
Securing Backbones for Embedded
Home and Building Automation

Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

ausgeführt von

Daniel Lechner
Matrikelnummer 0325612

am:
Institut für Rechnergestützte Automation

Betreuung:
Betreuer: Ao.Univ.Prof.Dr. Wolfgang Kastner
Mitwirkung: Dipl. Ing. Mag. Wolfgang Granzer

Wien, 22. Juli 2009
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Abstract

Home and Building Automation (HBA) systems control the traditional building services

lighting and shading as well as heating, ventilation and air conditioning (HVAC). The

main benefits of using HBA systems are the efficient use of resources with the following

energy savings and the increased comfort and wellness.

Up to now, other building service types like access control, alarm and fire alarm sys-

tems have only been realised by dedicated stand-alone systems. Today a tighter in-

tegration of these isolated systems is desirable, since data which is available in one

system can also be used by other ones. This integration increases the security needs

of HBA systems, which have been underrated in common protocols up to now. At the

same time, the use of IP backbone networks to interconnect field networks becomes

more common. Unfortunately, these IP based networks are even more attractive for

adversaries and prone to security attacks.

This thesis deals with the protection of communication on HBA backbone networks.

The principle goal is to support embedded devices, since mainly devices with a small

amount of memory and computational power are used in HBA installations. First, cryp-

tographic principles and concepts are explained. Afterwards, state of the art protocols

are discussed and rated with respect to the special requirements of HBA backbones.

The main part of this thesis forms the elaboration of a new concept, satisfying these

special security requirements. The proposed solution performs the necessary key

management as well as the protection of the communication. While the protocol was

designed with HBA networks in mind, it is also applicable to other application domains

(e.g., industrial automation).

i

Zusammenfassung

Unter dem Betriff Heim- und Gebäudeautomation (HGA) versteht man die Steuerung

und Regelung unterschiedlicher im Gebäude befindlicher Geräte, wie Lichtanlagen,

Beschattung sowie Heizungs-, Lüftungs und Klimageräte (HLK). Der Vorteil von HGA

ist einerseits eine effizientere Nutzung der vorhandenen Ressourcen und die daraus

resultierende Energieeinsparung, als auch eine deutliche Komfortsteigerung und Stei-

gerung des Wohlbefindens.

Bis jetzt waren andere Systeme wie Zutrittskontrolle, Alarm- oder Brandmeldeanlagen

komplett von der HGA getrennt. Eine stärkere Integration ist aber wünschenswert, da

Daten eines Systems auch innerhalb eines anderen verwendet werden können. Durch

diese Verschmelzung der Systeme steigen auch die Sicherheitsanforderungen, die in

den gängigen HGA Standards bis jetzt großteils vernachlässigt wurden. Gleichzeitig

werden vermehrt IP Netzwerke für das Verbinden mehrerer HGA Subnetze verwendet,

was wiederum eine größere Angriffsfläche für potentielle Angreifer bietet.

Aus diesem Grund beschäftigt sich diese Diplomarbeit mit der Absicherung der Daten

auf dem Backbone eines HGA Systems. Einen Schwerpunkt bildet dabei die Unterstüt-

zung von „embedded Devices“, da hauptsächlich Geräte mit wenig Rechenleistung

und Speicher in HGA Installationen verwendet werden. Zu Beginn werden kryptogra-

phische Grundlagen und Konzepte vorgestellt. Nach einer eingehenden Untersuchung

bereits etablierter Sicherheitsmechanismen, werden diese in Bezug auf die speziellen

Anforderungen eines HGA Systems bewertet. Der Hauptteil dieser Arbeit beschäftigt

sich mit der Ausarbeitung eines neuen Konzepts, das sowohl das geforderte Maß an

Sicherheit bietet, als auch mit den besonderen Anforderungen des Anwendungsberei-

ches zurechtkommt. Die vorgestellte Lösung behandelt sowohl die erforderliche Ver-

waltung der Schlüssel, als auch die abgesicherte Kommunikation im Betrieb des Sys-

tems. Das Protokoll und die Implementierung sind so konzipiert, sodass diese nicht

nur in HGA Systemen, sondern auch in anderen Anwendungsbereichen angewendet

werden können.

ii

Danksagung

Ich möchte mich an dieser Stelle bei allen herzlich bedanken, die mich in der Zeit

meines Studiums, sowie bei dieser Arbeit tatkräftig unterstützt haben. Ohne die Hilfe

all meiner Wegbegleiter hätte diese Arbeit nicht entstehen können.

Im Speziellen gilt dies für meine Freundin EDITH, die öfter meine Launen und Stim-

mungen ertragen musste und es immer wieder schaffte mich aufzumuntern. Weiters

gilt mein Dank meinen Eltern EDITH und ROBERT, sowie meinem Bruder OLIVER, die

mir meine Ausbildung ermöglicht und mich bei jeder Gelegenheit unterstützt haben.

Besonderer Dank gilt auch meinen Betreuern WOLFGANG GRANZER und WOLFGANG

KASTNER, die mich in jeder Phase des Projekts mit Ideen und Hilfestellungen unter-

stützt und mir und meiner Arbeit sehr viel Zeit gewidmet haben. Die ausgezeichnete

Athmosphäre am Institut hat mir sehr geholfen, mit Spaß und Engagement bei der Sa-

che zu bleiben. In diesem Sinne möchte ich auch HARALD WEILLECHNER, FRITZ PRAUS,

CHRISTIAN REINISCH und GEORG NEUGSCHWANDTNER danken, die mir immer mit ihrer

fachlichen Kompetenz zur Seite standen, mich auf neue Wege brachten und gemein-

sam mit meinen Betreuern entscheidend zur guten Stimmung beigetragen haben.

Für die nötige Abwechslung möchte ich mich bei meinen Vereinskollegen von „Dreh

und Trink Ultimate Frisbee“ bedanken. Der Sport und das Vereinsleben sind ein wich-

tiger Bestandteil meiner Freizeit geworden und haben oft geholfen, den Kopf frei zu

bekommen.

iii

Danksagung

This thesis has been carried out within the project Security in Building Automation

(FWF Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung; Pro-

jekt P19673).

iv

Contents

Abstract i

Zusammenfassung ii

Danksagung iii

1 Introduction 1
1.1 Motivation . 1

1.2 KNX and KNXnet/IP . 3

1.3 Requirements . 4

1.4 Contribution . 5

2 Cryptography 7
2.1 History . 7

2.2 Terminology . 8

2.3 Entity Authentication . 9

2.4 Confidentiality . 10

2.4.1 Symmetric encryption . 10

2.4.2 Asymmetric encryption . 14

2.5 Integrity . 24

2.5.1 Hash functions . 25

2.5.2 Digital signature . 27

2.6 Freshness . 34

2.7 Elliptic Curve Integrated Encryption Scheme (ECIES) 35

2.8 Randomness . 36

2.9 Key management . 40

2.9.1 Pre-shared . 40

2.9.2 Symmetric . 41

v

Contents

2.9.3 Asymmetric . 42

2.10 Securing multicast . 47

3 Security for Internet Protocol (IP) backbones in Home and Building
Automation (HBA) 49
3.1 Internet Protocol Security (IPsec) . 49

3.1.1 Security Association (SA) . 50

3.1.2 Authentication Header (AH) . 50

3.1.3 Encapsulated Security Payload (ESP) 51

3.1.4 Modes of operation . 51

3.1.5 Internet Key Exchange (IKE) . 51

3.1.6 IPsec and multicast . 52

3.1.7 Conclusion . 53

3.2 SSL/TLS . 53

3.2.1 Cipher suites . 54

3.2.2 Secure Sockets Layer (TLS) handshake 54

3.2.3 Conclusion . 57

3.3 VPN . 57

3.4 Secure Shell (SSH) . 58

3.5 Summary . 60

4 Solution 61
4.1 Configuration using Engineering Tool Software (ETS) 62

4.2 Key set distribution . 63

4.2.1 Unicast . 63

4.2.2 Multicast . 64

4.2.3 Blacklist . 69

4.2.4 Certificate revocation . 70

4.3 Secure communication . 71

4.3.1 Key set revocation . 72

4.4 Security analysis . 72

4.4.1 Replay attacks . 74

5 Implementation 76
5.1 Prototype implementation . 76

5.1.1 Test configuration . 76

vi

Contents

5.1.2 Router architecture . 77

5.1.3 Security token representation . 83

5.1.4 Message representation . 84

5.2 Benchmark . 88

6 Conclusion and Outlook 90

A Acronyms 92

B Bibliography 95

C Code snippets 101
C.1 Keyed-Hash Message Authentication Code (HMAC) 101

C.2 Diffie-Hellman (DH) . 102

C.3 Frame building . 103

C.4 uIP patches . 105

C.5 Other examples . 107

vii

List of Figures

1.1 HBA network . 2

2.1 Secure transformation . 9

2.2 Secure transformation with a key . 9

2.3 Encryption and decryption . 10

2.4 Symmetric encryption and decryption 11

2.5 Exemplary use of Initialisation Vector (IV) (CBC mode) 12

2.6 Stream cipher . 13

2.7 Asymmetric encryption and decryption 15

2.8 Integrity protection . 24

2.9 Unkeyed hash function . 25

2.10 Keyed hash function . 27

2.11 Digital signature . 28

2.12 Data freshness . 35

2.13 ECIES encryption . 36

2.14 ECIES decryption . 37

2.15 Linear Feedback Shift Register (LFSR) example 38

2.16 Symmetric key management . 42

2.17 Certificate creation . 43

2.18 Certificate verification . 43

2.19 DH principle . 44

2.20 DH man-in-the-middle . 45

2.21 Group Diffie-Hellman (GDH) network requirements 46

2.22 Multicast . 48

3.1 Position of IPsec in the Open Systems Interconnection (OSI) layer model 50

3.2 Position of TLS in the OSI layer model . 54

3.3 full TLS handshake . 55

viii

List of Figures

3.4 TLS Client-/Server Hello message . 55

3.5 OpenVPN multicast . 58

3.6 Position of the SSH protocol in the OSI layer model 59

4.1 Protocol position in the OSI layer model 61

4.2 Configuration phase . 62

4.3 Key set distribution for unicast services 64

4.4 Coordinator scenarios . 65

4.5 Conflicting coordinator scenarios . 68

4.6 Inform blacklisted device . 70

4.7 Revocation scenarios . 72

5.1 Prototype network . 77

5.2 Hardware and software overview . 78

5.3 Key distribution main state machine . 81

5.4 Routing indication frame format . 82

5.5 Public key representation . 83

5.6 Digital signature representation . 84

5.7 Certificate representation . 84

5.8 Key set representation . 84

5.9 Message representation . 85

5.10 Key distribution message representation 86

5.11 Secured frame format . 88

ix

List of Tables

2.2 LFSR example . 39

2.3 Comparison of group key distribution protocols 47

3.2 Comparison of security protocols . 60

5.1 Available service types . 85

5.3 Key distribution message types . 86

5.5 Benchmark results . 89

x

Listings

C.1 HMAC code . 101

C.2 DH code . 102

C.3 Frame building and symmetric encryption 103

C.4 uIP multicast patch . 105

C.5 uIP multicast patch (header) . 106

C.6 uIP multicast patch (Adress Resolution Protocol (ARP)) 106

C.7 Flash memory write example . 107

xi

Chapter 1

Introduction

1.1 Motivation

The core application area of Home and Building Automation (HBA) systems is envi-

ronmental control with the traditional building services lighting and shading as well as

heating, ventilation and air conditioning (HVAC). Up to now, other building service

types such as safety-critical (e.g., fire alarm systems) and security-critical services

(e.g., access control, intrusion alarm systems) have only been realised by dedicated

stand-alone systems.

Today, a tighter integration of these formerly separated systems is desirable. However,

to integrate safety- and security-critical applications into HBA installations, the under-

lying control network has to be protected against malicious interference. An important

step towards a secure HBA system is to secure the communication i.e., all exchanged

data within the HBA network.

HBA networks are typically implemented following a two-tier model. Field networks

are home for sensors, actuators, and controllers that interact with the environment and

perform measurement and control tasks. These field networks are interconnected by

a common backbone where management nodes (e.g., operator workstation, logging

server) that require a global view of the entire HBA network are located. Figure 1.1

shows a typical example of such a topology.

At the field level, robustness and flexibility is most important. Therefore, transport

media like Twisted Pair (TP) or Power Line (PL) cabling, or wireless technologies that

communicate via Radio frequency (RF) are used.

1

Chapter 1 Introduction

IP backbone

Management
devices

Backbone level

Field level WAN
(e.g., Internet)

WAN gateway

TP PL RF

IP only
device

Router

Figure 1.1: HBA network

At the backbone level, it is more common to use high performance network media. To-

day, a trend towards the use of IP based networks as backbone can be observed. The

main reason is that due to widespread use of IP based networks (especially Ethernet

based networks) in the IT world, the costs for cabling and hardware for network inter-

face controllers are rapidly decreasing. Therefore, it becomes economically feasible to

extend embedded microcontrollers with a dedicated Ethernet interface chip. Another

reason for the popularity of IP based backbones is that many buildings already pro-

vide an existing IP infrastructure (e.g., office Local Area Network (LAN)) which can be

shared with the HBA network.

With the integration of safety- and security-critical applications, the communication

within the HBA networks has to be protected against security attacks. Especially the

IP backbone is prone to security attacks. Because of its widespread use, the proto-

col is well-known and many security flaws have been discovered. Unfortunately, the

IP protocol itself as well as the underlying network medium (e.g., Ethernet) do not na-

tively provide any security mechanisms. Nevertheless, many well-established security

mechanisms have been built on top of the IP protocol. Since these mechanisms have

been developed primarily for the IT domain, they cannot directly be used in HBA sys-

tems. The main difference between the IT and the HBA world is the use of embedded

systems, since small size and low power consumption is very important in the HBA do-

main. More and more devices of everyday’s life are equipped with embedded devices,

touching almost every area of life, ranging from cell phones, cars to kitchen appliances

and many more. In contrast to the devices used in the IT domain, embedded devices

offer limited processing power and memory capacity. These limiting factors and spe-

cial requirements of the HBA networks are the main reasons, why available security

mechanisms cannot be used to protect HBA systems.

2

Chapter 1 Introduction

Research activities at the Automation Systems Group which is part of the Institute of

Computer Aided Automation at the Technical University of Vienna show, that security

has been neglected in HBA systems. An open standard that completely lacks support

for security is KNX (cf. [1]). Therefore the aim of this thesis is to find mechanisms to

secure IP backbones of KNX installations.

1.2 KNX and KNXnet/IP

KNX is a popular standard for HBA systems, especially in Europe (cf. [2]). Besides TP,

PL and RF as communication medium, also IP networks can be used to interconnect

several subnets. This protocol extension called KNXnet/IP (cf. [3]) provides different

mechanisms to encapsulate KNX network messages into IP messages.

The KNXnet/IP specification [3] is divided into 8 parts, where the parts 2 – 8 specify

different services:

Core services. Besides the definition of basic KNXnet/IP, this part includes the speci-

fication of services for KNXnet/IP device discovery and connection management.

Device management. This part specifies services like read and write of KNXnet/IP

specific properties for the remote management of KNXnet/IP servers .

Tunneling. KNXnet/IP clients can use the tunneling service to establish a management

connection to a KNXnet/IP server.

Routing. KNXnet/IP routers use the KNXnet/IP routing service to forward messages

between local KNX network segments over the IP network.

Remote logging. This part defines services for offline-monitoring of KNX networks.

Remote configuration and diagnosis. Here, configuration and diagnosis services

are defined.

Object Server. In this part, services to access a KNXnet/IP object server are defined.

A KNXnet/IP client can use these services to access the communication objects

on the KNXnet/IP object server.

In addition to these encapsulation mechanisms, there are investigations underway that

use IP directly as a native KNX medium [4] on the field level.

3

Chapter 1 Introduction

1.3 Requirements

To fully protect the communication within a KNXnet/IP network, different security mech-

anisms have to be integrated into the KNXnet/IP protocol. Regarding the demands on

a secure KNXnet/IP network, the following objectives can be identified:

Mutual entity authentication. To prevent an impersonation of legitimate KNXnet/IP

devices, the involved KNXnet/IP servers and clients must prove their identity be-

fore they can securely communicate with each other.

Secured channel. To protect the transmitted data that is exchanged between the au-

thenticated communication partners, a secured channel has to be provided. Such

a channel uses physical and/or cryptographic techniques to guarantee different

security objectives. Depending on the security requirements of the application,

these are data integrity, freshness and/or confidentiality (cf. Section 2.2).

Support for unicast and multicast. Section 1.2 lists a number of different commu-

nication services of KNXnet/IP. The main goal of a security extension useable for

KNXnet/IP is to fully support all of these KNXnet/IP services. While most of them

are based on unicast communication, some services like KNXnet/IP routing and

the KNXnet/IP discovery service are based on multicast communication. There-

fore, a security extension has to be used that provides support for unicast and

multicast communication.

Low processing power and memory consumption. Providing security by physi-

cal techniques (e.g., immuring the network cables) is not always easy to achieve.

In such a case, cryptographic techniques have to be used. For reasons of cost

efficiency, embedded devices with limited processing power and limited mem-

ory are commonly used in KNX installations. Since cryptographic techniques

are computationally intensive, their use must not exceed the available device re-

sources.

Currently, KNXnet/IP does not specify security mechanisms that fulfill the stated re-

quirements for secure communication. In Chapter 1 of the KNXnet/IP specification,

various security threats are briefly discussed and some rudimentary guidelines are

presented. Most of them are based on an isolation of the KNXnet/IP network (e.g., fire-

wall, KNXnet/IP only Intranet) and on “Security by Obscurity” (e.g., use non-standard

multicast address, rely on the missing expertise of an attacker). However, since pre-

4

Chapter 1 Introduction

venting physical access to the network by isolation is not always possible (e.g., in office

LANs, WLANs) and “Security by Obscurity” is a technique that only temporarily pro-

vides protection (if at all), these suggested organisational measures cannot fully satisfy

the security requirements for security systems.

Therefore, a new concept is necessary to secure KNXnet/IP systems, which will be

presented in this thesis.

1.4 Contribution

Due to the absence of security mechanisms in KNXnet/IP, this thesis presents a proto-

col for the secure key exchange process and secure communication. It is suitable for

constrained devices and fulfills special network requirements typically found in HBA

systems. In contrast to other works like [5], which focuses on application security, this

thesis is focused on communication security. In [6] and [7], a security extension called

EIBsec for KNX TP 1 networks has been presented. With little adaption, EIBsec can also

be applied to other KNX network media. However, it is tailored to the characteristics of

KNX TP 1 (e.g., limited length of standard KNX frames) and dedicated to secure KNX

frames. Therefore, the KNXnet/IP specific part of KNXnet/IP frames (e.g., KNXnet/IP

header) as well as services that are only available for KNXnet/IP (e.g., KNXnet/IP de-

vice discovery) cannot be secured using EIBsec.

This thesis gives a basic introduction to the field of cryptography in Chapter 2. Hash

functions and the two major fields symmetric and asymmetric en- and decryption (to-

gether with their digital signature pendants) and their mathematical background are

explained. Some representatives of each category are introduced – especially those

used in the solution. Additionally examples, as well as pros and cons of each method

are mentioned. Furthermore, this chapter deals with the closely related topics key

management, randomness and the different ways to secure multicast communication.

Afterwards, already available and well established state-of-the-art protocols like IPsec

and TLS are examined with respect to the special requirements of the HBA domain.

Since it turned out, that none of these available protocols satisfy all requirements, Chap-

ter 4 brings up a possible solution. Besides the standard use case, also conflicting

and probably problematic scenarios and configurations are mentioned, which can be

5

Chapter 1 Introduction

handled by the protocol. A detailed security analysis of the new protocol closes Chap-

ter 4.

The last major part of this thesis contains the prototype implementation. Chapter 5

describes the hardware and software architecture as well as implementation details.

A benchmark at the end of this chapter presents the usability of the software imple-

mentation in real HBA networks. Although this prototype implementation uses KNX and

KNXnet/IP as underlying HBA standard, ongoing research activities have shown, that

the presented security concept is not limited to KNX. In [8], it is shown that the devel-

oped security extension is also applicable to other HBA standards like LonWorks (cf.

[9]) and BACnet (cf. [10]). Furthermore, the use of this extension in other domains like

other control networks and networks with embedded devices is possible.

6

Chapter 2

Cryptography

2.1 History

Secure communication has been a topic for thousands of years. While in early days

primarily only head of states and warlords tried to hide their messages from others,

nowadays almost every user of the Internet is used to utilise cryptography – even if

most of them might not think about it.

It is known that already in the 5th century B.C. cryptographic algorithms have been used

to secure messages. The characters of a message were mixed up to build an anagram

and became unreadable to eavesdropper. This method is called transposition. An

alternative to the transposition is the substitution or shift cipher. Julius Caesar, who was

very engaged on the field of cryptography, was one of the first who used substitution,

which is also called Caesar’s cipher. Basically this kind of algorithm has been used for

a long time. When a cryptanalyst found a weak point of an encryption, cryptographers

enhanced it by one or more different stages and adaptions – like the use of one-time

keys.

Even the Enigma machine, mostly used by German forces during the World War II,

used an advanced form of substitution. The main innovation of the Enigma machine

was the mechanically automated en- and decryption of messages. It formed the most

secure communication system in these days. But also cryptanalysts began to use au-

tomated systems. The Polish mathematician Marian Rejewski was able to break the

strong encryption scheme of the Enigma machine and built a machine to automatically

derive the used encryption keys. The decryption machine developed by the Polish

7

Chapter 2 Cryptography

scientists has been improved and adopted by Alan Turing according to changes in the

Enigma machine during the war. According to statements of different politicians, the

work of the cryptanalysts form the basis of the outcome of the World War II.

The development of modern computers in the 20th century significantly affected the

field of cryptography. Cryptographers can use them to execute difficult algorithms

very comfortable and in reasonable time. But also cryptanalysts can start better attacks

against these algorithms.

Therefore almost all today’s cryptographic algorithms are designed with respect to

Kerckhoff’s assumption (cf. [11]). It has to be assumed, that the cryptanalyst has com-

plete knowledge of the cryptographic algorithm and implementation. This means, that

the secrecy must reside entirely in the key.

2.2 Terminology

In the basic scenario, a sender wants to send a message to a receiver. The message

is referred to as plaintext – sometimes also called cleartext. Depending on the used

transport channel, someone may be able to read or even alter the sent message. So

the sender and the receiver will take some countermeasures to form a secure commu-

nication.

Defined by the application, there are different demands on secure communication. The

author of [12] lists typical security objectives, which form the basis for the following

compilation:

Entity Authentication. An attacker should not be able to masquerade as someone

else. The receiver(s) must be able to verify that the message was really sent by

the declared sender. On the other hand, the sender must be able to verify, that the

message is only received by authorised receiver(s). This method of both-sided

entity authentication is called mutual entity authentication (cf. [11]).

Confidentiality. Information should only be accessible to those parties, which are au-

thorised to have access. In our basic scenario, only the authenticated receiver(s)

with adequate access rights can read the message, but no one else.

Integrity. The receiver(s) of a message should be able to verify that the message has

not been altered in transit.

8

Chapter 2 Cryptography

Freshness. An adversary should not be able to replay an old message. The re-

ceiver(s) will only accept messages, which have been created recently by the

sender. Retransmitted messages will be identified and discarded.

To provide these security objectives, different algorithms have to be used. To ensure

one or more of the mentioned security objectives, a secure transformation has to be

applied to the plaintext. To recover the plaintext from the secured text, a inverse trans-

formation has to be carried out (cf. Figure 2.1).

Secure
transformation

Inverse
transformation

Plaintext Secured text
original
Plaintext

Figure 2.1: Secure transformation

As already mentioned in Section 2.1, relying only on the nondisclosure of the algorithm

is not considered to be secure for a long time. Modern cryptography solves this with

the usage of (one or more) secret keys (cf. Figure 2.2).

secure
transformation

inverse
transformation

Key Key

Plaintext secured text
original
Plaintext

Figure 2.2: Secure transformation with a key

In the following sections, different types of secure transformations will be introduced in

detail. Each of them ensures one ore more of the listed security objectives.

2.3 Entity Authentication

[13] describes the most common technique to achieve entity authentication as verifi-

cation of a message (which is possibly the response to a previous one), which demon-

strates that the sender is in possession of some secret information. If the verification is

successful (i.e. the secret is correct), the receiver of the message can conclude, that the

sender is the one he pretends to be. For example, the secret information can contain

9

Chapter 2 Cryptography

some password or Personal Identification Number (PIN), data stored on smart cards or

human physical characteristics.

Another possibility of entity authentication is via a Trusted Third Party (TTP). Two en-

tities authenticate themselves via a third party, i.e. they ask the third party, if the other

party is the one it pretends to be.

Very often, entity authentication is done implicit. If two parties know the same key,

which can be used e.g. for confidentiality (cf. Section 2.4) or integrity protection (cf.

Section 2.5), these two parties trust each other, since only authenticated entities know

this key. For this reason, entity authentication and key management (cf. Section 2.9) are

closely related topics.

2.4 Confidentiality

To ensure confidentiality, the secure transformation has to completely hide the contents

of a message from a third party. The whole message has to be altered (i.e. encrypted

– cf. Figure 2.3) by the sender applying the secure transformation and the (authorised)

receivers have to be able to perform an inverse transformation (decryption) to recon-

struct the original message.

Encryption Decryption

Key1 Key2

Plaintext Ciphertext Original Plaintext

Figure 2.3: Encryption and decryption

2.4.1 Symmetric encryption

In symmetric algorithms, formally it is easy to derive the encryption key when the de-

cryption key is known and vice versa. Usually the same key is used for encryption

and decryption (cf. Figure 2.4). The main advantage is the high speed of these algo-

rithms during operation due to the short keys. The main problem within symmetric

algorithms is the key management (calculation, distribution and storage of keys – cf.

Section 2.9). The channel for exchanging the keys has to provide entity authentication,

10

Chapter 2 Cryptography

confidentiality, integrity and freshness (cf. Figure 2.4). The key(s) have to be present at

all participating parties. This means, that it is sufficient for an attacker to compromise

one end. If an attacker knows the secret key, he can encrypt the sent messages and

create new decrypted messages without being noticed.

Encryption Decryption

Key Key

Plaintext Ciphertext Original Plaintext

Confidentiality
Entity Authentication
Integrity protection

Freshness

Figure 2.4: Symmetric encryption and decryption

Since the ciphertext only depends on the plaintext message, the encryption key and

the algorithm itself, same plaintext messages will bring up same ciphertext messages,

if the key remains unchanged (which is usually the case for a certain time). As a conse-

quence, replay of old messages could be possible and cryptanalysts may gain some

useful information.

To overcome this problem, some data is used to linearly modify the plaintext or the

ciphertext message. This linear modification is typically a bit by bit Exclusive OR ⊕
(XOR) operation (cf. Figure 2.5). The data, which is used for the modification, is

usually randomly generated for the first block and called Initialisation Vector (IV). For

the following blocks, data of the previous ones are used to generate the next IVs (cf.

[11]).

Symmetric algorithms can be split up into two groups. The block ciphers encrypt only

blocks of a fixed size. Stream ciphers encrypt the digits of the plaintext instantly and

one by one.

Block cipher

Block ciphers encrypt only blocks of a fixed size and the resulting ciphertext has the

same length. Longer plaintext messages are usually fragmented. Depending on the

operation mode of a block cipher, the last block may be padded up to the necessary

block length. For block ciphers, many different operation modes have been invented.

11

Chapter 2 Cryptography

Plaintext

⊕

Encryption

Ciphertext

IV

next IV

(a) Encryption

Ciphertext

Decryption

⊕
Plaintext

IV

next IV

(b) Decryption

Figure 2.5: Exemplary use of IV (CBC mode)

These modes mainly specify the handling of larger messages, how keys are applied

and the application and generation of the IVs. Figure 2.5 shows the usage of the IV in

Cipher Block Chaining (CBC) mode. The ciphertext of the previous data block is used

as IV for the next one.

The National Institute of Standards and Technology (NIST) has currently approved eight

modes of operation for symmetric block ciphers (cf. [14]): Electronic Codeblock

(ECB), CBC, Output Feedback (OFB), Cipher Feedback (CFB), Galois/Counter Mode

(GCM), Cipher-based MAC (CMAC), Counter with CBC-MAC (CCM) and Counter

(CTR). The proper mode must be chosen based upon the security requirements and

the length of plaintext data. E.g. CBC offers better performance for bigger data blocks,

while CFB runs faster with smaller ones.

Advanced Encryption Standard (AES) - Rijndael The AES is a symmetric algo-

rithm, which has been announced by the American NIST in [15]. The selected algo-

rithm was the winner of an official competition. While the originally as Rijndael pub-

lished algorithm can handle messages of different block sizes, the NIST fixed the block

size to 128 bit. The specification knows three different versions of AES; AES-128, AES-

192 and AES-256 with key lengths of 128, 192 and 256 bits.

AES interprets the plaintext block as two dimensional table. This table has 4 rows and

4 columns, with one byte of the plaintext in each cell. The encryption is done in several

rounds. Some of the rounds expand and modify the used encryption key, while others

12

Chapter 2 Cryptography

perform monoalphabetic substitutions, row shifts or mixes up the columns. Depending

on the key size, these operations are performed several times on the plaintext table.

During decryption, all operations are performed in the reversed order to reconstruct

the plaintext message.

Stream cipher

Stream ciphers convert the plaintext message instantly to ciphertext. Since every bit

is processed immediately, these ciphers are best suited for data streams with unknown

or missing data structure.

Figure 2.6 shows a simple example of a stream cipher. The encryption key is used as

input for a keystream generator. The keystream generator produces pseudo-random

digits (cf. Section 2.8), which are combined with the plaintext stream. In the presented

example, the keystream generator only depends on the input key and its internal state.

Other variants may also use the plaintext or ciphertext streams as additional inputs.

The quality of the stream cipher heavily depends on the quality of the keystream gen-

erator.

Plaintext Encryption Ciphertext

Keystream generator

Key

Keystream

Figure 2.6: Stream cipher

RC4 RC4 is a stream cipher which has been developed by Ron Rivest in 1987. A

description of the algorithm can be found in [11]. The used key can be of variable

size. The cipher is built up like shown in Figure 2.6. The encryption operation is a bit

wise XOR operation. As usual for stream ciphers, the complexity is embedded in the

keystream generator.

The keystream generator only uses the key to calculate the keystream. It has a 8x8
S-box containing the elements S0,S1, . . . ,S255. Initially, these elements are filled with

13

Chapter 2 Cryptography

the sequence 0 to 255. At startup, depending on the used key, the S-box elements

are mixed up. During operation, depending on the internal state, two elements are

selected and the sum of these elements represent the output byte. Afterwards the used

elements are swapped.

One of the biggest problems of the presented RC4 algorithm is, that the reinitialisation

of the algorithm results in the same keystream (when using the same key). As an exam-

ple, let K denote the keystream(s) used for the encryption. M1 and M2 are the plaintext

messages to be encrypted. The ciphertext messages C1 and C2 are calculated via

C1 = M1⊕K

C2 = M2⊕K

The XOR operation on the ciphertext messages result in the XOR operation on the

plaintext messages.

C1⊕C2 = M1⊕M2

This result can be used to recover the plaintext messages by letter frequency analysis

or other basic techniques (cf. [16]). If the algorithm is enhanced by an IV, this attack is

not possible any more.

RC4 is used in many applications like WEP, WPA and for PDF encryption. Nevertheless,

RC4 is not recommended for the use in new applications. Even though there is a huge

number of possible states (about 21700), some attacks have been issued to break the

algorithm. For example, [17] presents several weaknesses in the keystream generation

of RC4.

2.4.2 Asymmetric encryption

The basic concepts of asymmetric algorithms, which are also known as public-key

algorithms, were invented by Whitfield Diffie and Martin Hellman in 1976 and were

published in [18].

Public key algorithms use different keys for encryption and decryption (cf. Figure 2.7),

where only one of these keys has to be private. The other key (public key) is usually

publicly available. Compared to symmetric algorithms, asymmetric ones are slow, but

14

Chapter 2 Cryptography

can offer easier secure key-exchange mechanisms (cf. Section 2.9.3). The channel to

exchange the public keys does not have to provide confidentiality.

Encryption Decryption

Keyencr Keydecr

Plaintext Ciphertext Original Plaintext

Entity Authentication
Integrity protection

Freshness

Figure 2.7: Asymmetric encryption and decryption

An one-way function f calculates the result y = f (x) to a given input x with relatively

less effort. But it is hard to reverse the function and calculate the input x, when the

function f and the result y are known. Basically, trapdoor one-way functions have the

same properties. But in addition it is easy to calculate the input x, when the function

f , the result y and a secret are known. These trapdoor one-way functions are used in

asymmetric cryptographic algorithms.

For encryption and decryption using asymmetric algorithms, the public key is used for

the encryption of the message and the private key has to be used for the decryption.

If Bob wants to send a message to Alice, he has to get to know Alice’s public key in

advance. With the help of this public key, he can encrypt the message and send it

to Alice. In order to decrypt the message, Alice has to use the decryption algorithm

together with her private key to read the contents of the message. A third person Eve,

who does not know the private key (but maybe the public key), is not able to decrypt

Bob’s message to Alice.

Asymmetric cryptographic algorithms can be categorised by the underlying mathe-

matical problem. This work will present algorithms based on the Integer Factorisation

Problem (IFP), the Discrete Logarithm Problem (DLP) and the Elliptic Curve Discrete

Logarithm Problem (ECDLP).

Integer Factorisation Problem (IFP)

One class of asymmetric algorithms are based on the difficulty of factoring large num-

bers.

15

Chapter 2 Cryptography

Every positive integer greater than one can be written as product of prime numbers.

This factorisation is always unambiguous. There are some factoring algorithms, but it

is still very time consuming to find the prime factors of a number (cf. [11]). While a

factorisation of 42 (= 2 ·3 ·7) is not very difficult (e.g. by trying every prime until
√

42),

the topic becomes infeasible for big numbers. For cryptographic applications, primes

with hundreds of digits are used.

RSA RSA was one of the first asymmetric cryptographic algorithm and probably the

most important one. It has been developed in 1977 and is published in [19]. RSA can

be used for encryption of data and for digital signatures (cf. Section 2.5.2).

Keypair generation During the RSA key generation, a private and a public key are

generated. The public key consists of a pair of integers (n,e), where n is the RSA mod-

ulus and e the encryption exponent. n is a product of two randomly generated prime

numbers p and q (of same bit length; p 6= q and p and q should not be too close).

n = p ·q (2.1)

These numbers (p and q) remain secret to the generator. The exponent e is a random

integer, satisfying

φ(n) = (p−1) · (q−1) (2.2)

1 < e < φ(n) (2.3)

gcd(e,φ) = 1 (2.4)

The function φ(n) (cf. Equation 2.2) is known as Euler’s totient function. Assuming (for

some a) that lcm(a,n) = 1, the totient function is used in Euler’s theorem:

aφ(n) ≡ 1 mod n (2.5)

The private key d is the integer satisfying

1 < d < φ(n) (2.6)

e ·d ≡ 1 mod φ(n) (2.7)

16

Chapter 2 Cryptography

The values of p, q and φ(n) are not needed anymore and should be removed from the

memory.

A small example will demonstrate the key generation. Alice wants to generate a RSA

key pair and chooses two prime numbers

p = 17

q = 11

The value of n is determined through Equation 2.1:

n = 17 ·11 = 187

Euler’s totient function results according to Equation 2.2 to

φ(n) = (p−1) · (q−1)

= 16 ·10

= 160

Alice can choose the exponent

e = 7

Therefore, Alice’s public key is (187,7). The private key d is calculated via Equa-

tion 2.7:

7 ·d ≡ 1 mod 160

d = 23

To calculate the private key, Alice has to find the multiplicative inverse of 7 mod 160
(which is 23) e.g. by using the Extended Euclidean Algorithm.

Encryption/Decryption For the encryption of a message, only the public key of the

receiver has to be used. A plaintext message M has to be transformed by an agreed

function (e.g. the ASCII code) to the number m (with m < n). The ciphertext c is calcu-

17

Chapter 2 Cryptography

lated by

c ≡ me mod n (2.8)

For the decryption of the message, the receiver’s private key is used to derive the

plaintext message:

m ≡ cd mod n (2.9)

Simple conversion of the formulas show, that Equation 2.9 reconstructs the original

value of m:

cd ≡ (me)d mod n = med mod n (→Eqn. 2.8)

From Equation 2.7 and with the help of Euler’s theorem (assuming that lcm(a,n) = 1)

follows:

med mod n = m1+kφ(n) mod n (→Eqn. 2.7)

= m(mk)φ(n) mod n

= m mod n (→Eqn. 2.5)

m mod n = m (since m < n)

Back in the example, Bob wants to send a message to Alice. He uses the public key of

Alice and calculates the ciphertext c with the help of Equation 2.8. In this example, the

message m = 14.

c ≡ 147 mod 187

= 108

After transferring the ciphertext to Alice, she can decrypt the message using her pri-

vate key via the Equation 2.9:

m ≡ 10823 mod 187

= 14

The attacker Eve who intercepts the message c is not able to derive m with reasonable

18

Chapter 2 Cryptography

effort because she does not know Alice’s private key.

Security analysis The most efficient mean to break the RSA security is the calculation

of the prime factors p and q, given the public key (n,e) (and probably a ciphertext

c). The integer factorisation of n provides these prime factors (cf. Equation 2.1) and

enables an attacker to calculate the private key d through the Equations 2.2 and 2.7.

Up to now, an efficient algorithm for solving this integer factorisation is not publicly

known – it is still infeasible if the numbers are large enough and the algorithms based

on this fact remain “secure”.

Thus, the basic concept of RSA is still thought to be secure. Many vulnerabilities pub-

lished up to now are based on an improper use of RSA and bad implementations.

Although, the presented basic RSA algorithm is not semantically secure. I.e. an attacker

has the possibility to gather some information about the plaintext message m out of the

given triple (N,e,c) (cf. [20, 21]).

Proper precomputations and preprocessings of the plaintext, which are necessary to

secure RSA encryption, will not be discussed here since only a brief overview of avail-

able cryptographic algorithms should be given.

Discrete Logarithm Problem (DLP)

Another mathematical problem which is used for cryptographic algorithms is the DLP.

Given a prime number p and the integers g and x, it is relatively easy to calculate the

value of M via the equation gx ≡M mod p. This operation is called discrete exponenti-

ation. The inverse operation – the discrete logarithm – is rather complex. It is difficult

to find the smallest possible value of x, when M, g and p are given.

DLP is the basis for many cryptographic algorithms like the Diffie-Hellman (DH) key

agreement and ElGamal.

ElGamal ElGamal was published in 1985 in [22]. Like RSA, ElGamal uses computa-

tions on natural numbers (in prime fields). It can be used for the en- and decryption of

messages as well as for digital signatures (cf. Section 2.5.2).

19

Chapter 2 Cryptography

The ElGamal algorithm forms the basis for other encryption schemes, like the ECIES,

which will be described in Section 2.7.

Keypair generation The calculations of ElGamal are based on a finite prime group

with a dedicated prime number p. One entity has to choose a prime number p and two

random numbers g and x (with g < p and x < p). While x denotes the private key, the

public key consists of the triple (y,g, p). The missing value y can be calculated via the

following equation:

y≡ gx mod p (2.10)

The values of g and p can be shared among other parties in a group to generate their

own private and public keys.

As a small example, Alice chooses the following numbers

p = 23

g = 12

x = 7

The value of y is calculated with the Equation 2.10

y≡ 127 mod 23 = 16

The private key of Alice is 7 and the public key is the triple (16,12,23).

Encryption/Decryption To encrypt a message m (with m < p), the sender has to

choose another random number k, which satisfies

k < p (2.11)

gcd(k, p) = 1 (2.12)

The ciphertext can be calculated via

c1 ≡ gk mod p (2.13)

c2 ≡ ykm mod p (2.14)

20

Chapter 2 Cryptography

where the triple (y,g, p) is the public key of the receiver. The tuple (c1,c2) represents

the ciphertext. The size of the ciphertext is twice the size of the plaintext.

To decrypt the ciphertext, the receiver has to use its private key x. Following equation

m ≡ c2

c1x mod p (2.15)

reconstructs the plaintext message m. The chosen random value k is not used for the

decryption. It is important, that k is kept secret and is used only once. If a third person

Eve knows a used k, she is able to derive Alice’s private key x. Even if Eve gets two

encrypted messages, where the same value for k was used, she is able to recover x.

With the help of the Equations above, the validity of Equation 2.15 can be shown:

c2

c1x mod p =
ykm
gkx mod p (→Eqn. 2.13 and Eqn. 2.14)

=
gkxm
gkx mod p (→Eqn. 2.15)

= m mod p

m mod p = m (since m < p)

Continuing the previous example, Bob knows the public key of Alice and wants to send

the message m = 14 to her. Bob chooses the random number

k = 21

and calculates the ciphertext with help of the Equations 2.13 and 2.14.

c1 ≡ 1221 mod 23≡ 2

c2 ≡ 1621 ·83 mod 23≡ 21

When Bob sends the ciphertext (2,21) to Alice, she can decrypt it using her private

key and Equation 2.15

m ≡ 21
27 mod 23 =

21
13

mod 23 = 21 ·13−1 mod 23

= 21 ·16 mod 23≡ 14

Like during the keypair generation of RSA (cf. Section 2.4.2), to calculate the plaintext,

21

Chapter 2 Cryptography

Alice has to find the multiplicative inverse of 13 (which is 16) e.g. by the Extended

Euclidean Algorithm.

Security analysis Basically, the mentioned security weaknesses of RSA also apply to

ElGamal: the concept is still known to be secure, while the presented solution offers

working surface for attackers (e.g. break semantic security). Especially when ElGamal

is used to encrypt small secret keys which are used for symmetric encryption later on,

it is often possible to derive the secret key from the ciphertext (cf. [21]). Therefore,

this simple solution will not be used in real applications and serves for demonstration

purposes only.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Elliptic Curve Cryptography (ECC) brought asymmetric encryption to low power em-

bedded devices. While other asymmetric cryptographic methods based on IFP or

DLP need a vast number of time and power consuming computations, ECC provides

the same level of security with much cheaper calculations. Compared to the other

presented algorithms, ECC algorithms are based on the algebraic structure of elliptic

curves over finite fields (cf. [23]).

An elliptic curve is usually defined over the prime finite field Fp containing p elements

or over the characteristic 2 finite field containing 2m elements. The use of finite bi-

nary fields suggests itself, when implementing the algorithms on computer systems.

Despite the lack of support for binary polynomial field arithmetic in embedded CPUs

(cf. [24]), the implementations are more efficient than the ones over prime fields (cf.

Section 5.2).

The finite field Fp is specified by an odd prime p. The elliptic curve E(Fp) defined

by the two parameters a,b ∈ Fp (satisfying 4a3 + 27b2 6≡ 0 mod p) consists of all points

P(x,y), where x,y ∈ Fp are solutions to the equation

y2 ≡ x3 +ax+b mod p (2.16)

The basic operation for elliptic curve cryptography is the scalar multiplication. Given

a point P(x,y) ∈ E(Fp) and an integer k, the scalar multiplication k ·P is the addition of P

to itself k times. The security in ECC is based on the fact that the equation Q = kP, with

22

Chapter 2 Cryptography

Q,P ∈ Fp and k ∈N, is easy to calculate if k and P are given. But it is infeasible to derive

k, given Q and P. This is called the ECDLP. Since the basic security primitive of ECC

is similar to the previously presented ones, in principle it is easy to port algorithms

towards ECC. E.g. there are analogues of the RSA and the ElGamal algorithms [13].

An encryption scheme which uses ECC primitives can be found in Section 2.7.

A point on the curve can be stored in two different ways. The obvious representation

is to describe a point with it’s coordinates x and y. But if x is known, one can find y

by solving the curve equation (Equation 2.16). Since this equation is a quadratic one,

there are two possible solutions for y. So storing an extra bit in addition to x completely

defines the location of the point. This representation is called “point compression”,

since it saves almost half of the space needed for point storage and transmission.

The main benefit of ECC is the use of much smaller keys, resulting in a lower memory

usage and reduced calculation overhead. Based on today’s knowledge, a 160 bit ECC

key provides a better level of security than a 1024 bit RSA key (cf. [25]).

Domain parameters The domain parameter D = (q,FR,S,a,b,P,n,h) describe the

used elliptic curve E and consists of (cf. [23]):

1. The field order q.

2. The field representation (FR) indication.

3. The seed S, if the curve was randomly generated.

4. Two coefficients a,b ∈ Fq (cf. Equation 2.16).

5. The base point P, which is described by the two field elements xP and yP; P =
(xP,yP) ∈ E(Fq).

6. The order n of the base point P.

7. The cofactor h = #E(Fq).

The choice of correct domain parameters is very crucial, since the security of the used

encryption algorithms depend on these parameters. By the use of insecure domain

parameters the system may be vulnerable to several attacks. These parameters can for

instance lead to a radical reduction of the effort for reversing an underlying one-way

function.

23

Chapter 2 Cryptography

Elliptic curves, which are known to be secure (up to now), can be found in many publi-

cations like [26, 27] and are recommended by the Standards for Efficient Cryptography

Group (SECG) and the NIST.

2.5 Integrity

To protect the integrity of a message, a small amount of data called tag1 has to be

transmitted in addition to the message itself. This tag identifies the message and an

alternation of the original message can be recognised.

Plaintext

Tag calculationKey

MergePlaintext

Protected text

Tag t

(a) Tag creation

Compare

Tag calculationKey

Extract

Protected text

valid/invalid

Plaintext

Tag t

Tag t ′

(b) Tag verification

Figure 2.8: Integrity protection

Figure 2.8 shows one possible basic setup of integrity protection. If Alice wants to

send a message to Bob and protect it against alternation, she has to calculate a tag t

of the message. To transmit the tag to Bob, in this example Alice merges (e.g. ap-

pends) the tag with the original message (cf. Figure 2.8(a)). When Bob receives the

whole message, he can extract the tag t and use the same tag calculation as Alice

to compute a reference tag t ′ out of the received plaintext. If t = t ′, the tag is valid (cf.

Figure 2.8(b)). Note that this simple kind of tag transmission only protects against trans-

mission or storage errors. If an attacker is able to modify the message and the tag (and

knows the tag calculation function), the modification will not be recognised by Bob (cf.

Section 2.5.1).

1Depending on the used algorithm, other terms like checksum, message digest, hash value, . . . are
used in literature.

24

Chapter 2 Cryptography

2.5.1 Hash functions

Hash functions are one-way functions. As described in Section 2.4.2, with an one-way

function f it is possible to calculate the result y = f (x) to a given input x with relatively

less effort. But it is hard to reverse the function and calculate the previous input x, when

the function f and the result y are known.

Hash functions convert an input string into a fixed length output string – called hash

value – which is generally smaller than the input string. Therefore hash values are

usually ambiguous.

The functions are surjective, but not injective: If two messages have different hash val-

ues, these messages are different. If two messages have the same hash values, it is

more or less likely (depending on the used hash function and the size of the hash value)

that these two messages are identical. Since the hash value is usually smaller than the

original message, it has a much smaller value domain. Therefore it is not possible to

determine certainly, if two messages are exactly the same (cf. [11]). If it is computa-

tionally infeasible to find a message with a certain hash value, the algorithm is called

collision-free.

Hash values are used during the generation of digital signatures of messages (cf. Sec-

tion 2.5.2). To generate the signatures, only the hash value of a message is processed

instead of the whole message. Because of the independence of the bits within a hash

value, hash functions can also be “abused” to generate random numbers or to generate

(temporary) key sets.

Generally, hash functions do not involve any types of keys to generate the hash value (cf.

Figure 2.9). The output only depends on the input string and the function itself. These

unkeyed hash functions can be used to provide integrity only in a restricted manner.

Only in environments where either the message or the hash value can be modified,

integrity can be established by unkeyed hash functions. If an attacker knows the used

hash function and he is able to alter the message and the hash value, he can modify

messages without being noticed.

Hash function
Plaintext Hash value

Figure 2.9: Unkeyed hash function

25

Chapter 2 Cryptography

Secure Hash Algorithm (SHA)

SHA is the algorithm, which implements the Secure Hash Standard (SHS). It has been

designed by the NIST and was published in 1993 and revised in 1995 (SHA-0 and SHA-

1). These two versions of the algorithm are not recommended any more (however

they are still used in many existing applications). While for SHA-0 collisions have been

found and were published e.g. in [28], theoretical attacks against SHA-1 can be found in

publications like [29]. Nevertheless, for compatibility reasons, SHA-1 is still optionally

used in many protocols like TLS and IPsec (cf. Chapter 3).

Their successors form the SHA-2 family (cf. [30]), which are state of the art today.

While using an identical algorithm, the length of the hash value is variable and part of

the synonyms SHA-224, SHA-256, SHA-386 and SHA-512. Up to now, none of the SHA-2

algorithms have been broken.

The algorithm operates on blocks with fixed size (512 or 1024 bits). Within several

rounds (64 or 80), the message blocks are processed with the internal state by logical

operations to calculate the message hash.

The next version SHA-3 is already in development. Similar to the selection process of

AES, the NIST has announced a competition for SHA-3. The winner will be nominated

in 2012.

Section 2.5.2 shows one application field of SHA hash functions.

Keyed-Hash Message Authentication Code (HMAC)

Keyed hash functions are one-way hash functions with the addition of a secret key (cf.

Figure 2.10). The hash value depends on the input string as well as on the used secret

key. Again, the hash value can be used to ensure integrity. Now, the attacker has to

know the key to generate a correct hash value to a modified message. With keyed hash

functions, one can also ensure entity authentication: only the authenticated sender, who

knows the key, are able to generate a valid hash value (cf. Section 2.3).

HMAC is one of the key dependent one way hash functions. It is widely used in pro-

tocols like TLS or IPsec. Its specification can be found in [31]. Within the creation of

an HMAC tag, an unkeyed hash function has to be used. A common implementation is

HMAC-SHA which employs SHA as embedded unkeyed hash function.

26

Chapter 2 Cryptography

Hash function

Key

Plaintext Hash value

Figure 2.10: Keyed hash function

A main advantage of HMAC is, that the underlying hash function has not to be modified.

Well established and fast hash functions can be used and – if necessary – exchanged

easily.

The creation of the HMAC-tag takes 2 bit wise XOR operations and two hashing opera-

tions H(x). The operator || denotes the concatenation of two strings.

HMAC(SKMAC, txt) = H ((SKMAC⊕opad) ||H ((SKMAC⊕ ipad) ||txt))

SKMAC is the shared secret key for the Message Authentication Code (MAC) calculation.

The secret key SKMAC is XOR’ed with the constant value ipad = 36h and concatenated

with the message text txt. After applying the hash function H (like SHA-256), the re-

sult will be appended to the key SKMAC, XOR’ed with the constant opad = 5Ch. The

application of the hash function H to the whole string calculates HMAC tag.

Since the output of the used hash function is the output of the HMAC operation, the

length of the HMAC tag depends on the used hash function. E.g. when using SHA-256,

the output of HMAC is 32 bytes long. The shared secret key should not be smaller than

the output of the hash function. There is no upper size limit for the key length, but keys

which are longer than the block size of the hash function, will be hashed once to reduce

the size.

Appendix C, Listing C.1 comes up with an implementation of the HMAC function.

2.5.2 Digital signature

A digital signature is typically shipped together with the message it is related to. Basi-

cally it claims that the message has not been altered (integrity) and authenticates the

sender (entity authentication). The following enumeration lists the properties of signa-

tures (cf. [11]):

27

Chapter 2 Cryptography

Authentic. The signer deliberately signed the document.

Unforgeable. No one else than the signer signed the document.

Not re-usable. The signature is related to the document. It is not possible to use this

signature with other messages.

Unalterable. The document has not been changed (by anyone) after the signature

has been created.

Non repudiation. The signer cannot deny, that he did not sign the document.

While handwritten signatures, which are still used in a wide field of applications, are

not able to fulfill all of these properties, digital signatures can.

Plaintext

Hash function

EncryptionPrivate key

Signature

Hash value h

(a) Signature creation

Compare

DecryptionPublic key

Signature

Hash function

Plaintext

valid/invalid

Hash value h′ Hash value h

(b) Signature verification

Figure 2.11: Digital signature

The signatures are generated using asymmetric cryptographic algorithms and hash

functions. The basic functionality of common digital signature algorithms is shown in

Figure 2.11. During signature generation (cf. Figure 2.11(a)), a hash function is used to

reduce the amount of data to a fixed length for the encryption. The resulting hash value

28

Chapter 2 Cryptography

is encrypted with the private key of the sender. The encrypted hash value represents

the digital signature and is transmitted together with the message. Because of the use

of a hash function to calculate a message hash, the digital signature inherits the integrity

property of the hash functions.

To validate the digital signature (cf. Figure 2.11(b)), the received signature is de-

crypted using the public key of the sender. The decrypted signature is the reference

hash value h′. The hash value h is calculated by applying the hash function on the

message. If the hash value h and the reference h′ are the same, the signature is valid.

Otherwise the signature is invalid.

Like asymmetric encryption algorithms, the digital signature algorithms can be cate-

gorised by the underlying mathematical problem.

IFP

The first class of digital signature algorithms is based on the IFP. The signature scheme

related to the RSA encryption (cf. Section 2.4.2) is shown exemplary.

RSA signature scheme Besides encryption, RSA can be used to sign a message.

The key pair generation remains the same compared to the encryption, as already

described in Section 2.4.2. To generate the signature s, the sender uses its private

key to encrypt the hash of the message, which is the output of a (cryptographic) hash

function H(m) (cf. Section 2.5.1):

h = H(m) (2.17)

s ≡ hd mod n (2.18)

The signature s is transmitted together with the plaintext (or encrypted) message m to

the receiver. The receiver will also calculate the message hash h via the Equation 2.17.

Afterwards the signature will be decrypted using the public key of the sender, to get

the reference hash h′:

h′ ≡ se mod n (2.19)

29

Chapter 2 Cryptography

According to the conversions on Page 17, it is easy to show that h = h′, if the signature

s and the message fingerprint h have not been modified:

se mod n = hed mod n

= h1+kφ(n) mod n

= h(hk)φ(n) mod n

= h mod n

So, if the equation h = h′ holds, the signature is valid and the receiver can be sure

that the sender knows the private key associated to the used public key and that the

message was not modified.

DLP

As representatives of the DLP based digital signature algorithms, the ElGamal signature

scheme and the Digital Signature Algorithm (DSA) are presented.

ElGamal Signature scheme As already mentioned, the ElGamal algorithm can also

be used to create and verify digital signatures on messages. For the generation of the

keys, the equations of Section 2.4.2 are used2.

If Alice wants to send a signed message to Bob, again Alice has to choose a random

number k (with the same requirements stated in the Equations 2.11 and 2.12). The pair

(r,s), which represents the signature, can be calculated via the following equations

r ≡ gk mod p (2.20)

s ≡ (H(m)− x · r)k−1 mod (p−1) (2.21)

where the used function H(m) is a (cryptographic) hash function (cf. Section 2.5.1).

The usage of the value k is subject to the same limitations as stated in Section 2.4.2.

2x denotes the private key of Alice and (y,g, p) her public key

30

Chapter 2 Cryptography

To verify the signature, Bob has to check, if the following equation holds (using the

public key y of Alice).

gH(m) ≡ yr · rs mod p

With the help of the introduced equations, the following transformation shows the cor-

rectness of the signature scheme:

H(m) ≡ x · r + k · s mod (p−1) (→Eqn. 2.21)

gH(m) ≡ gx·r+k·s

≡ gx·rgk·s

≡ (gx)r(gk)s

≡ yr · rs mod p (→Eqn. 2.10 and Eqn. 2.20)

Digital Signature Algorithm (DSA) The DSA has been announced by the NIST in

August 1991. The intention for this standard was the establishment of a secure public

key digital signature standard, which can be used for federal digital signature appli-

cations. Its algorithm is a variant of the ElGamal signature algorithm, described in

Section 2.5.2. A full description of DSA can be found in [32].

Keypair generation The keypair generation of DSA is similar to the one of ElGamal.

First, one entity has to choose a prime number p. Depending on the desired level of

security, the bit length of this number ranges from 512 up to 3072 bits and is denoted

by L. The next number q has to be a prime factor of p− 1. The length of q (denoted

with N) is specified by [33] and depends on L. The following pairs of (L,N) are allowed:

(1024,160), (2048,224), (2048,256) and (3072,256). The third “random” number is g,

calculated via

g = h
(p−1)

q mod p (2.22)

h is chosen in a way, that g > 1. The triple (p,q,g) is the domain parameter and is

public. According to ElGamal, the private key x is randomly chosen and the public key

y is determined by Equation 2.10.

31

Chapter 2 Cryptography

Signature To sign a message, a hash function H(m) is used to create a hash value out

of the plaintext message. The values r and s, which represent the digital signature of

the message, are calculated via the following equations:

r ≡ (gk mod p) mod q (2.23)

s ≡ (H(m)+ x · r)k−1 mod q (2.24)

Since the value of r does not depend on the message itself, a precomputation can be

done to speed up the creation of the signature. Also the value of k−1 can be calculated in

advance. Detailed description of these optimisations and measurements can be found

in [11].

Verification To verify the signature, the receiver has to do the following calcula-

tions:

w ≡ s−1 mod q (2.25)

u1 ≡ H(m) ·w mod q (2.26)

u2 ≡ r ·w mod q (2.27)

v ≡ (gu1yu2 mod p) mod q (2.28)

If v = r, the signature is valid. The correctness of the algorithm is shown as follows:

k =
H(m)

s
+

xr
s

(→Eqn. 2.24)

= H(m)w+ xrw (→Eqn. 2.25)

= u1 +u2x (→Eqn. 2.26 and Eqn. 2.27)

r = gk = gu1gu2x

= gu1yu2 = v (→Eqn. 2.10)

ECDLP

The following digital signature scheme is based on the ECDLP, which has been intro-

duced in Section 2.4.2.

32

Chapter 2 Cryptography

Elliptic Curve Digital Signature Algorithm (ECDSA) Elliptic Curve Digital Sig-

nature Algorithm (ECDSA) is the elliptic curve pendant to the DSA, which has been

discussed in Section 2.5.2. It is an International Organisation for Standardisation (ISO)

standard since 1998 (ISO 14888-3). Among others, its specification can be found in

[34].

Keypair generation The elliptic curve key pair is associated with a particular do-

main parameter D. To generate a key, a random number d has to be chosen, which

represents the private key. The public key is a point on the elliptic curve:

Q = dP (2.29)

Signature In the scenario, Alice wants to send a digitally signed message to Bob. The

formulas for ECDSA are very similar to the ones of DSA. The input parameters of the

ECDSA are the domain parameter D = (q,FR,S,a,b,P,n,h), Alice’s private key d and

the message m. First, Alice has to choose a random number k. With this number, she

can calculate the signature3:

(x1,y1) = k ·P (2.30)

r ≡ x1 mod n (2.31)

s = k−1 (H(m)+d · r) (2.32)

The pair (r,s) is the digital signature, which will be used by Bob to validate the trans-

mitted message.

3x1 is the integer representation of x1

33

Chapter 2 Cryptography

Verification To verify the digital signature, Bob needs the domain parameter D =
(q,FR,S,a,b,P,n,h), Alice’s public key Q, the message m and the signature (r,s):

w ≡ s−1 mod q (2.33)

u1 ≡ H(m) ·w mod q (2.34)

u2 ≡ r ·w mod q (2.35)

(x2,y2) = u1P+u2Q (2.36)

v ≡ x2 mod n (2.37)

These formulas are almost the same compared to the ones of DSA. If v = r, the signature

is valid. The correctness of the algorithm is shown as follows (note: (x1,y1) = (x2,y2)⇒
v = r):

k =
H(m)

s
+

dr
s

(→Eqn. 2.32)

= H(m)w+drw (→Eqn. 2.33)

= u1 +u2d (→Eqn. 2.34 and Eqn. 2.35)

(x1,y1) = kP = u1P+u2dP (→Eqn. 2.30)

= u1P+u2Q = (x2,y2) (→Eqn. 2.29)

2.6 Freshness

Data freshness ensures that an arriving message was not received (and processed) up

to now. If a message arrives more than once – e.g. because of network retransmission

or because of a replay attack – this will be recognised and the message is discarded.

Data freshness can be achieved by adding a unique identifier to the message (cf. Fig-

ure 2.12). This can be done e.g. by embedding a sequence counter into the message.

Since the sender changes this counter every time a message is sent (e.g. by increasing

it by 1), it can be used to guarantee data freshness. The receiver extracts the unique

identifier and checks (e.g. via a lookup table), if this identifier has already been used.

The identifier itself (or the whole message) has to be immutable (e.g. by means of

integrity protection – cf. Section 2.5).

34

Chapter 2 Cryptography

Merge

Plaintext Unique ID

Extract

Plaintext Validate

valid/invalid

Lookup
Table

transmit

Figure 2.12: Data freshness

2.7 Elliptic Curve Integrated Encryption

Scheme (ECIES)

Hybrid algorithms combine the easier key distribution capabilities of asymmetric algo-

rithms with the high operation speed of symmetric ones. Because of these advantages,

most of the common cryptographic protocols and schemes are hybrid. This section ex-

plains one hybrid encryption scheme. State of the art protocols which use symmetric

as well as asymmetric algorithms can be found in Section 3.

ECIES is based on the ElGamal algorithm and provides a secure method to exchange

messages like short keys for symmetric encryption. Among others, the SECG provides

a detailed specification of ECIES (cf. [35]).

The data is secured with a symmetric algorithm together with an authentication scheme

using a hash algorithm. The keys for these algorithms are derived with Elliptic Curve

Diffie-Hellman (ECDH) key exchange (cf. Section 2.9.3).

The full scheme is divided into 4 parts. First, in the “Scheme Setup”, the used algo-

rithms like the Key Derivation Function (KDF), the encryption algorithm and the MAC

algorithm, as well as ECC domain parameters are agreed. During the second part,

called “Key Deployment”, the receiver has to gain the sender’s public key in an au-

thentic manner. The “Encryption Operation”, which is the third part of the encryption

scheme, is visualised in Figure 2.13. An ephemeral elliptic curve key pair has to be

created. The newly created private key and the public key of the receiver are used as

35

Chapter 2 Cryptography

ECDH

generate Keyset receiver’s Public Key

KDF

Encryption

Plaintext

MAC

CiphertextPublic key MAC tagsecured message:

Private Key

Shared Secret

Encr. Key

MAC key

Ciphertext

Public Key

Ciphertext
MAC tag

Figure 2.13: ECIES encryption

input to a ECDH routine to generate a shared secret (cf. Appendix C, Listing C.2 for

an example implementation and a description of this function). The negotiated KDF is

applied to the shared secret to calculate the encryption key and the MAC keys. The

encryption operation calculates the ciphertext out of the plaintext, using the calculated

encryption key. The MAC algorithm calculates the MAC tag, using the calculated MAC

key. The sender sends the temporary public key concatenated with the encrypted

payload and the MAC tag to the receiver.

In the last part, the “Decryption Operation”, (cf. Figure 2.14) first of all the public key

and the MAC tag are extracted from the whole message. Like during the “Encryption

Operation”, a DH routine is used to regenerate the shared secret. The inputs of this

routine are the private key of the receiver and the received temporary public key. The

KDF produces the needed keys for the MAC verification and decryption.

2.8 Randomness

The security of most of the cryptographic algorithms is based on the quality of random

numbers. These random numbers are used to generate initial secrets, which are only

known to the owner of this random number. In other words: the best cryptographic

36

Chapter 2 Cryptography

secured message

Extract

ECDH
receiver’s

Private Key

KDFMAC Decryption

Compare

valid/invalid

Plaintext

Public Key

Shared Secret

MAC key Decr. key
MAC tag′

Ciphertext

Ciphertext

MAC tag

Figure 2.14: ECIES decryption

algorithm can be broken, if the underlying random numbers are known or predictable.

The main requirements (according to [36]) to random generators are

Randomness. The output is random with a uniform distribution.

Forward security. If an attacker knows the internal state of the generator, he is not

able to calculate previous outputs.

Backward security. The attacker is not able to calculate future outputs of the gener-

ator.

Computers are expected to be completely deterministic. The same input produces the

same output – at any time. The finite number of possible internal states limits the pos-

sibilities of the output. Any random number generator on a computer is per definition

periodic. Therefore generating a random number is not just a difficult task for comput-

ers – it’s impossible. With the words of John von Neumann: “Anyone who considers

arithmetical methods of producing random digits is, of course, in a state of sin.”

The best output of a computer can be a pseudo random sequence. In software, these

pseudo random numbers are generated with a Pseudo Random Number Generator

(PRNG). Depending on the field of application of the output, different quality criteria

may apply. According to the properties listed in [11], PRNGs are said to be good, if

they look random. I.e. they have to pass several statistical tests of randomness, like

37

Chapter 2 Cryptography

the uniform distribution. Cryptographically secure PRNGs additionally have to be un-

predictable, even if the whole previous output and the algorithm are known. Since

computers are deterministic, PRNGs have to be initialised with some random number

in order to produce different output sequences in different executions. This initial value

is called seed. Usually some kind of external event (e.g. keystrokes, time, message

arrival interval, . . .) is used to generate the seed.

Many libraries, operating systems and compilers provide different implementations for

PRNGs. But the quality of these “standard” implementations do not fulfill the require-

ments for cryptographic applications. The generated numbers appear to be random,

but are often completely determined by a small seed. Furthermore the unavoidable

period is often very small.

The following example shows an easy implementation of a PRNG, the Linear Feedback

Shift Register (LFSR) to demonstrate predictability and the period.

Bit 1 Bit 2 Bit 3 Bit 4 Output

⊕
Figure 2.15: LFSR example

In a LFSR, several bits inside the shift register are combined with a logical feedback

function to form the next input of the shift register. The output represents the pseudo

random bits. The example in Figure 2.15 uses an XOR as feedback function, taking bit

1 and bit 4 as inputs. Within every step, the content of bit 4 becomes the new output,

the content of bit 3 is shifted to bit 4, bit 2 is shifted to bit 3 and so on. The result of the

XOR operation is used as new value for bit 1.

With a seed of 12 (1100b), the output sequence shown in Table 2.2 will occur.

Bit 1 Bit 2 Bit 3 Bit 4 XOR result output

1 1 0 0 1

1 1 1 0 1 0

1 1 1 1 0 0

0 1 1 1 1 1

1 0 1 1 0 1

38

Chapter 2 Cryptography

0 1 0 1 1 1

1 0 1 0 1 1

1 1 0 1 1 0

1 1 0 1 0 1

0 1 1 0 0 1

0 0 1 1 1 0

1 0 0 1 0 1

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 1 0

1 0 0 0 1 1

1 1 0 0 1 0

Table 2.2: LFSR example

The output of the LFSR in Figure 2.15 seems to be completely random. But a closer

look to it reveals a period of 15. So even a brute force attack, which tries all possible

initial values will succeed very fast.

While no one would use such a simple PRNG for cryptographic applications, even

well established and often used generators have threatening weaknesses. [36] shows

attacks against the most commonly used PRNG, the one of the Windows operating

system (Windows 2000). Another huge security flaw has been found in an OpenSSL

implementation of Debian based operating systems. The implementation used a very

small “random” source as seed for the PRNG (cf. [37]). Besides the limited range of

the entropy source, many of the possible initial values are very unlikely and may not be

taken into consideration when attacking such a system.

Since PRNGs are used inside cryptographic algorithms and to generate keys, for crypt-

analysts PRNGs are as interesting as the cryptographic algorithms themselves. To

break the security of a system, one could either find a vulnerability of the used crypto-

graphic algorithm or of the deployed PRNG.

Several documents describe the threats of PRNGs and propose secure implementa-

tions and good random sources. E.g. in [38] approved algorithms and testing tech-

39

Chapter 2 Cryptography

niques of the NIST are stated. [39] focuses on random sources and introduces pseudo

random number generation processes.

2.9 Key management

Keys are a central entity in cryptographic systems. Except unkeyed hash functions, all

of the described algorithms need one or more keys to work. Most of these keys have

to be secret and should only be available to authorised parties.

Key management covers several tasks (cf. [13]). One part of key management is the

process to establish a shared secret key, called key establishment. This includes the

generation and distribution of the keys. There are three groups of key establishment

algorithms:

Pre-shared or manually shared key. The user has to explicitly share secrets.

Symmetric key technique. A third trusted party has to be involved.

Asymmetric algorithms.

It is very common, that algorithms of these groups are executed consecutively. Espe-

cially pre-shared keys are necessary to execute symmetric or asymmetric key tech-

niques. Another main part of key management is the control of the keying material as

well as the update, revocation and destruction of keys. Basically, there are two situa-

tions where the revocation of a key set and the distribution of a new one are required

(often referred to as rekeying): First, it may be possible that a communication member

has to be actively excluded from a communication relation. This may be necessary if

a device becomes compromised. Second, due to security reasons, an active key set

shall be recreated periodically to reduce the number of key set uses (and to avoid an

overflow of a possible sequence counter4). The key storage and the backup/recovery

mechanisms are also part of the key management.

2.9.1 Pre-shared

Cryptographic systems with a pre-shared key exchange the keys in advance in a se-

cure manner. The system itself does not care about the key exchange – the keys have

4A sequence counter is used to ensure data freshness (cf. Section 2.6)

40

Chapter 2 Cryptography

to be available on all participated entities when the secured communication starts.

The keys have to be exchanged via some secure channel. Since usually no other secu-

rity mechanisms are available at that time, a physically secured channel has to be used.

Typically, a user who has a direct connection (e.g. via EIA-232 or USB) to the participat-

ing entities will distribute the keys. This can be done e.g. by entering a pass-phrase at

the devices or by exchanging stored keys via transportable mediums like USB sticks.

If the keys are not exchanged via network connections, it is almost impossible for an

attacker to gain the shared secret during the key exchange process.

A big drawback of pre-shared keys is the fact, that the key exchange is not very com-

fortable. It is long-winded and maybe expensive to renew the used keys. Since in

some systems the user has to enter a password or a pass-phrase, the used keys may

be insecure because of poor passwords (cf. [13]).

Usually, pre-shared keys are used as basis for symmetric or asymmetric key exchange

techniques. Since it is almost impossible to do automatic rekeying, pre-shared systems

are not very practicable. But there are some application fields, where pre-shared keys

are still used and offer a great level of security. In electronic banking systems Trans-

action authentication numbers (TANs) are used to transfer money in a secure manner.

The TAN lists, which are distributed via regular mail or the bank office, are a form of

pre-shared keys, which are used only once (one-time password).

2.9.2 Symmetric

A possible solution for symmetric key management is shown in Figure 2.16. The keys

are exchanged via a TTP called Trent in the example (cf. [13]). In conjunction with

symmetric encryption keys, the TTP is also called key server. Each participant shares

a distinct symmetric key with the TTP. These keys have to be distributed via a secured

channel in advance (cf. Section 2.9.1).

If Alice wants to talk to Bob in a secure manner, they will contact Trent with the help of

the symmetric keys KAT and KBT , which have been distributed in advance. Trent will

generate a session key k and send this key to Alice and Bob via the secured communi-

cation channel (the feedback channels are also secured using KAT and KBT). Alice and

Bob can use the session key k, which is only known by them (and Trent), to establish a

41

Chapter 2 Cryptography

Trent

Alice Bob

Carol

KAT KBT

KCT

k

Figure 2.16: Symmetric key management

secured channel between them. A noninvolved party like Carol or an attacker Eve will

not be able to gain the session key k.

This example using a TTP can be compared to the Kerberos protocol (cf. [40]). One

advantage of this approach is, that it is easy to add and remove entities from the net-

work. This process can be entirely controlled by the TTP. Another advantage is, that

each entity has to store only one long-term secret key.

But there are also several disadvantages of this concept. Every communication requires

an interaction with an online TTP which probably puts high load on it and slows down

the establishment of secured channels. The TTP has to store several long-term secret

keys – one for each entity. Since the TTP knows the session keys, it is able to read all

messages. If the TTP is compromised, the whole communication within the network

becomes insecure. This centralised approach also implies, that a failure at the TTP will

stop the establishment of new connections in the whole network.

2.9.3 Asymmetric

Asymmetric key exchange mechanisms use asymmetric cryptographic algorithms to

establish a shared key between two or more parties. Each participating party has

it’s own private/public keypair, where only the public one has to be shared among

all parties. With the knowledge of the public keys and the own private key, a shared

secret can be calculated. Since an eavesdropper only knows the public keys, but not

the private keys, it cannot calculate the shared secret.

42

Chapter 2 Cryptography

Certification Authority (CA)

A TTP, which in this context is also called CA, creates certificates, which prove the

identity of an entity. A digital certificate consists of a public key and some kind of

identifying information, which later on can easily be verified (like the address). The two

parts of the certificate are bound together with a digital signature (cf. Section 2.5.2),

created by the CA.

Alice Trent

public key
identifying information

certificate

Figure 2.17: Certificate creation

If an entity of a security domain wants to gain a certificate, it has to provide it’s public

key and prove it’s identity (cf. Figure 2.17). The CA verifies the identifying informa-

tion and creates the certificate, if the verification was successful: it digitally signs the

certificate with a negotiated digital signature algorithm (cf. Section 2.5.2) and ships

the whole certificate back to the applicant. The communication channel for this initial

communication between the requesting entity and the CA must provide entity authen-

tication, integrity and freshness. Confidentiality is not necessary.

Trent

Bob Alice
ask for certificate

certificate

public key

Figure 2.18: Certificate verification

If Bob wants to verify, if the communication partner really is Alice, he can ask for Alice’s

certificate and verifies it (cf. Figure 2.18). To verify the certificate, Bob has to verify the

digital signature of the TTP, which is included in the certificate, by the means of digital

signature algorithms (cf. Section 2.5.2). To do this, Bob only has to know the CA’s public

key, which has to be shared in advance (cf. Section 2.9.1). If the signature is correct,

Bob knows that Trent checked the identity of Alice and can trust Alice’s identity.

43

Chapter 2 Cryptography

Diffie-Hellman (DH)

DH was the first public key algorithm ever. It was published in 1976 by Whitfield Diffie,

Martin Hellman and Ralph Merkle and is based on the DLP (cf. [11]).

Alice Bob

Eve

Figure 2.19: DH principle

A basic scenario is shown in Figure 2.19. Assume, that Alice and Bob want to estab-

lish a shared secret. First, both parties have to agree on a random prime number p

and the primitive root5 g modulo p. Now, Alice chooses a random large integer x and

calculates

X ≡ gx mod p

Accordingly, Bob also chooses some random large integer y and calculates

Y ≡ gy mod p

After the values of X and Y are exchanged, Alice will calculate kA and Bob will calculate

kB

kA ≡ Y x mod p

kB ≡ Xy mod p

The values kA, calculated by Alice, and kB, calculated by Bob, are the same, since

kA ≡ gxy mod p≡ kB

No other party listening on the channel (like Eve) and intercepting p, g, X and Y is able

to calculate the value of k in reasonable time, because of the DLP (cf. Section 2.4.2).

If the values for p and g are chosen properly, the random numbers x and y are of good

5The primitive root g of a cyclic (finite) group is the generator of this group. I.e. the generator multiplied
with itself (multiple times) generates all elements of this group.

44

Chapter 2 Cryptography

quality (cf. Section 2.8) and the communication channel provides integrity protection,

this protocol is considered to be secure. Hence, the DH key exchange algorithm pro-

vides a mechanism to derive a common secret, if an attacker has only the possibility to

intercept messages but is not able to modify messages.

Alice

Marvin

Bob

Figure 2.20: DH man-in-the-middle

If the attacker is able to alter the sent messages, DH is not secure anymore. Figure 2.20

shows a typically scenario, where the attacker Marvin can modify the messages of

Alice and Bob. During the communication with Alice, Marvin pretends to be Bob. From

Bob’s point of view, Marvin seems to be Alice. Marvin executes the DH algorithm twice

to establish two shared secret keys. One key is shared with Alice, the other one with

Bob. This kind of attack is called man-in-the-middle attack.

Since the DH protocol is not authenticated, Alice and Bob will not recognise the differ-

ence. If entity authentication is necessary, the Station-to-Station protocol can be used.

To save memory consumption and computational power, elliptic curve primitives can

be used to execute the key agreement. These algorithms which are also suitable for

constrained environments are called ECDH.

Station-to-Station Protocol

The Station-to-Station Protocol (cf. [11]) solves the man-in-the-middle vulnerability of

the DH protocol by introducing an authentication mechanism. The entity authentication

is done with the help of certificates. Alice has Bob’s certificate with Bob’s public key

and Bob knows Alice’s certificate. The certificates have to be signed by a TTP outside

this protocol (cf. Section 2.9.3).

Basically, the messages between Alice and Bob are digitally signed. The signatures can

be verified with the aid of the certificates. Since an adversary is not able to generate

valid signatures, the man-in-the-middle attack is not possible anymore.

45

Chapter 2 Cryptography

Group Diffie-Hellman (GDH)

DH only supports the secure key agreement between two parties. To agree on a

common key within a group, several group key distribution protocols are available.

[41] presents and analyses the modification of the 2-party DH algorithm for groups to

form the GDH algorithms. GDH.1, GDH.2, and GDH.3 have different fields of applica-

tion. GDH.1 does not need any special communication requirements like broadcast-

ing or synchronisation. There is only point-to-point communication, as shown in Fig-

ure 2.21(a). GDH.2 is optimised with respect to the number of rounds. The necessary

communication lines are shown in Figure 2.21(b). Key distribution with a low amount of

exponentiations is done by GDH.3. Like GDH.2, it needs an almost fully connected or

broadcasting network in order to work (cf. Figure 2.21(c)). All of the these algorithms

can also use the ECDH key exchange in place of the regular DH to save computational

power and lower memory consumption (cf. [25, 24]). Since computational power is

the main limiting factor on embedded devices, [42] presents a modified version of the

GDH.3 protocol, which additionally saves some operations.

M1

M2

M3

M4

(a) GDH.1

M1

M2

M3

M4

(b) GDH.2

M1

M2

M3

M4

(c) GDH.3

Figure 2.21: GDH network requirements

Exemplarily, this modified GDH.3 algorithm is shown here. The n members of the group

are arranged in a logical chain beginning at member M1, ranging to member Mn. First,

every member Mi chooses a random secret ki. This number is the private key of the i-

th member. M1 selects some elliptic curve point P and sends the value Q1 = k1P to M2.

Q1 is the public key of M1. M2 continues by sending the value Q2 = k2Q1 = k2k1P to M3.

When reaching the last member Mn, it encrypts the group key Qn with the public key

Qn−1 of its predecessor Mn−1. Mn−1 can decrypt the received message with its private

key kn−1 to obtain the secret value Qn. Afterwards, it encrypts Qn with the public key

Qn−2 of its predecessor Mn−2, and so on.

46

Chapter 2 Cryptography

As a result of this protocol, every group member knows the secret value Qn. Every

member has to perform one point multiplication. All but one members have to encrypt

and decrypt the secret value one time. Table 2.9.3 compares this result with the other

GDH protocols.

protocol point multiplications encryption6 decryption6

GDH.1 i+1 for i < n,

n for i = n

0 0

GDH.2 i+1 for i < n,

n for i = n

0 0

GDH.3 4 for i < n−1,

2 for i = n−1,

n for i = n

0 0

GDH.3 modified 1 ∀n 1 for i < n,

0 for i = n

1 for i > 1,

0 for i = 1

Table 2.3: Comparison of group key distribution protocols

One problem of these protocols is, that the members have to be ordered and the num-

ber of members in the group has to be known. Besides, since these GDH protocols are

non-authenticated, they inherit the problem of the man-in-the-middle attack from the

DH algorithm. Again, this can be overcome by the use of some entity authentication

mechanism.

2.10 Securing multicast

Multicast is an efficient way to send a message to more than one receiver. Instead

of sending the same message several times, the sender will send it out once and all

intended receivers will receive the message (cf. Figure 2.22). This saves traffic band-

width and processor load at the sender. Depending on the network topology (e.g. star

topology), it is possible that the multicast message will be cloned several times within

the used network by the network infrastructure (e.g. routers) to reach all receivers.

There are basically three ways to encrypt multicast traffic.

6asymmetric with ECC algorithms

47

Chapter 2 Cryptography

Sender

receiver A

receiver B

receiver C

Figure 2.22: Multicast

Multicast as many unicasts. A multicast can be simulated as many unicasts. Every

sender maintains a point-to-point connection to every receiver. If every member

is allowed to send messages, every member has to share one key with every

other member. From the key management’s point of view, with increasing group

size this method becomes very inefficient during setup and operation. It scales

very bad and needs a lot of memory. Furthermore this way of multicast encryp-

tion is very slow during operation because each sender has to encrypt every

message several times – once for every other group member.

Centralised with server. Every group member maintains a point-to-point connec-

tion to the server. Each multicast message will be routed via the server. The

server decrypts the message from the sender and sends the encrypted mes-

sage to all other group members. In contrast to the previous method, every

group member has to store only one key and the senders have to encrypt the

message only once. But the server needs high network bandwidth and computa-

tional power. Besides, this server represents a single point of failure.

Single group key. All members of a multicast group share a common secret key. Only

the members know this key and can therefore en- and decrypt the messages. A

sender has to encrypt a message only once and every member can decrypt this

message. During operation, this is the most effective way to secure multicast. The

main problem is the efficient key management. If the group is dynamic the key

has to be changed (referred to as rekeying) if new members are joining the group

or some members are leaving the group.

48

Chapter 3

Security for IP backbones in HBA

Due to the widespread use of the Internet, security has been a major research field

in the IT world for years. Therefore, many different security mechanisms for IP based

networks are available. Each of them is suitable for a certain application field. In this

section, the most important IT mechanisms are analysed with respect to their suitability

for KNXnet/IP.

Since IT world comes up with several security protocols to secure IP traffic, it would be

obvious to use already specified, implemented and well-established products to satisfy

the requirements stated in Section 1.3.

This section compares the most popular protocols, which come into consideration for

KNXnet/IP, and sums up the results at the end.

3.1 Internet Protocol Security (IPsec)

IPsec is an extension in the IP specification. When using IPsec, it replaces IP – cf.

Figure 3.1. It is a part of Internet Protocol Version 6 (IPv6) but since Internet Protocol

Version 4 (IPv4) is still the predominantly used network protocol in the IT world, it has

been ported to extend IPv4. The implementation of IPsec in IPv6 is mandatory, while

the implementation within IPv4 is optional. Its specification is spread over several RFCs,

ranging from RFC4301 to RFC4309, available at [43].

IPsec can ensure mutual entity authentication and may provide data integrity, fresh-

ness, and confidentiality. It supports different cryptographic algorithms for encryption

49

Chapter 3 Security for IP backbones in HBA

Application

Transport
(e.g., UDP, TCP)

IPsec

Data link
(e.g., Ethernet)

Figure 3.1: Position of IPsec in the OSI layer model

and signature generation. For example, Data Encryption Standard (DES), Triple-DES,

or AES can be used as encryption algorithm and HMAC-SHA1 for MAC calculation.

For key exchange, again IPsec is able to use a bunch of mechanisms and protocols.

Besides the manual distribution of keys, mainly the IKE protocol is used.

3.1.1 Security Association (SA)

A basic concept in the IPsec specification is the SA, which is always unidirectional and

connects two communication endpoints. A two-way connection needs therefore at least

two SAs. The SA describes how the communication is secured and which features are

enabled. It manages the necessary keys, defines the used algorithms and possible

filter policies among other parameters.

The two main protocols within IPsec are AH and ESP. While AH only provides authenti-

cation and data freshness, ESP additionally provides confidentiality.

3.1.2 Authentication Header (AH)

When using AH, the authentication is done via a hash value calculated over the entire IP

packet. Only few fields of the IP header record – like the Time To Live (TTL) or header

checksum – are excluded from this calculation. A monotonically increasing sequence

number inside the AH header is used to avoid replay attacks and ensure data freshness.

The AH header precedes the payload – it is situated between the IP header and the

header of the succeeding layer (e.g. the Transmission Control Protocol (TCP) header).

The main drawback of AH is the consideration of the IP source and destination address

during the calculation of the authentication data. Therefore these fields are immutable,

50

Chapter 3 Security for IP backbones in HBA

and AH cannot be used with Network Address Translation (NAT) routers, which have to

alter these fields.

3.1.3 Encapsulated Security Payload (ESP)

In ESP, authentication is optional. But since the encrypt-only usage of ESP is subject to

effective attacks (cf. [44]), the usage of ESP without authentication should be avoided.

If it is turned on, again a hash value is calculated to build the authentication data. Unlike

AH, ESP only uses the ESP header and the encrypted payload for the calculation – so

there are no problems behind NAT boxes. Like in the AH header, a sequence number is

used for replay protection. Because of the encryption, ESP has to surround the payload

and appends a trailer (padding, authentication data, . . .) to it.

3.1.4 Modes of operation

There are two operation modes for IPsec. Both AH and ESP can be used in transport or

tunnel mode. When using transport mode, a secure connection between two endpoints

can be established and IPsec encapsulates the IP payload. The tunnel mode encapsu-

lates the whole IP packet including the IP header and can be used to establish Virtual

Private Networks (VPNs) (cf. Section 3.3).

3.1.5 Internet Key Exchange (IKE)

As already mentioned, IKE is used for key exchange. While the first version of IKE had

problems with NAT traversal and firewalls, these problems are solved with the second

version IKEv2 (which will be discussed here – IKEv2 and IKE are used synonymously).

The IKE performs the requested mutual authentication between two parties and is used

to establish an IKE SA which includes shared secret information. Out of the IKE SA an

IPsec SA can be created which will be used later on for ESP and/or AH.

Every IKE request message is answered by a response message of the other party.

In the common case, 4 messages are needed to establish an IKE SA. The initiator

starts with an IKE_SA_INIT message, where security parameters, nonces, available

51

Chapter 3 Security for IP backbones in HBA

cryptographic suites and DH values are set. The responder chooses one suite, com-

pletes the DH handshake and sends a new nonce. After this response, the encrypted

and authenticated (integrity protection) request/response IKE_AUTHmessages proves

knowledge of the secrets and authenticates the two parties. Within this pair of message,

an IKE SA can be established.

IKE is strongly related to the DH key exchange. According to the specification [45], the

extensible framework is able to cope with elliptical curve cryptography for a higher

level of security and a faster execution. But still, the DH algorithm has to be used.

3.1.6 IPsec and multicast

IPsec is intended to secure both unicast and multicast communication. To secure mul-

ticast, one SA is created for a whole group. The sender to a multicast group uses this

SA to encrypt data in symmetric manner. Without any extensions, the receivers are

not able to authenticate the senders of the messages. However, there are some prob-

lems when multicast is used in IPsec. If there is more than one sender, the sequence

numbers (to avoid replay attacks) have to be synchronised between the senders. An-

other possibility would be that the receivers have to track one sequence number for

each sender which would require a change of the current SA implementations. An-

other problem is the key distribution. Since IKE uses the DH algorithm, it is not easy to

derive a common secret key in a group without big adaptions to existing implementa-

tions. A solution would be the use of an explicit key server which would result in too

much overhead for small networks. Furthermore, this key server would represent a

single point of failure.

The Internet Engineering Task Force (IETF) has formed the “Multicast Security Work-

ing Group” which focuses on securing multicast traffic with a single source and a large

number of recipients. One of the released RFCs specifies the “Multicast Group Security

Architecture” (cf. [46]). The reference framework is intended to encrypt many-to-many

multicast too, but every receiver inside the group has to know the IP addresses of the

senders in advance. In [46] it is mentioned, that the framework is intended to secure

large groups, whereas it can also be used in smaller ones, but not very efficiently. But

since the number of group members and their addresses have to be known in advance,

dynamic multicast groups cannot be secured in an efficient manner.

52

Chapter 3 Security for IP backbones in HBA

3.1.7 Conclusion

An evaluation of IPsec in [47] concludes, that it is far too complex and this complex-

ity leads to a large number of ambiguities, contradictions, inefficiencies and weak-

nesses.

In principle, IPsec can be used as security extension in KNXnet/IP networks. According

to the requirements stated above, ESP can be used, while AH is not suitable. However,

due to the high complexity of the IPsec specification, the demands regarding device

resources and the mentioned problems with multicast, IPsec is not advisable for net-

works containing embedded devices. If more powerful devices are available, IPsec

can be used to secure KNXnet/IP tunneling or other KNXnet/IP unicast services. For

KNXnet/IP routing, special implementations of IPsec would be required.

3.2 SSL/TLS

Secure Sockets Layer (SSL) and its successor Secure Sockets Layer (TLS) [48] is a pro-

tocol developed for securing communication between two parties. The specification

can be found under [48]. During the initial handshake, the used cryptographic algo-

rithms are negotiated, secret keys for the secured channel may be exchanged, and the

entities can be authenticated. After this initial handshake, a secured channel between

the two communication parties is established. Like IPsec, the initial key exchange dur-

ing the handshake is usually done using asymmetric algorithms. The secured channel

uses symmetric algorithms for guaranteeing data integrity, freshness, and confidential-

ity.

TLS offers similar algorithms to IPsec but operates on a higher level in the OSI layer

model (cf. Figure 3.2). It encrypts data between the transport layer (e.g. TCP or UDP)

and the application layer. Besides the classical utilisation of TLS for securing Hypertext

Transfer Protocol (HTTP) traffic, it can be used to secure all kinds of application proto-

cols. It is even possible to tunnel the entire network stack and set up VPNs using TLS

(cf. Section 3.3).

Since TLS does not modify the IP, it is transparent to the network infrastructure and there

is no need to adapt routing and switching hardware inside the network. Therefore the

integration in existing installations is usually easier compared to the use of IPsec.

53

Chapter 3 Security for IP backbones in HBA

Application

SSL/TLS

Transport
(e.g., UDP, TCP)

Network
(e.g., IP)

Data link
(e.g., Ethernet)

Figure 3.2: Position of TLS in the OSI layer model

3.2.1 Cipher suites

TLS is very flexible with respect to the use of algorithms. So it is possible to implement

secured unicast connections on embedded devices, too. [49] shows an implementation

of a complete secure web server, using HTTP and TLS. In this implementation, the

initial handshake of TLS is done with the help of ECC [23]. The web server runs on

very constrained devices like a 4MHz 8-bit ATmega processor. The extension of TLS

for elliptic curve cipher suites is specified in [50].

TLS specifies a number of different cipher suites. The suite defines the combination of

the key exchange algorithm, the entity authentication mechanism, the hashing function,

integrity protection and the encryption algorithm. An example of a cipher suite would

be TLS_RSA_WITH_AES_128_CBC_SHA, which defines the use of RSA key exchange,

AES encryption with 128 bit key length and CBC block cipher mode as well as the use

of the SHA hashing function. The suite TLS_NULL_WITH_NULL_NULL is the initial

cipher suite of any TLS connection and provides no protection.

3.2.2 TLS handshake

The stated requirements for security in HBA systems would result in a “full handshake”

that verifies both, the sender and the receiver. Since this full handshake of TLS is used

as reference for the presented protocol in Chapter 4, it is explained in more detail.

Figure 3.3 and the explanation below describe the handshake messages in case of

mutual entity authentication.

54

Chapter 3 Security for IP backbones in HBA

Client Server

ClientHello

ServerHello, Certificate

ServerKeyExchange*, CertificateRequest

ServerHelloDone

Certificate, ClientKeyExchange

CertificateVerify, ChangeCipherSpec

Finished

ChangeCipherSpec, Finished

* optional

Figure 3.3: full TLS handshake

The client initiates the communication by sending a ClientHello message to the

server. The fields of this message are shown in Figure 3.4.

version random session
cipher
suite

compr.
method extension

Figure 3.4: TLS Client-/Server Hello message

The first field contains the TLS protocol version, followed by a random value (together

with a timestamp) and a session identifier. This session identifier is used to corre-

late server responses to this request and to resume previous sessions. The next three

fields announce the client side available cipher suites, compressions methods and ex-

tensions.

The server responds with ServerHello, containing also the fields shown in Fig-

ure 3.4. After the protocol version, a new random value and the session identifier

from the ClientHello message is transmitted. The last 3 fields indicate the cho-

sen cipher suite, compression method and extension, out of the lists provided in the

ClientHello message. The server continues by sending its certificate embedded

in the Certificate message. Depending on the negotiated key exchange algorithm

(which is part of the chosen cipher suite), the server has to provide additional infor-

55

Chapter 3 Security for IP backbones in HBA

mation for the key exchange in the ServerKeyExchange message. This message

could contain the prime modulus and the generator used for the DH operation, in case

of an anonymous DH key exchange. After the server requests the certificate from the

client by sending CertificateRequest, ServerHelloDone is sent to the client

indicating the end of the hello messages.

Since the server requests a certificate, the client sends its certificate embedded in

the Certificate message. The following ClientKeyExchange contains in case

of anonymous DH key exchange, the parameters for the calculation of the pre-master

secret. These parameters and the one of the ServerKeyExchange are used on both

sides via the DH algorithm to calculate a shared secret (cf. Section 2.9.3), which is

used as pre-master secret1 and sends it (encrypted) with the ClientKeyExchange.

If DH is not used, the client calculates the pre-master secret message. In contrast to the

ServerKeyExchangemessage, the ClientKeyExchange is mandatory. To prevent

replay attacks, the client has to send the CertificateVerify message. It contains

the digital signature of the messages sent up to now during the handshake process.

This explicitly verifies possession of the private key in the certificate. The message

ChangeCipherSpec applies the negotiated cipher. The Finished message is the

first one protected with the just negotiated algorithms, guaranteeing that the handshake

was successful. It also contains a hash of the handshake messages.

If the server receives a valid Finished message, it changes its cipher specification

too by sending the ChangeCipherSpec message and completes the handshake with

a Finished message.

Note that the verification of the client certificate is done explicitly by the server by val-

idating the CertificateVerify message, while certificate of the server is verified

implicitly by the client during the handshake.

To ensure data freshness, TLS uses a sequence number for the MAC calculation. The

number is 64 bits long and must not wrap. If a TLS connection would need to wrap the

sequence counter, the connection must be renegotiated.

1Both parties use the same algorithm to convert the pre-master secret (which has a variable length –
depending on the used key exchange algorithm) to the master secret (which has a fixed length of 48
bytes). Afterwards, the pre-master secret is not used anymore.

56

Chapter 3 Security for IP backbones in HBA

3.2.3 Conclusion

TLS offers a fast and well-established handshake protocol for the mutual authentication

and protocol negotiation.

Since TLS is a unicast protocol (asymmetric key exchange is done using unicast al-

gorithms – there are no extensions for multiparty key exchange), it can only be used

to secure KNXnet/IP unicast services. It is not usable for multicast environments like

KNXnet/IP routing.

Nevertheless, because of the lightweight handshake for authentication, TLS served as

basis for the developed protocol which will be presented in Chapter 4.

3.3 VPN

A Virtual Private Network (VPN) is a logical network that is built upon a foreign network

called host network [51]. The VPN can also use mechanisms to secure the communi-

cation in the logical network (called secure VPN). The VPN is transparent to the con-

nected devices. Typically, secure VPNs use other protocols like IPsec or TLS as under-

lying protocol for the secure communication. The secure VPN software itself handles

the connections and provides additional and more comfortable functions. A popular

secure VPN implementation is OpenVPN [52].

OpenVPN provides several methods to ensure authentication: a pre-shared symmetric

key, a username and password combination, a TLS certificate, or a combination of these

methods. While IPsec manipulates the network protocol layer, OpenVPN encapsulates

the encrypted VPN packets into untouched TCP or UDP packets of the host network.

However, the VPN packets themselves are secured down to IP layer (Layer 3) in routing

mode or down to Ethernet (layer 2) in bridging mode.

A centralised server controls the connections and each OpenVPN client connects via a

secure point-to-point connection to the server. This means that the server has to keep

track of several connections with different keys. The whole traffic within this network is

routed through these tunneling connections to the server (cf. Figure 3.5).

This is also true for multicast communication. Multicast messages are sent to the server

and distributed there. So the server has to decrypt each multicast message once and

57

Chapter 3 Security for IP backbones in HBA

Figure 3.5: OpenVPN multicast

encrypt it again several times for all other parties. This results in a high demand on

bandwidth, memory (for storing the different session keys), and computational power

at the server. Therefore, the server represents a bottleneck and a single point of failure

for the whole network especially if multicast is used like in KNXnet/IP routing. Fur-

thermore, the required resources at the server will exceed the capabilities of an em-

bedded device and so more powerful devices would have to be used as OpenVPN

servers. OpenVPN may be used to secure KNXnet/IP tunneling environments and prob-

ably small KNXnet/IP routing networks, but in general a OpenVPN solution is of limited

use for KNXnet/IP.

3.4 Secure Shell (SSH)

The term SSH is ambiguous. As the name suggests, SSH is a program suite which

provides the possibility to log into a remote computer using a secure channel. While

other programs and their protocols like telnet transmit the whole traffic unencrypted

(including username and password), SSH encrypts the traffic and is therefore usable

to connect to a remote service via an insecure network like the Internet. Coming from

Unix systems, server and client programs are available for most of the modern operat-

ing systems.

58

Chapter 3 Security for IP backbones in HBA

Since the underlying protocol for the SSH programs, which is also called SSH, is very

flexible, many other applications were built around the SSH protocol. Even the stan-

dard clients usually support extended features, like the forwarding of screen output

and tunneling like TCP port forwarding. With the help of these mechanisms, single

TCP connections can be tunneled via an SSH connection. A more advanced imple-

mentation can build up a full featured secure VPN with the help of the SSH protocol. In

the OSI reference model, the SSH protocol is situated on the same level like TLS (cf.

Figure 3.6).

Application
(e.g., SSH)

SSH

Transport
(TCP)

Network
(IP)

Data link
(e.g., Ethernet)

Figure 3.6: Position of the SSH protocol in the OSI layer model

The protocol architecture is specified in [53]. There are three major components, which

form the SSH protocol: The Transport Layer Protocol, which ensures server authentica-

tion, confidentiality, and integrity. The second part, the User Authentication Protocol au-

thenticates the client to the server. The third part, the Connection Protocol multiplexes

the encrypted tunnel into several logical channels. The details to these components

can be found in the RFCs [54, 55, 56].

The Transport Layer Protocol (cf. [54]) authenticates the server, exchanges keys, en-

crypts the traffic and provides integrity protection. Similar to TLS, all of the used algo-

rithms are negotiated in advance by this protocol. The protocol is designed to operate

with almost any asymmetric algorithm. But up to now, no ECC key exchange algorithm

has been specified within the SSH protocol. The main problem is, that the SSH speci-

fication handles only point-to-point connection with a client/server relationship. Single

connections with more than two participants are not taken into consideration. Like TLS,

SSH is a unicast protocol which uses point-to-point key exchange algorithms. Therefore

it is not usable for multicast environments.

59

Chapter 3 Security for IP backbones in HBA

3.5 Summary

The analysis of proven IT security mechanisms showed that each one has its advantages

and disadvantages, but none of them fully meets the requirements of KNXnet/IP. While

IPsec is only of limited use for embedded devices and has problems with multicast,

TLS and SSH completely lack multicast support. VPN implementations like OpenVPN

have a bad performance in large networks due to conceptual reasons. Table 3.2 shows

the results of the comparison of the analysed IT security mechanisms with respect to

the stated requirements in Section 1.3.

Entity auth. Secured channel Multicast Resource consumption

IPsec + + ∼2 –

SSL/TLS + + – ∼3

SSH + + – ∼3

OpenVPN + + –4 –4

Table 3.2: Comparison of security protocols

Since none of the compared protocols meets all stated requirements, Chapter 4 comes

up with a new protocol.

2See notes in Section 3.1.
3If special encryption-mechanisms like ECC are used.
4In case of many clients.

60

Chapter 4

Solution

According to the conclusion of Chapter 3, a new security extension to protect KNXnet/IP

communication is presented in this thesis. The basic protocol architecture of this ex-

tension is shown in Figure 4.1. The security layer is located between the network layer

(UDP or TCP) and the KNXnet/IP layer. The main advantage of this architecture is that

a change of the KNXnet/IP frame format is not necessary. Thus, it is not limited to

KNXnet/IP and can also be applied to other technologies (cf. [8]).

Application
(KNXnet/IP)

Security layer

Transport
(TCP/UDP)

Network
(IP)

Data link
(e.g., Ethernet)

Figure 4.1: Protocol position in the OSI layer model

To be able to securely communicate with other KNXnet/IP devices, a KNXnet/IP device

has to establish a secure communication relation to the other communication parties.

This communication setup is divided into three phases: configuration, key set distri-

bution, and secure communication. In the configuration phase, the ETS1 acts as CA

(cf. Section 2.9.3) and signs the public keys of the KNXnet/IP devices to create certifi-

cates. These certificates together with the public key of the ETS are distributed to the

1The ETS is the standardised and only software for the programming and configuration of KNX devices.

61

Chapter 4 Solution

KNXnet/IP devices. In the key set distribution phase, the KNXnet/IP devices can authen-

ticate themselves and agree on a common set of keys. This set of keys is used in the

third phase for setting up the secured channel, which is used to exchange KNXnet/IP

messages during normal operation.

4.1 Configuration using ETS

Figure 4.22 shows the operation sequence of the configuration phase. During config-

uration, each KNXnet/IP device creates its own key pair for asymmetric encryption.

While the private key remains secret to the device, the public key is transferred via a

physically secured channel to the ETS. The ETS acts as CA. It signs the received public

key to create a certificate and transmits the certificate together with the ETS’s public

key back to the KNXnet/IP device. The certificate consists of the signed public key and

the IP address of the KNXnet/IP device. With the help of this certificate, the KNXnet/IP

device can authenticate itselves during the key set distribution process.

KNXnet/IP Device ETS

P1, IP_ADDR

certETS, P_ETS

generate keypair

sign public key
(create certificate)

push button

unicast

unicast

Figure 4.2: Configuration phase

Since the configuration phase is used to set up the initial security token (i.e., the public

key of the CA and its certificate), establishing a secured channel using cryptographic

techniques is not possible during the configuration phase. Therefore, the configuration

process has to be performed in a physically secured environment. One possibility

is to directly connect the KNXnet/IP device to the ETS via a point-to-point connection

2For the rest of this thesis, the following notation is used: K denotes a private key, P a public key, KS a
key set, SK a symmetric key, N a number used only once (called nonce), and cert a certificate. Fur-
thermore, sign(X , text) denotes the signature calculation of text using the secret key X , encr(X , text)
the asymmetric encryption of text using the secret key X , secured(X , text) a secured (symmetric en-
cryption) transmission of text using key set X , and || the concatenation operator.

62

Chapter 4 Solution

(e.g., using a local EIA-232 interface). This direct connection reduces the untrusted

environment to a minimum.

4.2 Key set distribution

After a KNXnet/IP device has been configured accordingly, it is in possession of three

security tokens: the public key of the CA (i.e., the public key of the installation’s ETS),

its own public/private key pair, and its certificate that proves the authenticity of the

public key. Using these tokens, a KNXnet/IP device is able to start the second phase

where the key sets for the secure communication phase are distributed.

To distribute these key sets, some kind of key set distribution protocol is necessary. As

mentioned in Section 1.3, KNXnet/IP specifies unicast and multicast services. There-

fore, a protocol is required that supports a distribution not only between two devices

(e.g., for KNXnet/IP tunneling) but also among a multicast group (e.g., for KNXnet/IP

routing). However, since a unicast communication relation can be seen as a special

multicast group consisting of two group members, the proposed KNXnet/IP security

extension uses a single group key set distribution protocol for both kinds of services.

4.2.1 Unicast

In the proposed key set distribution protocol, the key sets for secure communication are

maintained by a coordinator. In the case of unicast, the KNXnet/IP server automatically

acts as coordinator.

The key set distribution protocol works as follows: Suppose, for example, a KNXnet/IP

client wants to set up a secured channel to a KNXnet/IP server (cf. Figure 4.3). To

retrieve the key set from the KNXnet/IP server, the KNXnet/IP client sends a hello-

message to the KNXnet/IP server. This message is signed with the private key of the

client and contains a nonce N1 as well as the certificate of the client. The KNXnet/IP

server receives this message and verifies the certificate, extracts the client’s public key

and verifies the signature. If the signature is valid, the server immediately responds to

the hello-message with a signed coord_avail-message, containing nonce N1 of

the hello-message and a new nonce N2. N1 relates the response of the KNXnet/IP

63

Chapter 4 Solution

server to the actual hello-message and avoids that someone replays the server’s

response to an older hello-message (cf. [57]). To prove the identity of the server, the

client verifies the signature, extracts the server’s public key and verifies the certificate.

If the certificate is valid, the identity of the server has been proven. Afterwards, the

client requests the key set from the server by sending a signed key_req-message –

containing the nonce N2 which relates this message to the coord_avail-message.

Since N2 was chosen by the server, the identity of the client has also been proven (cf.

Section 4.4.1) and mutual entity authentication is established. Again, to avoid replay

attacks in the next step, a newly created nonce N3 is included in the message. The

coordinator responds with a key_resp-message, containing the number N3 and the

key set itself. The message itself is signed with the private key of the coordinator (K2)

and encrypted with the public key of the KNXnet/IP client (P1).

KNXnet/IP client

verify cert1,
verify signature,
sign message

sign(K1,key_req||N2||N3)

KNXnet/IP server

sign(K1,hello||N1||cert1)sign message

verify signature,
encrypt message

verify cert2,
verify signature,
sign message

sign(K2,coord_avail||N1||N2||cert2)

encr(P1,sign(K2,key_resp||N3||KS))

Figure 4.3: Key set distribution for unicast services

4.2.2 Multicast

In the case of multicast services, the role of the coordinator is not predefined. There-

fore, the KNXnet/IP devices that are members of the same multicast group3 must agree

on a common coordinator. This works as follows: If a KNXnet/IP device wants to join a

3For the rest of this thesis, the term "multicast group" denotes an IP multicast group and not a KNX
multicast group.

64

Chapter 4 Solution

multicast group (e.g., KNXnet/IP router after power up), it sends a hello-message to

the multicast group. Again, this message is signed with the private key of the sender

and contains a nonce N1 as well as the certificate. Depending on the state of the multi-

cast group, four different cases are distinguished:

TO

GK

multicast

multicast

multicast

(a) Device alone

KNXnet/IP device

verify cert1,
verify signature,
sign message

sign(K1,key_req||N2||N3)

device
becomes
participant

coordinator

verify cert2,
verify signature,
sign message

wake up

sign(K1,hello||N1||cert1)sign message

verify signature,
encrypt message

multicast

unicast

unicast

unicast

sign(K2,coord_avail||N1||N2||cert2)

encr(P1,sign(K2,key_resp||N3||KS))

(b) Coordinator available

KNXnet/IP device

wake up

device
becomes
coordinator

sign(K2,key_establ||N1||N2||cert2)

time out

KNXnet/IP routerKNXnet/IP routerKNXnet/IP device

sign message sign(K1,hello||N1||cert1)

sign(K1,coord_beg||N1||cert1)

verify cert1,
verify signature,
sign message

sign(K1,key_req||N2||N3)

verify signature,
encrypt messageencr(P1,sign(K2,key_resp||N3||KS))

secured(KS,coord_new)decrypt message

verify cert2,
verify signature,
sign message unicast

unicast

unicast

multicast

multicast

multicast

(c) Coordinator dead

Figure 4.4: Coordinator scenarios

1. Figure 4.4(a): If there is no response from other KNXnet/IP devices within the

timeout tTO, the sender of the hello-message assumes that it is the first active

device within the group and so it becomes the coordinator. To announce that it

assumes the coordinator role and to avoid that a second device tries to become

coordinator at the same time, it will send a coord_beg-message. After having

sent this announce message, it generates the key set for this group. The gen-

65

Chapter 4 Solution

eration process takes the time tGK . When the coordinator has finished the key

set generation process, it sends out the message coord_establ. Note, that the

timeout tTO shall be greater than the key generation time tGK to avoid conflicts

with other devices that try to become coordinator at the same time (cf. Case 4).

2. Figure 4.4(b): If there is a coordinator available in the group, it immediately re-

sponds to the hello-message with a signed coord_avail-message, contain-

ing the nonce N1 of the hello-message and a new nonce N2. Again, N1 relates

the response of the coordinator to the actual hello-message and avoids that

someone replays the coordinator’s response to an older hello-message. After

having received the response from the coordinator, the sender of the hello-

message is able to request the group key set from the coordinator by sending a

signed key_req-message. This message contains the nonce N2 which relates

this message to the coord_avail-message. Again, to avoid replay attacks in

the next step, a newly created nonce N3 is included in the message. The coor-

dinator responds with the encrypted key_resp-message, containing N3 and the

key set itself.

3. Figure 4.4(c): If there is a coordinator but it does not respond for any reason

(e.g. the coordinator crashed), the new device takes over the role of the group’s

coordinator by sending a coord_begin-message (cf. Case 1). If there are

other group members, they immediately respond with a signed key_establ-

message, informing the new coordinator that there is already a group key set

available. This message contains the nonce N1 of the coord_begin-message

and a new nonce N2. The new device chooses one of the responding group mem-

bers for authentication and obtains the key set from it by sending a key_req-

message. After having received the key set, the new device takes over the co-

ordinator role by sending a coord_new-message. This message is encrypted

(symmetric) with the key set.

When there are more than one devices entering this described scenario at the

same time, only one of them will be the new coordinator, since this conflict is

resolved like described in Case 4.

4. This section describes the behavior of the protocol in case of a conflict. The

conflicting scenarios can occur, if during the setup of the coordinator (cf. Fig-

ure 4.4(a)), more than 1 device is competing for the coordinator role. The de-

vices are distinguished via their IP-addresses. Extrema (min or max) defines the

66

Chapter 4 Solution

winner of a possible competition. The conflicting scenarios are split up into three

parts. In the examples it is assumed, that the device with the smaller IP address

is the privileged one and wins the competition.

a) In Figure 4.5(a) the device with the smaller IP address is the first one which

sends a message. According to the standard case shown in Figure 4.4(a),

it starts with the hello message, waiting for a response from a possibly

available coordinator. A hello message from a device with a higher IP

address will be ignored during this waiting period. The “winning” device

with the smaller address continues like in the standard case by sending the

coord_beg message. When the device with the higher address receives

and validates this message, it can stop the timer and waits for the finishing

coord_establ message. After this message, it can begin requesting the

common key set from the new coordinator.

b) In the next case shown in Figure 4.5(b) the device with the higher IP ad-

dress is already alive, when the device with the smaller address wakes up.

Since the new device did not recognise the initial hello message, it starts

by sending out its initial message. Because of the smaller IP address of the

new message, the device with the higher address will abort its starting se-

quence silently. After the second device established its coordinator position

by sending coord_establ, every other device can start communicating

with the new coordinator.

c) In scenario of Figure 4.5(c) the second device wakes up during the key set

generation of the first device. The hello message of the new device will

be ignored by the first device. The end of the key set generation after time

tGK , which is denoted by the coord_establ message, happens before the

end of the time out running at the second device (time tTO). This is guaran-

teed by the inequation tGK < tTO (message transmission times and a safety

margin should be added to tGK). By the reception of the coord_establ

message, the second device aborts its timer and restarts by sending the

hello message.

When the coordinator is established, each KNXnet/IP device can send a key_req-

message to receive the group key set in the key_resp-message from the coordina-

tor.

67

Chapter 4 Solution

KNXnet/IP device KNXnet/IP device

wake up

sign(K1,hello||N1||cert1)sign message

wake up

sign messagesign(K2,hello||N2||cert2)

time out

generate key set

tTO

tGK

sign(K1,coord_beg||N1||cert1)

sign(K1,coord_establ||N1||cert1)

device
becomes
coordinator

ignore message
with higher IP

start time out
tTO

interrupt
time out

recognized
coord_establ

sign(K2,hello||N2||cert2)

standard key set
distribution

smaller IP address higher IP address

verify message

multicast

multicast

multicast

multicast

multicast

(a) Conflict 1: privileged device ignores mes-
sage

KNXnet/IP device KNXnet/IP device

wake up

sign(K1,hello||N1||cert1)sign message

wake up

sign messagesign(K2,hello||N2||cert2)

time out

generate key set

tTO

tGK

sign(K1,coord_beg||N1||cert1)

sign(K1,coord_establ||N1||cert1)

device
becomes
coordinator

start time out
tTO

interrupt
time out

recognized
coord_establ

sign(K2,hello||N2||cert2)

standard key set
distribution

smaller IP address higher IP address

verify message

multicast

multicast

multicast

multicast

multicast

(b) Conflict 2: unprivileged device is inter-
rupted

KNXnet/IP device KNXnet/IP device

wake up

sign(K1,hello||N1||cert1)sign message

wake up

sign(K2,hello||N2||cert2)

time out

generate key set

tTO

tGK

sign(K1,coord_beg||N1||cert1)

sign(K1,coord_establ||N1||cert1)

device
becomes
coordinator

ignore message

start time out tTO

interrupt timeout
and restart

verify message
sign(K2,hello||N2||cert2)

standard key set
distribution

sign message

multicast

multicast

multicast

multicast

multicast

(c) Conflict 3: device ignores message after
coord_beg

Figure 4.5: Conflicting coordinator scenarios

68

Chapter 4 Solution

4.2.3 Blacklist

Besides the security objectives mentioned in Section 2.2, which can be achieved by

the means of cryptography, to guarantee the availability of a service is another topic

when talking about security. Common attacks against this provision are the Denial-of-

Service (DoS) attacks.

In contrast to other security threats, the attacker does not want to gain access to a sys-

tem or secret data, but wants to disturb the normal operation. In case of a Web server,

the attacker will put too much load on the server that either the server’s resources are

exceeded or the communication line to the server is overloaded. In both cases the

Web server will not be able to handle normal requests – the attacker succeeded.

Due to its ad-hoc nature, it is not possible to completely protect a system from DoS

attacks. But some organisational countermeasures can be taken to make these attacks

more difficult. A common approach to make DoS attacks more difficult during authen-

tication is the use of client puzzles (cf. [58]). The server asks the client to solve a

computational intensive riddle which the client has to solve before it can continue with

the authentication process. This puts load on the client and the attacker has to solve a

lot of riddles at the same time to succeed. Since we are dealing with embedded de-

vices with limited resources and an attacker may use a much more powerful machine

to start the attack, this kind of approaches is of limited use here.

In our scenario, an attacker can replay valid key exchange messages to put a lot of

load on the coordinator. As an effective method against this DoS attack, a common

blacklist is maintained. This blacklist records the key information of replayed protocol

messages. This approach does not prevent an exhaustion of network bandwith, but it is

able to reduce the load on the server since it can simply ignore blacklisted messages

rather than performing intensive cryptographic operations.

If an attacker tries to gain access to the system or starts a DoS attack by replaying one

or more messages from the address IPa containing some nonce Na, this combination of

address and nonce will be blacklisted when it is recognised that is has been used by

an attacker (cf. Section 4.4.1). To save computational power and to limit the working

surface for possible DoS attacks, messages from the blacklisted address IPa containing

the nonce Na will be ignored without any treatment (with one exception).

69

Chapter 4 Solution

Since it is possible, that a device chooses a random number which has been used pre-

viously by an attacker (e.g. after a power-up when the blacklisted nonces are cached

in volatile memory), this device would establish a new coordinator position because

there is no response from other devices. To avoid a second “valid” coordinator, this

device has to be informed by other devices, that it is using a blacklisted address/ran-

dom number combination. This is done by sending a blacklisted message (cf.

Figure 4.6). The wrongfully ignored device has to choose another random number and

restart the protocol.

KNXnet/IP device KNXnet/IP device

wake up

sign(K1,hello||N1||cert1)sign message

sign(K2,blacklisted||N1||cert2)

time out

generate key set

tTO
sign(K1,coord_beg||N1||cert1)

ignore message

verify message
sign message

blacklisted alive

verify message

sign(K1,hello||N2||cert1)sign message

multicast

multicast

unicast

multicast

Figure 4.6: Inform blacklisted device

To avoid the revocation of all address/nonce combinations in a long term environment

(which would result in a DoS), the blacklisted entries have an expiration date. When

this date is reached, this entry will be removed from the blacklist and the banished

combination can be used again.

4.2.4 Certificate revocation

Since it is possible that a KNXnet/IP device gets compromised, a revocation list is re-

quired that contains the certificates of all compromised KNXnet/IP devices. This revo-

cation list is maintained by the ETS and has to be distributed to all KNXnet/IP devices

when a new certificate is added to the list. This is done by sending a cert_revoke-

message that is signed with the private key of the ETS. Since all KNXnet/IP devices are

70

Chapter 4 Solution

in possession of the public key of the ETS, malicious cert_revoke-messages can be

identified by verifying the signature.

4.3 Secure communication

After a key set has been distributed during the second phase, the secured channel

between the communication parties can be established. To guarantee the security

objectives of the secured channel, symmetric algorithms are used, exclusively. Besides

the advantage of higher processing speed, all multicast parties have to share only a

single key. In contrast to asymmetric algorithms, a message has to be processed only

once since all KNXnet/IP devices of a communication relation (e.g., a single multicast

group) use the same key set (cf. Section 2.4.1).

A key set consists of 3 security tokens: a secret key SKC for en- and decryption, a

secret key SKMAC for the MAC calculation, and the current valid sequence counter C.

The used frame format (cf. Figure 5.11) is based on the application protocol frame

format of TLS 1.2 (cf. Section 3.2).

Confidentiality is guaranteed by using AES-128. To ensure data integrity and data

freshness, HMAC (cf. Section 2.5.1) in combination with SHA-256 (cf. Section 2.5.1) and

a sequence number are used. As already described in Section 2.5.1, HMAC provides

an integrity check based on a secret key. This key must be available on all devices to

create valid hash values and to validate the messages.

The sequence number ensures data freshness. Besides the sequence counter, also the

IV could be used to check the actuality of a datagram. But in contrast to the strictly in-

creasing sequence counter, the IV is random. Therefore every used IV value has to be

stored to identify replayed messages. When using a sequence counter, only messages

with a higher counter value are accepted. Since the underlying protocol possibly does

not maintain the original message order, the devices may store only a limited amount

of missing sequence numbers to identify “old”, but not replayed messages.

71

Chapter 4 Solution

4.3.1 Key set revocation

Section 2.9 describes two situations, where rekeying is necessary. In these situations,

the coordinator has to create a new key set. To inform the other communication parties

that a new key set is available, a new_key_avail-message is sent by the coordinator.

In case of a compromised device (cf. Figure 4.7(a)), every device of the multicast

group has to request the new key set from the coordinator as shown in Figure 4.4(b).

Figure 4.7(b), on the other hand, shows the second case where a key set is renewed

to limit the amount of key set uses. In this case, the new key set can be encrypted

with the old one and transmitted over the already established secured channel. After a

configurable timeout tRK , the coordinator initiates the switch over to the new key set by

sending the new_key_active-message, making the old key set obsolete.

multicast

coordinator

revocation necessary

generate
new key set KS_new

secured(KS_old,new_key_avail)

KNXnet/IP routerKNXnet/IP routerKNXnet/IP device

sign(K2,hello||N1||cert2))

standard key set
distribution

secured(KS_new,new_key_active)

timeout tRK

multicast

multicast

(a) Revocation in case of a compromised de-
vice

coordinator

revocation necessary

multicast group

generate
new key set KS_new secured(KS_old,new_ket_set||KS_new)

secured(KS_new,new_key_active)

multicast

multicast

(b) Revocation in case of out-dated key set

Figure 4.7: Revocation scenarios

4.4 Security analysis

In this section, the security of the key distribution protocol will be analysed. It is as-

sumed, that an attacker is not able to compromise a device and steal a private key. If

the attacker knows a certificate with its private key, he can simulate the behaviour of an

authorised device and gain access to the secured multicast group4.

4Nevertheless, the stolen certificate can be added to the revocation list if the attacker is identified as
described in Section 4.2.4.

72

Chapter 4 Solution

It is obvious, that the establishment of the coordinator in Figure 4.4(a) does not offer

working surface of attacks (since the device is alone and there are no interfering mes-

sages).

The security of the standard key distribution procedure depicted in Figure 4.4(b) is

similar to the one of TLS. This protocol contains the same security primitives as the

full TLS handshake without DH key exchange (Figure 3.3). The ClientHelloT
5 mes-

sage corresponds to helloO, which additionally carries the certificate of the client.

ServerHelloT and CertificateT are combined in the coord_availO message:

the server sends it’s certificate and signs the random number of the request message

which implicit authenticates the server. The other messages CertificateRequestT

and ServerHelloDoneT do not contain security relevant information and are there-

fore not necessary in the presented protocol. In TLS, the client answers by sending the

CertificateT message, containing it’s certificate. Since the certificate has already

been sent in the helloO message, in the presented protocol the certificate exchange

is not necessary any more. CertificateVerifyT includes a digitally signed hash

of all previous messages including the received nonces from the server, to verify the

presented certificate. In the developed protocol, this is done by key_reqO, containing

the digitally signed nonce of the server. Since in TLS the client generates the (pre-

master) key, it has to send the encrypted key with the ClientKeyExchangeT mes-

sage to the server. In the presented protocol, the server knows the common key and

sends the encrypted key to the client using the key_respO message. Again, the other

messages ChangeCipherSpecT and FinishedT do not contain security relevant in-

formation.

The situation is more difficult in case of conflicts during the setup phase of the key

distribution protocol, i.e. when establishing a coordinator. The security of the chosen

protocol is based on the fact that an attacker cannot create a valid signature of an ar-

bitrary, but defined message. Therefore nonces are part of every message to ensure

freshness. Possible replay attacks are discussed in the following section.

5Messages written as messageO are part of the protocol presented in this chapter, while messages
written as messageT are part of the TLS protocol

73

Chapter 4 Solution

4.4.1 Replay attacks

The following analyses refer to the scenarios described in Section 4.2. Every time an

attacker is exposed, its address and the used random number will be blacklisted to

avoid further DoS attacks. The sniffed address/nonce combination becomes useless

(cf. Section 4.2.3).

1. Figure 4.4(a): Since only one device is present (which might be the attacker),

this scenario presents no hazards. The attacker could “establish” its coordinator

position, but it is not able to send valid answers to new requests and will “loose”

its coordinator position if any other device wakes up (see Case 2).

2. If the attacker simulates the KNXnet/IP device of Figure 4.4(b), he will be able to

replay a former hello message. The coordinator will accept this message and

respond by sending the coord_avail message. Since the attacker is not able

to calculate a valid signature for the key_req message, the communication will

be interrupted here.

If the attacker pretends to be the coordinator, he will not be able to send a valid

coord_availmessage and the KNXnet/IP device is able to unmask the attacker.

3. Figure 4.4(c): In case of a dead coordinator, the attacker can probably send the

previously sniffed hello and coord_beg messages. Since the key_req mes-

sage must contain the received nonce N2, again the attacker cannot provide a

valid message.

If the attacker tries to simulate a responding KNXnet/IP device, he will fail by

sending a valid key_establ message, containing the received nonce N1.

4. Figure 4.5(a): While the hello, coord_begin and coord_establ messages

can be repeated by an attacker, as described before, the standard key set distri-

bution will not work (cf. Case 2). Since the attacker will be blacklisted now, this

interruption of the coordinator establishment can only happen once.

If the attacker fakes the device with the higher IP address, no attack is possible

since these messages are ignored. The replication of the last hello message is

handled in Case 2.

5. Figure 4.5(b): Again, like in the previous case, an attacker imitating the KNXnet/IP

device with a smaller address will be exposed during the standard key distribu-

tion. But in this case, the attacker is able to stop the execution of other devices. To

74

Chapter 4 Solution

avoid this DoS attack, the address and the used random number of the attacker

will be blacklisted. This prevents a new interruption of the protocol since the

messages from a blacklisted source are ignored.

Due to the fact that the device with the higher address does not interfere the other

device, there is no chance for the invader to get access to the common key set.

6. For the scenario of Figure 4.5(c), the same arguments of the previous Case 5

apply.

75

Chapter 5

Implementation

The prototype implementation demonstrates the functionality of the presented solution

and acts proband for performance tests. This chapter is divided into two main parts:

the explanation of the implementation and the test results. Inside Section 5.1, the used

test configuration is presented and all participating hard- and software parts are shown.

Section 5.2 compares different hardware platforms, with respect to the implementation

of ECC algorithms.

5.1 Prototype implementation

During the development of the security extension, a prototype network containing an

IP backbone and two connected field networks has been implemented to demonstrate

the feasibility of the protocol. This section describes the basic setup of the test con-

figuration and the software architecture of the proof-of-concept implementation. The

sub-modules and used libraries are explained and the message formats for the trans-

port of information via the network is presented.

5.1.1 Test configuration

In the testing environment, a prototype KNX network has been set up (cf. Figure 5.1).

This network consists of two small KNX TP 1 network segments which are intercon-

nected by an IP backbone. Two AT91SAM7X-EK evaluation boards act as KNXnet/IP

76

Chapter 5 Implementation

routers. While the on-board Ethernet controller provides the interface to the IP back-

bone, a TP-UART [59] is used to access the KNX TP 1 network segment. For demon-

stration purposes, a standard KNX light switch as well as a standard KNX light actuator

are connected to the TP 1 networks.

Connected to the hub, a PC running in promiscuous mode is sniffing all packets in the

IP network. With the help of Wireshark [60] and the KNXnet/IP dissector [61], IP traffic

can be displayed and analysed. Without the security layer presented in this thesis, it is

possible to intercept the clear text version of the KNXnet/IP frames. Furthermore, it is

possible to replay intercepted KNXnet/IP frames to fool the KNX installation. When the

security layer is enabled, the KNXnet/IP frames are secured and cannot be analysed

on the PC anymore. Even replay attacks are no longer possible.

Figure 5.1: Prototype network

5.1.2 Router architecture

In Figure 5.2, the basic hardware layout as well as the software architecture of the secure

KNXnet/IP router is shown. The boards are equipped with an AT91SAM7X256 chip

which are 32-bit RISC Processors (ARM7TDMI) including 256 KB internal flash memory

and 64 KB internal single-cycle access SRAM. In the used evaluation board, the CPU

operates at 18 MHz. Via the Media Independent Interface (MII), the CPU is connected

to a Davicom DM9161AE Ethernet chip. An ADM3202ARN chip drives the EIA-232

interfaces of the board which are used for the communication with the TP-UART and for

debugging output.

The security layer of the software implementation is located between the UDP/IP stack

and the KNXnet/IP stack. It is transparent to the KNXnet/IP stack and the layers above.

77

Chapter 5 Implementation

Routing application

KNXnet/IP
stack

Security
layer

uIP
UDP/IP stack

KNX
TP1 stack

TPUART
stack

AT91SAM7X256

MII

EIA-232RJ45

AT91SAM7X-EK

IP network KNX TP1

Davicom
DM9161AE

Analog
devices

ADM3202ARN

TP-UART

Key
exchange

KNXnet/IP_sec application

Figure 5.2: Hardware and software overview

The following sections describe the software parts of the proof-of-concept implemen-

tation.

uIP UDP/TCP stack

The open source library uIP serves as UDP/IP stack. It has been developed at the

Swedish Institute of Computer Science [62]. uIP features very small code size and low

memory usage, hence it is suitable for the use in embedded microcontrollers.

The UDP/TCP stack uIP for embedded devices can either be used within a Real Time

Operating System (RTOS) or as standalone application. The RTOS FreeRTOS comes

with several examples using uIP as TCP stack. Probably because of memory issues,

other libraries used in the implementation did not work together with uIP and FreeR-

TOS.

Therefore, uIP is used as standalone application, which controls the execution of the

implemented functions. From uIP’s point of view, the whole proof-of-concept imple-

mentation (key management, secure communication, KNXnet/IP stack, . . .) is a single

application. This application (called “KNXnetIP_sec”) is called when new data was

78

Chapter 5 Implementation

received by the uIP stack and if a timer event occurred. The timer events are neces-

sary to handle timeouts in the key distribution state machine.

UDP multicast is not supported by uIP natively. Therefore, a patch was written to re-

ceive and send multicast packages. Appendix C shows the patches for the uIP code

itself (Listings C.4 and C.5) as well as for the ARP part of uIP (Listing C.6).

KNXnet/IP_sec application

The uIP application “KNXnet/IP_sec” receives messages from the UDP stack and for-

wards it to either the key distribution algorithm or to the security layer. As already men-

tioned, also timer events are handled and passed to the appropriate sub-application.

Security layer

For cryptographic calculations, many arithmetic operations on large numbers have to

be performed. Since native C cannot handle such large numbers, a special library has

to be used. The Multiprecision Integer and Rational Arithmetic C Library (MIRACL)

supports all of the required functions. Furthermore, it provides functions and examples

for many different cryptographic algorithms like AES, RSA, DH, ECC over binary and

prime fields, and hashing functions. In addition, MIRACL implements a cryptograph-

ically secure PRNG. Optimisations for different processor architectures are written in

inline assembly for time-critical routines to enhance speed and exploit special features

of some processors. The library also offers some parameters to optimise the memory

consumption. The MIRACL library is developed by Shamus Software Ltd. (see [63]).

The prototype implementation uses only static variables instead of heap allocated, dy-

namic variables. This increases the performance of the code. Since the dimensions

of the used variables are known in advance, there is no drawback compared to the

dynamic variable allocation.

The security layer uses MIRACL to secure messages. Messages coming from the

“KNXnet/IP_sec” application are decrypted and validated and passed to the KNXnet/IP

stack. Messages travelling the other way round are encrypted and a MAC or a digital

signature is added, before they are sent to the “KNXnet/IP_sec” application.

79

Chapter 5 Implementation

The symmetric operations for encryption and decryption as well as for MAC gener-

ation and verification use the keys which have been agreed by the key distribution

module.

The signatures for the key distribution algorithm are calculated and verified with the

ECDSA. The used key length is 160 bits. For the encryption and decryption of mes-

sages during the key distribution, ECIES is used. Within ECIES, ECDH derives the

common secret. As KDF, SHA-256 is used. The symmetric encryption operation for

ECIES is AES, HMAC-SHA ensures the integrity of ECIES (both with a key size of 128

bits). During the secure communication, AES-128 ensures confidentiality, HMAC-SHA

is used for integrity protection.

Key distribution state machine

Figure 5.3 shows the state machine that has been implemented to realise the proposed

key distribution. When a state which is labeled with a message, this message is sent

(e.g. the device wakes up and enters the hello state, the hello message is sent

immediately when entering this state). The labels of the edges of the state machine

indicate the conditions for the transition from one state to another (like the reception of

a valid message or the occurrence of a time out).

The states “coordinator” and “participant” are accept states, which cannot be left. The

device in “coordinator” state handles hello messages and key requests as described

in Section 4.2. The ones in “participant” state may have to answer coord_beg mes-

sages and key requests (when the coordinator is dead).

KNXnet/IP stack

The implemented KNXnet/IP stack does not support all features of the KNXnet/IP spec-

ification. Currently, the stack supports the KNXnet/IP Routing service. Extended func-

tionality like lost message handling and other services like KNXnet/IP Tunneling are

not implemented. Since the implementation and operation is completely independent

from the security layer, the task of the security layer is unaffected by the reduced range

of functions of the layers above.

80

Chapter 5 Implementation

wait for coord_establ

hellowake up

coord_beg key_req key_req

coord_establ coord_new

coordinator participant

coord_avail

timeout

coord_beg/hello with better IP

coord_establ

coord_establ/timeout

keys generated

blacklisted

key_establ

key_resp

timeout

key_resp

handle
coord_beg
and key_req

handle hello
and key_req

Figure 5.3: Key distribution main state machine

81

Chapter 5 Implementation

When receiving a message from the routing application, the task of this layer is to

prepend the KNXnet/IP header to the received data (cf. Figure 5.4), before it is for-

warded to the security layer. Messages from the security layer must start with the

KNXnet/IP header, which will be cut off before the message is passed to the routing

application. For more information on the KNXnet/IP frame format, see [3].

06h 10h 05h,30h 00h,L+08h 11h 00h data

header
size

protocol
version

service
type id

total
length

message
code

additional
info

service
info

1 byte 1 byte 2 bytes 2 bytes 1 byte 1 byte L bytes

Figure 5.4: Routing indication frame format

Routing application

The routing application sends the messages from the KNXnet/IP stack to the KNX TP 1

stack and vice versa without any further processing. Currently, two interfaces are sup-

ported: one TP interface and one interface to the IP network. The routing application

can easily be extended to support more than 2 interfaces (requires the implementation

of a routing table).

KNX TP1 and TPUART stack

To communicate with KNX TP 1 devices, a KNX TP 1 stack as well as a TP-UART stack

are used. The used stacks have been developed at the Vienna University of Technology

(cf. [64]).

Other software parts

The own certificate and the public key of the CA have to be available to the KNXnet/IP

devices at every time (if the configuration phase is already passed). So it is important

that these values reside in memory even if the device is powered off. To archive this,

the nonvolatile values have to be written into the flash memory of the board. Listing C.7

demonstrates this process.

82

Chapter 5 Implementation

Another topic is the seed for the PRNG (cf. Section 2.8). For this proof-of-concept im-

plementation, the Analog/Digital Converter (ADC) is used to get some sort of random

values. Since the ADC pins are floating, unpredictable values are read. Nevertheless,

since the read values do not vary in a big interval, this random source may not be good

enough for productive use. Last but not least, an attacker could put the input pins to a

defined level (e.g. ground) to force predictable input values of the ADC.

5.1.3 Security token representation

This section describes the format of the variables and values, which have to be seri-

alised. Field names written in italic and without length definition, refer to a previously

defined representation.

Public key

The representation of a public key (cf. Figure 5.5) consists of the length field indicating

the length of the following public key value. The Least Significant Bit (LSB) of the com-

pressed elliptic curve point (elliptic curve point compression – cf. Section 2.4.2) is the

LSB of the length field.

length LSB public key

1 byte variable

Figure 5.5: Public key representation

Signature

A digital signature consists of the tupel (r,s) (cf. Section 2.5.2). Similar to the represen-

tation of the value of the public key, the format of the signature shown in Figure 5.6 has

a leading length byte for each following value field.

83

Chapter 5 Implementation

r length r s length s

1 byte variable 1 byte variable

Figure 5.6: Digital signature representation

Certificate

As already described in Section 4.1, a certificate consists of the public key of the

KNXnet/IP device, its IP address and the digital signature calculated by the CA. Fig-

ure 5.7 shows the format of the certificate representation with the use of the already

defined streams of the public key and the signature. The signature is calculated over

the public key and the IP address of the device.

public key IP
address

signature

4 bytes

Figure 5.7: Certificate representation

Key set

The key set consists of the AES key and the MAC key. In the serialised representation,

the two fixed length fields are simply concatenated (cf. Figure 5.8).

AES key MAC key

16 bytes 32 bytes

Figure 5.8: Key set representation

5.1.4 Message representation

This section describes the format of the messages, which are sent via the network.

Already defined representations of security tokens (cf. Section 5.1.3) are written in

italic.

84

Chapter 5 Implementation

Message envelope

All messages which are sent via the network are encapsulated in the structure shown

in Figure 5.9. The field “service type” indicates the kind of message. Currently, the

following service types shown in Table 5.1.4 are implemented.

Service type description

KEYEXCHG Message for the key distribution algorithm

DATA Data message (KNXnet/IP message)

KEYEXCHG_SYM Symmetric encrypted key distribution message

Table 5.1: Available service types

If the service type KEYEXCHG is set, the whole key distribution message of Figure 5.10

is used as field “message” of Figure 5.9. The service type DATA indicates an encap-

sulated secured KNXnet/IP frame – a KNXnet/IP frame is used as payload in the “user

data” field of Figure 5.11. Messages with KEYEXCHG_SYM service type transport se-

cured frames (Figure 5.11), with a key distribution message (Figure 5.10) as payload.

The integrity of the field “service type” is always protected by the embedded mes-

sage. E.g. when sending a data message, it is included in the MAC calculation.

Ethernet
header

IP
header

TCP/UDP
header

service
type

message

1 byte

Ethernet
trailer

secured by embedded message

Figure 5.9: Message representation

Key distribution message

Figure 5.10 shows the message format for the key distribution algorithm. The “service

type” is the one of the message envelope. It is included in the calculation of the MAC or

the digital signature for integrity protection. The “message type” is an integer presen-

tation of the message type like hello or coord_establ (cf. Table 5.2). The “control

field” indicates the presence of the following fields. If the first bit is set, the nonce “N1”

85

Chapter 5 Implementation

service
type

message
type

control
field

N1 N2 signature cert. key set

1 byte 1 byte
4 or 0
bytes

4 or 0
bytes

Figure 5.10: Key distribution message representation

is present and is 4 bytes long. There is one bit for each of the following fields N2, the

signature, the certificate and the key set.

Table 5.2 lists the implemented key distribution message types, according to the pre-

sented key distribution algorithm (cf. Section 4.2).

Message type delivery1 integr. prot.2 encryption3 contents

hello m sign. no N1, certificate

coord_beg m sign. no N1, certificate

coord_establ m sign. no N1, certificate

coord_avail u sign. no N1, N2, certificate

coord_new m MAC sym no contents

key_req u sign. no N1, N2

key_resp u sign. asym N1, key set

key_establ u sign. asym N1, N2, certificate

blacklisted u sign. no N1, certificate

new_key_avail m MAC sym no contents

new_key_active m MAC sym no contents

new_key_set m MAC sym key set

Table 5.3: Key distribution message types

1Message delivery (m = multicast, u = unicast).
2Data integrity is guaranteed either via MAC or via digital signature.
3Message encryption (sym=symmetric, asym=asymmetric, no=no encryption).

86

Chapter 5 Implementation

Secured message

As shown in Figure 5.11, a secured frame consists of two different parts. The leading

fields are only secured’ using HMAC, while the rest of the message is encrypted using

AES. Again, the “service type” is passed from the message envelope to ensure it’s

integrity. The first field “Length” holds the total length of the message (i.e., sum of “IV”,

“User data”, “MAC”, “Sequence counter”, “Padding”, and “Padding length”). The

field “User data” contains the payload, which can be the KNXnet/IP frame or some key

distribution message. The MAC field, which provides data integrity and freshness, is

calculated via the following equation

MAC = HMAC(SKMAC,Length||IV ||User data||C||Padding||Padding length||IP address)

where C denotes the current sequence counter. Like in the TLS implementation, the

sequence number must not wrap. In the proposed solution, the sequence counter is 32

bit long. The sequence counter is incremented, when the router receives a message

from the TP1 network, where data is transmitted with a rate of 9,6 kbit/s. The minimum

KNX data frame length on the TP1 network is 8 octets long (containing 1 octet of appli-

cation data). Between two messages there has to be an idle time of 50 bit times4. This

means that about 84 messages per second can be received on the TP1 interface. So

after about 589 days the sequence counter will overflow, if the worst case assumptions

hold (which in fact is very unrealistic). With more realistic assumptions like 2 messages

per second, the sequence counter will last for more than 68 years. Note that even in

the presented worst case scenario the value domain of the sequence counter is big

enough, since in case of rekeying (which is performed periodically – cf. Section 4.3.1)

the counter is reset automatically. In the implementation a device has to track one se-

quence counter for each sender. The senders are identified by the IP address. Hence,

a single sequence counter value is only valid once for every address. To “bind” a

message to a specific sender address, the senders address itself must be part of the

calculation of the HMAC tag. Otherwise the same message could be replayed from

another IP address without being noticed.

To guarantee data confidentiality, AES-128 in CBC mode is used (cf. Section 2.4.1).

4These values are the absolute lower bound for TP1 message lengths and are therefore very unrealistic.
Usually, every data frame is acknowledged by the receiver, resulting in another 15 bit idle time on
the bus. Besides, it is very unlikely that two consecutive messages contain only 1 octet of application
data. Nevertheless, this is a very tough lower bound for the worst case estimation.

87

Chapter 5 Implementation

service
type

Length

2 bytes

IV

16 bytes

User
data

variable

MAC

32 bytes

Seq.
counter

4 bytes

Padding

variable

Padding
length

1 byte

included into MAC calculation
(provides data integrity and freshness)

included into MAC calculation + encrypted
(provides data integrity, freshness, and confidentiality)

Figure 5.11: Secured frame format

The main advantages of AES are best performance and patent free implementation.

The encryption process works as follows:

CIPHERT EXT = AES_128_CBC(SKC, IV,User_data||MAC||C||Padding||Padding length)

The AES_128_CBC encryption process has three parameters as input: the shared secret

key SKC, the IV , and the plain text (i.e., User_data||MAC||C||Padding||Padding length).

The usage of the IV within the en- and decryption operation is described in Sec-

tion 2.4.1. To avoid an attack on CBC mode (cf. [65]), a random number has to be

chosen as IV, every time an encryption takes place. Since a block cipher operates

only on fixed sized message blocks, the message may be padded up to the necessary

block length (cf. Section 2.4.1). This is done by appending “padding” and “padding

length” to the message. The code which builds this frame and does all the calculations

and a description of this piece of code can be found in Appendix C, Listing C.3.

5.2 Benchmark

Table 5.4 compares the execution speed of ECC operations in a prime and a binary

field. Generation refers to the generation of the private/public key pair, each of 160

bits. Signature is the time for calculating a signature (inclusive the needed hash opera-

tion) of a 14 characters long message. Verification is the time needed for the successful

verification of the previously calculated signature. The column ECIES encryption de-

notes the encryption using the ECIES encryption scheme of an about 50 characters

long message. This time includes the generation of the one-time-key pair. The last

column shows the calculation time for the decryption operation.

88

Chapter 5 Implementation

Operation prime field binary field

Generation 470 ms 248 ms

Signature 250 ms 136 ms

Verification 340 ms 240 ms

ECIES encryption 764 ms 384 ms

ECIES decryption 285 ms 135 ms

Table 5.5: Benchmark results

The message lengths are mentioned for completeness’ sake. The treatment of longer

or smaller messages did not influence the values significantly.

89

Chapter 6

Conclusion and Outlook

Security can no longer be neglected in today’s home and building automation sys-

tems. This is especially true for HBA systems where IP is used as medium for back-

bone networks. This thesis starts with a brief introduction to IP backbones and their

requirements regarding a secure communication. The focus is on the popular standard

KNX and its extension KNXnet/IP since neither KNX nor KNXnet/IP support reasonable

security mechanisms. In Chapter 2, a basic introduction to the field of cryptography

is given. The described algorithms are categorised by the security objectives and the

underlying mathematical problems. In the following Chapter 3, already available and

well-established security mechanisms are analysed. In principle, all of the examined

protocols can be used to secure IP traffic. However, it turned out that none of these pro-

tocols fulfil the identified requirements. IPsec is not usable because of too exhaustive

resource consumption and the limited support of multicast with more than one sender.

TLS and SSH would offer good performance, but completely lack multicast support. In

principle, the analysed VPN implementation OpenVPN can secure multicast, but only

with the use of a centralised server. Besides other disadvantages of this network archi-

tecture, this server cannot be implemented on embedded devices.

Therefore, Chapter 4 presents a protocol to secure the communication on the IP back-

bone of a KNX network. Within this protocol, the communicating entities can authenti-

cate themselves. After the key distribution, which is secured with asymmetric crypto-

graphic algorithms, the communication parties can use the common key set to secure

the payload during operation.

A main advantage of the protocol is its flexibility. Due to the used protocol architecture,

it is applicable to available HBA standards without the need of an adaption of existing

90

Chapter 6 Conclusion and Outlook

HBA protocols. [8] showed, that the proposed protocol is also usable in combination

with other HBA standards like LonWorks and BACnet. While this generic concept was

tailored with HBA networks (especially KNX) in mind, it is also applicable to other ap-

plication domains (e.g., industrial automation).

Besides this theoretical part, Chapter 5 of this thesis presents a proof-of-concept im-

plementation, which shows the feasibility of the protocol. The prototype was equipped

with an ARM7 embedded CPU, running at 18 MHz. The external libraries MIRACL, uIP

and the TP1 stack are used for common tasks. Within this thesis, the uIP stack has been

modified in order to support IP multicast. This patch has been contributed on the uIP

mailing list. The running proof-of-concept implementation offers a good performance,

suitable for real world applications.

In the actual version of the protocol, every participant has to fetch the key set from a

single coordinator. In bigger networks, especially rekeying scenarios could become

problematic, since the coordinator has to handle several requests at the same time.

A possible extension could use better key distribution strategies for large networks,

like a tree based distribution algorithm. Another possible enhancement concerning

rekeying could be the use of an intermediate common key. Instead of the actual key

set, the coordinator sends out an intermediate common key. Like in TLS1, this key will

be used by the participants to calculate the actual key set. Every time a rekeying is

necessary, the coordinator only has to initiate a recalculation of a new key set.

The proof-of-concept implementation presented in Chapter 5 uses a fixed set of do-

main parameters, recommend by the NIST (cf. Section 2.4.2). While the used parame-

ters are known to be secure up to know, it may be possible that vulnerabilities against

this class of parameters will be found in future. To guard against this problem, elliptic

curves could be selected and verified at run time (cf. [23]).

Another possible enhancement concerns the seed of the PRNG. As mentioned in Sec-

tion 5.1.2, the source for the seed may not be good enough for productive use. Instead

other external events like user interactions or network events could be used to increase

the quality of the seed.

1In TLS, both parties agree on a common pre-master secret and calculate the master secret out of the
pre-master secret.

91

Appendix A

Acronyms

ADC Analog/Digital Converter

AES Advanced Encryption Standard

AH Authentication Header

ARP Adress Resolution Protocol

ASCII American Standard Code for Information Interchange

CA Certification Authority

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

CFB Cipher Feedback

CMAC Cipher-based MAC

CTR Counter

DES Data Encryption Standard

DH Diffie-Hellman (key exchange algorithm)

DLP Discrete Logarithm Problem

DoS Denial-of-Service

DSA Digital Signature Algorithm

ECB Electronic Codeblock

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

EIA Electronic Industries Alliance

EIB Europäischer Installationsbus

92

Appendix A Acronyms

ESP Encapsulated Security Payload

ETS Engineering Tool Software

GCM Galois/Counter Mode

GDH Group Diffie-Hellman

HMAC Keyed-Hash Message Authentication Code

HBA Home and Building Automation

HTTP Hypertext Transfer Protocol

HVAC heating, ventilation and air conditioning

IETF Internet Engineering Task Force

IFP Integer Factorisation Problem

IKE Internet Key Exchange

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IPsec Internet Protocol Security

ISO International Organisation for Standardisation

IT Information Technology

IV Initialisation Vector

KDF Key Derivation Function

LAN Local Area Network

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

MAC Message Authentication Code

MII Media Independent Interface

MIRACL Multiprecision Integer and Rational Arithmetic C Library

NAT Network Address Translation

NIST National Institute of Standards and Technology

OFB Output Feedback

OSI Open Systems Interconnection reference model

PDF Portable Document Format

PIN Personal Identification Number

PL Power Line

PRNG Pseudo Random Number Generator

RF Radio frequency

RFC Request for Comments

93

Appendix A Acronyms

RSA Cryptographic Algorithm by Ron Rivest, Adi Shamir and Leonard Adleman

RTOS Real Time Operating System

SA Security Association

SECG Standards for Efficient Cryptography Group

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SSH Secure Shell

SSL Secure Sockets Layer

TAN Transaction authentication number

TCP Transmission Control Protocol

TLS Secure Sockets Layer

TP Twisted Pair

TTL Time To Live

TTP Trusted Third Party

UDP User Datagram Protocol

USB Universal Serial Bus

VPN Virtual Private Network

XOR Exclusive OR ⊕ (logical operation)

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

94

Appendix B

Bibliography

[1] W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus, “Security in Net-

worked Building Automation Systems,” in Proc. 6th IEEE International Workshop

on Factory Communication Systems (WFCS ’06), Jun. 2006, pp. 283–292.

[2] “KNX specification,” Version 1.1, 2004.

[3] “KNXnet/IP system specification,” Version 1.3, 2008.

[4] “KNX Journal,” Jan. 2008, pages 2, 11–16.

[5] T. Flanitzer, “Security mechanisms for low-end embedded systems,” Master’s

thesis, Vienna University of Technology, Institute of Computer Aided Automation,

2008.

[6] W. Granzer, G. Neugschwandtner, and W. Kastner, “EIBsec: A Security Extension

to KNX/EIB,” in Proc. Konnex Scientific Conference, 11 2006.

[7] W. Granzer, “Security in Networked Building Automation Systems,” Master’s

thesis, Vienna University of Technology, Institute of Computer Aided Automation,

Automation Systems Group, Nov. 2005. [Online]. Available: https://www.auto.

tuwien.ac.at/thesis/pdf/THESIS0001.pdf

[8] W. Granzer, D. Lechner, F. Praus, and W. Kastner, “Securing IP Backbones in Build-

ing Automation Networks,” in Proc. 7th IEEE International Conference on Industrial

Informatics (INDIN ’09), Jul. 2009.

[9] “Control network protocol specification,” ANSI/EIA/CEA 709.1, 1999.

[10] “BACnet – a data communication protocol for building automation and control net-

works,” ANSI/ASHRAE 135, 2008.

95

https://www.auto.tuwien.ac.at/thesis/pdf/THESIS0001.pdf
https://www.auto.tuwien.ac.at/thesis/pdf/THESIS0001.pdf

Appendix B Bibliography

[11] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C,

2nd ed. New York: Wiley, 1996.

[12] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS: security

protocols for sensor networks,” in Proc. 7th Annual Intl. Conf. on Mobile Computing

and Networking (MobiCom), 2001, pp. 189–199.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp-

tography, 5th ed. CRC Press, 2001.

[14] National Institute of Standards and Technology, “Block Cipher Modes,” 03 2009.

[Online]. Available: http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

[15] “Advanced encryption standard (AES),” FIPS PUB 197, National Institute of Stan-

dards and Technology, 2001.

[16] B. Schneier, Schneier on Security. Wiley, 9 2008.

[17] S. R. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling algo-

rithm of rc4,” in SAC ’01: Revised Papers from the 8th Annual International Work-

shop on Selected Areas in Cryptography. London, UK: Springer-Verlag, 2001, pp.

1–24.

[18] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions

on Information Theory, vol. IT-22, no. 6, pp. 644–654, 1976. [Online]. Available:

citeseer.ist.psu.edu/diffie76new.html

[19] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–

126, 1978.

[20] D. Boneh, T. R. Cryptosystem, I. R. Rivest, A. Shamir, L. Adleman, and W. Rst,

“Twenty years of attacks on the rsa cryptosystem,” Notices of the AMS, vol. 46,

pp. 203–213, 1999.

[21] D. Boneh, A. Joux, and P. Q. Nguyen, “Why textbook elgamal and rsa encryption

are insecure,” in ASIACRYPT ’00: Proceedings of the 6th International Conference

on the Theory and Application of Cryptology and Information Security. London,

UK: Springer-Verlag, 2000, pp. 30–43.

[22] T. El Gamal, “A public key cryptosystem and a signature scheme based on dis-

crete logarithms,” in Proceedings of CRYPTO 84 on Advances in cryptology. New

York, NY, USA: Springer-Verlag New York, Inc., 1985, pp. 10–18.

96

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
citeseer.ist.psu.edu/diffie76new.html

Appendix B Bibliography

[23] D. R. Hankerson, S. A. Vanstone, and A. J. Menezes, Guide to Elliptic Curve Cryp-

tography. Springer, 2004.

[24] S. Bartolini, I. Branovic, R. Giorgi, and E. Martinelli, “A performance evaluation

of arm isa extension for elliptic curve cryptography over binary finite fields,” in

IEEE 16th Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD-04), Foz do Iguacu, Brasil, Oct. 2004, pp. 238–245.

[25] M. Aydos, T. Yantk, and Ç. K. Koç, “A high-speed ecc-based wireless authenti-

cation on an arm microprocessor,” in ACSAC ’00: Proceedings of the 16th Annual

Computer Security Applications Conference. Washington, DC, USA: IEEE Com-

puter Society, 2000, p. 401.

[26] Standards for Efficient Cryptography Group, “SEC 2: Recommended Elliptic

Curve Domain Parameters,” SEC 2, 09 2000, version 1.0. [Online]. Available:

http://www.secg.org/download/aid-385/sec2_final.pdf

[27] National Institute of Standards and Technology, “Recommended elliptic

curves for federal government use,” 07 1999. [Online]. Available: http:

//csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

[28] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby,

“Collisions of sha-0 and reduced sha-1,” in EUROCRYPT, ser. LNCS, R. Cramer,

Ed., vol. 3494. Springer, 2005, pp. 36–57. [Online]. Available: http:

//dx.doi.org/10.1007/11426639_3

[29] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in CRYPTO, ser.

LNCS, V. Shoup, Ed., vol. 3621. Springer, 2005, pp. 17–36. [Online]. Available:

http://dx.doi.org/10.1007/11535218_2

[30] “Secure hash standard,” FIPS PUB 180-2, National Institute of Standards and Tech-

nology, Aug. 2002.

[31] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message

Authentication,” RFC 2104 (Informational), Feb. 1997. [Online]. Available:

http://www.ietf.org/rfc/rfc2104.txt

[32] “Digital signature standard,” FIPS PUB 186, National Institute of Standards and

Technology, May 1994.

[33] “Digital signature standard,” FIPS PUB 186-3, National Institute of Standards and

Technology, 06 2009.

97

http://www.secg.org/download/aid-385/sec2_final.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://dx.doi.org/10.1007/11426639_3
http://dx.doi.org/10.1007/11426639_3
http://dx.doi.org/10.1007/11535218_2
http://www.ietf.org/rfc/rfc2104.txt

Appendix B Bibliography

[34] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Signature

Algorithm (ECDSA),” International Journal of Information Security, vol. 1, no. 1, 08

2001.

[35] Standards for Efficient Cryptography Group, “SEC 1: Elliptic Curve

Cryptography,” SEC 1, 09 2000, version 1.0. [Online]. Available:

http://www.secg.org/download/aid-385/sec1_final.pdf

[36] L. Dorrendorf, Z. Gutterman, and B. Pinkas, “Cryptanalysis of the windows ran-

dom number generator,” in CCS ’07: Proceedings of the 14th ACM conference on

Computer and communications security. New York, NY, USA: ACM, 2007, pp.

476–485.

[37] L. Bello. (2008, 05) Dsa-1571-1 openssl – predictable random number generator.

[Online]. Available: http://www.debian.org/security/2008/dsa-1571.en.html

[38] National Institute of Standards and Technology, “Random Number Generation,”

03 2009. [Online]. Available: http://csrc.nist.gov/groups/ST/toolkit/random_

number.html

[39] D. E. and 3rd, J. Schiller, and S. Crocker, “Randomness Requirements for

Security,” RFC 4086 (Best Current Practice), Jun. 2005. [Online]. Available:

http://www.ietf.org/rfc/rfc4086.txt

[40] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos Network

Authentication Service (V5),” RFC 4120 (Proposed Standard), Jul. 2005, updated

by RFCs 4537, 5021. [Online]. Available: http://www.ietf.org/rfc/rfc4120.txt

[41] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key distribution extended

to group communication,” in CCS ’96: Proceedings of the 3rd ACM conference on

Computer and communications security. New York, NY, USA: ACM, 1996, pp.

31–37.

[42] I. Chatzigiannakis, E. Konstantinou, V. Liagkou, and P. Spirakis, “Design, analysis

and performance evaluation of group key establishment in wireless sensor net-

works,” Electron. Notes Theor. Comput. Sci., vol. 171, no. 1, pp. 17–31, 2007.

[43] Internet Engineering Task Force, “IETF Home Page,” 01 2009. [Online]. Available:

http://www.ietf.org

[44] K. G. Paterson and A. K. Yau, “Cryptography in theory and practice: The case

of encryption in ipsec,” Cryptology ePrint Archive, Report 2005/416, 2005, http:

//eprint.iacr.org/.

98

http://www.secg.org/download/aid-385/sec1_final.pdf
http://www.debian.org/security/2008/dsa-1571.en.html
http://csrc.nist.gov/groups/ST/toolkit/random_number.html
http://csrc.nist.gov/groups/ST/toolkit/random_number.html
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org
http://eprint.iacr.org/
http://eprint.iacr.org/

Appendix B Bibliography

[45] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol,” RFC 4306 (Proposed

Standard), Dec. 2005, updated by RFC 5282. [Online]. Available: http:

//www.ietf.org/rfc/rfc4306.txt

[46] T. Hardjono and B. Weis, “The Multicast Group Security Architecture,” RFC 3740

(Informational), Mar. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3740.txt

[47] N. Ferguson and B. Schneier, “A cryptographic evaluation of ipsec,” Counterpane

Internet Security, Inc, 12 2003.

[48] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.2,” RFC 5246 (Proposed Standard), Aug. 2008. [Online]. Available:

http://www.ietf.org/rfc/rfc5246.txt

[49] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C. Shantz, “Sizzle:

A standards-based end-to-end security architecture for the embedded internet,”

in Proc. of the 3rd IEEE International Conference on Pervasive Computing and Com-

munications. Washington, DC, USA: IEEE Computer Society, 2005, pp. 247–256.

[50] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller, “Elliptic Curve

Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS),” RFC

4492 (Informational), May 2006, updated by RFC 5246. [Online]. Available:

http://www.ietf.org/rfc/rfc4492.txt

[51] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis, “A Framework for IP

Based Virtual Private Networks,” RFC 2764 (Informational), Feb. 2000. [Online].

Available: http://www.ietf.org/rfc/rfc2764.txt

[52] (2008, Nov.) OpenVPN. [Online]. Available: http://openvpn.net

[53] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol Architecture,” RFC

4251 (Proposed Standard), Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/

rfc4251.txt

[54] ——, “The Secure Shell (SSH) Transport Layer Protocol,” RFC 4253 (Proposed

Standard), Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4253.txt

[55] ——, “The Secure Shell (SSH) Authentication Protocol,” RFC 4252 (Proposed

Standard), Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4252.txt

[56] ——, “The Secure Shell (SSH) Connection Protocol,” RFC 4254 (Proposed

Standard), Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4254.txt

99

http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc3740.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc2764.txt
http://openvpn.net
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4254.txt

Appendix B Bibliography

[57] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and Paradigms.

Prentice Hall, 2002.

[58] T. Aura, P. Nikander, and J. Leiwo, “Dos-resistant authentication with client puz-

zles,” in Revised Papers from the 8th International Workshop on Security Protocols.

London, UK: Springer-Verlag, 2001, pp. 170–177.

[59] Siemens, “Technical Data EIB-TP-UART-IC,” 2001, version D.

[60] G. Combs. (2008, Nov.) Wireshark website. [Online]. Available: http://www.

wireshark.org

[61] H. Weillechner and D. Lechner. (2009, 03) Wireshark knxnet/ip plugin. [On-

line]. Available: https://www.auto.tuwien.ac.at/a-lab/wireshark-plugin-for-knxnet/

ip.html

[62] A. Dunkels. (2008, Oct.) uip website. [Online]. Available: http://www.sics.se/

~adam/uip

[63] (2008, Oct.) Shamus software ltd. [Online]. Available: http://www.shamus.ie

[64] W. Granzer and W. Kastner, “BACnet over KNX,” in Proc. Konnex Scientific Confer-

ence, 11 2007.

[65] B. Moeller. (2008, Nov.) Security of CBC Ciphersuites in SSL/TLS: Problems and

Countermeasures. [Online]. Available: http://www.openssl.org/~bodo/tls-cbc.txt

100

http://www.wireshark.org
http://www.wireshark.org
https://www.auto.tuwien.ac.at/a-lab/wireshark-plugin-for-knxnet/ip.html
https://www.auto.tuwien.ac.at/a-lab/wireshark-plugin-for-knxnet/ip.html
http://www.sics.se/~adam/uip
http://www.sics.se/~adam/uip
http://www.shamus.ie
http://www.openssl.org/~bodo/tls-cbc.txt

Appendix C

Code snippets

C.1 HMAC

Listing C.1 shows the implementation of the HMAC function to demonstrate the use of

MIRACL hashing functions.

Listing C.1: HMAC code

void hmac(char* key, char* text, int textlen, int maclen, char* mac)

{

int i;

/// initialise the sha-instances

5 sha256 inner_sha, outer_sha;

shs256_init(&inner_sha);

shs256_init(&outer_sha);

/// calculate the inner hash-value

for (i=0;i<maclen;i++)

10 {

shs256_process(&inner_sha,(key[i]^ipad));

}

for (i=0;i<textlen;i++)

{

15 shs256_process(&inner_sha,text[i]);

}

shs256_hash(&inner_sha,mac);

/// calculate the outer hash-value

for (i=0;i<maclen;i++)

20 {

shs256_process(&outer_sha,(key[i]^opad));

101

Appendix C Code snippets

}

for (i=0;i<maclen;i++)

{

25 shs256_process(&outer_sha,mac[i]);

}

shs256_hash(&outer_sha,mac);

return;

}

C.2 DH

Listing C.2 is another example for the integration of MIRACL functions. In contrast to

Listing C.1, more advanced ECC functions are engaged. Since all variables are static

(cf. Section 5.1.2), the space for these variables have to be known at compile time. In

Line 4, a pointer to the elliptic curve point struct is defined. Line 5 reserves the needed

memory for exactly 1 elliptic curve point. It’s real size (i.e. how many “characters” are

reserved) depends on the initialisation of the MIRACL system, where number sizes and

the internal representation format are set. Line 6 initialises the memory with zeros to

be usable by the MIRACL system.

Since all numbers are sent using point compression (cf. Section 5.1.3), the public key

has to be decompressed first. Afterwards this point is multiplied with the given private

key to derive the shared secret key.

Listing C.2: DH code

BOOL _dh2(big priv_key, big pub_key, int pub_key_lsb, big z)

{

BOOL valid;

epoint *e_pub_rcv;

5 char mem1[MR_ECP_RESERVE(1)];

memset(mem1,0,MR_ECP_RESERVE(1));

// extract public key

e_pub_rcv=epoint_init_mem(_mip,mem1,0);

valid=epoint2_set(_mip,pub_key,pub_key,pub_key_lsb,e_pub_rcv); /*

decompress public key */

10 if(!valid)

{

printf("DH: INVALID PUBLIC KEY\n\r");

102

Appendix C Code snippets

return FALSE;

}

15 // multiplicate the point with the private key

ecurve2_mult(_mip,priv_key,e_pub_rcv,e_pub_rcv);

if (point_at_infinity(e_pub_rcv))

{

printf("point at infitiy!\n\r");

20 return FALSE;

}

epoint2_get(_mip,e_pub_rcv,z,z);

return TRUE;

}

C.3 Frame building

Listing C.3 is used to demonstrate the symmetric encryption of a frame. The function

builds a frame as shown in Figure 5.11. As described, the whole message will be

secured by a MAC field and some fields are additionally encrypted.

Line 26 sets the IV for the encryption operation. After the pieces of the frame are

copied into a buffer and the HMAC tag is calculated, the encryption takes place. As

already described in Section 5.1.4, the block encryption has to be performed several

times. Line 50 is the loop which executes the MIRACL encryption operation in Line 52

multiple times to encrypt the desired fields.

Listing C.3: Frame building and symmetric encryption

int comm_build_frame(char* buffer, int framelen, uint32_t counter)

{

/// calculate padding length

char padlen = COMM_BLOCKLEN-((framelen+COMM_MACLEN+COMM_PADLENLEN) %

COMM_BLOCKLEN);

5 if(padlen == COMM_BLOCKLEN) padlen = 0;

/// check the size of the resulting frame

if(COMM_LENLEN+COMM_IVLEN+framelen+COMM_MACLEN+padlen+COMM_PADLENLEN >=

COMM_FBLEN)

return EC_BUFTOOSMALL;

/// move buffer COMM_IVLEN+COMM_LENLEN bytes backwards

10 int pos;

for (pos=framelen-1; pos>=0; pos--)

103

Appendix C Code snippets

{

buffer[COMM_LENLEN+COMM_IVLEN+pos] = buffer[pos];

}

15 framelen+=COMM_LENLEN+COMM_IVLEN;

/// append padding and padding length to frame

int padfil;

for (padfil=padlen+COMM_PADLENLEN-1; padfil>=0; padfil--)

{

20 // write something into buffer (padding) + the padlength at the end (

in every case)

buffer[framelen+COMM_MACLEN+padfil]=padlen;

}

int macpos = framelen;

framelen+=COMM_MACLEN+padlen+COMM_PADLENLEN;

25 /// copy IV into buffer

aes_getreg(&_a_encr,buffer+COMM_LENLEN);

/// set length

framelen-=(COMM_LENLEN);

buffer[1] = (char) (framelen & 0xFF);

30 buffer[0] = (char) ((framelen>>8) & 0xFF);

framelen+=(COMM_LENLEN);

/// calculate and set MAC

// MAC = HMAC(counter||length||iv||data||padding||padlen)

char mac[COMM_MACLEN];

35 comm_framebuffer text2mac; // buffer which will be used for mac

calculation

// set counter

text2mac[3] = (char) (counter & 0xFF);

text2mac[2] = (char) ((counter>>8) & 0xFF);

text2mac[1] = (char) ((counter>>16) & 0xFF);

40 text2mac[0] = (char) ((counter>>24) & 0xFF);

// copy length||iv||data into mac-buffer

memcpy(text2mac+COMM_COUNTERLEN,buffer,macpos);

// copy padding||padlen into mac-buffer

memcpy(text2mac+COMM_COUNTERLEN+macpos,buffer+macpos+COMM_MACLEN,padlen+

COMM_PADLENLEN);

45 hmac(_mac_key, text2mac, COMM_COUNTERLEN+framelen-COMM_MACLEN,

COMM_MACLEN, mac);

memcpy(buffer+macpos,mac,COMM_MACLEN); //insert the calculated MAC

/// encrypt now

int encr_len = framelen-COMM_IVLEN-COMM_LENLEN;

int encr_num;

104

Appendix C Code snippets

50 for(encr_num=0; encr_num < encr_len/COMM_BLOCKLEN; encr_num++)

{

aes_encrypt(&_a_encr,buffer+COMM_LENLEN+COMM_IVLEN+(COMM_BLOCKLEN*

encr_num));

}

return framelen;

55 }

C.4 uIP patches

Listing C.4: uIP multicast patch

--- uip_orig.c 2009-03-25 11:27:56.000000000 +0100

+++ uip.c 2009-03-25 11:24:52.000000000 +0100

@@ -919,7 +919,12 @@

/* Check if the packet is destined for our IP address. */

5 #if !UIP_CONF_IPV6

+//If multicast is enabled, check if this is a multicast packet

+#if UIP_CONF_MULTICAST

+ if(!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) && (BUF->

destipaddr[0] < HTONS(0xe000) || BUF->destipaddr[0] > HTONS(0xefff)))

{

+#else

10 if(!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr)) {

+#endif /*UIP_CONF_MULTICAST*/

UIP_STAT(++uip_stat.ip.drop);

goto drop;

}

15 @@ -1116,7 +1121,14 @@

UDPBUF->srcport == uip_udp_conn->rport) &&

(uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_zeroes_addr) ||

uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_ones_addr) ||

+//If multicast is compiled, and destip = rip and that ip is a multicast

ip

20 +#if UIP_CONF_MULTICAST

+ (uip_ipaddr_cmp(BUF->destipaddr, uip_udp_conn->ripaddr) && !(BUF->

destipaddr[0] < HTONS(0xe000) || BUF->destipaddr[0] > HTONS(0xefff)))

||

+#endif /*UIP_CONF_MULTICAST*/

uip_ipaddr_cmp(BUF->srcipaddr, uip_udp_conn->ripaddr))) {

105

Appendix C Code snippets

+#if UIP_CONF_MULTICAST

25 + uip_ipaddr_copy(uip_udp_conn->srcaddr,BUF->srcipaddr);

+#endif /*UIP_CONF_MULTICAST*/

goto udp_found;

}

}

Listing C.5: uIP multicast patch (header)

--- uip_orig.h 2009-03-25 11:14:32.000000000 +0100

+++ uip.h 2009-03-25 11:19:38.000000000 +0100

@@ -1213,6 +1213,10 @@

u16_t rport; /**< The remote port number in network byte order.

*/

5 u8_t ttl; /**< Default time-to-live. */

+#if UIP_CONF_MULTICAST

+ uip_ipaddr_t srcaddr; /**< For multicast packages, this is the

sourceaddress (ripaddr contains the multicast address). */

+#endif /*UIP_CONF_MULTICAST*/

+

10 /** The application state. */

uip_udp_appstate_t appstate;

};

Listing C.6: uIP multicast patch (ARP)

--- uip_arp_orig.c 2008-01-23 12:28:50.000000000 +0100

+++ uip_arp.c 2008-11-17 17:54:02.000000000 +0100

@@ -102,6 +102,9 @@

u8_t time;

5 };

+static const struct uip_eth_addr multicast_upper_ethaddr =

+ {{0x01,0x00,0x5e,0x00,0x00,0x00}};

+

static const struct uip_eth_addr broadcast_ethaddr =

10 {{0xff,0xff,0xff,0xff,0xff,0xff}};

static const u16_t broadcast_ipaddr[2] = {0xffff,0xffff};

@@ -365,6 +368,12 @@

/* First check if destination is a local broadcast. */

if(uip_ipaddr_cmp(IPBUF->destipaddr, broadcast_ipaddr)) {

15 memcpy(IPBUF->ethhdr.dest.addr, broadcast_ethaddr.addr, 6);

+ } else if(IPBUF->destipaddr[0] >= HTONS(0xe000) || IPBUF->destipaddr[0]

<= HTONS(0xefff)) {

+ /* is a multicast */

106

Appendix C Code snippets

+ // build ethernet MAC address

+ memcpy(IPBUF->ethhdr.dest.addr, multicast_upper_ethaddr.addr, 3);

20 + memcpy((IPBUF->ethhdr.dest.addr)+4, (IPBUF->destipaddr)+1, 2);

+ IPBUF->ethhdr.dest.addr[3]=(IPBUF->destipaddr[0]) & HTONS(0x007F);

} else {

/* Check if the destination address is on the local network. */

if(!uip_ipaddr_maskcmp(IPBUF->destipaddr, uip_hostaddr, uip_netmask))

{

25 @@ -376,7 +385,10 @@

/* Else, we use the destination IP address. */

uip_ipaddr_copy(ipaddr, IPBUF->destipaddr);

}

+ /* in case of multicast -> bypass arp-lookup */

30 + if(IPBUF->destipaddr[0] < HTONS(0xe000) || IPBUF->destipaddr[0] >

HTONS(0xefff)) {

+ /* is a multicast -> bypass arp-lookup */

for(i = 0; i < UIP_ARPTAB_SIZE; ++i) {

tabptr = &arp_table[i];

if(uip_ipaddr_cmp(ipaddr, tabptr->ipaddr)) {

35 @@ -411,8 +423,9 @@

/* Build an ethernet header. */

memcpy(IPBUF->ethhdr.dest.addr, tabptr->ethaddr.addr, 6);

}

+ }

40 memcpy(IPBUF->ethhdr.src.addr, uip_ethaddr.addr, 6);

IPBUF->ethhdr.type = HTONS(UIP_ETHTYPE_IP);

uip_len += sizeof(struct uip_eth_hdr);

C.5 Other examples

Listing C.7 demonstrates the write operation into the nonvolatile flash memory. During

the operation, the interrupt for the periodical timer must be deactivated. This example

writes some dummy data into the flash area. After the write progress was successful,

the written data can be access by using the pointer inFlash.

Listing C.7: Flash memory write example

// disable TC, ...

clock_disable();

// initialise flash

FLASHD_Initialize(BOARD_MCK);

107

Appendix C Code snippets

5 // unlock page

if(FLASHD_Unlock(AT91C_IFLASH, AT91C_IFLASH + AT91C_IFLASH_SIZE, 0, 0)!=0)

{

printf("Error while trying to unlock page\r\n");

}

// get pointer to flash location

10 void* inFlash;

inFlash = (void*) AT91C_IFLASH + AT91C_IFLASH_SIZE -

AT91C_IFLASH_PAGE_SIZE;

// reserve temporary buffer and fill with numbers

unsigned int pageBuffer[AT91C_IFLASH_PAGE_SIZE / (sizeof(unsigned int))];

int i;

15 for (i=0; i < (AT91C_IFLASH_PAGE_SIZE / sizeof(unsigned int)); i++) {

pageBuffer[i] = 1 << (i % 32);

}

// write into flash

if(FLASHD_Write((unsigned int)inFlash, pageBuffer, AT91C_IFLASH_PAGE_SIZE)

!= 0) {

20 printf("Error when trying to write page\n\r");

}

// enable interrupts

clock_enable();

108

	Abstract
	Zusammenfassung
	Danksagung
	1 Introduction
	1.1 Motivation
	1.2 KNX and KNXnet/IP
	1.3 Requirements
	1.4 Contribution

	2 Cryptography
	2.1 History
	2.2 Terminology
	2.3 Entity Authentication
	2.4 Confidentiality
	2.4.1 Symmetric encryption
	2.4.2 Asymmetric encryption

	2.5 Integrity
	2.5.1 Hash functions
	2.5.2 Digital signature

	2.6 Freshness
	2.7 Elliptic Curve Integrated Encryption Scheme (ECIES)
	2.8 Randomness
	2.9 Key management
	2.9.1 Pre-shared
	2.9.2 Symmetric
	2.9.3 Asymmetric

	2.10 Securing multicast

	3 Security for IP backbones in HBA
	3.1 Internet Protocol Security (IPsec)
	3.1.1 Security Association (SA)
	3.1.2 Authentication Header (AH)
	3.1.3 Encapsulated Security Payload (ESP)
	3.1.4 Modes of operation
	3.1.5 Internet Key Exchange (IKE)
	3.1.6 IPsec and multicast
	3.1.7 Conclusion

	3.2 SSL/TLS
	3.2.1 Cipher suites
	3.2.2 TLS handshake
	3.2.3 Conclusion

	3.3 VPN
	3.4 Secure Shell (SSH)
	3.5 Summary

	4 Solution
	4.1 Configuration using ETS
	4.2 Key set distribution
	4.2.1 Unicast
	4.2.2 Multicast
	4.2.3 Blacklist
	4.2.4 Certificate revocation

	4.3 Secure communication
	4.3.1 Key set revocation

	4.4 Security analysis
	4.4.1 Replay attacks

	5 Implementation
	5.1 Prototype implementation
	5.1.1 Test configuration
	5.1.2 Router architecture
	5.1.3 Security token representation
	5.1.4 Message representation

	5.2 Benchmark

	6 Conclusion and Outlook
	A Acronyms
	B Bibliography
	C Code snippets
	C.1 HMAC
	C.2 DH
	C.3 Frame building
	C.4 uIP patches
	C.5 Other examples

