of the  destination address flag (DAF).  A frame addressed to one physical  device 

(unicast message) must use the individual address of the device and needs to have the DAF set 

to 0. This way only the addressed device will act upon the received frame. If one or multiple 

devices are addressed with the frame (multicast or broadcast message),  the destination field 

holds the logical address of the recipients and the DAF is set to 1.

Note that unicast messages are sent by management communication only, e.g. setting sensor 

parameters  by  a  central  monitoring or  control  station.  Normal  process  communication,  e.g. 

switching  a  light  actuator  on  or  off,  is  always  done  with  multicast  communication  to  a 

corresponding group address. The group address can be used by only a single device or by a 

group of devices, also located on different lines and areas.

R/L field:

L0-L3 specify how many data bytes are following in the data field, the range is from 0 to 15. 

The length of the data field is 1-16 bytes. The value of zero in the fields L0 to L3 represents a 

data field length of 1 byte, a value of 15 represents a data field length of 16 bytes.
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Data field:

The data field contains 1 to 16 bytes of data. The data is being forwarded to the network layer 

for further processing and form the actual data transferred between devices. Note that the data 

field must contain at least one byte – the protocol information from the transport layer.

P field:

The parity field contains 8 check bits. Its purpose is to detect transmission errors. The sender 

creates the checksum for the frame and adds it to the frame. The receiving device checks the 

frame consistency by comparing the frame contents against the checksum. When a modification 

of the frame is detected, the frame is rejected and requested again by the LLC layer.

Acknowledgment Frame L_Ack:

As illustrated at the description of the MAC layer, an  acknowledgement frame is being sent 

upon receipt of a frame to indicate its correct or incorrect receipt. The acknowledgement frame 

consists of one byte and has no additional payload. The format is:
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N1 N0 0 0 B1 B0 0 0

1 1 1 1 positive acknowledgement frame

1 1 0 0 busy frame

0 0 1 1 negative acknowledgement frame

Table 2.1: Table of acknowledgement frame bits and their meaning

● If a frame with a group address (DAF=1) is received incorrectly by one device, the 

negative  acknowledgement  frame wins  against  probable  positive  acknowledgement 

frames from devices which received the frame correctly.

● If a device cannot process the frame, the bits B0 and B1 are set to 0. This signalling is 

dominant to other devices that send a positive acknowledgement.

● If the frame has been destroyed or is not recognised by a device, the line stays “idle”.

In all cases the frame is transmitted again by the LLC layer's protocol, with the repeat flag set.

2.2.4 Network Layer

The network layer sets up end-to-end connections between devices and provides services to 

transport  packets  from  the  source  to  sink.  Target  destinations  can  be  either  logically  or 

individually  addressed.  The packets  need to  traverse  different  network lines  that  are  linked 

together  with  routers.  The  network  layer  provides  the  above  lying  transport  layer  with  a 

connectionless packet exchange.

Depending on the destination network address the packet is sent to either one receiver (unicast), 

multiple receivers (multicast) or all receivers (broadcast) on the network.

2.2.4.1 Unicast Communication

If the network layer sends a packet to a single receiver, it uses the individual address of the 

target  device.  Additionally,  the  destination  address  flag  (DAF) is  set  to  0  to  indicate  an 

individual address.

2.2.4.2 Multicast / Broadcast Communication

Multicast and broadcast messages are very similar.  When addressing multiple devices, these 
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devices are addressed with a group address that has been defined for these devices during the 

installation phase. To distinguish the logical address from the individual address, the DAF needs 

to be set to 1.

A broadcast message also has its DAF set to 1 but the destination address is set to 0/0/0.

2.2.4.3 Bridges and Routers

There are 2 device classes that allow to extend the KNX/EIB network:

A bridge regenerates the line signal and allows the KNX/EIB line to be extended in length. 

Basically this is the function of a repeater but in KNX/EIB they also acknowledge packets on 

the data link layer.  Bridges do not  need an individual  address assigned.  The reason for the 

bridge – normally a layer 2 device - to be defined in layer 3 is because it decrements the routing 

counter when forwarding a frame, as described below in detail.

A router is a device that connects separate network lines and acts on layer 3 of the OSI model. 

In contrast to a bridge it does not only refresh the network signal but the router also decides on 

basis of the routing table whether a frame is forwarded on to another network segment.

In KNX/EIB the  routing table is  being defined at  the installation phase of  the network.  Its 

entries are static and are not self-modified during runtime. When receiving a frame, the router 

decides upon the routing table if the frame will be forwarded to the next network segment or 

not. The decision if a router acts as a  line coupler or as a  backbone coupler is based on the 

individual address of the router which determines its location on the network [10].

Coupler type
Individual address

Area number Line number Device number

Line coupler 1 - 15 1 - 15 0

Backbone coupler 1 - 15 0 0

Table 2.2: Individual addresses of routers and associated functions

Only the group addresses need to be defined in the routing table as the individual address of the 

router also denotes the routing of individual addresses. Routers have in general 2 ports. In case 

of  a  line coupler that is one towards the line and one towards the  main line, in case of a 

backbone coupler that is one towards the main line and one towards the backbone line.
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When a frame is forwarded by a router – and the same is also valid for a bridge - to another 

network segment, the router decrements the routing counter (contained in the R/L Field) if its 

value is less than or equal to 6. A routing counter value of 7 means that the counter will not be 

decremented by the router, a value of 0 lets the router or bridge discard the frame as it has 

reached its maximum routing hops.

2.2.5 Transport Layer

The KNX/EIB transport layer offers two methods of transferring data to the application layer:

1. Connection  oriented  communication:  this  communication  type  establishes  a  reliable 

connection between sender and receiver, transports data and end communication. If a 

frame is lost during communication it is being retransmitted. The communication can 

also end if e.g. the receiver does not acknowledge the received frames in time.

2. Connectionless communication: this communication type sends a frame from the sender 

to the receiver without prior establishment of the communication “channel”. The sender 

has no control or receives feedback on whether the frame has reached its target(s).

Page 23

Figure 2.14: Routing Counter in R/L Field

Figure 2.15: Data Field, 1st byte = Transport Control Field



KNX/EIB Simulation 2  Introduction to KNX/EIB

Transport Control Field

7 6 5 4 3 2 1 0

0 0 0 0 0 0 x x Data Unack. PDU, Group PDU, Broadcast PDU

0 1 S3 S2 S1 S0 x x Data PDU

1 0 0 0 0 0 0 0 Connect PDU

1 0 0 0 0 0 0 1 Disconnect PDU

1 1 S3 S2 S1 S0 1 0 Acknowledge PDU

1 1 S3 S2 S1 S0 1 1 Negative Acknowledge PDU

Table 2.3: Transport Control Field values

For connection oriented communication only the bits S0-S3 are used as  send counter of the 

PDU. The send counter is incremented each time a frame is sent from the sender to the receiver 

and the frame is positively acknowledged. This way the receiver can keep track of received and 

expected frames.

2.2.6 Application Layer

The layers that have been discussed up to now do not provide any real functionality to the user. 

The  application  layer  implements  services  for  e.g.  process  data  communication,  device 

management and network management in utilising the layers underneath.

2.2.6.1 Process Data Communication

To  implement  a  function  like  “light  on”  or  “read  temperature”,  KNX/EIB  devices  must 

implement  means  of  process  data  exchange.  Communication objects are  being  used on the 

sender and receiver application side to exchange this data. Basically it is a memory area of the 

device  that  can be addressed  using  standardised application layer  functions  and be  read or 

written to.

As communication objects might  be “subscribed” by multiple devices,  a means to reach all 

devices is required.  For this  purpose  group addressing is being used.  A sending device can 

address multiple receiving devices when they are listening to the same group address. However, 

the sending device can only use one group address to send its data. The association between 

group address and communication object is being defined in the association table. When data is 

being received by a device, the application layer uses its association table to find out which 
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communication objects are targeted by a group address.

2.2.6.2 Management Communication

Individual Address Configuration

The device configuration is being used at the application layer when an individual address of a 

device  needs  to  be  set  or  modified.  For  this  purpose  the  device  must  already  be  set  to 

programming mode which  is  invoked normally at  the  device  by pressing the  programming 

button.  The device then waits  for  a broadcast  frame which contains  the  device's  individual 

address.

Another possibility to set a device's individual address is a service that will address the device 

by its unique serial number and set the individual address accordingly.

Other Services

Some  other  examples  of  services  that  are  based  on  an  acknowledged,  connection-oriented 

communication of layer 4 include

● Memory access service to read or write up to 12 bytes of memory of a device in one 

transferred frame.

● Analogue/digital  converter  access service  where  the  requester  specifies  the  channel 

number of the A/D converter and the number of conversions. The receiver returns the 

value of the carried out conversion.
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● Routing  table  access service  to  read  and  write  routing  tables  of  line  couplers  and 

backbone couplers.
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3 Comparison of Protocol Simulators

The following protocol simulators have been considered and compared for the implementation 

of the KNX/EIB protocol, especially with regard to their effectiveness to simulate the required 

functionality.

3.1 GloMoSim

GloMoSim (Global Mobile Information Systems Simulation Library, [11]) is being used to build 

wired and wireless simulations. Its basis is ParSec, a discrete event-based simulation system. 

GloMoSim strives to implement a layered model similar to the OSI model, providing APIs for 

the  different  levels  and  protocols.  Measures  can  be  applied  at  each  level  of  abstraction. 

GloMoSim features many ready-to-use wired and wireless protocols like CSMA, 802.11, TCP, 

UDP,  routing  protocols  like  OSPF  and  wireless  propagation  models  and  according  device 

mobility simulations. It is extensible with modules written in C language. Documentation is 

available online in PDF format. 

Initially a DARPA project, it has been abandoned around the year 2000 as no new update is 

available since that date. There has been a commercial spin-off called QualNet.

3.2 QualNet

QualNet [12] derived from GloMoSim as a commercial branch of the former DARPA project. It 

has  the  same  underlying  ParSec  concept  of  an  event-based  simulation  system.  Wired  and 

wireless systems can be simulated and parameterised with configuration files for the relevant 

simulation layers [13]. Simulated protocols include CSMA, 802.11, 802.16, GSM, TCP, UDP, 

many routing protocols as well as many protocols of the application layer (e.g. FTP, HTTP, 

VoIP, GSM). It features commercial support, online documentation, extensibility in C++ (but 

not for all available versions) and an active user community. Very specific for QualNet is its 

extensive  implementation  of  wireless  protocols,  mobility  simulation  and  available  terrain 

simulation partially designed for military usage.
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3.3 ns-2

ns-2 [14] is a GPL-licensed simulation framework, mainly used at universities. It includes wired 

and wireless  simulation models  that  can be  extended in  C++ and OTcl,  an object  oriented 

variant of Tcl. While C++ is more used to extend the system's functional capability, OTcl is 

being used to define and extend the behaviour of the simulation. An active, mostly academic 

community  is  present  where  the  software  is  constantly  developed.  Like  GloMoSim  and 

QualNet, ns-2 is also very data network centric as it supports a lot of LAN/WAN and wireless 

based protocols. Extensions are mostly limited to extend routing capabilities in implementing 

new protocols and to build test networks. Implementation of a completely different network like 

KNX/EIB, LON, BACnet, etc. would mean a major change of the software.

3.4 OMNeT++

OMNeT++ [15, 16] is a discrete event based simulation framework and can be used for traffic 

modelling of communication networks, protocol modelling, modelling queueing networks and 

others. The licensing has a free-of-charge option for non-profit and academic use as well as a 

commercial license (OMNEST, [17]). In contrast to the simulators discussed above, OMNeT++ 

provides easy ways to implement any protocol or system that can be handled as based on events. 

It does not follow an IP-centric approach in its basic simulation models although TCP/IP and 

wireless implementations are available and widely used. Extensions to existing protocols and 

new functionality  is  being added in  C++ modules.  The network  layout  is  being defined in 

network configuration files. An active community is available that develops solutions mainly in 

the 'classic' data network areas.

3.5 Summary

All  simulators  are  capable  to  a  different  extent  to  simulate  classic  IP based  networks  and 

wireless  networks.  Especially  QualNet  has  a  wealth  of  supported  protocols  and  terrain 

simulation  for  its  wireless  networks  part.  However,  simulating  a  KNX/EIB network  is  not 

directly supported by any simulator. The focus on the decision for a simulator was to find one 

that was capable of modelling the KNX/EIB protocol to some extent that was usable for the 

intended work.
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The  table  below  illustrates  aspects  that  have  been  considered  when  choosing  the  most 

appropriate simulator.

GloMoSim QualNet ns-2 OMNeT++

Link http://pcl.cs.ucla.e

du/projects/glomos

im/

http://www.qualnet

.com/

http://www.isi.edu/

nsnam/ns/

http://www.omnet

pp.org/

Extensi-

bility

Yes, in C Yes, in C++  for 

customisations. 

Not all versions 

provide source 

code to write 

extensions

Yes, in OTcl 

scripts and C++ 

mechanism 

implementation

Yes, C++ interface 

definition

Event based Yes Yes Yes Yes

Layers 

simulated

L2+, lines / radio 

can be 

parameterised

L2+, lines / radio 

can be 

parameterised

L2+, lines / radio 

can be 

parameterised

L2+ (partially 

depending on 

simple module 

implementation), 

lines can be 

parameterised

Line & 

radio 

propagation 

models

Radio and line 

based protocols

Many radio 

protocols, includes 

military specific 

ones, GSM, 

WiMax, line based 

protocols

Radio and line 

based protocols; 

focus on Internet 

technology

Radio and line 

based protocols 

available through 

specific simulation 

models (INET, 

MF)
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GloMoSim QualNet ns-2 OMNeT++

Additional 

modules & 

libraries

- (Military) radio 

models, urban 

terrain modelling 

including buildings

Satellite 

communication 

modules, many 

TCP based 

contributed models

Community 

provided models, 

mainly IP based 

routing models but 

also more generic 

algorithm and 

protocol 

simulations

License 

terms

Proprietary; 

academic use only. 

Commercially 

available via 

QualNet

Commercial 

license

GPL v2 Proprietary; free 

academic license, 

commercial 

license

Community Initially a DARPA 

project, abandoned 

2000, turned to 

commercial 

product QualNet 

by SNT

Professional 

community, 

support provided 

by supplier

Active community Active community

Table 3.1: Comparison of protocol simulators

OMNeT++ has been chosen for its versatility. Not only classical networks can be simulated but 

also  queueing  problems,  file  system interaction  and  more  generic  protocols  like  SCSI  and 

HTML.
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4 Introduction to OMNeT++

4.1 Overview

OMNeT++ is a discrete event simulation framework [18]. Its primary application area is the 

simulation of communication networks. Several models for wired and wireless networks exist 

and some new network routing algorithms are also being implemented for scientific research. 

Although OMNeT++ is not a network simulator itself, it has widespread popularity as a network 

simulation platform in the scientific community. The simulation environment is not limited to 

network models but  can simulate a range of problems that  can be broken down to passing 

discrete messages between objects, e.g. pipelining models, process communication, queueing 

networks or hardware architectures as well.

OMNeT++  provides  a  component  architecture  for  models.  Components  (modules)  are 

programmed in C++, then assembled into larger components and models using a high-level 

language called NED. OMNeT++ comes also with GUI support which enables easy simulation 

visualisation and interpretation of results during runtime.

4.2 Modelling Concepts

An OMNeT++ model consists of hierarchically nested modules which communicate by passing 

messages through gates that connect those modules.

The  top  level  module (system module)  contains  sub-modules  which can  also  contain  sub-

modules. There is no limitation to the nesting level of modules (compound modules) making it 

possible to construct the simulation model according to the logical structure of the actual model 

to be simulated.
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The modules are connected to each other via gates, which are the interfaces of the modules and 

connections, that link the gates together. Modules can be connected within the same hierarchy 

level  in  the  compound  module  or  towards  the  parent  compound  module.  The  gate  is  a 

unidirectional  pipe  for  messages.  When  designing  bidirectional  communication  between 

modules, gates and connections in both directions need to be defined.

Connections can be optionally assigned parameters for their speed, error rate and propagation 

delay. The parameters are later used to calculate the message delays in the simulation and to 

statistically provoke errors in the packets transmitted. These errors can be queried upon receipt 

of a message.

Module parameters are used to pass specific information to the individual objects of the module 

and are defined in the NED file or in an omnet.ini configuration file. The parameter can be a 

numeric or string value as well as an XML file.

The NED file is the network definition file for an OMNeT++ simulation model. It contains the 

simple  and compound module  definitions,  the  definitions of  the gates of  a module  and the 

connections between modules.

The functionality of the defined simple modules is implemented in C++. The flexibility of C++ 

can be used,  supported by the functionality of  the OMNeT++ class library. The OMNeT++ 

library  contains  e.g.  the  simulation  objects  of  modules,  gates,  connections,  parameters, 

messages, container classes and data collection classes. Not only messages can be created at 

runtime within the C++ code, also connections to other modules can be created dynamically at 

runtime.
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4.3 The NED Language

The NED language describes the relation between  simple modules,  compound modules,  gates 

and connections as well as a module's parameters.

The following NED file extract is taken from the simulation:

module KNXdev

parameters:

address: string,

table: string,

application: string;

gates: 

in: in_bus, in_user;

out: out_bus;

submodules:

stack: KNXstack;

parameters:

address = address,

table = table;

appl: KNXappl;

parameters:

table = table,

application = application;

gui: KNXappl_gui;

parameters:

address = address,

application = application;

connections:

// module gates to external

out_bus <-- stack.out_bus;

in_bus --> stack.in_bus;

in_user --> appl.in_user;

// internal module gates

Page 33



KNX/EIB Simulation 4  Introduction to OMNeT++

stack.out_appl --> appl.in_appl;

stack.in_appl <-- appl.out_appl;

endmodule

The example above shows a  network  device  definition,  parameters,  gates,  submodules and 

connections.  The  parameter section defines  the  parameters  that  are  required to  operate  the 

device like the hardware address, the application association table and the application type. The 

gates section defines the way how the device communicates with other objects and represents 

the interface of the device. The  submodules section defines which submodules the object is 

comprised  of  and  also  allows  to  parametrise  the  submodule's  parameters.  The  connection 

section defines which in and out gates are connected to each other, especially in regard to the 

used submodules.

4.4 Running a Simulation in OMNeT++

The simulation consists of the

– NED file (.ned), containing the simple and compound modules' definitions and the gates 

and connections describing the structure of the simulation,

– optional message definitions (.msg) files, which can contain various data types to add data 

fields to the messages passed between modules. Message definition files are translated to 

C++ classes and integrated into the simulation.

– simple module source files as C++ files (.h and .cpp) that implement the functionality of 

the modules.

The OMNeT++ simulation system provides the

– simulation kernel, containing the code that manages the simulation and OMNeT's C++ class 

library.

– user  interface  to  allow  interaction  with  the  defined  modules  and  visualisation  of  the 

simulation model.
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4.5 Collection and Representation of Simulation Results

Output vectors are time series data, i.e. values with time stamps. They can be used to record 

delays, round trip times of packets, queue lengths, etc. Basically it is a good representation of 

what happens to certain values over the time of the simulation run. Output vectors are recorded 

during the simulation from simple modules with the cOutVector() method.

The format  of  a  (named by  default)  omnet.vec output  vector  file  is  demonstrated  in  an 

example:

vector 4  "knx_3_line.line_1.bus_1"  "bus_1"  1

4 0 0.0927083333333

vector 5  "knx_3_line.line_2.bus_2"  "bus_2"  1

5 0 0.0927083333333

vector 6  "knx_3_line.line_3.bus_3"  "bus_3"  1

6 0 0.0927083333333

vector 7  "knx_3_line.line_backbone_1.bus_b_1"  "bus_b_1"  1

7 0 0.278125

4 1 0.00208333333333

5 1 0.00208333333333

6 1 0.00208333333333

7 1 0.00625

4 2 0.00208333333333

5 2 0.00208333333333

6 2 0.00208333333333

7 2 0.00625

4 3 0.00208333333333

5 3 0.00208333333333

6 3 0.00208333333333

7 3 0.00625

4 4 0.00208333333333

5 4 0.00208333333333

6 4 0.00208333333333

7 4 0.00625
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4 5 0.00104166666667

5 5 0.00104166666667

6 5 0.00104166666667

7 5 0.003125

4 6 0.00104166666667

5 6 0.00104166666667

6 6 0.00104166666667

7 6 0.003125

There are two types of lines: declaration lines and data lines.

The vector declaration line looks like:

vector 4  "knx_3_line.line_1.bus_1"  "bus_1"  1

and shows the keyword “vector”, the vector id, module of creation (as referenced in the NED 

file), name of the  cOutVector object and multiplicity (single numbers or pairs will be written; 

usually 1).

The contents of a data line as an example is:

4 1 0.00208333333333

and shows the vector id, simulation time and recorded value.

Scalar statistics are mainly used to compare model behaviour under various parameter settings 

called “runs”. The  recordScalar() method is mostly called at the end of the simulation 

from within the  finish() method of the simple module. It records in a (named by default) 

omnetpp.sca file data like gathered information over the simulation run like bytes sent / 

received, channel utilisation, channel idle time, etc. run 1 and run 2 refer to two simulation 

runs with different start parameters, e.g. different line speeds or queue lengths:

run 1 "knx"

scalar "knx_3_line.line_1.bus_1" "simulated time" 34.756

scalar "knx_3_line.line_1.bus_1" "frames sent" 99

scalar "knx_3_line.line_1.bus_1" "frames rcvd" 3088

scalar "knx_3_line.line_1.bus_1" "bytes sent" 64869

scalar "knx_3_line.line_1.bus_1" "bytes rcvd" 3529448
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scalar "knx_3_line.line_2.bus_1" "simulated time" 34.756

scalar "knx_3_line.line_2.bus_1" "frames sent" 99

scalar "knx_3_line.line_2.bus_1" "frames rcvd" 3088

scalar "knx_3_line.line_2.bus_1" "bytes sent" 64869

scalar "knx_3_line.line_2.bus_1" "bytes rcvd" 3529448

scalar "knx_3_line.line_3.bus_1" "simulated time" 34.756

[...]

run 2 "knx"

scalar "knx_3_line.line_1.bus_1" "simulated time" 71.926

[...]

Different tools can be used to visualise the gathered data. OMNeT++ provides the following 

tools:

Plove can be used to load created .vec files. In an interactive user interface, the vectors can be 

narrowed down to examine and individually plot them. However, for larger amounts of vectors 

one might want to use external tools to separate the vector data from each other and use them 

optionally in other applications for further analysis.

Scalars visualises the generated .sca file in a block diagram and scatter plots. The scatter plot 

can be used to conveniently compare data results of different simulation runs. Also here it might 

be useful to extract the data with help of tools for further comparison to external applications.
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The  simulation  of  the  KNX/EIB  network  consists  of  the  NED file,  various  C++  files 

representing the modules defined in the OMNeT++ hierarchy and files such as UserSim.txt 

that is being used to simulate the user behaviour.

The generated output files are <module_name>.log files that protocol the received data per 

KNX/EIB  network  segment,  e.g.  bus_1.log.  Also  the  line  couplers  (LC)  and  backbone 

couplers (BC) protocol their filtering activity in the appropriate <coupler_name>.log files, 

e.g.  line_backbone_1.log.  These  files  can  be  used  for  further  analysis  after  the 

simulation run.

To  simplify  the  illustration  of  connectors in  the  following  descriptions,  a  graphical 

simplification will be made in the illustrations to denote a bidirectional connection between two 

modules:  the  drawing  of  the  incoming  connection  (connection  towards  the  in gate)  and 

corresponding outgoing connection (connection from the out gate) will be described as:

Technically still both connections – the in and the out connection from the in and the out 

gate - must be defined in the NED file as OMNeT++ is not aware of bidirectional connections.

5.1 Module Overview

The Fig. 5.2 provides a high level overview of the network model, showing the structure of the 

network  with  its  backbone  line,  main  lines  and  lines,  coupling  devices,  devices  and  the 

messages exchanged over the bus.
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5.2 Basic C++ Objects

The KNXPacket class provides the functionality that represents a message (or frame) passed on 

through the KNX/EIB network on layer 2. This class is generated out of the message definition 

outlined in the KNXmsg.msg file using the OMNeT++ tool called opp_msgc.
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Contents of the KNXmsg.msg file:

message KNXPacket

{

fields:

unsigned char message[23];

unsigned int messagelength;

};

This simple definition reflects the KNX/EIB frame to be transported as an embedded message 

in  an  OMNeT++  message.  message is  the  array  that  holds  the  frame  content, 

messagelength denotes  the  valid  length  of  the  message.  The  KNXmsg.msg file  is 

processed before compilation in the following way with OMNeT++:

The  KNXmsg.msg file  is  processed  by  the  opp_msgc compiler  which  generates  the  file 

KNXmsg_m.cc in C++ code. This file uses standard C++ data types like char, unsigned char, 

int, etc. To uniformly use the UINT8 and UINT16 data type, the file is manually processed to 

align the data types with the ones used throughout the other C++ code.

The resulting KNXmsg_m.cc file is part of the source files for compilation. The file is the basis 

for defining the cMessage embedded object structure in OMNeT++. The cMessage embedded 

object's binary data is encapsulated with OMNeT++ encapsulate() method and retrieved 

from every  KNXstack module which receives a message with OMNeT++  decapsulate() 
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method.  The  binary  data  is  loaded  with  the  setMsgFromBin(UINT8 *msg, UINT8 

msglength)to the  KNXmessage object which provides various methods to access different 

elements of the KNX/EIB frame.

Methods of KNXmessage class:

This class contains the get and set methods to get respectively set the object's values. The basic 

data type used for many methods are strings as this data type allows easy interaction with the 

OMNeT++  runtime  environment,  e.g.  allows  inspection  and  modification  of  objects  and 

parameters at runtime. A typical implementation would be that after receiving the OMNeT++ 

message and setting the object's values with setMsgFromBin(...), the set and get methods 

can be used on the message.

KNXmessage(void) : class constructor. Initialises the message content to be empty (which is 

not equal to set it to “0” as the KNX/EIB frame structure, empty message content and checksum 

must be set correctly. The data length of the KNX/EIB frame is set to 0).

~KNXmessage(void) : class destructor. It has no added functionality.

string msg2hexstring(void) :  converts  the  whole  KNX/EIB frame  (not  only  the 

contents of the message) from binary values to a hexadecimal string. The string conversion is 

useful for runtime output and allows to inspect the OMNeT++ message content when a message 

is being transferred within the OMNeT++ simulation environment.

void hexstring2msg(string hexstring) : converts the string to a KNX/EIB frame. 

All data elements of a KNX/EIB frame are required and will be converted to a KNXmessage 

object. The frame is not checked for consistency, e.g. correct P-field, which allows insertion of 

“malformed” frames to the network.

void setMsgFromBin(UINT8 *msg, UINT8 msglength) :  copies  the  binary 

information from a pointer to the message. This is being used when e.g. receiving a message 

from  OMNeT++  simulation  to  populate  the  corresponding  KNXmessage object  with  the 

content. The P-field is not being recalculated.

void updateChecksum(void) :  updates the  checksum of the  frame.  This  function is 
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invoked by all  set_*() functions  (except  method  setMsgFromBin())  to  ensure  frame 

integrity after setting frame values. This function does not calculate a correct checksum, it sets a 

predefined value instead, see Section 5.6.

void set_L_CField(UINT8 field) : sets all control field bits of a KNX/EIB frame.

void set_L_CFFrame(UINT8 frametype) : sets the control field value of a repeated 

frame. Correct values are FrameNormal and FrameRepeat.

void set_L_SourceAddr(string address) : sets the source address of the frame.

void set_L_TargetAddr(string address) :  set  the  destination  address  of  the 

frame.  Depending on the format  of  the  address string -  “.” of  “/” used as  separators –  the 

destination address flag (DAF) will be set accordingly to 0 or 1.

void set_L_Class(UINT8 msg_class) : sets the frame priority of the control field. 

Correct values are PrioLow, PrioNormal, PrioSystem and PrioUrgent.

void set_L_DAF(string daf) : sets the destination address flag of the frame to 0 or 1. 

Note that the DAF is set automatically when setting the target address depending on its format 

string.

void set_L_RouterCounter(UINT8 rc) : sets the router counter bits.

void set_L_LengthField(UINT8 lengthField) : sets the length field of the frame.

void set_L_SDU(string pdu) :  sets  the  SDU  (basically  the  data  section  of  the 

KNX/EIB frame) with data – a hexadecimal string - without modifying other frame information.

void setMsgPtr(void * msgptr, unsigned int length) : sets the object's 

message pointer and length. This is used to interact with the OMNeT++ objects.

UINT8 get_L_CField(void) : returns the control field of the frame.

UINT8 get_L_CFFrame(void) : returns the  frame type of the  control field.  Values are 

FrameNormal and FrameRepeat.

string get_L_SourceAddr(void) :  returns  the  source address of  the  frame in  the 

format “x.y.z”

string get_L_TargetAddr(void) : returns the destination address of the frame in the 
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format “x.y.z” for individual addresses and format “x/y/z” for group addresses.

UINT8  get_L_Class(void) :  returns  the  priority of  the  frame  (PrioLow, 

PrioNormal, PrioSystem and PrioUrgent).

string get_L_DAF(void) :  returns  the  destination  address  flag value  of  the  frame. 

Values are 0 or 1.

UINT8 get_L_RouterCounter(void) : returns the router counter of the frame.

UINT8 get_L_LengthField(void) : returns the length of the frame field, denoting the 

size of the data portion of the frame.

string get_L_SDU(void) : returns the data portion of the frame as a hexadecimal string.

UINT8 get_L_MsgLength(void) : returns the message length from the message object. 

Contrary to get_L_length_Field() which reads this value from the frame data, this value 

is from the object variables.  Its purpose is to be able to verify any differences between the 

object's and frame's data.

UINT8 * getMessagePtr(void) : returns a pointer to the message.

void print(ostream &os) : prints a human readable output of the frame's key values to 

the OMNeT++ standard output stream.

5.3 Basic Modules

The following modules are defined in OMNeT++ and form the basis of the simulation of the 

KNX/EIB network. First the simple modules are presented, followed by a description of their 

interaction and inter-linkage.

Every  OMNeT++ module  has  a  corresponding  C++ implementation  file  which  defines  the 

functionality of the module. At least the following methods must be defined in the module's 

C++ sources:

initialize(): initialises the module. It is a common place to read the parameters defined 

in the NED file to determine the object's functionality.

handleMessage(): this method is called every time the module receives a message on any 

incoming gate. The method needs to check from which gate the message is being received if 
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there is more than one incoming gate defined. Depending on the incoming gate, the function 

initiates appropriate calls to handle the message.

Optionally, the module can implement the  finish() function. This function is called at the 

end of the simulation run and should terminate the object properly from a simulation point of 

view.  It  is  not  the  destructor  of  the  module.  Within  finish() certain  statistical  values 

collected during the simulation can be written with the recordScalar() function, log files 

can be finalised and closed.

5.3.1 KNX/EIB Device's Network Stack – KNXstack

The KNXstack resembles the part of a KNX/EIB device that covers the communication layers 2 

to 7. All communication activity is handed in the KNXstack implementation.

The KNXstack in the NED file is defined as:

simple KNXstack

parameters:

address: string,

table:string;

gates:

in: in_bus;

out: out_bus;

in: in_appl;

out: out_appl;

endsimple

The KNXstack requires 2 parameters:

● address: sets the individual address of the device. The address must be defined in the 

individual address notation format, e.g. 1.2.6 which addresses the area 1, line 2, device 

6. Each device requires a unique individual address.

● table:  the  association  table of  the  application  layer  sets  the  relation  between 

communication objects and  group addresses.  The contents of  the  application layer's 

association table is shared via the KNXdev module with the KNXstack module. A valid 
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entry  is  e.g.  "1/1/2=lightA;1/2/3=lightB".  More  details  are  outlined 

describing KNXappl in Section 5.3.2

Once  a  received  message  has  been  successfully  decoded  as  a  valid  KNX/EIB  frame,  the 

message is verified if it is addressed to the receiving stack and the corresponding  device as 

outlined later. Messages that are not addressed to the receiving stack are ignored and deleted 

from the system. This corresponds to the behaviour of a KNX/EIB device that listens to the 

medium, reads the frame and its addressing information and – when not being addressed – 

ignores the received frame.

The KNXstack sends a KNX/EIB frame to the KNXbus for transmission. If the bus is currently 

busy by another frame, the KNXbus sends back a busy indication (see collisions remark in the 

KNXbus Section 5.3.4). When receiving the busy signal, the KNXstack retries to send the frame 

after a defined waiting period.

5.3.2 KNX/EIB Device's Application – KNXappl

KNXappl is the application module of a KNX/EIB device. It communicates with the network 

stack  KNXstack via messages. OMNeT++ messages between  KNXstack and  KNXappl are not 

binary encoded and  encapsulated like  the  communication  over  the  KNXbus but  are  sent  in 

strings that contain the message content hexadecimal encoded with the OMNeT++ message for 

easier message tracking during the simulation.

The structure is very similar to the  KNXstack simple module. It communicates with the stack 

with a bidirectional gate and the corresponding connection. More details of this relationship are 

described at the KNXdev module.
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The KNXappl in the NED file is defined as:

simple KNXappl

parameters:

table: string,

application: string;

gates:

in: in_appl, in_user;

out: out_appl;

endsimple

KNXappl requires 2 parameters, which are outlined by an example:

table = "1/1/2=lightA;0/0/0=lightALL", application = "switch1";

● table: this is the association table of the application layer. It is key to the configuration 

of the device as it defines at which addresses the device is reacting as a communication 

partner  and  which  actions  are  associated  with  the  different  group  addresses.  The 

structure of the association table as defined in Section 2.2.6.1 is reflected in the  table 

parameter in the following format: “group address=application object”. Multiple entries 

are separated by “;”.

● application: is the application ID which is required by UserSim to send the application 

the correct simulation triggers. The application ID together with the application object 

ID is used to identify the corresponding application object. Application is recommended 

to be unique within the network. If a specific application ID is assigned multiple times, 

these applications (or their associated devices respectively) will receive the same set of 

simulation event triggers. For further information how simulation events are triggered, 

see UserSim Section 5.3.6.
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Upon receipt of a trigger message from UserSim via the gate in_user, KNXappl starts sending a 

message to the stack with the appropriate group address that is looked up from the association 

table.

Depending  on  the  application parameter,  different  functionality  is  defined  in  KNXappl. 

Currently the functionality of a light, switch and an ACU (see Section 6.1) is defined.

5.3.3 KNX/EIB Device – KNXdev

KNXdev resembles a KNX/EIB device. It is a compound module of OMNeT++ that consists of 

two simple modules: KNXstack and KNXappl. Both communicate via the appropriate gates and 

connections with each other.  KNXdev exchanges frames with the  KNXbus on one hand and 

decoded  frames  with  KNXappl on  the  other  hand.  UserSim gives  “instructions”  to  initiate 

actions on the device that are passed to the KNXappl module.

The KNXdev in  the NED file is defined as:

module KNXdev

parameters:

// address -> forwarder for stack address

// application -> forwarder for application type

address: string,

table: string,

application: string;

gates:

in: in_bus, in_user;

out: out_bus;

submodules:
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stack: KNXstack;

parameters:

address = address,

table = table;

display: "p=55,125;i=block/layer,cyan";

appl: KNXappl;

parameters:

table = table,

application = application;

display: "p=55,55;i=block/process,grey";

gui: KNXappl_gui;

parameters:

address = address,

application = application;

display: "p=90,45;b=20,20,rect";

connections:

// module gates to external

out_bus <-- stack.out_bus display "m=s";

in_bus --> stack.in_bus display "m=s";

in_user --> appl.in_user;

// internal module gates

stack.out_appl --> appl.in_appl display "m=n";

stack.in_appl <-- appl.out_appl display "m=n";

display: "b=90,170;i=block/process,black";

endmodule

Note that the gates of KNXappl and KNXstack transparently extend their gates to KNXdev and 

that these gates are used by  KNXdev as incoming and bidirectional gates for communicating 

with other modules:  out_bus <-- stack.out_bus,  in_bus --> stack.in_bus 

and  in_user --> appl.in_user are  the  respective  definitions.  Gate  names  can  be 

identical, they are specified uniquely with their <module>.<gate> name.
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The inner structure of KNXdev can be illustrated as below:

The structure is also resembled in the OMNeT++ application's graphical representation of the 

modules when loading the simulation model:
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The OMNeT++ screenshot  shows the  same structure  as  the  NED file  and  Figure  5.7.  The 

objects in OMNeT++ can be opened and displayed in more detail – up to simple module level. 

Module parameters that are set or defined in the NED file can be viewed and also modified at 

runtime  by  opening  the  module  properties.  There  is  one  additional  module  gui of  type 

KNXappl_gui which is described below in Section 5.3.7.1.

During the simulation, parameters are also used as a means to exchange data between modules 

that share a common parent module. The dynamically created parameter group_target_addrs is 

a list of addresses that are target for the application layer. The KNXdev parameter is added from 

within the KNXappl module at runtime and its value is set according to the data that is read by 

the KNXappl at initialisation. This enables the KNXstack simple module to use the same set of 

parameters for deciding whether a packet is addressed for this device or not.

5.3.4 KNX/EIB Bus – KNXbus

The simple module KNXbus is defined in the NED file is as:

simple KNXbus

parameters:

txRate: string;

gates:

in: in[];
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out: out[];

endsimple

The parameter txRate sets the bus transfer speed measured in bits per second. When left empty 

(txRate = ""), the default value of 9600 bits/second is set.

The KNXbus is an artificially created bus that connects all devices of a KNX/EIB line together. 

Although the twisted pair implementation of a KNX/EIB network does not necessarily resemble 

the topology of a bus, it can be abstracted to one considering that every device on the physical 

line needs to be connected to the twisted pair cable. Branches in the cable can be disregarded to 

a certain extent when abstracting the model.

The KNXbus features an unlimited number of input gates in[i] and output gates out[i] that 

are  dynamically  created  when  defining  the  devices  on  the  bus  in  the  NED  file.  From  a 

simulation point of view, the bus is implemented as a hub that connects all defined devices, 

including the line coupling devices. The gates in OMNeT++ are unidirectional which requires 

that a connection to the bus needs two components defined: an  in  gate and an  out  gate that 

represent one connection. An OMNeT++ message that is being received on a specific input gate 

i is being forwarded to all output gates except the output gate i that corresponds to the input gate 

i. Thus, all devices connected to the bus are receiving the message except the sending one which 

reflects the behaviour in a real KNX/EIB line.

Not all events that might happen in reality can be simulated with this bus abstraction. Events 

like a broken twisted pair connection, a line segment that imposes a higher error rate or an 

increased  message  passing  delay  cannot  be  easily  simulated.  However,  the  bus  abstraction 

allows that specific parameters can be applied to all connected links.

To create a certain amount of gates, the gate must be defined with the increment operator ++:
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module KNX_line

parameters:

[...]

gates:

[...]

submodules:

bus_1: KNXbus;

[...]

dev_1_1: KNXdev;

[...]

dev_1_2: KNXdev;

[...]

[...]

connections:

dev_1_1.out_bus --> bus_1.in++;

dev_1_1.in_bus <-- bus_1.out++;

dev_1_2.out_bus --> bus_1.in++;

dev_1_2.in_bus <-- bus_1.out++;

[...]

endmodule

In  the  connections section  the  statement  dev_1_1.out_bus --> bus_1.in++ 

assigns  a  connection  from the outgoing gate  of  device  dev_1_1 named  out_bus to  the 

incoming gate of device bus_1 named in. in++ denotes that the number of available gates of 

in are incremented by one, the symbolised arrow denoted by --> specifies the direction of the 

connection, in this case from out_bus to  in. The corresponding connection in the opposite 

direction is declared one line below. The gate names are accordingly changed from in to out, 

the connection direction arrow changed from --> to <-- to signal that the message flow goes 

in the other direction.

One important function of  KNXbus is to collect data on the bus data transfer capacity. When 

receiving a frame, the bus load is calculated according to the following scheme:
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Figure 5.10 shows two frames within the monitoring interval and one frame that is in between 

two interval boundaries. For the two frames the time busy on the bus will be added to the bus' 

network load calculation. As shown below, the frame that crosses the interval boundary will be 

split into two parts (ia and ib) which account in the respective intervals for bus load calculation. 

Note that the timestamp parameter for the function addStats(simtime_t timestamp, 

UINT16 packetlength, UINT16 collision) expresses the start time of the frame.

The simulated load is calculated by simulating the

● frame transmission time

● time lag between frame transmission and acknowledgement frame and the bus idle time

● acknowledgement frame transmission time

where the  time lag and the acknowledgement  frame is  already added when the function is 

called:

addStats(now, msg_length + frame_overhead_bits, 0);
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The parameters msg_length and frame_overhead_bits are in unit bits.

The calculation is performed as: (excerpt from the code segment)

// total_packets: for object parameter display [#frames]

// total_packet_length: for object parameter display [bits]

// txRate: transfer rate parameter, set per bus [bits/second]

// stat_interval: monitoring interval for bus utilisation (=1s)

// stat_last_interval: last interval that has been

//     recorded [timestamp in seconds]

// last_packetlength: sum of packetlength in last

//     interval [bits]

packettime = ((double) packetlength) / ((double) txRate);

// time to transmit the packet

while ((stat_last_interval + stat_interval) <= now)

{ // one or more full intervals have passed. Update.

writeStats(stat_last_interval, stat_last_busytime,

           last_collisions);

stat_last_busytime = 0.0f;

stat_load = 0.0f;

last_collisions = 0;

stat_last_interval += stat_interval;

}

if ((stat_last_interval + stat_interval) >= (now + packettime))

{ // the interval is still the current one

stat_last_busytime += packettime;

// add packettime to busy

last_collisions += collision; 

// add collision to collisions for interval

}

if ((stat_last_interval + stat_interval) < (now + packettime))

{ // the last interval is finished and needs to be recorded
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double t1, t2;

t1 = (stat_last_interval + stat_interval) – now;

// 1st packettime part before interval boundary

t2 = packettime – t1;

// 2nd packettime part after interval boundary

stat_last_busytime += t1;

// add to busytime for utilisation

stat_load = stat_last_busytime / stat_interval;

// compute utilisation [%] for interval

writeStats(stat_last_interval, stat_load, last_collisions);

stat_last_busytime = t2;

// new stat_load is remainder of packet

stat_last_interval += stat_interval;

// set new stat_last_interval timestamp

}

In  parallel,  also  the  collisions on  the  bus  are  registered.  The  term  collision needs  to  be 

interpreted as an indication that the bus is busy (occupied by another device on the same bus) 

when  a  device  tries  to  send  a  frame  over  the  bus.  KNXbus  allocates  the  bus  during  the 

transmission time of a packet, calculating the transmission time depending on the bus transfer 

rate  txRate and  the  packet  length  (including  the  KNX  specific  idle  times  and 

acknowledgements) and blocking the bus for this time period. If a device wants to send data 

during the bus is blocked, the KNXbus sends back a collision indication to the sending device's 

KNXstack that indicates that the bus is busy. It is calculated as: (excerpt from the code segment)

// check for collision on the bus

// the bus is busy in the interval

// [simtime .. simtime+transfer_time+wait_time+ack_time].

// check if the bus is free

if (now < coll_last_busy_timestamp)

{ // BUS BUSY

// send a message back to receiving port to 

// indicate collision to device
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cMessage *msg_coll;

msg_coll = new cMessage("COLL");

msg_coll->setLength(0); // status message, no length

send(msg_coll, "out", recv_gateindex);

addStats(now, 0, 1); // add the collision to stats

}

else

{ // BUS FREE

addStats(now, (UINT16)msg->length() + frame_overhead_bits,

         0); // add package to stats [bits]

// add the overhead from the frame as busy bus time

coll_last_busy_timestamp = now + ((double)(msg->length() +

   frame_overhead_bits)) / ((double)txRate);

// calculate message delay for forwarding to out ports

// due to frame length

// delay = message length [bits] / transfer speed [bits/s]

delayTime = ((double)(msg->length())) / ((double)txRate);

// send message to all out ports but receiving one

for (int g = 0; g < this->gateSize("in"); g++)

{

if (g != recv_gateindex)

{ // copy of message to be sent to other port

cMessage *msg_cpy;

msg_cpy = (cMessage *) msg->dup();

sendDelayed(msg_cpy, delayTime, "out", g);

}

}

}

It is the device's responsibility to act upon this signal and resend the packet. The collision events 

are also measured and are indicating the load on the bus, representing the pending transmissions 

of devices. A corresponding call of the function addStats() to record such an event is done 

by setting the collision parameter to 1:
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addStats(now, 0, 1);

The default transmission rate for the  KNXbus is assumed to be 9600 bits/second. This can be 

changed by applying the txRate parameter. Changing the bus transmission rate directly affects 

the bus load, allowing simulation of a high speed backbone bus and measure its load during the 

simulation. Also the transmission delay – the time from receiving the frame at one of the  in 

gates and forwarding it to out gates – is calculated depending on the transmission rate txRate 

and the length of the frame. The forwarded frames are delayed by the transmission time and 

scheduled in the OMNeT++ event queue.

In the simulation, parameters are also used as a means to feed back data of the module to the 

user. The parameter counters is created dynamically at runtime (thus it is not represented in the 

NED file) and shows the current statistics for packets transferred over the bus. The parameter 

can  be  watched  from within  the  simulation  run  by  opening  the  corresponding  OMNeT++ 

object's property.

5.3.5 KNX/EIB Line Coupler - KNXlinecoupler

The  KNXlinecoupler module simulates the functionality of a KNX/EIB line coupling device. 

Typically it has two bidirectional ports: one towards the line, one towards the backbone.

The KNXlinecoupler in the NED file is defined as:

simple KNXlinecoupler
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parameters:

address: string,

routing: string;

gates:

in: in_line, in_backbone;

out: out_line, out_backbone;

endsimple

The KNXlinecoupler requires 2 parameters:

● address: the individual KNX/EIB address of the line coupler device

● routing: the routing table. It defines which group addresses will be passed on from the 

line to the backbone and from the backbone to the line. A sample entry for the routing 

parameter would be:  "1/3/5;2/1/4" which is interpreted as the group addresses 

1/3/5 and 2/1/4 will be routed through the coupling device.

Depending of the frame's destination address the frame will be passed to the backbone by the 

backbone coupler or the frame will be discarded and thus be kept within the main line attached.

The functionality of the line coupler is identical to the backbone coupler. The individual address 

of the coupling device determines its exact behaviour. A device address of x.0.0 implies that the 

device is being located at the backbone line – the  line coupler acts as a  backbone coupler. A 

device address of x.y.0 locates the coupling device to be on a main line, acting as a line coupler. 

The individual address of a coupling device needs always to be set to 0.

5.3.6 Device's User Simulation – UserSim

The simple module UserSim does not represent any KNX/EIB specific function. Its purpose is 

Page 58

Figure 5.13: KNXlinecoupler



KNX/EIB Simulation 5  OMNeT++ Module Design

to simulate user interaction with the various KNX/EIB devices defined in the simulation. A 

defined OMNeT++ network is a set of modules, sub-modules and connections between these 

modules. To actually simulate events, messages must be created at the start of the simulation. In 

fact a simulation ends when no more messages are in the queue to be processed by OMNeT++.

The UserSim in the NED file is defined as:

simple UserSim

gates:

out: out[];

endsimple

UserSim is  a  means  to  initialise  those  messages  used  for  the  simulation.  It  parses  the  file 

UserSim.txt when  the  module  is  initialised  by  OMNeT++  with  the  initialize() 

function. After parsing the file, OMNeT++ has a set of messages in its event queue. During the 

simulation, additional messages are created dynamically by modules like  KNXbus,  KNXstack 

and others.

The NED definition shows that  UserSim has only output  gates.  These are connected to the 

various KNXdev modules. Similar to KNXbus the out[] gates are created with the increment 

operator ++ when designing the NED file as shown in the example:

dev_1_1.in_user <-- user.out++.

The  UserSim is  connected  to  every  KNXdev and  sends  events  to  the  application  module 

KNXappl of the device.
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The  connection  UserSim to  KNXdev is  ideally  across  line  and  backbone  line  boundaries. 

Technically, the lines and backbone lines do have a separate instance of  UserSim defined but 

logically connect all to one module, sharing one configuration.

The structure of the UserSim.txt file is outlined in the following example:

0/0.01/80, switch2, lightB

1,         switch2, lightB:00

2,         switch2, lightB:01

3.1,       switch2, lightB:00

4,         switch2, lightB:01

5.1,       switch2, lightB:00

6,         switch2, lightB:01

0/~1.5/60, switch5, lightD:02

The format of a line is: <timestamp[s][/interval[s]/count[#]]>,<application>,<data>. Every line 

describes either a single event or a series of events that will be sent to KNXdev modules. The 

events are scheduled in the event queue of OMNeT++.

The parameters timestamp and interval are in seconds, count is a number, application and data 

are strings. The detailed parameters are:

● timestamp: is the simulation time in seconds at which the event will be triggered. Every 

simulation run starts with simulation time 0.

● interval: for count > 0 the event will be triggered again after interval seconds for count 

times. Note that a point has to be used to describe the decimal sign, e.g. 0.5. There will 

be a uniformly distributed spread s defined around timestamp Tn within which the event 
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will be triggered. The modifier “~” can be used to broaden the spread s even more, e.g. 

~1.5.  The spread  s is set depending on  interval's  t value and the timestamp  Tn,  the 

triggered event is uniformly distributed within that interval.

The  behaviour  is  illustrated  in  Fig.  5.16  showing  the  interval t,  the  spread s, the 

timestamp T and count x:

● count: denotes how often an event will be repeated.

● application: describes the application of the KNXdev module as defined in the NED 

file. An example is “switchX” which describes the KNXdev module to work as a light 

switch. To differentiate the various switches in the simulation this switch has the (not 

necessarily unique) description “switchX”. If more than one  KNXdev module has the 

same application description, the event will be set for all such modules.

● data: data that will be passed to the application. It consists of the communication object  

ID and optionally, separated with a “:” character, the application data. For example the 

entry “lightD:02” addresses communication object “lightD” and sets the application 

data  to  the  hexadecimal  value  02.  The  application  addressed  will  look  up  the 

communication object and create a message with the respective target group address 

and use the provided application data as the frame's data field.

The  example  of  the  UserSim.txt text  file  from  above  shows  line  0/0.01/80, 

switch2, lightB which will be interpreted as follows: starting at simulation time 0 (at the 
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beginning of the simulation) the parameter “lightB” will be sent to all devices configured as 

“switch2”. This will be repeated every 0.01 second (with a light variation as outlined in Fig. 

5.16) for 80 times. The scheduled events that will  be set in the OMNeT++ event queue are 

timed as:

time[i] = 0 + i*0.01 (+ spreading)      where i = [0..79].

The extract from the code sequence in UserSim that schedules the events is:

for (unsigned int i=0; i <= repeat_time; i++)

{ // "every_time" denotes the interval

double limit_lo = 0.0f;

double limit_hi = 0.0f;

double sched_time_2 = 0.0f;

if (modifier)  // ~ modifier used

{

limit_lo = sched_time + ((double)i * every_time) -

   0.4*every_time;

limit_hi = sched_time + ((double)i * every_time) +

   0.4*every_time;

}

else

{

limit_lo = sched_time + ((double)i * every_time) -

   0.1*every_time;

limit_hi = sched_time + ((double)i * every_time) +

   0.1*every_time;

}

if (limit_lo < 0.0f) limit_lo = 0.0f; // boundary check

sched_time_2 = uniform(limit_lo, limit_hi);

msg = new cMessage((cMessage) sched_appl_par.c_str());

sendDelayed(msg, sched_time_2, "out", getGate(sched_appl));

}
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The  line  1, switch2, lightB will  be  interpreted  as  a  one  time  event  that  will  be 

scheduled at simulation time 1s with no repeating pattern.

Both,  the  one shot  events  and the repeated events  allow a  set  of  actions  on the  KNX/EIB 

network. Working with the same set of parameters in the  UserSim.txt file allows to run 

identical simulations with comparable results. Note that when using the modifier “~”, the timed 

events  will  be  set  within  a  larger  time interval  rather  than  one  exact  point  in  time.  When 

introducing new functionality into the KNX/EIB network, the additionally scheduled events can 

easily be added to the UserSim.txt file. Due to the nature of how events are scheduled in 

OMNeT++, there is no need to put the events in the  UserSim.txt file into any sorted or 

structured timeline.

5.3.7 Helper modules

Several modules are defined that do not have an immediate counterpart in KNX/EIB. They are 

being used for  helping with visual  representations,  modelling the topology or by helping in 

standardising the general structure and capture the situations in which otherwise exceptions to 

the design of other modules would be necessary.

5.3.7.1 KNXappl_gui

The simple module  KNXappl_gui is a helper module for the visual representation of  KNXdev 

and KNXappl. It is implemented for a small subset of applications and allows to represent the 

state of an application. As an example, a light that is turned on or off can be represented by a 

lightened or darkened box.  KNXappl_gui sets the specified icon according to the application 

state.

The definition of KNXappl_gui in the NED file:

simple KNXappl_gui

parameters:

address: string,

application: string;

endsimple
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No gates are required to communicate with the module. Instead the module is addressing other 

modules via OMNeT++'s parentModule() function, which allows access to parameters and 

functions of the objects' parent module, directly.

5.3.7.2 KNXterminator

The KNX/EIB topology does not require a network termination. Any device on the network can 

be the last device on the network. However, for some situations, e.g. when designing a single 

line network to be simulated it  might be required or favourable to terminate a bus or other 

components. Some modules are defined with a fixed set of gates (e.g. line couplers) that – by 

OMNeT++ definition – require to be connected to another module's gate. The KNXterminator 

module can satisfy the formal requirement of connecting to the gates. It will receive the packets 

from the gate and discard them.

The KNXterminator in the NED file is defined as:

simple KNXterminator

gates:

in: in_term;

out: out_term;

endsimple

A typical example for the usage of KNXterminator is when simulating or debugging a small bus 

with a line coupler attached. When creating a line, the gates of the line coupler are defined as to 

connect  to  a  backbone to  form a larger  network.  Terminating the  KNXlinecoupler with  the 

module KNXterminator allows simulating the bus and routing functions without connecting it to 

a backbone bus.
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5.4 KNX/EIB Lines

A KNX/EIB line is defined as a compound module in the NED file which consists of a KNXbus 

and typically of one or multiple KNXdev modules and a UserSim connected to the KNXdev 

modules:

module KNX_line_1

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Coupler (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1: KNXbus;

parameters:

txRate = "9600";

dev_1_1: KNXdev;

parameters:

address = "1.1.1",

table = "1/1/2=lightA;0/0/0=lightALL",

application = "switch1";

dev_1_2: KNXdev;

parameters:

address = "1.1.2",
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table = "1/1/2=light;1/1/7=light",

application = "light1";

dev_1_3: KNXdev;

parameters:

address = "1.1.3",

table = "1/1/7=light",

application = "light2";

dev_1_4: KNXdev;

parameters:

address = "1.1.4",

table = "1/1/7=lightB",

application = "switch2";

user: UserSim;

connections:

dev_1_1.out_bus --> bus_1.in++;

dev_1_1.in_bus <-- bus_1.out++;

dev_1_2.out_bus --> bus_1.in++;

dev_1_2.in_bus <-- bus_1.out++;

dev_1_3.out_bus --> bus_1.in++;

dev_1_3.in_bus <-- bus_1.out++;

dev_1_4.out_bus --> bus_1.in++;

dev_1_4.in_bus <-- bus_1.out++;

// Line Coupler connection

line_out++ <-- bus_1.out++;

line_in++ --> bus_1.in++;

//User simulation layer

dev_1_1.in_user <-- user.out++;

dev_1_2.in_user <-- user.out++;

dev_1_3.in_user <-- user.out++;

dev_1_4.in_user <-- user.out++;

endmodule

The example describes a line with 4 devices, dev_1_1 to dev_1_4. Each of the devices needs 
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to be configured with the appropriate set of parameters address, table and application as defined 

in their respective definitions. The defined gate  line_in[] and  line_out[] is  used to 

connect to the line coupler. Although a line only connects to a single line coupler, the gate is set 

as to be of variable size due to enhanced flexibility when using the same definition to describe a 

main line or a backbone line. A main line and a backbone line will connect to multiple line 

couplers.  The parameter  numPorts describes  how many line couplers are being used in the 

respective  segment  where numPorts = 0  describes  a  connection  to  one  line  coupler.  In  the 

connections section all  devices  need to  get  connected to  the  bus,  the  line  couplers  are 

transparently connected to the gate of the line and the devices are connected to the  UserSim 

module.
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The representation of the KNX/EIB line in OMNeT++:

5.5 KNX/EIB Network

Similar to KNX/EIB line, the KNX/EIB network is only defined in NED language:

module KNX_network

submodules:

line_1: KNX_line_1;

parameters:

numPorts = 1;

lc_1: KNXlinecoupler;

parameters:

address = "1.1.0", routing = "1/1/2";

line_2: KNX_line_2;

parameters:

numPorts = 1;

lc_2: KNXlinecoupler;

parameters:

address = "1.2.0", routing="1/1/7";
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line_3: KNX_line_3;

parameters:

numPorts = 1;

lc_3: KNXlinecoupler;

parameters:

address = "1.3.0", routing="";

line_backbone_1: KNX_backbone_1;

parameters:

numPorts = 3;

connections:

// Connect line couplers to the lines

line_1.line_in++ <-- lc_1.out_line;

line_1.line_out++ --> lc_1.in_line;

line_2.line_in++ <-- lc_2.out_line;

line_2.line_out++ --> lc_2.in_line;

line_3.line_in++ <-- lc_3.out_line;

line_3.line_out++ --> lc_3.in_line;

// Connect line couplers to backbone

lc_1.in_backbone <-- line_backbone_1.line_out++;

lc_1.out_backbone --> line_backbone_1.line_in++;

lc_2.in_backbone <-- line_backbone_1.line_out++;

lc_2.out_backbone --> line_backbone_1.line_in++;

lc_3.in_backbone <-- line_backbone_1.line_out++;

lc_3.out_backbone --> line_backbone_1.line_in++;

endmodule
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The complete KNX/EIB network consists  of  3 lines  line_X and the corresponding 3 line 

couplers lc_X and the backbone line that connects the 3 lines together. Note that as described 

in Section 5.4 the numPorts parameter needs to be set correctly to the number of line couplers a 

line connects to. In the connections section the lines are connected with their line couplers 

and all line couplers are connected to the backbone.

5.6 What needs to be simulated

The simulation shall cover the following KNX/EIB characteristics:

● KNX/EIB  lines  and  devices  are  resembling  a  real-word  scenario  and  implement 

functionality  that  represents  existing  applications  (switches,  light  actuators)  and 

applications that are subject to current research.

● The KNX/EIB network must be freely designable within the KNX/EIB specifications to 

build test scenarios that range from a simple single line to a multi-area network that 

resembles a building automation network. Devices can be added to the lines as well as 

to the main lines and backbone lines. The line couplers and backbone couplers can be 

either  configured  as  non-routing  (with  an  empty  routing  table)  or  configured  with 

routing functionality.

● KNX/EIB frames are routed through the network depending on the routing tables.

● The generated KNX/EIB layer 2 frame's parameters and data are set at the sender's side 

and are interpreted correctly at the receiver side.

● The load on a KNX/EIB line can be measured over time by observing the generated 

Page 70

Figure 5.21: KNX/EIB backbone with 
attached line couplers and corresponding lines



KNX/EIB Simulation 5  OMNeT++ Module Design

frames on the bus.

● The routing function of the line couplers and backbone couplers can be monitored to 

investigate the network behaviour.

● The KNX/EIB devices can be activated by means from outside the network to trigger 

device activity and e.g. simulate a user interacting with the device. The user simulation 

can trigger events on

● a one-time basis or 

● by setting a time interval and repeat count, where, optionally, an exact time or a 

broader time interval can be set.

● Application data can be parameterised to be sent to the device to trigger different device 

application functionality.

Not  all  protocol  details  of  KNX/EIB  will  be  covered  by  the  simulation.  There  are  some 

limitations on the implementation of the simulation of the KNX/EIB protocol:

● Acknowledgement  frames  are  not  sent  back  to  the  sender.  Instead  the  time  the 

acknowledgement  frame  is  consuming  the  bus  is  considered  in  the  bus  load 

calculations. This is not necessarily a limitation as KNX/EIB is very strict in the timing 

on sending back acknowledgement frames.

● Checksums for  frames are  not  being calculated with their  real  checksum.  Instead a 

standard value is set for the checksum value when the member function is called.

● When a device sends a frame, it will receive a  busy signal from the bus if the bus is 

currently occupied. The device will then retry to send the frame after a fixed waiting 

period of 125 bits time.
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6 Purpose of the Simulation Model

6.1 EIBsec Protocol Extension

Building the structure of the OMNeT++ model allows to run simulations of a KNX/EIB based 

network, measure the load of KNX/EIB lines, measure the throughput at the line couplers and 

bus couplers and conclude on the performance behaviour of such a network.

As mentioned in the introductory chapters, KNX/EIB does not feature a secure transmission of 

frames  in  regard  to  data  confidentiality,  data  integrity  or  data  freshness,  where,  shortly 

described,

● data confidentiality describes the avoidance of disclosure of confidential information,

● data  integrity means  the  prevention  of  sending  data  by  unauthorised  devices  and 

detection of sending modified data and

● data freshness guarantees that the data sent by a device is valid at the current point in 

time, preventing the re-insertion of data at a later point in time.

EIBsec [03, 19], a security model to enhance KNX/EIB building automation systems, has been 

proposed  which enhances  KNX/EIB data  communication in  the  security  aspects  mentioned 

above.  It  introduces an  Advanced Coupler Unit (ACU) which is  contained in each network 

segment  that  features  secure  communication.  ACUs  replace  the  standard  KNX/EIB  line 

couplers or backbone couplers or are realised as additional stand-alone devices.

The  OMNeT++  model  will  be  used  to  investigate  how  much  additional  traffic  is  being 

introduced to the data communication when implementing secure KNX/EIB lines. Causes for 
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additional traffic are:

● KNX/EIB frames that utilise the maximum frame size for secure communication,

● traffic introduced by key management, i.e. key revocation from the ACU to the devices, 

but also

● management communication during the start-up phase of the network increases because 

of the key distribution mechanism.

Specifically the key revocation mechanism [03] is implemented in OMNeT++. The protocol can 

be outlined as:

The ACU key server sends a key revocation message A_Group_Invalidate to a group address. 

The devices individually contact the ACU to request the new group key and group counter value 

by sending an  A_Join_Group_Request to  the  ACU. The ACU is  responding with 4 frames 

containing the high and low value of the group key (A_Join_Group_Response) and the high and 

low value of the initial group counter value (A_Group_Resync_Response).

The means available to measure KNX/EIB bus load (see KNXbus Section 5.3.4) will be used to 

compare the network load of insecure and secure lines. The following topics will be measured 

by the simulation model:

● The additional network load due to secure communication,

● the additional network traffic caused by the ACU's key management when operating the 

network communication.
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The expected results should show an increased network traffic at the model that has the EIBsec 

protocol extension applied. As a second data set we monitor the attempt to write to the bus 

when the bus is busy. The number of busy waits when accessing the bus is also a good indicator 

on  the  load  of  the  network.  The  results  of  both  simulation  runs  –  classic  KNX/EIB  and 

KNX/EIB with EIBsec - are compared to each other and the overhead traffic will be shown.

6.2 Configuring the Simulation

For the intended simulation a large scale network needs to be defined to measure the network 

load on the segments under different conditions and configurations.

The defined network consists of 10 devices per line, 4 lines per main line and 2 main lines, 

connected via a backbone line.  This  results  in 80 devices which will  be  configured with 3 

KNX/EIB groups per line with 5-10 members per group.

Note that the devices need to be configured individually, similar to the configuration done when 

installing a real KNX/EIB network. A tool could be created that supports the automatic creation 

of the framework of the NED file but details like the KNX/EIB individual addresses, group 

addresses and application association tables need to be configured on a per-device basis.
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To  simulate  some  network  activity,  traffic  will  be  induced  via  the  UserSim module.  By 

configuring the UserSim's configuration file, devices will put constant load on the network that 

is

● bound to  the  line  where  the  communication  is  being  initiated,  not  passing the  line 

coupler,

● bound to the main line so frames traverse through the line couplers but will not pass the 

backbone couplers,

● traversing  the  backbone  line  to  its  destination  on  other  main  lines,  traversing  line 

couplers and backbone couplers,

● broadcasted to all devices, thus being distributed throughout the whole network.

To gather representative data the network must be loaded to a certain extent. The load that is 

imposed should be high enough to be recognised in the measurements but not over-utilising the 

bus. For sure a few simulated activations of a light switch will not load the bus, even if 20 

switches are present on the line. The UserSim needs to cover also periodically talking devices 

that communicate regularly like e.g. a temperature sensor.

Some lines will  be configured to have a more constant load on the bus, other lines will  be 

stressed with transmission peaks where the peaks can be sourced by either a single or multiple 

devices. Looking at the configuration possibilities, the constant load is easy to apply as only a 

single entry in  UserSim allows constant load defines:  0/0.1/100 puts every 0.1 seconds a 

frame on the bus. 100 frames will be created, resulting in a bus that will be loaded with frames 

for 10 seconds. To increase the network load, simply the parameter interval needs to be adjusted 

to a shorter time frequency, e.g. 0.05. This doubles the creation of frames. To load the bus for a 

longer  period  of  time the  repeat parameter  can  be  increased.  The  total  time  during  which 

packets  are  being  created  is  interval *  repeat.  To  run  a  simulation  for  15  minutes,  the 

UserSim.txt entries look like:

0/1.0/900; switch1; lightA

To  stress  the  network  with  transmission  peaks,  the  following  entries  can  be  used,  also 

considering 90 seconds of simulation time for a single device:

0/0.1/300    ; switch1; lightA  // 30 seconds load
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120/0.05/240 ; switch1; lightA  // 12 seconds high load

240/0.025/240; switch1; lightA  //  6 seconds peak load

120/0.05/240 ; switch1; lightA  // 12 seconds high load

600/0.1/300  ; switch1; lightA  // 30 seconds load

The line segments will measure their network load by using the  KNXbus functionality. Each 

KNXbus tracks its load in the OMNeT++ data file omnet.vec collectively (which contains all 

bus  data)  and  in  <bus_name>.log and  <bus_name>.csv text  files  individually.  The 

.log file allows for easier investigation on the bus activities and the .csv file allows easier 

data representation with external programs as it contains the bus load pre-processed as comma 

separated values.

6.3 Simulation Test Cases

To test the behaviour of the KNX/EIB network, 3 test cases are set up:

● insecure communication: this represents a traditional KNX/EIB network with devices 

that communicate without encryption and without a key server,

● secure communication with line ACUs: each KNX/EIB line features an ACU serving as 

a key server. The devices communicate securely by encrypting their messages. The key 

server will revoke the encryption key for the devices on the same line and handle the 

requests of those devices for requesting new keys.

● secure  communication  with  central  ACU:  one  central  key  server  is  placed  on  the 

backbone line. The devices communicate securely by encrypting their messages. The 

central key server will revoke the encryption key for all devices on the network and 

handle requests of the devices for requesting new keys.

The above mentioned cases are set by using three distinct UserSim files which are outlined in 

Appendix 9.2.  The  UserSim.txt files  have  one  common section for  the  activity  on the 

network and one separate section for the secure communication which defines the periodic key 

revocation interval.

OMNeT++ is run by setting the corresponding UserSim.txt file as the input parameter for 
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the simulation. The result of the simulation are the .csv files created by the KNXbus modules 

showing the network load of the respective line. The network load graphical representation of 

some example lines (line,  main line and backbone line)  will  be shown as the  result  of  the 

simulation.
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7 Results of the Simulation

As a result of the simulation, the following graphs will be presented that show the

● network load: the load of the network in percent. Theoretically a 100% network load 

can  be  achieved.  Practically  timing  constraints  like  wait  times  depending  on  the 

protocol will limit the achievable network load.

● busy response: when the KNXstack tries to send a frame on the bus, the bus may be 

busy sending another frame.  The  busy response on send indicates how many times 

during the one second interval the bus was busy when a device tried to send data. It is 

an indication on the amount of frames that are in the backlog to be sent.

To compare the insecure and the secure network, the delta graph shows the additional load that 

is put on the network due to secure data communication.

7.1 Simulation Results for Insecure Communication

This network configuration features classic KNX/EIB configuration with no security.

Results for line line_1_1:
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Results for main line line_1_0:
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Results for the backbone line:

Page 80



KNX/EIB Simulation 7  Results of the Simulation

7.2 Simulation Results for Secure Communication with 

Line ACUs

This network configuration implements the EIBsec proposed ACUs, one ACU per KNX/EIB 

line. The devices on the line have their associated ACU configured.

Results for line line_1_1:
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Results for main line line_1_0:
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Results for the backbone line:
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7.3 Simulation Results for Secure Communication with a 

Backbone ACU

In  contrast  to  the  previous  configuration  with  one  ACU per  KNX/EIB line,  this  approach 

configures one single central ACU on the backbone line of the KNX/EIB bus.

Results for the line line_1_1:
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Results for the main line line_1_0:
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Results for the backbone line:
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7.4 Summary of Simulation Results

The  results  of  the  different  simulation  configurations  can  be  summarised  by  showing  the 

average and maximum network load of the lines and the average and maximum busy responses 

of the lines.

network load insecure secure secure central

line 1.1
average 0.0677 0.0874 0.0877

maximum 0.1453 0.1941 0.1941

line 1.0
average 0.1821 0.2276 0.2291

maximum 0.2683 0.3450 0.3666

line 0.0
average 0.2608 0.3131 0.3151

maximum 0.3745 0.4517 0.4754

busy responses insecure secure secure central

line 1.1
average 0.5617 0.7164 0.6963

maximum 4 4 4

line 1.0
average 4.6485 5.8420 5.6874

maximum 25 29 20

line 0.0
average 6.8776 8.9166 8.6685

maximum 30 43 39
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7.5 Analysis of the Results

Looking at the simulation results and comparing the different network security configurations, 

the following comparison tables show the growth of increased network communication. The 

growth per interval shows the growth (average and maximum) on a per-interval basis, taking the 

same interval ti of the simulation time for comparison. The  growth total shows average and 

maximum growth over the full simulation time of 15 minutes. Network load has a value range 

of  either  [0..1]  or  [0%..100%],  depending  on  the  representation.  Busy  responses'  unit  is 

responses/second, the growth is indicated in percent.

network load

growth insecure 

→ secure

(per interval)

growth secure → 
secure central

(per interval)

growth insecure 

→ secure

(total)

growth secure → 
secure central

(total)

line 1.1
average 2.0% 0.0% 29.0% 0.4%

maximum 8.4% 12.9% 33.5% 0.0%

line 1.0
average 4.6% 0.1% 25.0% 0.6%

maximum 17.8% 15.1% 28.6% 6.2%

line 0.0
average 5.2% 0.2% 20.1% 0.6%

maximum 21.5% 16.6% 20.6% 5.2%

busy responses

growth insecure 

→ secure

(per interval)

growth secure → 
secure central

(per interval)

growth insecure 

→ secure

(total)

growth secure → 
secure central

(total)

line 1.1
average 0.15 -0.02 27.52% -2.80%

maximum 3 4 0.00% 0.00%

line 1.0
average 1.19 -0.15 25.68% -2.65%

maximum 25 16 16.00% -31.03%

line 0.0
average 2.04 -0.25 29.65% -2.78%

maximum 37 33 43.33% -9.30%
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7.5.1 Comparison of Insecure and Secure Communication

Looking at the insecure and secure communication, we can see a general increase of the average 

and maximum bus load. That is due to the increased frame length of secure communication and 

the periodic key distribution mechanism of the ACUs.

On line level (e.g. line 1.1) the bus load is increasing by 2.0% on average, the maximum load 

increased by 8.4%. Busy responses from the bus are steady at a low level, the frames can be sent 

with little or no delay from the devices in all security modes.

At main line level (line 1.0) the increase of the bus load is significantly higher (4.6% on average 
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load, 17.8% on maximum load) than the increase on the line level.

This increase continues on the backbone line 0.0: average load per interval increases by 5.2%, 

the  maximum  load  per  interval  by  21.5%.  For  busy  responses the  increase  needs  to  be 

highlighted: 29.65% growth from insecure to secure mode counting the total  busy responses 

over the simulation time indicate a oncoming bottleneck on the backbone. This is accompanied 

by a peak of busy responses growth of 43.33% compared to insecure network configuration.
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7.5.2 Comparison of Secure Communication with Line ACUs and 

Secure Communication with a Backbone ACU

For all lines – lines, main lines and the backbone line – a negative growth can be measured for 

busy responses  when replacing the line  ACUs with a  backbone line ACU. The decrease is 

between -2.65% and -2.80% although the  bus load is  slightly increasing between 0.4% and 

0.6% for the average load and 0.0% and 6.2% for the peak bus load.
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As an example, the graphs for line 1.1 illustrate that the total growth of  network load is near 

zero  (0.4%) but  that  the  difference per  interval  is  varying much more.  However,  the  busy 

response is lower in total growth (-2.8%) but shows very little variance.

7.6 Conclusion on EIBsec Implementation

The  implementation  of  EIBsec  puts  significantly  more  load  on  the  KNX/EIB  network, 

especially the backbone line is prone to delays if it is operated at the same speed as the lines, 
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typically 9600 bits/second at  KNX/EIB. The simulation environment has been defined with 

devices  which  are  very  frequently  sending  frames  over  the  network.  Any  KNX/EIB 

implementation that  does not  require high volume communication at  all  times but  needs to 

secure its communication will not encounter this possible bottleneck situation. 

The decision whether to implement the ACUs in the lines or put the ACU on the backbone line 

is a matter of which security requirements need to be implemented. According to the simulation 

environment's results, the network load does not differ significantly when comparing placing the 

ACU on the backbone line or  placing multiple ACUs within the lines.  If  functionality  like 

network segment isolation is requested, a line based ACU is required. In cases where secure 

communication  by  implementing  EIBsec's  encryption  is  required,  an  ACU  placed  on  the 

backbone line offers a more centralised approach without a significant effect on the network 

load. However, the single ACU does not provide redundancy and is a single point of failure.
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Several  decisions  had  to  be  made  during  the  design  of  the  OMNeT++ modules  and  their 

interaction. Some models are reflecting reality more precisely and allow more granular design 

of a network. However, it needs also to be considered that when designing a large KNX/EIB 

network,  the  amount  of  configuration  work  gets  tremendous  with  all  configuration  details 

necessary.

As an example the KNX/EIB bus can be taken.  A first  module design defined a  KNXnode 

module that – translated to reality – would represent the connector where a KNX/EIB device is 

attached to the bus. The definition is more granular than the introduced KNXbus: KNXnodes are 

connected  to  each  other  bidirectionally,  each  connection  from  module  to  module  can  be 

separately configured (see Figure 8.2).

In this case, the KNXbus is transformed in a double-linked chain of KNXnodes. The end nodes 

can be either be terminated with a  KNXterminator simple module or,  alternatively the node 

could be connected to itself to indicate a termination. This self-reference could be investigated 

at runtime by the module.

A detailed view on the KNXnode based structure, focusing on the device view, reveals that the 

module structure of the  KNXdev is not changed, compared to the implemented structure. The 

KNXappl module  connects  as  well  to  the  UserSim module  for  receiving  simulation events. 
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Similar to the KNXbus, the KNXnode does not require the KNX/EIB hardware device address as 

the frames are simply distributed to the next KNXnode and the KNXstack attached.

The final decision criteria on preferring the KNXbus structure to the KNXnode structure was the 

more flexible way how to attach devices to the bus. The reduced configuration requirements in 

the  NED file allow a  better  overview of  the  line structure  when looking at  the  OMNeT++ 

structure during simulation. Also evaluating how much traffic is transported over the line is 

easier to manage and calculate with the KNXbus structure.
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9 Conclusion and Future Work

In this thesis, a generic simulation framework that can be used to simulate KNX/EIB based 

building automation networks has been presented. As a proof-of-concept, the KNX/EIB security 

extension EIBsec has been tested for its effect on the network.

However, not limited to these investigations the model can be used to verify other KNX/EIB 

protocol extensions. The generic structure of the simulation framework allows to extend it to 

other building automation network technologies like LonWorks [20] or ZigBee [21].
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A Appendices

A.1 NED file

// Network definition file

//

// Starting here the module structure is designed

//

simple KNXbus

// the KNX bus

// implemented as a hub that forwards an incoming msg

// to all other gates

parameters:

txRate: string;

gates:

in: in[];

out: out[];

endsimple

simple KNXterminator

// Terminator to a KNX line when no LineCoupler is 

// being used

gates:

in: in_term;

out: out_term;

endsimple

simple KNXstack

// implements the KNX protocol

parameters:

address: string, // KNX hw address of the device,

                 // e.g. "0.0.1"
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table:string;    // table for appl. addressing

gates:

in: in_bus;

out: out_bus;

in: in_appl;

out: out_appl;

endsimple

simple KNXappl

// implements an KNX application

parameters:

table: string,

application: string;

gates:

in: in_appl, in_user;

out: out_appl;

endsimple

simple KNXappl_gui

// GUI feedback for KNXappl

parameters:

address: string,

application: string;

endsimple

simple KNXlinecoupler

// KNX bus line coupler for linking 2 bus segments.

parameters:

address: string,

routing: string;

gates:

in: in_line, in_backbone;

out: out_line, out_backbone;

endsimple
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simple UserSim

// User simulation, sends messages to KNXappl

gates:

out: out[];

endsimple

module KNXdev

parameters:

// address -> forwarder for stack address

// application -> forwarder for application type

address: string,

table: string,

application: string;

gates:

in: in_bus, in_user;

out: out_bus;

submodules:

stack: KNXstack;

parameters:

address = address,

table = table;

display: "p=55,125;i=block/layer,cyan";

appl: KNXappl;

parameters:

table = table,

application = application;

display: "p=55,55;i=block/process,grey";

gui: KNXappl_gui;

parameters:

address = address,

application = application;

display: "p=90,45;b=20,20,rect";

connections:
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// module gates to external

out_bus <-- stack.out_bus display "m=s";

in_bus --> stack.in_bus display "m=s";

in_user --> appl.in_user;

// internal module gates

stack.out_appl --> appl.in_appl display "m=n";

stack.in_appl <-- appl.out_appl display "m=n";

display: "b=90,170;i=block/process,black";

endmodule

//

// Starting here the network is designed

//

module KNX_line_1_1

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Connector (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1_1: KNXbus;

parameters:

txRate = "";

display: "p=335,140;b=600,20";

dev_1_1_1: KNXdev;

parameters:

address = "1.1.1",

 table = "1/1/2=lightA;0/0/0=lightALL;1/1/100=acurange",

application = "switch1";

display: "p=60,80;b=40,24";

dev_1_1_2: KNXdev;

parameters:

address = "1.1.2",
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 table = "1/1/2=light;1/1/7=light;1/1/100=acurange",

application = "light1";

display: "p=120,80;b=40,24";

dev_1_1_3: KNXdev;

parameters:

address = "1.1.3",

table = "1/1/7=light;1/1/100=acurange",

application = "light2";

display: "p=180,80;b=40,24";

dev_1_1_4: KNXdev;

parameters:

address = "1.1.4",

table = "1/1/7=lightB;1/1/100=acurange",

application = "switch2";

display: "p=240,80;b=40,24";

dev_1_1_5: KNXdev;

parameters:

address = "1.1.5",

table = "1/1/7=lightB;1/1/100=acurange",

application = "switch3";

display: "p=300,80;b=40,24";

dev_1_1_6: KNXdev;

parameters:

address = "1.1.6",

table = "1/1/5=lightC;1/1/100=acurange",

application = "switch4";

display: "p=360,80;b=40,24";

dev_1_1_7: KNXdev;

parameters:

address = "1.1.7",

table = "1/1/3=lightD;1/1/100=acurange",

application = "switch5";

display: "p=420,80;b=40,24";

dev_1_1_8: KNXdev;
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parameters:

address = "1.1.8",

table = "1/1/4=lightXE;1/1/100=acurange",

application = "switch6";

display: "p=480,80;b=40,24";

dev_1_1_9: KNXdev;

parameters:

address = "1.1.9",

table = "1/1/2=light;1/1/100=acurange",

application = "light3";

display: "p=540,80;b=40,24";

dev_1_1_10: KNXdev;

parameters:

address = "1.1.10",

table = "1/1/7=light;1/1/100=acurange",

application = "light4";

display: "p=600,80;b=40,24";

dev_1_1_100: KNXdev;

parameters:

address = "1.1.100",

table = "1/1/100=keyrange",

application = "acu_1_1";

display: "p=660,80;b=40,24";

user: UserSim;

display: "p=330,30;b=100,24";

connections:

dev_1_1_1.out_bus --> bus_1_1.in++;

dev_1_1_1.in_bus <-- bus_1_1.out++;

dev_1_1_2.out_bus --> bus_1_1.in++;

dev_1_1_2.in_bus <-- bus_1_1.out++;

dev_1_1_3.out_bus --> bus_1_1.in++;

dev_1_1_3.in_bus <-- bus_1_1.out++;

dev_1_1_4.out_bus --> bus_1_1.in++;

dev_1_1_4.in_bus <-- bus_1_1.out++;
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dev_1_1_5.out_bus --> bus_1_1.in++;

dev_1_1_5.in_bus <-- bus_1_1.out++;

dev_1_1_6.out_bus --> bus_1_1.in++;

dev_1_1_6.in_bus <-- bus_1_1.out++;

dev_1_1_7.out_bus --> bus_1_1.in++;

dev_1_1_7.in_bus <-- bus_1_1.out++;

dev_1_1_8.out_bus --> bus_1_1.in++;

dev_1_1_8.in_bus <-- bus_1_1.out++;

dev_1_1_9.out_bus --> bus_1_1.in++;

dev_1_1_9.in_bus <-- bus_1_1.out++;

dev_1_1_10.out_bus --> bus_1_1.in++;

dev_1_1_10.in_bus <-- bus_1_1.out++;

dev_1_1_100.out_bus --> bus_1_1.in++;

dev_1_1_100.in_bus <-- bus_1_1.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

line_out++ <-- bus_1_1.out++;

line_in++ --> bus_1_1.in++;

//User simulation layer

dev_1_1_1.in_user <-- user.out++;

dev_1_1_2.in_user <-- user.out++;

dev_1_1_3.in_user <-- user.out++;

dev_1_1_4.in_user <-- user.out++;

dev_1_1_5.in_user <-- user.out++;

dev_1_1_6.in_user <-- user.out++;

dev_1_1_7.in_user <-- user.out++;

dev_1_1_8.in_user <-- user.out++;

dev_1_1_9.in_user <-- user.out++;

dev_1_1_10.in_user <-- user.out++;

dev_1_1_100.in_user <-- user.out++;

display: "b=650,160;m=w";

endmodule
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module KNX_line_1_2

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Connector (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1_2: KNXbus;

parameters:

txRate = "";

display: "p=335,140;b=600,20";

dev_1_2_1: KNXdev;

parameters:

address = "1.2.1",

  table = "1/1/2=lightA;0/0/0=lightALL;1/2/100=acurange",

application = "switch1";

display: "p=60,80;b=40,24";

dev_1_2_2: KNXdev;

parameters:

address = "1.2.2",

 table = "1/1/2=light;1/1/7=light;1/2/100=acurange",

application = "light1";

display: "p=120,80;b=40,24";

dev_1_2_3: KNXdev;

parameters:

address = "1.2.3",

table = "1/1/7=light;1/2/100=acurange",

application = "light2";

display: "p=180,80;b=40,24";

dev_1_2_4: KNXdev;

parameters:

address = "1.2.4",

table = "1/1/7=lightB;1/2/100=acurange",
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application = "switch2";

display: "p=240,80;b=40,24";

dev_1_2_5: KNXdev;

parameters:

address = "1.2.5",

table = "1/1/7=lightB;1/2/100=acurange",

application = "switch3";

display: "p=300,80;b=40,24";

dev_1_2_6: KNXdev;

parameters:

address = "1.2.6",

table = "1/1/5=lightC;1/2/100=acurange",

application = "switch4";

display: "p=360,80;b=40,24";

dev_1_2_7: KNXdev;

parameters:

address = "1.2.7",

table = "1/1/3=lightD;1/2/100=acurange",

application = "switch5";

display: "p=420,80;b=40,24";

dev_1_2_8: KNXdev;

parameters:

address = "1.2.8",

table = "1/1/4=lightXE;1/2/100=acurange",

application = "switch6";

display: "p=480,80;b=40,24";

dev_1_2_9: KNXdev;

parameters:

address = "1.2.9",

table = "1/1/2=light;1/2/100=acurange",

application = "light3";

display: "p=540,80;b=40,24";

dev_1_2_10: KNXdev;

parameters:
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address = "1.2.10",

table = "1/1/7=light",

application = "light4";

display: "p=600,80;b=40,24";

dev_1_2_100: KNXdev;

parameters:

address = "1.2.100",

table = "1/2/100=keyrange",

application = "acu_1_2";

display: "p=660,80;b=40,24";

user: UserSim;

display: "p=330,30;b=100,24";

connections:

dev_1_2_1.out_bus --> bus_1_2.in++;

dev_1_2_1.in_bus <-- bus_1_2.out++;

dev_1_2_2.out_bus --> bus_1_2.in++;

dev_1_2_2.in_bus <-- bus_1_2.out++;

dev_1_2_3.out_bus --> bus_1_2.in++;

dev_1_2_3.in_bus <-- bus_1_2.out++;

dev_1_2_4.out_bus --> bus_1_2.in++;

dev_1_2_4.in_bus <-- bus_1_2.out++;

dev_1_2_5.out_bus --> bus_1_2.in++;

dev_1_2_5.in_bus <-- bus_1_2.out++;

dev_1_2_6.out_bus --> bus_1_2.in++;

dev_1_2_6.in_bus <-- bus_1_2.out++;

dev_1_2_7.out_bus --> bus_1_2.in++;

dev_1_2_7.in_bus <-- bus_1_2.out++;

dev_1_2_8.out_bus --> bus_1_2.in++;

dev_1_2_8.in_bus <-- bus_1_2.out++;

dev_1_2_9.out_bus --> bus_1_2.in++;

dev_1_2_9.in_bus <-- bus_1_2.out++;

dev_1_2_10.out_bus --> bus_1_2.in++;

dev_1_2_10.in_bus <-- bus_1_2.out++;

dev_1_2_100.out_bus --> bus_1_2.in++;
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dev_1_2_100.in_bus <-- bus_1_2.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

line_out++ <-- bus_1_2.out++;

line_in++ --> bus_1_2.in++;

//User simulation layer

dev_1_2_1.in_user <-- user.out++;

dev_1_2_2.in_user <-- user.out++;

dev_1_2_3.in_user <-- user.out++;

dev_1_2_4.in_user <-- user.out++;

dev_1_2_5.in_user <-- user.out++;

dev_1_2_6.in_user <-- user.out++;

dev_1_2_7.in_user <-- user.out++;

dev_1_2_8.in_user <-- user.out++;

dev_1_2_9.in_user <-- user.out++;

dev_1_2_10.in_user <-- user.out++;

dev_1_2_100.in_user <-- user.out++;

display: "b=650,160;m=w";

endmodule

module KNX_line_1_0

parameters:

numPorts: numeric const; // = 4, [0..3]

gates:

// connectors to the Line Couplers (LC)

in: line_in[];

out: line_out[];

submodules:

bus_1_0: KNXbus;

parameters:

txRate = "";

display: "p=245,120;b=312,20";
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dev_1_0_1: KNXdev;

parameters:

address = "1.0.1",

table = "0/0/0=keyALL",

application = "keyserver1";

display: "p=112,65;b=40,24";

user: UserSim;

connections:

dev_1_0_1.out_bus --> bus_1_0.in++;

dev_1_0_1.in_bus <-- bus_1_0.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

for i=0..numPorts-1 do

line_out[i] <-- bus_1_0.out++;

line_in[i] --> bus_1_0.in++;

endfor;

//User simulation layer

dev_1_0_1.in_user <-- user.out++;

display: "b=455,140;m=w";

endmodule

module KNX_line_2_1

parameters:

numPorts: numeric const;

gates:

// connectors to the Line Connector (LC)

in: line_in[];

out: line_out[];

submodules:

bus_2_1: KNXbus;

parameters:

txRate = "";

display: "p=335,140;b=600,20";
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dev_2_1_1: KNXdev;

parameters:

address = "2.1.1",

  table = "1/1/2=lightA;0/0/0=lightALL;2/1/100=acurange",

application = "switch1";

display: "p=60,80;b=40,24";

dev_2_1_2: KNXdev;

parameters:

address = "2.1.2",

 table = "1/1/2=light;1/1/7=light;2/1/100=acurange",

application = "light1";

display: "p=120,80;b=40,24";

dev_2_1_3: KNXdev;

parameters:

address = "2.1.3",

table = "1/1/7=light;2/1/100=acurange",

application = "light2";

display: "p=180,80;b=40,24";

dev_2_1_4: KNXdev;

parameters:

address = "2.1.4",

table = "1/1/7=lightB;2/1/100=acurange",

application = "switch2";

display: "p=240,80;b=40,24";

dev_2_1_5: KNXdev;

parameters:

address = "2.1.5",

table = "1/1/7=lightB;2/1/100=acurange",

application = "switch3";

display: "p=300,80;b=40,24";

dev_2_1_6: KNXdev;

parameters:

address = "2.1.6",

table = "1/1/5=lightC;2/1/100=acurange",
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application = "switch4";

display: "p=360,80;b=40,24";

dev_2_1_7: KNXdev;

parameters:

address = "2.1.7",

table = "1/1/3=lightXD;2/1/100=acurange",

application = "switch5";

display: "p=420,80;b=40,24";

dev_2_1_8: KNXdev;

parameters:

address = "2.1.8",

table = "1/1/4=lightE;2/1/100=acurange",

application = "switch6";

display: "p=480,80;b=40,24";

dev_2_1_9: KNXdev;

parameters:

address = "2.1.9",

table = "1/1/2=light;2/1/100=acurange",

application = "light3";

display: "p=540,80;b=40,24";

dev_2_1_10: KNXdev;

parameters:

address = "2.1.10",

table = "1/1/7=light;2/1/100=acurange",

application = "light4";

display: "p=600,80;b=40,24";

dev_2_1_100: KNXdev;

parameters:

address = "2.1.100",

table = "2/1/100=keyrange",

application = "acu_2_1";

display: "p=660,80;b=40,24";

user: UserSim;

display: "p=330,30;b=100,24";
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connections:

dev_2_1_1.out_bus --> bus_2_1.in++;

dev_2_1_1.in_bus <-- bus_2_1.out++;

dev_2_1_2.out_bus --> bus_2_1.in++;

dev_2_1_2.in_bus <-- bus_2_1.out++;

dev_2_1_3.out_bus --> bus_2_1.in++;

dev_2_1_3.in_bus <-- bus_2_1.out++;

dev_2_1_4.out_bus --> bus_2_1.in++;

dev_2_1_4.in_bus <-- bus_2_1.out++;

dev_2_1_5.out_bus --> bus_2_1.in++;

dev_2_1_5.in_bus <-- bus_2_1.out++;

dev_2_1_6.out_bus --> bus_2_1.in++;

dev_2_1_6.in_bus <-- bus_2_1.out++;

dev_2_1_7.out_bus --> bus_2_1.in++;

dev_2_1_7.in_bus <-- bus_2_1.out++;

dev_2_1_8.out_bus --> bus_2_1.in++;

dev_2_1_8.in_bus <-- bus_2_1.out++;

dev_2_1_9.out_bus --> bus_2_1.in++;

dev_2_1_9.in_bus <-- bus_2_1.out++;

dev_2_1_10.out_bus --> bus_2_1.in++;

dev_2_1_10.in_bus <-- bus_2_1.out++;

dev_2_1_100.out_bus --> bus_2_1.in++;

dev_2_1_100.in_bus <-- bus_2_1.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler

line_out++ <-- bus_2_1.out++;

line_in++ --> bus_2_1.in++;

//User simulation layer

dev_2_1_1.in_user <-- user.out++;

dev_2_1_2.in_user <-- user.out++;

dev_2_1_3.in_user <-- user.out++;

dev_2_1_4.in_user <-- user.out++;

dev_2_1_5.in_user <-- user.out++;

dev_2_1_6.in_user <-- user.out++;
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dev_2_1_7.in_user <-- user.out++;

dev_2_1_8.in_user <-- user.out++;

dev_2_1_9.in_user <-- user.out++;

dev_2_1_10.in_user <-- user.out++;

dev_2_1_100.in_user <-- user.out++;

display: "b=650,160;m=w";

endmodule

module KNX_line_0_0  // root level backbone, connecting the

                     // other main lines

parameters:

numPorts: numeric const;

gates:

// connectors to the Backbone Couplers 

// (BCs equivalent to LCs)

in: line_in[];

out: line_out[];

submodules:

bus_backbone: KNXbus;

parameters:

txRate = "";

dev_0_0_100: KNXdev;

parameters:

address = "0.0.100",

table = "0/0/0=keyALL",

application = "acu_0_0";

display: "p=112,65;b=40,24";

user: UserSim;

connections:

dev_0_0_100.out_bus --> bus_backbone.in++;

dev_0_0_100.in_bus <-- bus_backbone.out++;

// Line Coupler connection lc_out = to line coupler,

// lc_in = from line coupler
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for i=0..numPorts-1 do

line_out[i] <-- bus_backbone.out++;

line_in[i] --> bus_backbone.in++;

endfor;

//User simulation layer

dev_0_0_100.in_user <-- user.out++;

display: "b=455,140;m=w";

endmodule

//

// Connecting the lines together, set numPorts parameter

//

module KNX_network_1  // main line 1

parameters:

numPorts: numeric const;

gates:

// connectors to the Backbone Couplers (BC)

in: line_in[];

out: line_out[];

submodules:

line_1_0: KNX_line_1_0; // bus

parameters:

numPorts = 5; // LC=4 + BC=1 = 5

// connections exposed from bus to extern

line_1_1: KNX_line_1_1; // "devices"

parameters:

numPorts = 1;

line_1_2: KNX_line_1_2;

parameters:

numPorts = 1;

line_1_3: KNX_line_1_3;

parameters:

numPorts = 1;
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line_1_4: KNX_line_1_4;

parameters:

numPorts = 1;

lc_1_1_0: KNXlinecoupler;

parameters:

address = "1.1.0", routing = "";

lc_1_2_0: KNXlinecoupler;

parameters:

address = "1.2.0", routing = "";

lc_1_3_0: KNXlinecoupler;

parameters:

address = "1.3.0", routing = "";

lc_1_4_0: KNXlinecoupler;

parameters:

address = "1.4.0", routing = "";

connections:

// Connect line couplers to the lines

line_1_1.line_in++ <-- lc_1_1_0.out_line;

line_1_1.line_out++ --> lc_1_1_0.in_line;

line_1_2.line_in++ <-- lc_1_2_0.out_line;

line_1_2.line_out++ --> lc_1_2_0.in_line;

line_1_3.line_in++ <-- lc_1_3_0.out_line;

line_1_3.line_out++ --> lc_1_3_0.in_line;

line_1_4.line_in++ <-- lc_1_4_0.out_line;

line_1_4.line_out++ --> lc_1_4_0.in_line;

// Connect line couplers to backbone

lc_1_1_0.in_backbone <-- line_1_0.line_out++;

lc_1_1_0.out_backbone --> line_1_0.line_in++;

lc_1_2_0.in_backbone <-- line_1_0.line_out++;

lc_1_2_0.out_backbone --> line_1_0.line_in++;

lc_1_3_0.in_backbone <-- line_1_0.line_out++;

lc_1_3_0.out_backbone --> line_1_0.line_in++;

lc_1_4_0.in_backbone <-- line_1_0.line_out++;

lc_1_4_0.out_backbone --> line_1_0.line_in++;
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for i=0..numPorts-1 do

line_out[i] <-- line_1_0.line_out++;

line_in[i] --> line_1_0.line_in++;

endfor;

endmodule

module KNX_network_2  // main line 2

parameters:

numPorts: numeric const;

gates:

// connectors to the Backbone Couplers (BC)

in: line_in[];

out: line_out[];

submodules:

line_2_0: KNX_line_2_0; // bus

parameters:

numPorts = 5; // LC=4 + BC=1 = 2

// connections exposed from bus to extern

line_2_1: KNX_line_2_1; // "devices"

parameters:

numPorts = 1;

line_2_2: KNX_line_2_2;

parameters:

numPorts = 1;

line_2_3: KNX_line_2_3;

parameters:

numPorts = 1;

line_2_4: KNX_line_2_4;

parameters:

numPorts = 1;

lc_2_1_0: KNXlinecoupler;

parameters:

address = "2.1.0", routing = "";
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lc_2_2_0: KNXlinecoupler;

parameters:

address = "2.2.0", routing = "";

lc_2_3_0: KNXlinecoupler;

parameters:

address = "2.3.0", routing = "";

lc_2_4_0: KNXlinecoupler;

parameters:

address = "2.4.0", routing = "";

connections:

// Connect line couplers to the lines

line_2_1.line_in++ <-- lc_2_1_0.out_line;

line_2_1.line_out++ --> lc_2_1_0.in_line;

line_2_2.line_in++ <-- lc_2_2_0.out_line;

line_2_2.line_out++ --> lc_2_2_0.in_line;

line_2_3.line_in++ <-- lc_2_3_0.out_line;

line_2_3.line_out++ --> lc_2_3_0.in_line;

line_2_4.line_in++ <-- lc_2_4_0.out_line;

line_2_4.line_out++ --> lc_2_4_0.in_line;

// Connect line couplers to backbone

lc_2_1_0.in_backbone <-- line_2_0.line_out++;

lc_2_1_0.out_backbone --> line_2_0.line_in++;

lc_2_2_0.in_backbone <-- line_2_0.line_out++;

lc_2_2_0.out_backbone --> line_2_0.line_in++;

lc_2_3_0.in_backbone <-- line_2_0.line_out++;

lc_2_3_0.out_backbone --> line_2_0.line_in++;

lc_2_4_0.in_backbone <-- line_2_0.line_out++;

lc_2_4_0.out_backbone --> line_2_0.line_in++;

for i=0..numPorts-1 do

line_out[i] <-- line_2_0.line_out++;

line_in[i] --> line_2_0.line_in++;

endfor;

endmodule
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module KNX_network_0

// connect all KNX main lines together on root backbone

parameters:

numPorts: numeric const; // = 0; 

// change when main lines have been added

gates:

// connectors to the Backbone Couplers (BC)

in: line_in[];

out: line_out[];

submodules:

line_0_0: KNX_line_0_0;

parameters:

numPorts = 2; // BC=2

network_1: KNX_network_1;

parameters:

numPorts = 1;

network_2: KNX_network_2;

parameters:

numPorts = 1;

lc_1_0_0: KNXlinecoupler;

parameters:

address = "1.0.0", routing = "";

lc_2_0_0: KNXlinecoupler;

parameters:

address = "2.0.0", routing = "";

connections:

// connect line couplers to the lines

network_1.line_in++ <-- lc_1_0_0.out_line;

network_1.line_out++ --> lc_1_0_0.in_line;

network_2.line_in++ <-- lc_2_0_0.out_line;

network_2.line_out++ --> lc_2_0_0.in_line;

// Connect line couplers to backbone

lc_1_0_0.in_backbone <-- line_0_0.line_out++;
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lc_1_0_0.out_backbone --> line_0_0.line_in++;

lc_2_0_0.in_backbone <-- line_0_0.line_out++;

lc_2_0_0.out_backbone --> line_0_0.line_in++;

for i=0..numPorts-1 do

line_out[i] <-- line_0_0.line_out++;

line_in[i] --> line_0_0.line_in++;

endfor;

endmodule

network knx_network : KNX_network_0

parameters:

numPorts = 0;

endnetwork

A.2 UserSim Files

A.2.1 Insecure Communication

0/3.0/300, switch1, lightA:02ffffffffffffff

0/3.0/300, switch1, lightALL:02ffffffffffffff

0/1.0/900, switch2, lightB:01ffffffffffffff

0/~1.0/900, switch2, lightB:02ffffffffffffff

0/1.5/600, switch4, lightC:02ffffffffffffff

0/~1.5/600, switch5, lightD:02ffffffffffffff

A.2.2 Secure Communication with Line ACUs

0/3.0/300, switch1, lightA:02ffffffffffffffffffffffffffff

0/3.0/300, switch1, lightALL:02ffffffffffffffffffffffffffff
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0/1.0/900, switch2, lightB:01ffffffffffffffffffffffffffff

0/~1.0/900, switch2, lightB:02ffffffffffffffffffffffffffff

0/1.5/600, switch4, lightC:02ffffffffffffffffffffffffffff

0/~1.5/600, switch5, lightD:02ffffffffffffffffffffffffffff

// ACU activities

// Initiate key distribution to devices

0/240/4, acu_1_1, acurange:10010101

0/240/4, acu_1_2, acurange:10010101

0/240/4, acu_1_3, acurange:10010101

0/240/4, acu_1_4, acurange:10010101

0/240/4, acu_2_1, acurange:10010101

0/240/4, acu_2_2, acurange:10010101

0/240/4, acu_2_3, acurange:10010101

0/240/4, acu_2_4, acurange:10010101

A.2.3 Secure Communication with Central ACU

0/3.0/300, switch1, lightA:02ffffffffffffffffffffffffffff

0/3.0/300, switch1, lightALL:02ffffffffffffffffffffffffffff

0/1.0/900, switch2, lightB:01ffffffffffffffffffffffffffff

0/~1.0/900, switch2, lightB:02ffffffffffffffffffffffffffff

0/1.5/600, switch4, lightC:02ffffffffffffffffffffffffffff

0/~1.5/600, switch5, lightD:02ffffffffffffffffffffffffffff

// ACU activities
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// Initiate key distribution to devices

0/240/4, acu_0_0, keyALL:10010101
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