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Abstract

The WOOP Preprocessor
An Implementation of Discrete Loops in Ada95.

by Bernd Burgstaller

WOOP, as an acronym for Worst-Case Performance of Object-Oriented Programs,
is a research project at the Vienna University of Technology that is aimed at the
determination of the timing behavior of software for real-time systems!. One of
WOOP’s early achievements was the introduction of the so-called discrete loop
statement [Bli94], a loop construct which narrows the gap between general loops
(e.g. repeat, while) and for-loops. Like for- but contrary to while-loops, discrete
loops are known to complete in any case, but they provide much greater semantic
power. Furthermore it is possible to determine the number of iterations of a
discrete loop, which can be an extremely difficult task with general loops.

In order to utilize this new and up to this point solely theoretical concept for
a real-world programming environment, it was necessary to provide a translation
mechanism that would enable programmers to use discrete loops in their code.
Although in principle there was no cause to favor any particular programming
language, it was the reliability and maintainability of Ada95 that finally lead to
the decision to build a preprocessor capable of translating discrete loop augmented
Ada95 code into standard Ada95 in a way that would preserve the semantics of
discrete loops.

The goal of this thesis is to present the implementation of this preprocessor.
It is in fact built on top of the source code of GNAT, the Gnu Ada Translator?,
because its analytical tasks blend well with the analysis that GNAT performs
on its input. Calculations aimed at the estimation of upper bounds for discrete
loops are carried out with help of Mathematica®, a commercial computer algebra
package. Parts of this preprocessor are therefore written in Mathematica’s internal

programming language. An Ada to C interface has also been implemented in order

Project WOOP is supported by the Austrian Science Foundation (FWF) under grant
P10188-MAT.

2GNAT is an Ada95 compiler that has been developed at New York University and its source
code is distributed under terms of the GNU General Public License ([GPLI1]).

3Mathematica is a trademark of Wolfram Research



to call Mathematica’s kernel from within this preprocessor. Calculated upper
bounds are inserted into the generated code and represent viable information for

determining a program’s worst-case timing behavior.



Note To The Reader On Reading Mathematical Equations

Despite the well-known fact that every mathematical formula cuts down the read-
ership by half, I had to resort to their use at some places in this book. If you
are a reader who finds any formula intimidating (and most people do), then I
recommend a procedure that I normally adopt myself when such an offending line
presents itself. The procedure is, more or less, to ignore that line completely and
to skip over to the next actual line of text! Well, not exactly this; one should
spare the poor formula a perusing, rather than a comprehending glance, and then
press onwards. After a little, if armed with new confidence, one may return to
that neglected formula and try to pick out some salient features. The text itself
may be helpful in letting one know what is important and what can safely be ig-
nored about it. If not, then do not be afraid to leave an offending formula behind
altogether[PE].
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Chapter 1

INTRODUCTION

The most significant difference between real-time systems and other computer
systems is that the system behavior must not only be correct but the result of a
computation must be available within a predefined deadline. It has turned out
that a major progress in order to guarantee the timeliness of real-time systems can
only be achieved if the scheduling problem is solved accordingly. Most schedul-
ing algorithms assume that the runtime of a task is known a priori. Thus the
worst-case performance of a task plays a crucial role. Determining the number
of iterations of general loops is one of the most difficult tasks when estimating
the timing behavior of a program. Most researchers try to ease the task of es-
timating the number of general loop iterations by forbidding general loops, i.e.,
by forcing the user to supply constant upper bounds for the number of iterations.
Another approach is to let the user specify a time bound within which the loop
has to complete. Project WOOP follows a different approach: The gap between
general loops and for-loops is narrowed by defining discrete loops. These loops
are known to complete and are easy to analyze (especially their numbers of iter-
ations) and capture a large part of applications which otherwise would have been
implemented by the use of general loops. These include Heapsort, a bottom-up
version of Mergesort and Euclid’s Algorithm to compute the greatest common di-
visor of two positive numbers. Furthermore all divide and conquer algorithms can
be handled by discrete loops, e.g. binary search and tree traversing algorithms

such as weight-balanced trees (BB[a]-trees) or AVL-trees.

1.1 Discrete Loops

The following is a brief summary on Discrete Loops that provides the necessary
insight to understand their implementation. The exact theoretical treatment can
be found in [Bli94].

The syntaz of discrete loops is described using the notation in [Ada95](1.1.4).

In contrast to for-loops, discrete loops allow for a more complex dependency
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between two successive values of the loop-variable. In fact an arbitrary functional
dependency between two successive values of the loop-variable is admissible, but
this dependency must be constrained in order to ensure that the loop completes
and to determine the number of iterations of the loop. Which values are assigned
to the loop-variable is completely governed by the loop-body. The loop-header,
however, contains a list of all those values that can possibly be assigned to the
loop-variable during the next iteration. In fact each item of this list of values is
a function of the loop-variable. A simple example is shown in Figure 1. In this
example the loop-variable K will assume the values 1,2,4,8,16,32,64,.. until finally

a value greater than IN would be reached.

discrete Kin 1 .. N new K := 2«K loop
- loop body
end loop;

Figure 1: A simple example of a discrete loop

Of course the effect of this example can also be achieved by a simple for-loop,
where the powers of two are computed within the loop-body. A more complex
example is depicted in Figure 2. In this example the loop-variable K can assume
the values 1,2,4,9,18,37,75,... until finally a value greater than N would be reached.

discrete Kin 1 .. N new K := 2«K | 2xK+1 loop
- loop body
end loop;

Figure 2: A more complex example of a discrete loop

But it is also possible that K follows the sequence 1,3,6,13,26,52,105,.... Here
the same effect can not be achieved by a for-loop, because the value of the loop-
variable cannot be determined exactly before the loop-body has been completely
elaborated.

The reason for this is the indeterminism involved in discrete loops: Clearly the
loop-body determines exactly which of the given alternatives is chosen, thus one
can say that there definitely is no indeterminism involved. On the other hand, from
an outside view of the loop one cannot determine which of the alternatives will be
chosen, without having a closer look at the loop-body or without exactly knowing
which data is processed by the loop. It is this "outside-view” indeterminism that

is meant here. Furthermore this indeterminism enables us to estimate the number
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of loop iterations quite accurately without having to know all the details of the

loop body.

1.1.1 Monotonical Discrete Loops

Monotonical Discrete Loops can be characterized best by the sequence of values
the loop variable can take: if this sequence is strictly monotonically increasing (e.g.
Figure 1), we speak of so-called monotonically increasing discrete loops. In the
case of monotonically decreasing sequences we speak of monotonically decreasing
discrete loops. The syntax of a monotonical discrete loop is given in conjunction

with the syntax of for- and while-loops below.

loop_statement ::=
[loop_simple_name:]
[iteration_scheme] loop
sequence_of_statements

end loop [loop_simple_name];

iteration_scheme ::= while condition
| for for_loop_parameter_specification

| discrete discrete_loop_parameter_specification

for_loop_parameter_specification ::=

identifier in [reverse] discrete_subtype_definition
discrete_loop_parameter_specification ::=
identifier := initial_value in [reverse] discrete_subtype_definition

new identifier := list_of_iteration_functions

list_of_iteration_functions ::=

iteration_function { | iteration_function}

iteration_function ::= expression



Semantics of Monotonical Discrete Loops

For a loop with a discrete iteration scheme, the loop parameter specification
declares a loop parameter, which is an object whose subtype is defined by the ini-
tial_value, the discrete_subtype_definition and the list_of_iteration_functions. Note
that type information is collected from the list_of_iteration_functions although it
is possible for the loop parameter to occur within the list_of_iteration_functions.
The loop parameter is required to be of a discrete type.

Elaboration of the discrete_loop_parameter_specification creates the loop para-
meter and elaborates the inital value and the discrete_subtype_definition. If the
discrete_subtype_definition defines a subtype with a null range, execution of the
loop is complete.

The optional keyword reverse defines a loop to be monotonically decreasing;
if it is missing, the loop is considered to be monotonically increasing. Within the
sequence of statements, the loop variable behaves like any other variable, i.e., it
can be used on both sides of an assignment statement.

Before the sequence of statements is executed, the list of iteration functions is
evaluated to produce a list of possible successive values. It is also checked whether
all of these values are greater than the value of the loop variable if the keyword
reverse is missing, or whether they are smaller than the value of the loop variable
if reverse is present. If one of these checks fails, the exception monotonic_error
is raised.

After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor_error is raised.

If the value of the loop variable is still within the discrete range stated in the
loop header, the loop is iterated (at least) once more. If it is not within the range,
the loop completes.

These semantics ensure that such a loop always completes, either because the
value of the loop variable is outside the given range or because one of the above
checks fails.

A lot of these runtime checks can be avoided by ensuring at compile time that
the iteration functions are monotonical functions, or by means of data-flow analysis
in order to make sure that successor_error will never be raised. Moreover we
might even detect the number of iterations of the loop, which clearly depends on
the initial_value of the loop variable, on the discrete_subtype_definition, and on the

list_of_iteration_functions.
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The following code shows an implementation of Heapsort using a discrete loop:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

N : constant Positive := ?7; -- Number of elements to be sorted.
subtype Index is Positive range 1 .. N;
type Sort_Array is array(Index) of Integer;

procedure Heapsort (Arr : in out Sort_Array) is

N : Index := Arr'Length;
T : Index;

procedure Siftdown(N,K : Index) is

J : Index;
V : Integer;
begin
V := Arr(K);
discrete H := Kin 1 .. N/2 new H := 2«H | 2«H+1 loop
J = 2xH;
if J < N and then Arr(J) < Arr(J+1) then
J = J+1;
end if;
if V. >= Arr(J) then
Arr(H) :=V;
exit;
end if;
Arr(H) := Arr(J);
Arr(J) :=V;
H:=J
end loop;

end Siftdown;

begin -- Heapsort
for K in reverse 1 .. N/2 loop
Siftdown(N,K);

end loop;

for M in reverse 2 .. N loop
T := Arr(1);
Arr(1) := Arr(M);
Arr(M) :=T,;
Siftdown(M-1,1);

end loop;

end Heapsort;

Figure 3: Heapsort



1.1.2 Discrete Loops with Remainder Functions

Although monotonical discrete loops are applicable to many problems where a
general loop would have to be used otherwise, it is sometimes not desirable or even
not possible to have the loop variable follow a monotonical iteration sequence.
Many times this does not mean that the problem under consideration does not
impose some upper bound on the number of iterations of the loop.

To be able to treat such cases, the concept of the remainder loop variable
has been introduced. The remainder loop variable draws its name from the fact
that it usually describes the amount of work that remains to be done at some
stage of the loop'. The value of the remainder loop variable is computed during
each iteration by the so-called remainder function, which must be a monotonically
decreasing function. By that means we are able to guarantee upper bounds as well
as termination in a similar way as for monotonical discrete loops.

Since the remainder loop variable must be of a discrete type, this restriction
is not imposed on the loop variable anymore. Therefore the programmer has the
freedom to iterate over whatever he chooses except limited [Ada95](7.5) or abstract

[Ada95](3.9.3) types, which is considered a major advantage over the traditional

for loop.
1 discrete Node_Pointer := Root
2 new Node_Pointer := Node_Pointer.Left | Node_Pointer.Right
3 with H := Height
4 new H=H -1 loop
5 — loop body:
6 — Here the node pointed at by node_pointer is processed
7 — and node_pointer is either set to the left or right
8 — successor.
9 — The loop is completed if node_pointer = null.
10 end loop;

Figure 4: Binary Tree Traversal

Figure 4 shows an example of a discrete loop with a remainder function. Its
purpose is the traversal of a binary tree. The loop variable points to the current
node, whereas the remainder loop variable describes the height of the remaining

subtree.

le.g. the number of remaining data items
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Syntactical and Semantical Issues of Discrete Loops with Remainder

Functions

The syntax of discrete loops with remainder functions differs from the syntax given
in Section 1.1.1 only in its loop_parameter_specification. Therefore only this part
is given here. A comprehensive syntax for all kinds of discrete loops can be found

in appendix A.

discrete_loop_with_remainder_function_parameter_specification ::=
[identifier := initial_value
new identifier := list_of_iteration_functions]

with rem_identifier := initial_value new remainder_function

remainder_function ::=
rem_identifier = expression |
rem_identifier <= upper_bound_expression

[and rem_identifier >= lower_bound_expression]

For a discrete loop with a remainder function, the corresponding loop parameter
specification is the optional declaration of the loop variable with the given iden-
tifier. The type of the loop variable is derived from the initial value and the
list_of_iteration_functions. It can be anything but a limited or an abstract type.
The initial value of the loop variable is given by initial value. Within the sequence
of statements, the loop variable behaves like any other variable, i.e., it can be used
on both sides of an assignment statement.

After the keyword with the remainder loop variable is declared by the given
identifier (rem_identifier). It must be of subtype natural or of a subtype with
a static lower bound of zero that has natural among its ancestors. The rea-

minder_function itself may have three different forms:

Case 1: If the remainder function can be determined exactly, it is given by an equa-

tion.

Case 2: If only an upper bound of the remainder function is available, it is given by

an inequality (<=).

Case 3: If in addition to (2) a lower bound of the remainder function is known, it
can be given by an optional inequality (>=). The second inequality must

be separated from the first by the keyword and.
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In case (1) the remainder loop variable behaves like a constant within the sequence
of statements. In cases (2) and (3) the remainder loop variable behaves like any
other variable within the sequence of statements. If the value of the remainder
loop variable is changed during execution of the statements, we call the original
value previous value and the new value current value.

Before the sequence of statements is executed, the list of iteration functions is
evaluated if a loop variable is given. This results in a list of possible successive
values. The remainder function or its bounds (depending on which are given by
the programmer) are also evaluated.

After the sequence of statements has been executed, it is checked whether the
loop variable is contained in the list of possible successive values. If this check
fails, the exception successor_error is raised.

Thereafter the remainder loop variable is set to its new value. In case (1) this
is the value calculated by the given expression, provided that it is smaller than the
current value of the remainder loop variable. If not, exception monotonic_error

is raised. Case (2) consists of two possibilities:

1. Previous value = current value (the code in the loop body did not touch the
remainder loop variable): The remainder loop variable is set to the value
calculated by the upper_bound_expression if this value is smaller than the

current value. Otherwise exception monotonic_error is raised.

2. Previous value not equal current value: In this case the following condi-
tion must hold: current value <= wvalue of upper_bound_expression <

previous value. Otherwise exception monotonic_error is raised.

Case (3) is the same as case (2), but it is also checked that this iteration’s
lower_bound_expression is not, greater than last iteration’s lower_bound_expression
and that the interval [lower_bound_expression, current value] contains at least
one element. Any violation of the conditions above triggers a monotonic_error
exception.

If in cases (1), (2), and (3) the value of the remainder loop variable is zero, the
exception loop_error is raised, otherwise the loop is continued. The regular way
to complete a discrete loop with a remainder function is to use an exit statement,

before the remainder loop variable reaches zero.

Remark 1.1.1 The semantics of discrete loops with remainder functions ensure

that such a loop will always complete, either if the loop is terminated by an exit
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statement or because one of the above checks fails, i.e., one of the exceptions

monotonic_error, successor_error or loop_error is raised.

1.2 Multi-Dimensional Discrete Loops

The concept of discrete loops can be extended easily in order to support more
than one loop variable. Although this might contrast with the appearance of the
traditional for-loop, it is justified by the following facts:

e Sometimes it is hard to pick a single entity of the problem domain that can
serve as the loop variable. Instead, several entities together play the part of

the loop variable.

e Many times the loop variable is not the only entity that changes its value
during each iteration in a predefined and deterministic way. For the analysis
of programs it can be of great value to have this regularity declared explicitly

in the loop header.

e Static and dynamic checks can make use of the information specified in
such a loop header, which in turn facilitates testing and verification of the

underlying program.

Since one can think of several loop variables as one big aggregate containing those
variables, we speak of them as discrete loops with aggregate variables, but they

can also be refered to as multi-dimensional discrete loops.

1.2.1 Multi-Dimensional Monotonical Discrete Loops

The scenario given in Figure 5 may serve as an introductory example for the use of
a multi-dimensional monotonical discrete loop. Suppose Pac Man wants to leave
the building. Depending on the contents of each of the 16 fields he has several
possibilities to make his way to the exit (a path is characterized as a series of

tupels of x- and y- coordinates):

((1,1),(2,1), (3, 1), (4,1), (4,2), (4, 3), (4, 4))

or

((1,1),(2,2),(3,3), (4,4))
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&

1 2 3 4 X

Figure 5: Introductory Example for Multi-Dimensional Discrete Loops

((1,1),(1,2),(1,3),(2,4),(3,4), (4,4)) ...

An auto-pilot could be coded as follows:

1 discrete (X,Y):=(1,1)in(1.. 4,1 . 4)

2 new (X)Y) := (X+1,Y)|(X,Y+1)|(X+1,Y+1)
3 loop

4 - Eat, compute next field, move.

5 end loop;

In this example X and Y together play the role of an aggregate loop variable
representing Pac Man’s position. The iteration_functions in line 2 specify that
within the predefined range of 1..4 Pac Man is allowed to advance to the right
(X+1,Y), up (X,Y+1) or diagonal (X+1,Y+1). However, he is not allowed to
move backwards or to stand still, since this would violate the loop’s monotony.
As it is the case with single-dimensional loops, the value of the loop variable is
calculated in the loop body. The loop header only provides a definite forecast.

Another prominent example is Euclid’s algorithm [SE88] (confer Figure 6). It
computes the greatest common divisor (ged) of two positive integers. Keyword
reverse defines both dimensions of the loop to be monotonically decreasing. The

loop variable (M,N) takes the following values

((M,N), (N,M mod N), (M mod N, N mod (M mod N))) ...

during subsequent iterations, until a value of (X,0) terminates the loop.
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function Euclid (A, B : Positive) return Positive is
H : Positive;
begin
if B > A then
return Euclid (B, A); -~ swap
end if;
discrete (M,N) := (A,B) in reverse (1..A, 1..B)
new (M,N) := (N, M mod N) loop
H:= M;
M := N;
N := H mod N;
12 end loop;
13 return H;
14 end Euclid;

O ~NO Ol WN =

= = O
= O

Figure 6: Euclid’s Algorithm

Syntax of Multi-Dimensional Monotonical Discrete Loops

The syntax of multi-dimensional monotonical discrete loops differs from the syntax
given in Section 1.1.1 only in its loop_parameter_specification. Therefore only this
part is given here. A comprehensive syntax for all kinds of discrete loops can be

found in Appendix A.

multi_dimensional_monotonical _discrete_loop_parameter_specification ::=
identifier_aggregate := initial_value_aggregate in [reverse] range_aggregate
new identifier_aggregate := iteration_function_specification
identifier_aggregate ::= ( identifier { , identifier } )

initial value_aggregate ::= ( initial value { , initial value } )

range_aggregate ::= ( [reverse]| discrete_subtype_definition

{, [reverse] discrete_subtype_definition} )

iteration_function_specification ::= iteration_function_aggregate

{| iteration_function_aggregate }

iteration_function_aggregate ::= (list_of_iteration_functions

{,list_of_iteration_functions})
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The identifier_aggregate determines the number of dimensions of the discrete loop.
Initial_value_aggregate, range_aggregate and iteration_function_aggregates have to
correspond to the number of dimensions of the identifier_aggregate. Note that
an Iteration_Function_Aggregate of the form (A|B,C) is meant as a shorthand
notation for two aggregates (A, C') and (B, C).

Semantics of Multi-Dimensional Monotonical Discrete Loops

The elaboration of the loop parameter specification declares a parameter for every
dimension of the loop. Types are derived from the initial value of the correspond-
ing initial_value_aggregate and the discrete_subtype_definition of the corresponding
range_aggregate. All parameters together make up the loop variable. Within the
loop body the loop variable is referenced through its parameters. They behave like
any other variable, i.e., they can be used on both sides of an assignment statement.

Elaboration of the loop parameter specification also elaborates the initial _values
of the initial_value_aggregate as well as the discrete_subtype_definitions of the
range_aggregate. If one of the discrete_subtype_definitions defines a subtype with
a null range, execution of the loop is complete.

The optional keyword reverse can appear before the range_aggregate. This
defines all dimensions of the loop to be monotonically decreasing. If keyword
reverse appears right before some discrete_subtype_definition within the range_-
aggregate, this particular dimension of the loop is defined to be monotonically de-
creasing. Keyword reverse must not appear before and within the range_aggregate.

Before the sequence of statements is executed, the iteration functions in the
iteration_function_specification are evaluated for every dimension of the loop. All
dimensions together recruit the possible successive values of the loop variable.
Like with the one-dimensional case, it has to be checked whether these values
obey monotony. What monotony actually means in this context is subject of the

next paragraph.

Monotony in the Case of Multi-Dimensional Discrete Loops

Definition 1.2.1 A multi-dimensional discrete loop L with N (N € N) identi-
fiers in its identifier_aggregate is said to be of dimension N. This is denoted by
Dim(L) = N.

Definition 1.2.2 As a shorthand notation for a loop variable (ay,as, .., a;) we

write (a;). The i parameter of (a;) is written as a;.
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Definition 1.2.3 (al) = (bl) ~ VilﬁiSDim(L(ai),(b-)) a; = bl

Definition 1.2.4 (al) < (bz) = VilﬁiSDim(L(a.),(b.)) a; <b; A El] taj < bj
If discrete loops were required to be uniformly reverse or not reverse in all dimen-

sions, Definition 1.2.4 would suffice in order to to define monotony.

Problem 1.2.1 It is possible for an N - dimensional loop (N > 1) to deploy

discrete_subtype_definitions with and without keyword reverse at once e.g.

discrete (A,B) := (1,100) in (1..100, reverse 1..100)
new (A,B) := (Ax2, B-A)

loop

-~ Body suppressed.

end loop;

G w N =

In this example the loop variable (A B) takes the values
((1,100), (2,99), (4,97), (8,93), (16,85), (32,69), (64,37))

until the loop completes. While the iteration sequence of the first dimension is
monotonically increasing, the second dimension bears a monotonically decreasing
iteration sequence. Therefore Definition 1.2.4 has to be modified slightly to be

able to cope with such mixed cases.

Definition 1.2.5 We define relation 'm’ as an extension of the common ’smaller’-
relation '<’ between two integers: For a given loop L and two values (a;) and (b;)

of the loop variable

a; < b; if i dimension of L not defined to be reverse

a; M bj =
a; > b; else

a; <b; if 3™ dimension of L not defined to be reverse

aj&bj(:){

a; > b; else

Definition 1.2.6 With definition 1.2.5 we are able to define monotony between

two values of an mixed-case aggregate loop variable of loop L:

(a;) m (b;) & Vi1<i<Dim(Lia,) 4, @20 A 3j:a;mb;
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Before the sequence of statements is executed, the current value of the loop variable
(a;) is compared to the set of possible successive values {(psv;)}. Every value
(psv;) has to fulfill the relation (psv;) m (a;). Otherwise exeption monotonic_error
is raised.

After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the set of possible successive values
{(psv;)}. If this check fails, the exception successor_error is raised.

If the value of the loop variable is still within the bounds stated in the loop

header, the loop is iterated (at least) once more. If not, the loop completes.

Remark 1.2.1 The semantics of multi-dimensional monotonical discrete loops
ensure that such a loop will always complete, either because the value of the loop
variable is outside its bounds or because one of the above checks fail, i.e., one of

the exceptions monotonic_error or successor_error is raised.

1.2.2 Multi-Dimensional Discrete Loops with a Remainder Function

Monotonical discrete loops with remainder functions can also be extended to sup-
port aggregate loop variables. Binary Search is an algorithm that lends itself
nicely to an implementation powered by a discrete loop (confer Figure 7).

The essential property of binary search is a sequence of intervals which become
smaller and smaller with each iteration of the loop. The starting interval [I;, u;] =

[1, N] is changed with each iteration of the loop according to

|55 = 1)) or
(125 + 1w

[li-l-la Ui+1] = {

depending on the sub-interval that contains the element being sought. The interval
[l;,u;] is represented by the loop variable [L, U], the remainder loop variable [

represents the number of remaining data items which equals the interval length.

Syntax of Multi-Dimensional Discrete Loops with Remainder Functions

The syntax of multi-dimensional discrete loops with remainder functions differs
from the syntax given in Section 1.1.1 only in its loop_parameter_specification.
Therefore only this part is given here. A comprehensive syntax for all kinds of

discrete loops can be found in Appendix A.

multi_dimensional_discrete_loop_with_remainder_function_parameter_spec ::=
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[identifier_aggregate := initial value_aggregate
new identifier_aggregate := iteration_function_specification]

with rem_identifier := initial_value new remainder_function

remainder_function ::=
rem_identifier = expression |
rem_identifier <= upper_bound_expression

[and rem_identifier >= lower_bound_expression]
identifier_aggregate ::= ( identifier { , identifier } )
initial value_aggregate ::= ( initial value { , initial value } )

iteration_function_specification ::= iteration_function_aggregate

{| iteration_function_aggregate}

iteration_function_aggregate ::= (list_of_iteration_functions

{,list_of_iteration_functions})

Semantics of Multi-Dimensional Loops with Remainder Functions

Essentially the same as in Section 1.1.2, with the difference that the loop variable

is an aggregate variable as opposed to one of an elementary type.
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N : constant Positive := ??; -- Number of elements.
subtype Index is Positive range 1 .. N;
type Sort_Array is array (Index) of Integer;

function Binary_Search
(Item : in Integer;
Arr : in Sort_Array)
return Index is
M : Index;
begin -- Successful search or runtime error.
discrete (L,U) := (Arr'First, Arr'Last)
new (L,U) := (L, (L+U)/2-1) | ((L+U)/2 + 1, V)
with | := Natural (U-L+1) new | <=1/2
loop

M := (L+U)/2;
if ltem < Arr (M) then
U:=M-1;
elsif Item > Arr (M) then
L:=M+1;
else
exit;
end if;
| := U-L+1;
end loop;
return M;

end Binary_Search;

Figure 7: Binary Search

16
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Chapter 2
IMPLEMENTATION CONSIDERATIONS

It has ever been seen as an integral part of Project WOOP to implement a
tool that incorporates the theoretical results gathered. Concerning discrete loops
it was therefore necessary to provide a translation-mechanism that would enable
programmers to use discrete loops in their code. Although in principle there was
no cause to favor any particular programming language, it was the reliability and
maintainability of Ada95 that finally lead to the decision to build a preprocessor
capable of translating discrete loop augmented Ada95 code into standard Ada95
in a way that would preserve the semantics of discrete loops. The resulting code
could then be compiled by any Ada compiler. The preprocessor would have to

perform the following tasks:

e Scan its input.

Perform syntax checks

Perform semantic checks.

Analyze discrete loops in order to find an upper bound for the number of

iterations.

Transform discrete loops into their equivalent in standard Ada, preserving

the semantics of those loops.

e Generate the resulting Ada code.

Note 2.0.1 Syntactic and semantic analysis has to be done for the entire program,
considering only those statements belonging to a discrete loop does by no means
suffice! A complete description of Ada95’s syntax and semantics can be found in
[Ada95] p.1 - 551.

Two possibilities seemed to exist to get the job done:
e Build from scratch.

e Use a scanner/parser generator to simplify things a little bit.
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In this situation it was the availability of GNAT that saved a lot of work

and enabled me to focus on the main problems. It prevented me from coding a
complete front-end for the whole Ada programming language (comp. note 2.0.1)
while providing every facility I needed to build upon. GNAT itself is written
entirely in Ada, which makes this huge piece of software (over 12 Megabyte of
source code) very modular. In fact this is also an achievement of the GNAT Team,
since good tools alone do not necessarily lead to good programs. The coupling
between its modules is really loose. In this way one can apply modifications locally
and need not know all the details of the program as a whole. The source code of
GNAT is very well structured and fully documented. It left me with enough space

to add where I needed and in the way I wanted.

2.1 Extending the GNAT System

GNAT itselfis a front-end and runtime system that uses the back-end of GCC as a
retargetable code generator. The front-end uses an Abstract Syntax Tree (AST)'

as the underlying data structure and it comprises three phases:
e Syntactic Analysis
e Semantic Analysis
e Transformation of the AST to a representation suitable for the back-end

Since only a minor part of the third phase is coded in a language other than Ada,
the strengths of the Ada programming language also come into play in the source
code of GNAT which properly reflects the structure of the corresponding chapters
of the Reference Manual [Ada95]. This leads to a very modular functional design
with no coupling between unrelated units.

Although the current release of GNAT has already been validated, development
of the compiler is not yet finished. This means that modifications of the current
release of GNAT might have to be taken over to a future release. Therefore I have
attempted to keep modifications of the original code as small as possible while
providing ’extra’- functionality in separate units that are called where appropriate
(e.g. on encountering keyword discrete during syntactic or semantic analysis).
Because of arising dependencies it was on the other hand necessary to properly

integrate extensions into the original code.

IDetails can be found in Section 3.
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Although these requirements seem to contradict each other, the hierarchical
library mechanism of Ada95 actually made it possible to fulfill both of them in

most cases:

e Code that is totally independent of GNAT is kept in separate library units.

e Code that extends the functionality of an existing library unit is usually kept
in a child of that unit. In this way we not only inherit the context provided
by the context clauses of the parent, but we are also able to directly access
all the entities that are declared in the spec of the parent from within the
child. The parent body itself may access the child by means of a with clause.
Children however are not allowed for subprograms since [Ada95] requires

the parent unit to be a (generic) package.

e Code that depends on entities declared in the body of a library unit or code
that is meant to extend a library unit that is a subprogram can only be
separated by means of subunits. Visibility in the subunit is the same as
at the corresponding stub in the parent body, except for differences due to
context clauses of the subunit itself. Coupling of subunits to the original

code is usually tighter than in the previous cases.

The following data illustrates this approach:
e The whole GNAT system consists of about 300000 lines of code.

e Modifying it to build a preprocessor for discrete loops took 4772 lines of

code.

e Only 107 out of 4772 lines had to be applied to the original code. Those
modifications are always preceded by a comment line like ~- BB:’, which
should make it easy to locate them within the original code. The two-letter

combination ‘BB~ has something to do with the author’s name :-)

2.2 A Math-Package to Count On

Estimating the number of iterations of a discrete loop often involves complic-
ated recurrence relations which have to be solved accordingly. Checking iteration
functions for monotonic sequences of loop values also requires solving linear and
non-linear equations. Although it should be possible in theory to implement a

computer algebra system from scratch, in practice it can be considered a rather
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time-consuming and costly task. The kernel of Wolfram Research’s Mathematica
alone, for instance, consists of 300K lines of C code. An additional package that
extends Mathematica to solve recurrence relations takes another 2,5K lines of code,
the whole Mathematica system consists of about 4-6 megabytes of compiled code.

With those figures in mind the decision was made to take some computer al-
gebra system and incorporate it into the preprocessor. From all packages available
at that time, only Mathematica offered a fully documented programming interface
to the kernel. Only in this way it was possible to start the math-subsystem as
a slave process and have it evaluate the expressions passed to it from the pre-
processor. It is also a fact that Mathematica’s programming interface is the only
interface to its kernel and that therefore also Wolfram Research’s own front-ends
use it. This information directly adds to the performance and dependability of

that interface. Some other highlights of Mathematica were

e Comprehensive calculation and analysis tools.

Open and extendible architecture.

High-level programming language.

Documentation and programs available on the net.

Available on a wide variety of platforms.

If for some reason another (i.e. non-commercial) computer algebra system should
turn out to be superior to Mathematica, an additional level of abstraction has
been implemented within the preprocessor to allow easy replacement of the math

subsystem.

2.3 What Name?

Another contribution to the devastating cluttering of our world with acronyms...
WPP, the Woop Preprocessor, also known as double(UP) or simply DoubleUP.

W PP = double(U)PP = double(U) double(P) = double(U P)
Possible further transformations, suggested by my supervisor:

double(UP) = U*P* = (UP)?
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Chapter 3
SHAKING THE TREE

The Abstract Syntax Tree (or AST for short) is perhaps GNAT’s single most
important data structure. It is constructed by the recursive descent parser and
represents the input program in a tree-like form. Subsequent processing in the
front end traverses the tree, transforming it in various ways and adding semantic

information. Therefore no separate symbol table structure is needed.

3.1 The Internal Representation of the Abstract Syntax Tree

Package Atree defines the basic structure of the tree and its nodes and provides
the basic abstract interface for manipulating the tree. Two other packages use
this interface to define the representation of Ada programs using this tree format.
The package Sinfo defines the basic representation of the syntactic structure of
the program, as output by the parser. The package Einfo defines the semantic
information which is added to the tree nodes that represent declared entities (i.e.
the information which might typically be described in a separate symbol table

structure).

3.1.1 Definition of a Single Tree Node

The representation of the tree is completely hidden, using a functional interface
for accessing and modifying the contents of nodes. Logically a node contains a
number of fields, much as though the nodes were defined as a record type. Those

fields that are used for WPP-specific modifications are summarized here.
e Nkind: Indicates the kind of the node. This field is present in all nodes.
e Sloc: Location (Source_Ptr) of the corresponding token in the Source buffer.

o Comes_From_Source: This flag is present in all nodes. It is set if the node is
built by the scanner or parser, and clear if the node is built by the analyzer or
expander. It indicates that the node corresponds to a construct that appears

in the original source program.
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e Fieldl - Field5: Five fields holding a union of the following values!:

— ListN: Synonym for FieldN typed as List_Id, a list of nodes.

— NameN: Synonym for FieldN typed as Name_Id, an entry into the
names table. This table is used to store character strings for identifiers
and operator symbols, as well as other string values such as unit names

and file names.
— NodeN: Synonym for FieldN typed as Node_Id, a link to another node.

— UintN: Synonym for FieldN typed as Uint (GNAT’s basic universal
integer type)

e Flagj - Flag18: Fifteen Boolean flags.

e Link: Pointer to parent node, i.e. node which points to the node which

references this field.

The actual usage of FieldN (i.e. whether it contains a List_Id, Name_Id, Node_Id,
Uint), depends on the value in Nkind. Generally the access to this field is always
via the functional interface, so the field names ListN, NameN, NodeN, and UintN
are used only in the bodies of the access functions (i.e. in the bodies of Sinfo and
Einfo). These access functions contain debugging code that checks that the use is
consistent with Nkind values.

The use of the Boolean flags also depends on Nkind and Ekind, as described
for FieldN. Again the access is usually via subprograms in Sinfo and Einfo which
provide high-level synonyms for these flags, and contain debugging code that

checks that the values in Nkind and Ekind are appropriate for the access.

3.1.2 Extended Nodes

As stated above, the AST contains not only the full syntactic representation of
the program, but also the results of semantic analysis. In particular, the nodes
for defining identifiers, defining character literals and defining operator symbols,
collectively referred to as entities, represent what would normally be regarded as
the symbol table information. In order to store this additional information, a node
containing an entity can be extended in order to provide extra space for additional

fields and flags. The use of those fields and flags is defined in package Einfo. It

L Again, only those values important for WPP are listed
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depends on the entity kind, as defined by the contents of the Ekind field. Some

other important fields:

Etype: Present in all entities. Represents the type of the entity, which is
itself another entity. For a type entity, this pointer is selfreferential. For a

subtype entity, Etype is the base type.

First_Subtype: Applies to all types and subtypes. For types, yields the first
subtype of the type. For subtypes, yields the first subtype of the base type
of the subtype [Ada95](3.2.1(6)).

Homonym: Present in all entities. Contains a link to chain entities that are
homonyms and that are declared in the same or enclosing scopes. (Hom-

onyms in the same scope are overloaded).

Is_Abstract: Present in all types, and also for functions and procedures. Set

for abstract types and abstract subprograms.

Is_Discrete_Type: Defined for all entities, true for all discrete types and
subtypes.

Is_Enumeration_Type: Defined for all entities, true for enumeration types

and subtypes.

Scope: Present in all entities. Points to the entity for the scope (block, loop,

subprogram, package etc.) in which the entity is declared.

Type_High_Bound Defined for scalar types. Returns the tree node that con-
tains the high bound of a scalar type.

Type_Low_Bound: See previous field.

3.1.3 Abstract Interface to the Abstract Syntax Tree

Package Atree.Unchecked_Access provides generic field access routines for tree

nodes. These routines are used by package Sinfo and Einfo to provide a high-

level interface based on logical synonyms for fields and flags.
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3.2 Basic Tree Structure

Package Sinfo defines how the tree structure provided by package Atree is used
to represent the syntax of an Ada program. The layout of every syntactic con-
struct is described in a comment at the beginning of the spec of package Sinfo.
The specification and the body of that package follow the definitions given in the
comment. As an example the comments associated with the loop statement are

given below.

sinfo.ads

-- 5.5 Loop Statement --

-- LOOP_STATEMENT ::=

-- [loop_-STATEMENT_IDENTIFIER :]
-- [ITERATION_SCHEME] loop

-- SEQUENCE_OF_STATEMENTS
- end loop [loop_IDENTIFIER];

--  N_Loop_Statement

--  Sloc points to LOOP

- Identifier (Nodel) loop identifier (set to Empty if no identifier)
-~ lteration_Scheme (Node2) (set to Empty if no iteration scheme)
-~ Statements (List3)

-- 5.5 [teration Scheme --

-- ITERATION_SCHEME :=
-- while CONDITION | for LOOP_.PARAMETER_SPECIFICATION

-~ N_lteration_Scheme

--  Sloc points to WHILE or FOR

-~ Condition (Nodel) (set to Empty if FOR case)

-~ Loop_Parameter_Specification (Node4) (set to Empty if WHILE case)

-- 5.5 Loop parameter specification --

- LOOP_-PARAMETER_SPECIFICATION ::=
-- DEFINING_IDENTIFIER in [reverse] DISCRETE_SUBTYPE_DEFINITION

--  N_Loop_Parameter Specification
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-- Sloc points to first identifier

-~ Defining_ldentifier (Nodel)

--  Reverse_Present (Flagl5)

-~ Discrete_Subtype_Definition (Node4)

According to this definition, the layout of a tree fragment for a while- or for-
loop looks as follows (note that a loop can only contain a condition (while) or a

Loop_Parameter_Specification (for), but not both):

N_Loop_Statement

Nodel Node2 List3
Identifier N_Iteration_Scheme Statements
N_Loop_Parameter_Specification Condition

Nodel Flagl5 w

Defining_Identifier Reverse_Present Discrete_Subtype_Definition

Figure 8: AST fragment for while- and for-loops.

For each node (e.g. N_Loop_Statement, N_Tteration_Scheme, N_Loop_Parameter_-
Specification) package sinfo provides access functions that are named after the
logical synonyms as stated in the comments. The bodies of those functions make

use of the abstract interface mentioned in Section 3.1.3.
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1 function Iteration_Scheme

2 (N : Node_ld) return Node_ld is

3 begin

4 pragma Assert (False

5 or else NT (N).Nkind = N_Loop_Statement);
6 return Node2 (N);

7 end lteration_Scheme;

8 procedure Set_lteration_Scheme

9 (N : Node_ld; Val : Node_Id) is

10 begin

11 pragma Assert (False

12 or else NT (N).Nkind = N_Loop_Statement);
13 Set_Node2_With_Parent (N, Val);

14 end Set_lteration_Scheme;

Figure 9: Logical Synonyms based on the Abstract Interface

Lines 4-5 and 11-12 of Figure 9 are part of the debugging code that checks
that the use of the logical synonyms is consistent with Nkind values (you cannot
convince GNAT to provide you with a loop-body out of a case-statement, for that
reason). Since GNAT is very picky about this, we created our own high-level
interface for WOOP-specific parts of the AST. It is defined in package WoopSinfo

and it is discussed in the next section.

3.3 WPP-Specific Leaves

It is necessary for the abstract syntax tree to grow a little extra-branch in order
to accommodate the syntactic representation of a discrete loop. Node N_Loop_-
Parameter_Specification can therein serve as a starting point, because down to
the Loop_Parameter_Specification the syntax for for-loops and discrete loops is the
same (confer Appendix A). Tree fragments for discrete loops can be divided in

two categories:

e Syntactic constructs related to the loop variable.
e Syntactic constructs belonging to the remainder loop variable.

The purpose of the following two subsections is to grow subtrees for the syntactic
categories given above. For the sake of clarity and understanding they are given
in the same graphical notation that has already been used in Figure 8. The third
subsection shows how those subtrees are connected (grafted) to the abstract syntax

tree.
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3.3.1 Constructs Related to the Loop Variable

According to Appendix A this includes the following entities:
e Identifier
e Initial_Value
e Discrete_Subtype_Definition (in case of a monotonical discrete loop)
e List_Of_Iteration_Functions

A suitable data structure capable of storing those entities might look as follows:

N_Loop_Parameter_Specification

Nodel Mez Node3 List4
Identifier Initial_Value Discrete_Subtype_Definition List_Of_Iteration_Functions

Figure 10: Simple Data Structure

Multi-dimensional discrete loops need a list that can store such a subtree for
each of their N dimensions. Although this works well for Identifier, Initial_Value

and Discrete_Subtype_Definitions, it won’t work for iteration functions.

Problem 3.3.1 If iteration functions are stored on a per-dimension basis, the
information that maps a certain iteration function to a certain Iteration_Function-
_Aggregate gets lost. Consider the algorithm for Binary Search given in Figure
7 on page 16. The possible successive values for the loop variable (L,U) are
(L,(L+U)/2—1) and ((L+U)/241,U) respectively. Storing the iteration func-
tions on a per-dimension basis, we get {L, (L + U)/2 + 1} for the first dimension
and {(L +U)/2 —1,U} for the second one. We have now successfully discarded
the information on how the iteration functions of the two dimensions were con-
nected. Building all possible combinations e.g. (L,(L+U)/2—-1), (L,U), ((L+
U)/2+1,(L+U)/2-1), (L+U)/241,U) does not help either, because not

all combinations have been specified in the loop header.

In this way the data structure given in Figure 10 cannot be used to store iteration
functions of multi-dimensional loops. Nevertheless it is suitable for Identifier,

Initial_Value, and Discrete_Subtype_Definition:
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/ N_Loop_Parameter_Specification
Nodel Node2 Node3 Dimension 1
Identifier Initial_Value Discrete_Subtype_Definition

|
|
|
|
|
|
|
|
|
|
|
List_Id < |
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N_Loop_Parameter_Specification :
|

Nodel Node2 Node3 Dimension N

\ Identifier Initial_Value Discrete_Subtype_Definition

Figure 11: Data Structure without Iteration Functions

Iteration Functions

Before the tree segment for iteration functions can finally be defined, a short
paragraph on the nature of GNAT’s lists is needed.

Package Nlists provides facilities for manipulating lists of nodes. A node list
is a list that is threaded through nodes (using the Link field). This means that
it takes minimum space, but a node can be on at most one such node list. For
each node list, a list header is allocated in the lists table, and a List_Id value
references this header which may be used to access the nodes in the list using the

set of routines that define the interface.

Problem 3.3.2 A node list can contain nodes or extended nodes, but it is not

possible to build a list of lists.

To overcome this little shortage, one can build a list of nodes, where each node
serves as a pointer to another list. This list of nodes-to-lists is equivalent to a list
of lists.

Now consider an N-dimensional loop with M Iteration_Function_Aggregates.

Due to the shorthand notation defined in Section 1.2.1 we also have to take into
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account that dimension n (1 < n < N) of Iteration_Function_Aggregate m (1 <
m < M) contains k (k > 1) iteration functions. This is denoted by K,,,. The

iteration functions are indexed as IFj, p k.
e m: m!" Tteration_Function_Aggregate, 1 < m < M
e n: n'* dimension, 1 <n < N

o k: k' iteration function of dimension n of Iteration_Function_Aggregate m,
1<k < K

Figure 12 makes use of this notation in order to define a subtree that can accom-

modate the common case

(TPl TF ks TR N TR N K ) |

((LEvaal - v scpys - TP | - [TEM N Ky )

of an Iteration_Function_Specification.

IF 11
Node_Id— List_Id<

I
|
|
|
i
IF1,1,K1,1

1

1

1

i

1
List_Id i Dimensions 1-N

i

1

i IF N1

1 1
Node_Id—List_Id<i
Node_Id (Aggregat 1) IF‘l,N,Kl,N

1
1
1
List_Id ! Aggregates 1-M
1
1
1

Node_Id (Aggregat M)

List_Id <

IR0

Node_Id— List_Id<

i Dimensions 1-N

IF N1
Node_Id— List_1d<i

IFM,N,KM,N

Figure 12: Data Structure for an Iteration_Function_Specification
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Since every discrete loop consists of at least one dimension, the iteration func-
tion’s subtree is connected to the data structure given in Figure 11 via Node4 of
the first N_Loop_Parameter_Specification node.
3.3.2 Constructs Related to the Remainder Loop Variable
Due to the fact that only one remainder_function is allowed for each discrete loop,

this subtree is rather simple (Figure 13). The field "Token’ (Uint3) in fact contains

N_Loop_Parameter_Specification

Nodel Node5
Node2 Uint3, Node4
Rem_Identifier Initial_Value Token (Upper_-Bound)_Expression Lower_Bound_Expression

Figure 13: Data Structure for a Remainder Function Specification

one of the values Tok_Equal or Tok_Less_Equal of type Token_Type (package

scans) depending on the token (=" or ’<=’) given in the remainder_function.

3.3.3 Connecting Subtrees to the Abstract Syntax Tree

The constructs related to the loop variable (Figure 11) as well as those related to
the remainder loop variable (Figure 13) have to be connected to the AST through
node N_Loop_Parameter_Specification. Since the exact layout of the abstract syn-
tax tree as it is given in package sinfo is subject to change?, it is wise to implement
an additional layer of abstraction between GNAT’s AST and WPP’s amendments.

Figure 14 illustrates the approach chosen. The nodes within the ’cloud’ represent

ListX NodeY

Figure 14: Connection to the AST.

20nly GNAT-specific implementational details may change, the big picture is more or less
defined in [Ada95]
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what usually gets stored in the tree for a for-loop. For a discrete loop this cloud

is replaced by two fields:

e ListX: This is the field containing the constructs related to the loop variable
(the subtree illustrated in Figure 11).

e NodeY: This field contains the subtree related to the remainder loop variable

as illustrated in Figure 13.

Instead of assigning specific nodes (Nodel, Node2,...) to ListX and NodeY, which
might conflict with future releases of GNAT, their actual names are hidden in the
body of package woopsinfo. There is no need for the outside world to reference
these names anyway, because an interface based on logical synonyms is provided.
From within package woopsinfo, only two functions named ’ListX’ and 'NodeY”’
are used to access WPP-specific subtrees. In this way it should be of very little
effort to adjust the GNAT-WPP tree-connection to further releases of GNAT.

3.3.4 Flags

WPP also makes use of a couple of Boolean flags. The following flags are stored

within the tree:

e (lasel: Needed in conjunction with remainder function loops. True if the new

value of the remainder function is specified as 'rem_identifier = expression’.

e (lase2: Needed in conjunction with remainder function loops. True if the
new value of the remainder function is specified as 'rem_identifier <= up-

per_bound_expression’.

e (ase3: Needed in conjunction with remainder function loops. True if the
new value of the remainder function is specified as 'rem_identifier <= up-

per_bound_expression and rem_identifier >= lower_bound_expression’.

e (Custom_Reverse_Present: True if keyword 'reverse’ appears within a range-

_aggregate of an NV > 1 dimensional discrete loop.

o Implicit_Type_Required: True if some range of a discrete loop is given in the
form of a constrained_discrete_subtype_indication ([Ada95](3.2.2(3)). This
means that during code generation an implicit subtype has to be declared
(see Chapter 9).
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e [s_Discrete_Loop: True for an N_Loop_Parameter_Specification that contains

a discrete loop.

e Needs_Package_WoopDefs: False till the first occurrence of a discrete loop is
detected. At this point this flag becomes "True.” It is then checked whether
package WoopDefs is already visible within the current compilation unit. If

this is not the case, flag Needs_WoopDefs_Context_Clause is set.

e Needs_-WoopDefs_Context_Clause: Set if in the code-generating phase a with-

_clause for package WoopDefs has to be issued.
The remaining attributes are synthesized from the tree.

e Compilation_Unit: For any node 'N’ of the AST returns the node N_Com-
pilation_Unit to which it belongs.

e Dimensions: Returns the number of parameters of the loop variable.

o Fake_Initial_Value: If an N-dimensional loop variable comprises M>N ini-
tial_values in its initial_value_aggregate, the first of those superfluous ini-

tial_values is returned (used for error messages during semantic analysis).
o Fake_Discrete_Subtype_Definition: Similar purpose as Fake_Initial_Value.
o Fuake_List_Of_Iteration_Functions: Similar purpose as Fake_Initial_Value.

e Has_Loop_Variable: Needed in conjunction with remainder function loops.

True if the loop contains a loop variable besides the remainder loop variable.

e Has_Several_PSVs: True in case of an N dimensional loop variable where
the iteration_function_specification defines more then one vector of values.
In case of a one-dimensional loop variable this is true if the list_of_iteration-

_functions includes more than one element.

o [s_Loop_With_Remainder_Function: True in case of a discrete loop with a

remainder function.
e [s_Monotonical_Loop: True in case of a monotonical discrete loop.

e LOIF_Nr_Of-Aggregates: Returns the number of aggregates of an itera-

tion_function_specification.
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Needs_Lower_Range_Constant: True if the discrete_subtype_definition of a
monotonical discrete loop is given as a range with a non-static lower bound.
In this case the code generator needs to generate a constant that is initialized
with the lower bound of the range before execution of the loop. In this way

the evaluate-once semantics of the range is ensured (see Chapter 9).
Needs_Upper_Range_Constant: Similar to Needs_Lower_Range_Constant.

Nr_Of_Iteration_Functions: Returns the number of iteration functions for a

given dimension of a given aggregate of the loop variable.

Reverse_Present: True if a given dimension of the loop variable is of a 're-
verse’ nature (either Custom_Reverse_Present or keyword reverse before

range_aggregate).
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THE SCANNER
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Instead of using freely available scanner- and parser generators like Lex and

Yacc, the developers of GNAT chose to hand-code their own scanner and parser

due to reasons of increased performance and user-friendliness. Since the source-

files belonging to the scanner have a name starting with ’sc’, they can be identified

easily within the about 800 different files GNAT consists of. Concerning discrete

loops, it takes only minor modifications to make the scanner aware of the additional

token ’discrete’.

Package scans defines an enumeration-type "Token_Type’ that is used to identify

the tokens returned by the scanner. Subsequent subtype declarations define token-

classes. Type "Token_Type’ is given in a table, where the classes applying to a

token are given as comment lines. We have to add an enumeration-literal for token

‘discrete’.

scans.ads

type Token_Type is (

Token name Token type  Class(es)

Tok_Integer_Literal, -- numeric lit Literal, Lit_.Or_Name
Tok_Real_Literal, -- numeric lit Literal, Lit_Or_Name

Tok_Begin, -- BEGIN Eterm, Sterm, After.SM, Labeled_Stmt
Tok_Declare, -- DECLARE  Eterm, Sterm, After.SM, Labeled_Stmt

BB: entered Token Tok_Discrete for the keyword 'discrete’.
Tok_Discrete, -- DISCRETE Eterm, Sterm, After_ SM, Labeled Stmt

Tok_For, -- FOR Eterm, Sterm, After_SM, Labeled_Stmt
Tok_Loop, -- LOOP Eterm, Sterm, After_.SM, Labeled_Stmt
Tok_While, -- WHILE Eterm, Sterm, After_.SM, Labeled Stmt
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From the scanner’s point of view, there is no difference between a discrete loop
and any other kind of loop provided by the Ada programming language. Therefore

our token belongs to the same classes that the tokens ’for’, ’loop’ and ’while’ do:

e Eterm which means that the token is an expression terminator (it can never
appear within a simple expression). This is used for error recovery purposes
(if GNAT encounters an error in an expression, it simply scans to the next
Eterm token).

e Sterm: Terminator for simple expressions.

e After_SM: Tokens which always, or almost always, appear after a semicolon.

Of significance only for error recovery.
e Labeled_Stmt: Tokens which start labeled statements.

The specification of package Snames contains definitions of standard names (i.e.
entries in the Names table) that are used throughout the GNAT compiler. Upon
initialization of the scanner, they are loaded into the Names table. These also
include all of Ada95’s reserved words, since they ought to be recognized by the
scanner. Names are defined as constants that derive their values depending on
some predefined constants plus their respective positions within this spec. Every
additional token increases the respective positions of all the following tokens in
the spec. In this way not only their positions but also their values are changed. In
order to keep the number of obsolete definitions low, the name for token ’discrete’

is inserted at the end of the reserved words:

snames.ads

Name_Abort : constant Name_ld := N + 313;
Name_Abs : constant Name_ld := N + 314;
Name_Accept : constant Name_ld := N + 315;
Name_And : constant Name.ld := N + 316;
Name_All : constant Name_ld := N + 317;
Name_Array : constant Name_ld := N + 318;

Name_When : constant Name_ld := N + 368;
Name_While : constant Name_ld := N + 369:
Name_With : constant Name_ld := N + 370;



36

Name_Xor : constant Name_ld := N + 371;

-- BB: Add constant Name_ld for keyword 'discrete’.
Name_Discrete : constant Name.d := N + 372;

As stated above, one has to be added to the declaration of all the constants
that follow Name_Discrete in the file. Note that constants with the syllable 'First_’
pass their value over to the following constant, whereas constants with the syl-
lable 'Last_’ take their value from the previous constant. This scheme is used for
grouping purposes.

The string-representation of the new token must be provided in the package
body of Snames. It is important that the token appears at the same position as

in the spec. Note also that every string is terminated by '#’.

snames.adb

Preset_Names : constant String :=
"_abort_signal#" &
"_assign#" &

"_chain#" &

"when#" &
"while#" &
"with#" &
"xor#" &

-- BB: added string representation of keyword ’discrete’.
"discrete#" &

It is the task of the scanner to return the appropriate token for each sequence of
characters that occurs in the input. To put it GNAT-specific, it has to establish a
mapping from the input to the values of type Token_Type. In the case of reserved
words, this is done with help of the names table. At scanner initialization time, the
whole set of reserved words is loaded into the names table. Every entry that holds
the string representation of such a reserved word uses an additional component
of the GNAT-internal type Byte to identify the position number of the reserved
word’s enumeration literal within type Token_Type. For every other entry in the
names table, the value of this additional component is zero.

Whenever the scanner encounters a sequence of characters, it consults the

names table looking for an entry already representing this sequence. If there exists
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an entry, this can either be a reserved word or a previously stored identifier. In
case of a reserved word, Token_Type’Val of the Byte-component mentioned above
returns the appropriate token.

Therefore the only thing that remains to be done is to modify the initialization

routine of the scanner that loads the names table.

scn.adb

procedure Initialize_Scanner

(Unit : Unit_Number_Type;

Index : Source_File_Index)
is
begin
-- Set up Token_Type values in Names Table entries for reserved keywords
--  We use the Pos value of the Token_Type value. Note we are relying on
-- the fact that Token_Type'Val (0) is not a reserved word!

-- BB: For Name_Discrete: Set the corresponding position for
-- 'Tok_Discret’ in the Name_Table.
Set_Name_Table_Byte (Name_Discrete, Token_Type'Pos (Tok_Discrete));

Set_Name_Table_Byte (Name_Abort, Token_Type'Pos (Tok_Abort));
Set_Name_Table_Byte (Name_Abs, Token_Type'Pos (Tok_Abs));

end Initialize_Scanner;

Since for this operation the sequence of statements is insignificant, the code

has been added right at the beginning of procedure Initialize Scanner.
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Chapter 5
SYNTACTIC ANALYSIS

The Par function and its subunits contain all the parsing routines for GNAT’s
top-down recursive descent parser that constructs the Abstract Syntax Tree. Within
function Par the parsing routines are grouped by chapters as given in [Ada95].
Every chapter is reflected as a package containing parse-functions for its con-
structs. The bodies of those packages are given as stubs, which means that they
reside in separate files. The naming convention for such files is defined in [LIB94].

To put it in a nutshell, the file-layout for the parser looks as follows:
e par.ads: Spec of function Par.
e par.adb: Body of function Par.

e par-ch2.adb ... par-ch13.adb: Parse-functions for constructs of correspond-
ing chapters of [Ada95].

Loops belong to statements, which are treated in Chapter 5. Therefore we add
function P_Discrete_Statement in the body of package Par.Ch5 and make it a

subunit:

par-ch5.adb

function P_Loop_Statement (Loop_Name : Node_ld := Empty) return Node_ld;
--  Parse loop statement. If Loop_-Name is non-Empty on entry, it is

-- the N_Identifier node for the label on the loop. If Loop_Name is

--  Empty on entry (the default), then the loop statement is unlabeled.

function P_For_Statement (Loop_Name : Node_ld := Empty) return Node_ld;
-- Parse for statement. If Loop_Name is non-Empty on entry, it is

-- the N_Identifier node for the label on the loop. If Loop_Name is

-~ Empty on entry (the default), then the for statement is unlabeled.

function P_Discrete_Statement (Loop_Name : Node_ld := Empty) return Node_ld;
-~ Parse discrete statement. If Loop_Name is non-Empty on entry, it is

-- the N_Identifier node for the label on the loop. If Loop_Name is

-- Empty on entry (the default), then the discrete statement is unlabeled.

function P_Discrete_Statement (Loop_Name : Node_ld := Empty) return Node_ld is
separate;
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On encountering token Tok_Discrete, the parser has to call this function. This

happens two times within function P_Sequence_Of_Statements.

par-ch5.adb

-~ Loop_Statement (labeled Loop_Statement)

if Token = Tok_Loop then
Append_To (Statement_List,
P_Loop_Statement (Id_Node));

--  BB: Entered function call to P_Discrete_Statement.

(labeled discrete statement)

elsif Token = Tok_Discrete then
Append_To (Statement_List, P_Discrete_Statement (Id_Node));

The first call deals with labeled discrete loops, a similar call deals with loops

without a label. It is the duty of function P_Discrete_Statement to parse the whole

discrete loop and to return a subtree as specified in Chapter 3 which is then

appended to the Abstract Syntax Tree. The following tasks are carried out within

this function:

1.

Push a new entry on the scope stack [Ada95](3.1(8)). This is necessary for

all nested constructs in order to deal with 'END’ nesting errors.

. Create a new node N_Loop_Statement.

Connect a new N_Iteration_Scheme node to node N_Loop_Statement.

. Parse the discrete_loop_parameter_specification and connect the resulting

tree to node N_Tteration_Scheme. This is a tedious task that has to take into
account all syntactic variations between monotonical loops and loops with
remainder functions, both single- and multi-dimensional. Due to this fact
the declaration of a separate function within function P_Discrete_Statement
seemed appropriate. Its name is P_Discrete_Loop_Parameter_Specification

and it is also made into a subunit.

Parse the loop body and connect the resulting tree to node N_Loop_Statement.
This task is rather simple, because the body of a discrete loop does not
syntactically differ from any other loop body. It is therefore sufficient to
call function P_Sequence_Of_Statements that is already provided in package
Par.Chb.

Set attribute Is_Discrete_Loop.
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Chapter 6
SEMANTIC ANALYSIS

Semantic analysis in general performs name and type resolution, decorates the
AST with various attributes and performs all static legality checks on the program.
Type resolution is done using a two-pass algorithm. During the first (bottom-
up) pass, each node within a complete context is labeled with its type, or if
overloaded with the set of possible meanings of each overloaded reference. During
the second (top-down) pass, the type of the complete context is used to resolve
ambiguities and choose a unique meaning for each identifier in an overloaded
expression [GNAT]. In the case of a loop statement the loop’s iteration_scheme as
well as the sequence_of_statements have to be analyzed.

The body of a discrete loop differs from the body of a for-loop only in one
sense: The discrete loop variable behaves like a variable rather than a constant
within the body of the loop. It is therefore possible to assign a value to a discrete
loop variable within the loop body. With that minor difference in mind we can
leave the latter task to GNAT using procedure Analyze_Statements of package
Sem_Ch5 in order to analyze the loop body.

The sole purpose of the semantic analysis of the iteration_scheme of a discrete
loop is to determine the type of the loop variable (and/or remainder loop variable)

and to verify that the type is appropriate for the given type of loop.

6.1 Semantic Analysis of One-Dimensional Monotonical Discrete Loops

The discrete_loop_parameter_specification of an iteration_scheme contains three

entities that provide type information:
e The expression representing the initial_value.
e The discrete_subtype_definition.
e The iteration functions contained in the list_of_iteration_functions.

The algorithm that is used for type resolution is depicted in pseudo-code in Fig-
ure 15. It starts with calls to procedure Analyze to carry out the bottom-up pass

for the loop’s init_id and discrete_subtype_definition. This leaves us with at least
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one possible type for both arguments. Strictly speaking, we get one type for non-
overloaded entities and N (N € N, N >1) for overloaded ones. Code lines (3)
to (17) aim at computing the intersection between these two sets of types. To
avoid ambiguity, we require that the resulting set contains at most one type. An
empty set means that init_id and discrete_range were type-incompatible which is
equivalent to finding a bad type. To recover from such an error, bad types are
treated as ’type wild-cards’ that match any given type (they are said to be of
type 'Any_Type’). This is exactly the difference between statement issue_error
(lines 2 & 15) and return_error (lines 21 & 31): the first one complains put con-
tinues execution, whereas the latter one quits issuing an error-message. Note that
the algorithm does in no way terminate before having passed line 19! This en-
sures that the loop variable is visible during subsequent analysis of the loop body.
Furthermore it allows a loop variable to appear in an iteration_function.

The remaining part of the algorithm (lines 22 - 40) distinguishes between two

cases:

e We have found type 'Universal_Integer’, which makes us consult the itera-
tion functions to find some specific integer-type (line 29). If the iteration
functions do not yield a specific type either, then "Universal_Integer is casted

to 'integer’.
e We have already found a specific type that has to fit the iteration_functions.

In order to avoid anonymous base types (which cannot be referenced in the source
code that WPP creates) we have to compute their so-called first named subtypes'
(lines 23 & 35). What remains to be done is to resolve all three entities (init_id, dis-
crete_subtype_definition & list_of-iteration_functions) with the type derived. This
corresponds to pass two (top-down) of GNAT’s type resolution algorithm.

6.2 Semantic Analysis of Multi-Dimensional Monotonical Discrete Loops

Unfortunately this is a bit more complicated than the previous one. First of all,
multi-dimensional loops add a new dimension of errors on the programmer’s side.

New checks are introduced accordingly:

e An identifier must not occur twice within a loop variable.

!First named subtypes are somewhat explained in [Ada95](3.2.1(7))
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e The number of dimensions of the initial_value_aggregate, range_aggregate,
identifier_aggregate after 'new’, and iteration_function_specification must be

the same as that of the identifier_aggregate at the beginning of the loop.

e The names that occur in the N dimensions of the identifier_aggregate after
keyword 'new’ must match their counterparts in the identifier_aggregate at

the beginning of the loop statement.

e Keyword ’reverse’ can occur right before the range_aggregate that contains
N discrete_subtype_definitions. This means that keyword ’reverse’ stands
for all N dimensions of the loop variable. On the other hand keyword
'reverse’ can also appear inside the range_aggregate, right before any of
the discrete_subtype_definitions. In this case it must not occur outside the

range_aggregate too.

Note that one can argue whether these are syntactic or semantic checks. The
reason that they are carried out during semantic analysis is that we can give
better user-feedback from here.

The second reason that makes semantic analysis of multi-dimensional monoton-
ical discrete loops a bit more complicated is that they allow mutual dependencies
between single parameters of the loop variable within the iteration functions. Con-

sider the following loop which has been taken from Euclid’s Algorithm (Figure 6,
page 11).

1 discrete (M,N) := (A,B) in reverse (1..A, 1..B)
2 new (M,N) := (N, M mod N) loop

3 H:= M;

4 M := N;

5 N := H mod N;

6 end loop;

Figure 16: Discrete Loop taken from Euclid’s Algorithm

The loop variable of this loop consists of two parameters namely M and N.
The iteration_function_specification (line 2) has it that parameter M depends on
parameter N (it is assigned N’s value), whereas parameter N depends on M and
N. If type resolution was done on a per-dimension basis using the algorithm for
one-dimensional monotonical discrete loops, this circular dependency could not be
resolved, because at the time the first dimension is analyzed, the type system knows

nothing about parameter N. Switching dimensions does not help either because
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of the dependency of parameter N on M and N. For this reason it is necessary to
make all parameters of a multi-dimensional loop variable visible before any of the
iteration functions can be analyzed.

Figure 17 may serve as a (hypothetical) example for another (hypothetical)
problem that can occur with multi-dimensional discrete loops. The point with
this example is that initial _value and discrete_subtype_definition of all parameters

of the loop variable are of type "Universal_Integer’.

1 discrete (AB,C) :=(1,2,3) in (1..10,1..10,1..10)
2 new (AB,C) := (A+1,

3 Short_Integer (B) + A,

4 Long_Integer (C) + A)

5 loop

6 -- loop body

7 end loop;

Figure 17: Hypothetical Discrete Loop

Our type resolution algorithm for one-dimensional discrete loops suggests to
consult the iteration functions for more specific type information in such a case.
However, because of possible mutual dependencies of parameters this informa-
tion may be spread across all N dimensions of the iteration_function_specification.

Consider parameter A of Figure 17:

e The first dimension (line 2) proposes A to be of type ’Universal_Integer’
(casted to ’Integer’).

e Dimension 2 casts B to ’Short_Integer’, which also requires A to be of type
'Short_Integer’, provided that '+’ is not overloaded with a function capable

of adding objects of type ’Short_Integer’ and ’Integer’.

e Dimension 3 finally requires A to be of type 'Long_ Integer’, provided that

'+’ is not overloaded either.

Obviously the requirements of the second and third dimension contradict each
other, but this example shows that not only data but also type-information is
propagated between different dimension’s iteration functions. A type resolution
algorithm capable of such cases must implement some sort of backtracking that
verifies that typing is still consistent within the iteration_function_specification

after a new type has been derived. However this is only necessary for loops where
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a parameter’s type is only determined in the iteration_function_specification. Since
this requires the initial_value and the discrete_subtype_definition to be of type "Uni-
versal_Integer’, this seldomly is the case. For this reason the current implement-
ation of WPP requires the type of a multi-dimensional discrete loop’s parameter
to be determined solely from the initial_value and the discrete_subtype_definition.
If the type of both constructs is 'Universal_Integer’, then the type is casted to
Integer’. If this introduces a type clash with the iteration_function_specification,
then the programmer has to convert the initial_value or discrete_subtype_definition

to the desired type manually (confer Figure 18).

1 discrete (A,B,C) := (1, Short_Integer (2), Long_Integer (3))
2 in (1..10,1..10,1..10) new (A,B,C) := (A+1,

3 Short_Integer (B) + Short_Integer (A),

4 Long_Integer (C) + Long_Integer (A))

5 loop

6 -- loop body

7 end loop;

Figure 18: Type Conversation for Hypothetical Discrete Loop

The algorithm that is used for type resolution of multi-dimensional monotonical

discrete loops is depicted in pseudo-code in Figure 19.

e Part one (lines 1 to 33) consists of a loop that iterates over all dimensions of
the discrete loop under consideration. For every dimension it attempts to de-
rive a type from the initial_value and the discrete_subtype_definition. There-
after the loop parameter for the current dimension is made visible. In case
of an appropriate type the initial_value and the discrete_subtype_definition

are resolved.
e Part two (lines 34 to 39) analyzes each dimension’s iteration functions and

resolves them with the type derived for that dimension in Part one.

6.3 Semantic Analysis of Discrete Loops with Remainder Functions

6.3.1 Semantic Analysis of the Loop Variable

Discrete loops with remainder functions can (but need not) contain the declara-
tion of a loop variable. Contrary to monotonical discrete loops this declaration

does not contain a discrete_subtype_definition. The loop variable of a remainder
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function loop may be of any type except limited or abstract. Again type resolution

distinguishes between one- and multi-dimensional loops.

One-Dimensional Loops

The algorithm used for type resolution is depicted in pseudo-code in Figure 20.
In line 1 it is checked whether the loop variable and the remainder loop vari-
able denote the same entity which of course is not allowed. Lines 4 to 10 at-
tempt to derive a type from the initial_value construct. The call to function
Yields_Appropriate_Type (line 5) removes all limited as well as abstract types
from the typeset computed by the call to procedure Analyze. If the resulting
typeset contains more than one possible type we have to issue an error, because
unlike monotonical discrete loops the initial_value construct is the only source of
type-information here. Only in the case of a universal type (Universal_Integer or
Universal_Real) the list_of_iteration_functions is consulted to find a more specific
type (lines 13 - 26).

Multi-Dimensional Loops

The following checks have to be introduced with multi-dimensional loops:
e An identifier must not occur twice within a loop variable.

e The number of dimensions of the initial value_aggregate, identifier_aggregate
after ‘'new’, and iteration_function_specification must be the same as that of

the identifier_aggregate at the beginning of the loop.

e The names that occur in the N dimensions of the identifier_aggregate after
keyword 'new’ must match their counterparts in the identifier_aggregate at

the beginning of the loop statement.

Type resolution is depicted in pseudo-code in Figure 21. Because of possible
mutual dependencies between parameters of the loop variable within the iteration
functions all the parameters of the loop variable have to be visible before any of
the iteration functions can be analyzed. Therefore the type of a loop parameter is

solely determined by the initial_value construct.

e The first part of the type resolution algorithm (lines 1 to 22) consists of a loop
that iterates over all dimensions of the discrete loop under consideration. For

each dimension it attempts to derive a type from the initial_value construct.
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Thereafter the loop parameter for the current dimension is made visible. In

case of an appropriate type the initial_value is resolved.

e Part two (lines 23 to 28) analyzes each dimension’s iteration functions and

resolves them with the type derived for that dimension in part one.

6.3.2 Semantic Analysis of the Remainder Loop Variable

The purpose of semantic analysis of the remainder loop variable is the derivation
of a type for the remainder loop variable. As stated in Section 1.1.2 we expect the
remainder loop variable to be of subtype natural or of a subtype that has natural
among its ancestors. Type resolution of the remainder loop variable makes use of
function Yields_Natural several times. The purpose of this function is to take the
typeset of an expression-node computed by a call to procedure Analyze and to
remove all types except natural or subtypes that have natural among its ancestors.
If the resulting typeset contains more than one type, flag Is_Overloaded is set on
the node. Yields_Natural returns true if the resulting typeset contains at least one
such type.

The algorithm used for type resolution of the remainder loop variable is de-
picted in pseudo-code in Figure 22. It starts with the initialization of rem_init_id
(which is set to the remainder loop variable’s initial_value), exp! (which is set to
the expression (or upper_bound_expression) of the remainder_function), and ezp2
(which is set to the lower_bound_expression of the remainder_function). There-
after a call to Analyze on the rem_init_id is made. Lines 3 to 10 attempt to pick
an appropriate type from the resulting typeset. If it turns out to be of type Uni-
versal Integer we have to postpone type derivation until expl (and exp2) have
been analyzed in order to find a more specific discrete type. A rem_init_id that
is overloaded with two or more specific types causes an error, because no other

construct containing further type information is available.

Note 6.3.1 Expl and exp2 cannot be used for that purpose, because the re-
mainder loop variable is allowed to occur in those constructs. This makes it
necessary to set the remainder loop variable to an appropriate type (at least Uni-

versal_Integer) before expl and exp2 can be analyzed.

Remainder loop variables of Casel remainder loops are declared as being con-
stant. In this way semantic analysis will not allow the user to assign a value to
the remainder loop variable in the loop body. Case2 and Case3 remainder loop

variables are treated as variables (lines 11 & 12). Note that the algorithm does in
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no way terminate before having passed line 12. This ensures that the remainder
loop variable is visible during subsequent analysis of the loop body. Furthermore
it allows a remainder loop variable to appear within a remainder_function. The

remaining part of the algorithm distinguishes between two cases:

e We have found ’Universal_Integer’ which makes us consult exp? (and ezp?2)

in order to find some specific type (lines 19 to 39).

e We have already found a specific type that has to fit the remainder_function
(line 17).

Calls to procedure Resolve finally finish the derivation of a type for the remainder

loop variable.

6.4 Pragma Restrictions (No_General_Loops)

Package restrict is solely devoted to the implementation of pragma restrictions.
It defines an enumeration type called Restriction_Id which contains all possible
restrictions as literals. In conformance to [Ada95, 13.12] these are called restric-
tion identifiers. In order to make WPP recognize a new restriction, a restriction
identifier has to be added to this type.

restrict.ads

type Restriction_ld is (

Immediate_Reclamation, - (RM H.4(10))
No_Abort_Statements, -- (RM D.7(5), H.4(3))
No_Access_Subprograms, - (RM H.4(17))
No_Allocators, - (RM H.4(7))

-- BB: added pragma No_General_Loops
No_General_Loops, -- WPP

No_Unchecked_Deallocation, -- (RM H.4(9))
Not_A_Restriction_ld);

All requests for restrictions are stored in a data structure defined in package
restrict. It also provides the following functions which operate on this data struc-

ture. Their aim is to check whether the restriction corresponding to the given
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restriction identifier has been requested by the user. If this is the case, these

functions post an appropriate error message.

restrict.ads

procedure Check_Restriction (R : Restriction_ld; N : Node_ld);
- Checks that the given restriction is not set, and if it is set,
-~ an appropriate message is posted on the given node.

procedure Check_Restriction

(R : Restriction_Parameter_ld;

N : Node_ld);
--  Checks that the given restriction parameter identifier is not set to
-- zero. If it is set to zero, then the node N is replaced by a node
-- that raises Storage_Error, and a warning is issued.

procedure Check_Restriction
(R : Restriction_Parameter_ld;
V : Uint;
N : Node_ld);
--  Checks that the count in V does not exceed the maximum value of the
-- restriction parameter value corresponding to the given restriction
-~ parameter identifier (if it has been set). If the count in V exceeds
-- the maximum, then post an error message on node N.

What remains to be done is to make WPP call one of the above functions
whenever it encounters a loop that might be rejected in the presence of pragma
restrictions (No_General_Loop). This can be achieved at that point during se-
mantic analysis where the kind of a given loop is determined. Procedure Ana-
lyze_Loop_Statement performs semantic analysis of a loop. If the given loop has
no iteration_scheme, we have encountered a general loop that certainly is subject

to our restriction:

sem_ch5.adb

if No (Iteration_Scheme (N)) then
-- Infinite loop
-- BB: In case of a pragma restrictions (No_General_Loops)
--  we have to complain now!
Check_Restriction (No_General_Loops, N);
else
Analyze_lteration_Scheme (Iteration_Scheme (N));
end if;
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In case of an iteration_scheme the loop can either be a discrete,- while- or for-

loop. If the loop turns out to be a while- loop, we have to check for the presence

of pragma restrictions (No_General_Loop).

sem_ch5.adb

if Present (Cond) then

-~ BB: In case of pragma restrictions (No_General_Loops)

-- we don't appreciate while-loops either.
Check_Restriction (No_General_Loops, N);
Analyze_And_Resolve (Cond, Any_Boolean);

else

-- Else we have a FOR loop

end if;
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Analyze (init_id); Analyze (discrete_subtype_definition);
if they do not yield discrete types then issue_error; end if;

if Is_Overloaded (init-id) and Is_Overloaded (discrete_subtype_definition) then
T := Compute_the_Intersection_of_both_Typesets;
elsif Is_Overloaded (init-id) and not Is_Overloaded (discrete_subtype_definition) then
if Typeset(init_id) contains Type(discrete_subtype_definition) then
T := Type(discrete_subtype_definition);
end if;
elsif not Is_Overloaded (init_id) and Is_Overloaded (discrete_subtype_definition) then
if Typeset(discrete_subtype_definition) contains Type(init_id) then
T := Type(init-id);
end if;
else
if Type(init_id) not_compatible_to Type(discrete_subtype_definition) then
issue_error;
end if;
end if;

Make the entity of the loop variable visible;
if no suitable type found then return_error; end if;

if T / = Universal_Integer then
T := First_ZNamed_Subtype (Base_Type (T));
Resolve_Init_Id (T);
Resolve_Discrete_Subtype_Definition (T);
Analyze List_Of Iteration_Functions;
Resolve_List_Of_Iteration_Functions (T);

else
Analyze List_Of Iteration_Functions;
T := Determine_Type_of_Iteration_functions;
if T = Any_Type then return_error; end if;

if T = Universal_Integer then

T := Standard_Integer;
else

T := First_Named_Subtype (Base_Type (T));
end if;

Resolve_Init_Id (T);

Resolve_Discrete_Subtype_Definition (T);

Resolve_List_Of_Iteration_Functions (T);
end if;

Figure 15: Pseudo-code type resolution of a one-dimensional monotonical discrete loop.
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1 for Index in 1 .. Dim (L) loop

2 init_id := Initial_Value (L, Index);

3 discrete_subtype_definition := Discrete_Subtype_Definition (L, Index);

4 Analyze (init_id); Analyze (discrete_subtype_definition);

5 if they do not yield discrete types then issue_error; end if;

6 if Is_Overloaded (init_id) and Is_Overloaded (discrete_subtype_definition) then
7 T (L, Index) := Compute_the_Intersection_of_both_Typesets;

8 elsif Is_Overloaded (init-id) and not Is_Overloaded (discrete_subtype_definition) then
9 if Typeset(init_id) contains Type(discrete_subtype_definition) then

10 T (L, Index) := Type(discrete_subtype_definition);

11 end if;

12 elsif not Is_Overloaded (init-id) and Is_Overloaded (discrete_subtype_definition) then
13 if Typeset(discrete_subtype_definition) contains Type(init_id) then

14 T (L, Index) := Type(init_id);

15 end if;

16 else

17 if Type(init_id) not_compatible_to Type(discrete_subtype_definition) then
18 issue_error;

19 end if;

20  end if;

21

22 Make the parameter of the Ith dimension of the loop variable visible;

23

24 if suitable type found then

25 if T (L, Index) = Universal Integer then

26 T (L, Index) := Standard_Integer;

27 else

28 T (L, Index) := First_Named_Subtype (Base_Type (T (L, Index)));

29 end if;

30 Resolve (Initial_Value (L, Index), T);

31 Resolve (Discrete_Subtype_Definition (L, Index), T);

32 end if;

33 end loop;

34 for Aggregate in 1 .. LOIF Nr_Of_Aggregates (L) loop

35 for Index in 1 .. Dimensions (L) loop

36 Analyze (List_Of_Iteration_Functions (L, Index, Aggregate));

37 Resolve (List_Of_Iteration_Functions (L, Index, Aggregate), T (L, Index));
38 end loop;

39 end loop;

Figure 19: Pseudo-code type resolution of a multi-dimensional monotonical discrete loop.
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1 if loop_variable = remainder_loop_variable then return_error; end if;

2 init.id := Initial_Value (L, 1);
list_of_iteration_functions := List_Of_Iteration_Functions (L, 1);

w

Analyze (init_id);
if not Yields_Appropriate_Type (init_id) then issue_error; end if;
if Is_Overloaded (init-id) then
issue_error;
else
T := Type (init_id);
0 end if;

= © 00 ~J O Ot W=

11 Make the entity of the loop variable visible.
12 if no suitable type found then return_error; end if;

13 if Is_Universal_Type (T) then

14 Analyze (list_of_iteration_functions);

15 T := Determine_Type (list_of_iteration_functions);
16 if T = Any_Type then

17 return_error;

18 elsif T = Universal_Integer then

19 T := Standard_Integer;

20 elsif T = Universal_Real then

21 T := Standard_Float;

22 else

23 T := First_ZNamed_Subtype (Base_Type (T));
24 end if;

25 Resolve (init.id, T);

26 Resolve (list_of_iteration_functions, T);

27 else

28 T := First_ZNamed_Subtype (Base_Type (T));
29 Resolve (init.id, T);

30 Analyze (list_of_iteration_functions);
31 Resolve (list_of_iteration_functions, T);
32 end if;

Figure 20: Pseudo-code type resolution of a one-dimensional loop variable of a remainder
function loop.
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1 for Index in 1 .. Dim (L) loop

2 if loop_parameter (index) = remainder_loop_variable then return_error; end if;
3 init_id := Initial_Value (L, Index);

4 Analyze (init_id);

5 if not Yields_Appropriate_Type (init_id) then issue_error; end if;

6 if Is_Overloaded (init_id) then

7 issue_error;

8 else

9 T (L, Index) := Type (init_id);

10 end if;

11 Make the parameter of the Ith dimension of the loop variable visible;

12 if suitable type found then

13 if T (L, Index) = Universal Integer then

14 T (L, Index) := Standard_Integer;

15 elsif T (L, Index) = Universal Real then

16 T (L, Index) := Standard_Float;

17 else

18 T (L, Index) := First_ZNamed_Subtype (Base_Type (T (L, Index)));
19 end if;

20 Resolve (Initial_Value (L, Index), T (L, Index));

21 end if;

22 end loop;

23 for Aggregate in 1 .. LOIF_Nr_Of_Aggregates (L) loop

24 for Index in 1 .. Dimensions (L) loop

25 Analyze (List_Of_Tteration_Functions (L, Index, Aggregate));

26 Resolve (List_Of_Iteration_Functions (L, Index, Aggregate), T (L, Index));
27 end loop;

28 end loop;

Figure 21: Pseudo-code type resolution of a multi-dimensional loop variable of a remainder
function loop.



54

1 rem.init_-id := Rem_Initial Value (L); expl := Expressionl (L); exp2 := Expression2 (L);

2 Analyze (rem_init_id);

3 if Type (rem.init_id) / = Universal_Integer and then not Yields_Natural (rem_init_id) then
4 issue_error;

5 end if;

6 if Is_Overloaded (rem_init_id) then

7 issue_error;

8

else
9 T := Type (rem_init_id);
10 end if;

11 if Casel (L) then declare entity for remainder loop variable as constant;
12 else declare entity for remainder loop variable as variable; end if;
13 if no suitable type found then return_error; end if;

14 Analyze (expl);

15 if Case3 (L) then Analyze (exp2); end if;
16 if T / = Universal Integer then

17 Resolve (rem_init_id, T);

18 else

19 if Casel (L) or Case2 (L) then

20 if not Yields_Natural (expl) or Is_Overloaded (expl) then return_error; end if;
21 T := Type (expl);

22 else -- Case3

23 if not Yields_Natural (expl) or not Yields_Natural (exp2) then return_error; end if;
24 if Is_Overloaded (expl) and Is_Overloaded (exp2) then

25 T := Compute_the_Intersection_of_both_Typesets;

26 elsif Is_Overloaded (expl) and not Is_Overloaded (exp2) then
27 if Typeset (expl) contains Type (exp2) then

28 T := Type (exp2);

29 end if;

30 elsif not Is_Overloaded (expl) and Is_Overloaded (exp2) then
31 if Typeset (exp2) contains Type (expl) then

32 T := Type (expl);

33 end if;

34 else

35 if Type (expl) = Type (exp2) then

36 T := Type (expl);

37 end if;

38 end if;

39 if no suitable type found then return_error; end if;

40 Resolve (rem-init_id, T);

41 end if;

42 end if;

43 Resolve (expl, T);
44 if Case3 (L) then Resolve (exp2, T); end if;

Figure 22: Pseudo-code type resolution of a remainder loop variable.
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Chapter 7

ESTIMATING THE NUMBER OF ITERATIONS OF
DISCRETE LOOPS

7.1 Methods of Choice
According to [Bli94] there exist three methods suitable for the calculation of lower
and upper bounds for the number of iterations of discrete loops:

e Solving involved recurrence relations.

e Exploiting theoretical foundations that apply to certain kinds of iteration-
and remainder-functions ([Bli94], Section 4 & 6.3).

e Extensive Enumeration

7.1.1 Solving Involved Recurrence Relations

As an example we take the discrete loop of the Heapsort-algorithm depicted in

Figure 3, page 5, derive the underlying recurrence relation and solve it. Clearly

1 discrete H:=Kin1l.. N/2 new H := 2xH | 2xH+1 loop
2 - Loop body
3 end loop;

Figure 23: Discrete loop taken from Heapsort

the number of iterations of this loop is bounded above by the length of (R(™™))

which fullfills the recurrence relation
by = 2ngmin)
since the length of any loop sequence containing two successive elements that fulfill

hy41 = 2h, + 1 will be smaller than that of (h{™™)). Solving the above recurrence

relation we get
hl(lm'm) — kzufl

We want to determine the value of w such that

B < N/2 < hGYY
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Taking logarithms we obtain

w=[1dN — 1dk|
for the number of iterations of the discrete loop. The method of choice for solving
(more complicated) recurrence relations are generating functions and exponen-

tial generating functions. The same can be achieved with help of Mathematica

(transcript of Mathematica session follows).

In[1]:

<<DiscreteMath RSolve® -- Load package RSolve.

In[2]:= RSolve[{h[n+1]== 2 h[n], h[0] == k}, h[n], n]

Out[2]= {{h[n] -> (2°n k)/2}}
In[3]:= Solve [2"(n-1)k==N/2,n]

Out[3]= {{n -> Log[N/k]/Logl[2]1}}
7.1.2 Theoretical Foundations for Certain Iteration- and Remainder-

Functions

Proofs for the following theorems can be found either in [Bli94] or in Appendix D.
Here f(z) is used to denote an iteration function. For convenience of the reader
the numbering of the theorems is that of [Bli94].

Theorem 4.2

If f(x) = [az + (], > 1, § > 0, the length of the corresponding loop sequence

o, (M1

The corresponding lower bound is

is bounded above by

N(a—1)+ﬂ+1+1J_

1
{oga a+ [
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Theorem 4.3

If f() = [ax” 4+ B, a > 1, 3> 0, v > 1, the length of the corresponding loop

sequence is bounded above by
[log, ((y — 1)log, N +1) + 1].
The corresponding lower bound is
[log, (7 = 1) 1oga 1 N +1) +1].

Theorem 4.4
If f(z) = [q(z) + 3], where 3 > 0, and ¢(x) = 3, a;x7, ; > 1, v; > 1, the length

of the corresponding loop sequence is bounded above by

llog,, ((Ym — 1)log,, N +1)+1],

where the index m is defined such that v, = max; ;.

Theorem 4.5

If f(x) =z + B,5 > 0 with initial value k; = K the length of the corresponding

loop sequence is bounded above by

Al

Theorem 6.1
If a loop sequence of remaining items fulfills
1 = N
Tv41 = LTV/MJa

where 1 > 1, then the length of the corresponding remainder loop sequence is

bounded above by
[log, N +2].
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7.1.3 Extensive Enumeration

Extensive enumeration is the so-called 'brute-force’ method we resort to when
everything else fails. The extensive enumeration algorithm can handle a set of
iteration functions (as opposed to the previous methods which can only be applied
to single iteration functions. Its major drawback (besides being extensive) is
that it cannot handle symbolic values. The algorithm is depicted in pseudo-code

in Figure 24. For ’'reverse’ discrete loops and for remainder function loops the

1 c:=0;

2 cur := initial_value;

3 while cur in discrete_subtype definition loop

4 c = c+1;

5 if reverse loop or remainder function loop then
6 cur := max(fi(cur));

7 else

8 cur := min(fi(cur));

9 end if;

10 end loop;

Figure 24: Algorithm used for extensive enumeration of discrete loops.

minimum min must be replaced by the maximum (line 5). Variable ¢ represents
the counter for the number of iterations. It is initialized with zero. The current
value of the loop variable is represented by cur. As long as the current value of the
loop variable stays within the discrete_subtype_definition, the iteration functions
are evaluated. Depending on the kind of loop, the greatest or the smallest value
is added to the current value of the loop variable. After termination of the loop,
variable ¢ contains an upper bound for the number of iterations of the loop under
consideration.

The methods explained so far work with one-dimensional monotonical discrete
loops and with remainder function loops. For multi-dimensional monotonical dis-
crete loops they have to be extended. The reason for this lies in the fact that with
multi-dimensional monotonical discrete loops the behavior of the loop variable is
determined by the multi-dimensional iteration_function_specification. An upper

bound for the number of iterations of a multi-dimensional monotonical discrete

loop is
Dim(L) M
> maxUB(fij), 1<j <Y Kn,
i=1 m=1

where the maxUB(f; ;) term denotes the maximum upper bound of all iteration
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functions of all aggregates of dimension ¢. By means of symbolic analysis of the

loop body it should be possible to derive more accurate bounds.

7.2

The Mathematical Subsystem of WPP

Every piece of mathematics that WPP throws at discrete loops has its roots in

package Math. The interface of this package is used as an abstraction between

the implementation of the math-subsystem and its client. It provides a given

functionality via a set of functions. The most prominent among them are:

7.2.1

Math_Initialize: Initialization of the math subsystem.

Math_Evaluate (S : String; Kind : Evaluation): Have string 'S’ evaluated
by the math subsystem. If no error occurs during evaluation, Math_Evaluate
returns true. The result can be fetched with function Math_Get_Expression.

Parameter ’Kind’ determines the kind of evaluation: numeric or symbolic.
Math_Get_Expression: Returns the result of the last query.

Cannot_Raise_Monotonic_Error: Takes an iteration function and a discrete
interval [Lb,Ub]. Returns ’true’ if the given iteration function cannot raise
exception monotonic_error within the given interval. Note that the current
implementation of the math subsystem does not support symbolic values for

this function.

Monotonic_UB: This function tries to derive an upper bound for the number
of iterations of a monotonical discrete loop from the given list of iteration
functions, the initial value, and the discrete subtype definition. If it succeeds,
it returns ’true’ and a string representing the upper bound can be fetched
with function Math_Get_Expression. Note that the current implementation

of the math subsystem does not support symbolic values for this function.

Math_FEnd: Finalizes the math subsystem.

Implementation

It has been stated in the section about implementation considerations that WPP’s

math subsystem utilizes the kernel of Mathematica. Communication takes place via

MathLink, a general mechanism for exchanging mathematical expressions between



60

Mathematica and other programs. MathLink can use various data transport sys-
tems such as pipes or TCP. In this way it is even possible to talk to a Mathematica
kernel hosted on a remote computer.

In fact MathLink is a set of library functions capable of initializing MathLink
connections, of sending and receiving data, and of shutting down connections.
Since the whole Mathematica system is coded in C, we had to bridge the gap
between Ada and C by means of a binding (see Appendix C).

The first goal of the math subsystem is to trade expressions back and forth
between Mathematica and WPP. This of course is implemented within the package
body of Math. The second goal, however, is to carry out the computations that it
takes in order to derive upper bounds or track down monotonic error exceptions.
This part is implemented in Mathematica’s internal Lisp-like programming lan-
guage [WR4]. Its code is kept in a separate Mathematica-package that is loaded
during initialization (function Math_Initialize) of the math subsystem. In this way
it is possible to modify functions of the math subsystem without recompiling or
even relinking of the preprocessor. Note also that by means of executing our
code within the kernel of Mathematica we have the power of all of Mathematica’s
features [WO92| at hand.

Monotonic_UB

Semantic analysis is the last preprocessor phase that extracts information about
program entities from the underlying source code. After semantic analysis is
completed we know facts like the kind of the loop, the type of the loop (or remainder
loop) variable, and whether the expressions contained are static or not. Any
attempts aimed at determining the upper bound for the number of iterations of a
discrete loop are therefore carried out right after semantic analysis of the given
loop. The following code calls function Monotonic_UB for every dimension of a

monotonical discrete loop:

sem_ch5-woopsem_ch5.adb

for Index in 1 .. Dimensions (L) loop
if Monotonic_UB
(List_Of_lteration_Functions (L, Index),

Identifier (L, Index),
Discrete_Subtype_Definition (L, Index),
Initial_Value (L, Index),
Reverse_Present (L, Index))

then

O ~NO Ol WN -
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9 - Fetch upper bound.

10 else

11 -- No upper bound found.
12 end if;

13 end loop;

At this point we are still talking about tree fragments that are passed to the
math subsystem. List_Of_Iteration_Functions (L, Index) contains a List_Id with all

the iteration functions of dimension ’index’, identifier contains the loop variable and

so on. Within function Monotonic_UB this call is transformed into an expression

suitable for Mathematica.

As an example we take procedure Siftdown from the Heapsort algorithm (Fig-

ure 3):

O ~NO O~

e

11
12
13
14
15
16
17
18
19
20
21
22

N : constant Positive := 100;
subtype Index is Positive range 1 .. N;

procedure Siftdown(N,K : Index) is

J : Index;
V : Integer;
begin
V := Arr(K);
discrete H := Kin 1 .. N/2 new H := 2«H | 2«H+1 loop
J = 2«H;
if J < N and then Arr(J) < Arr(J+1) then
J = J+1;
end if;
if V >= Arr(J) then
Arr(H) :=V,
exit;
end if;
Arr(H) := Arr(J);
Arr(J) = V;
H:=J;
end loop;

end Siftdown;

Figure 25: Procedure Siftdown from the Heapsort algorithm

If function Monotonic_UB is invoked for the discrete loop in procedure Sift-

down, it transforms its arguments into expression

TimeConstrained [MonUB[{2 * h, 2 * h + 1},h,1,100],10,$Timeout]
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that is then sent to Mathematica. TimeConstrained[expr, t, failexpr] is a
built-in function of Mathematica. It attempts to evaluate expr within deadline
t. If the deadline is missed, it returns failezpr. We use this function in order
to put down extensive enumeration that turns out to be infeasible to be carried
out in a reasonable amount of time. MonUB[List, 1lv, 1lb, ub] is a function
that belongs to our Mathematica-package. It takes its arguments and tries to
derive an upper bound for it. Note that the initial_value and the upper bound
of the discrete_subtype_definition (line 9) have been replaced by the bounds of
subtype index (line 2). The reason for this is that the current implementation of
our Mathematica-package cannot handle symbolic values. In this way we replace
every non-static entity by the corresponding bound of its type in order to derive a
somewhat reasonable upper bound. An alternative would be to take -Infinity and

+Infinity, but this would result in less accurate upper bounds...

Mathematica-package: function Mon_UB

1 MonUB[LoIF_List,lv_,lb_,ub_1 :=

2  If[IsPolynomialQ[LoIF,1lv] && EnumerateQ[LoIF,lv,1b,ub],

3 Block [{IFS,SmIF},

4 IFS=RemoveDummies [Union[LoIF],1v];

5 SmIF=SmallestIF[IFS,1v,1b,ub];

6 (* Is there one smallest

7 iteration function in [1b,ub] 7 *)

8 If [SmIF===§Failed,

9 (* There is no single smallest iteration function,
10 so we enumerate all iteration functions *)

11 Enumerate[LoIF,1v,1b,ub],

12 (* There is a single smallest iteration function,
13 check whether a theorem applies to it *)

14 If [TMon[SmIF,1lv]===%Failed,

15 (* No theorem applicable

16 to single iteration function. *)

17 Enumerate[{SmIF},1v,1b,ub],

18 (* Theorem applicable

19 to single iteration function. *)

20 CalculateUB[SmIF,1lv,1b,ubl

21 ]
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22 ]
23 1,
24 $Failed
25 ]

The above code is executed by Mathematica’s kernel as soon as it gets our request
from the link. It ensures that the given iteration functions are polynomials of
the loop variable and that they do not contain any symbolic coefficients (line 2).
Function RemoveDummies (line 4) deletes any iteration function f from the list

Lol F for which the following property holds:
f(x) m g(z) Vo € [~o0, o], f(z),g(x) € Lol F

This simply means that we forget about all iteration functions that cannot con-
tribute to the upper bound because they compute a value which is greater (smaller
if 'reverse’ loop) than the value of some other iteration function (iteration function
2 % h 4+ 1 of procedure Siftdown is such a dummy). Function SmallestIF (line 5)
tries to extract the iteration function that computes the smallest (greatest) value
within the discrete interval [Ib, ub]. If such an iteration function exists, we check
whether some theorem applies to it (Theorem 4.2 for iteration function 2 % h of
the above example). If this is the case, the upper bound is computed using this
theorem, otherwise the iteration function(s) have to be enumerated. Although it
has been stated at the beginning of this chapter that one could also attempt to
solve the arising recurrence relation, our current implementation does not support
it. The reason for this shortcut is that although Mathematica is good at solving
recurrence relations, the solutions often involve transcendental functions as soon
as they are put into equations. Unfortunately Mathematica is not quite as good
with that...

The result of function Mon_UB (7 in the above example) is put back on the
link by the kernel where it is read by function Monotonic_UB.

Cannot_Raise_Monotonic_Error

The aim of this function is to determine whether a given iteration function can
raise exception monotonic_error or not. An iteration function f(z) cannot raise

exception monotonic_error in a given discrete interval [Ib, ub], if

rm f(x) Vo € [lb,ub).
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Consider the iteration function 2z* — 322 + z depicted in Figure 26. Within
the discrete intervals [—oo, —2] and [2, 00| the values computed by the iteration
function are smaller than x (the graph of the iteration function is above the line
denoting x. This means that the iteration function cannot raise monotonic error
in case of a monotonically increasing discrete loop (f(z) > x). However, this does
not hold for the interval [—1, 1].

In order to determine whether a given iteration function f(z) can raise excep-
tion monotonic_error we therefore have to intersect the iteration function with z
and examine the resulting intervals: If we can show that the bounds of the dis-
crete_subtype_definition of the loop are within an interval where x m f(z) holds,

then it is save to omit the run-time checks for exception monotonic_error.

N

2XN4- 3XN2+x

Figure 26: Plot of z and f(z) = 22* — 32> + =

Mathematica-package: function NoMonotonicError

(* NoMonotonicError[LoIF_List,lv_,lower_,upper_,cond_]
Returns “True” if the the iteration functions in LoIF cannot

raise monotonic_error in the given interval [lower,upper].

1

2

3

4 “cond” is used to distinguish between increasing and

5 decreasing (keyword ‘reverse’) iteration functions. It is
6

either FXGreaterX (increasing) or FXSmallerX (decreasing).
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7 Requirements: LoIF : must be polynomials in lv, no symbolic
8 coefficients or exponents.

9 lower, upper : non-symbolic values

10 *)

11 NoMonotonicError[LoIF_List,lv_,lower_,upper_,cond_] :=
12 If[!(IsPolynomialQ[LoIF,1lv]

13 && EnumerateQ[LoIF,1v]

14 &% BEnuQ [lower,upperl),

15 False,

16 Block[{CommonInterval := IntersectIntervals

17 [Map[ToInterval[Intervals[#,1lv,cond]]&,LoIF]]},

18 IntervalMemberQ[CommonInterval,Interval [{lower,upper}]]
19 ]

20 ]

It should be stated that functions IntersectIntervals, Tolnterval and Intervals
are also part of the implementation of the math-subsystem. Interval is one of
Mathematica’s built-in functions. The purpose of those functions is expressed
through their names, the implementational details are of minor importance and

are omitted due to space considerations.
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Chapter 8

TRANSFORMATION OF DISCRETE LOOPS INTO
STANDARD ADA

Two prerequisites have to be met under all circumstances when transforming

discrete loops into Ada:

1. For every discrete loop that has to be transformed the semantics given in

Section 1.1 have to be preserved.

2. The enclosing program’s semantics must not be changed.

The overall approach is to replace every discrete loop by a standard Ada loop
construct the body of which is extended to behave in a ’discrete’ way. The rep-

resentation of a discrete loop in Ada95 comprises two related parts:

e Declarations of entities that are needed by the extensions in the loop body. In
order to meet prerequisite (2) stated above, everything is declared locally by
means of Ada’s block_statement. In this way these declarations are not visible
from outside of the block. However, they might hide other entities with the
same name from direct visibility ([Ada95](8.3(5)) within the block (e.g.:
in the loop body). For that reason a name-generation algorithm has been
implemented that checks for possible conflicts with existing names (confer
Section 9.1).

e Standard Ada loop construct. The body of this loop contains the discrete
loop’s body enclosed by extensions that ensure ’discrete’ behavior of the

loop.

The next sections illustrate how the various kinds of discrete loops are trans-
formed into Ada95.

8.1 Transformation of Monotonical Discrete Loops into Standard Ada

8.1.1 One-Dimensional Discrete Loops

The following discrete loop has been taken from the Heapsort algorithm given in

Figure 3, page 5.
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Heapsort: Source

1 discrete H:=Kin1l. N/2new H:=2«H | 2«H+1 loop
2 J = 2xH;

3 if J < N and then Arr(J) < Arr(J+1) then
4 J = J+1;

5 end if;

6 if V >= Arr(J) then

7 Arr(H) :=V,;

8 exit;

9 end if;

10 Arr(H) := Arr(J);

11 Arr(J) :=V;

12 H:=J;

13 end loop;

The following code represents the transformation of the loop.

Heapsort: Transformation

1 declare

2 type PSV_Type_1 is record

3 out_of_range : Boolean := false;
4 value : integer;

5 end record;

6 PSV1.1: PSV_Type_l;

7 PSV1.2: PSV Type_1;

8 h : integer := k;

9 Range_UB_1 : constant integer :==n / 2;

10 begin

11 while h in 1 .. Range_UB_1 loop

12 if not PSV1_1.0ut_Of_Range then

13 begin

14 PSV1_1.Value := 2 % h;

15 if PSV1_1.Value <= h then

16 raise WoopDefs. MONOTONIC_ERROR;
17 end if;

18 exception

19 when CONSTRAINT_ERROR =>
20 PSV1_1.0ut_Of _Range := True;
21 when others =>

22 raise;

23 end;

24 end if;

25 if not PSV1_2.0ut_Of_Range then

26 begin

27 PSV1_2Value:=2 xH + 1;
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28 if PSV1_2.Value <= h then

29 raise WoopDefs. MONOTONIC_ERROR;
30 end if;

31 exception

32 when CONSTRAINT_ERROR =>

33 PSV1_2.0ut_Of_Range := True;

34 when others =>

35 raise;

36 end;

37 end if;

38 -- Sequence of Statements:

39 j:=2xh;

40 if j < n and then arr (j) < arr (j + 1) then

41 j=]+1L

42 end if;

43 if v >= arr (j) then

44 arr (h) :==v;

45 exit;

46 end if;

47 arr (h) := arr (j);

43 arr (j) :==v;

49 h:=j;

50 if (PSV1.1.0ut_Of_Range or else PSV1_1.Value / = h)
51 and then (PSV1.2.0ut_Of_Range or else PSV1_2.Value / = h)
52 then

53 raise WoopDefs.SUCCESSOR_ERROR,;

54 end if;

55 end loop;

56 end;

The discrete loop has been replaced by a while loop with the condition
identi fier in discrete_subtype_de finition

The body of the discrete loop has not been touched during transformation (lines
39 - 49). The code before and afterwards corresponds to that ’extra work’ it takes

to make a while-loop behave in a ’discrete’ way. It consists of three steps:

1. Declare the types and objects needed.
2. Compute the possible successive values (done on a per iteration basis).

3. Check whether the new value of the loop variable is contained in the list of
possible successive values and whether it is still within its range (done on a

per iteration basis).
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The following paragraphs elaborate on the topics given above.

Step 1: Declaration of Types and Objects.

Type PSV_Type_1 is declared to hold possible successive values of the loop variable

(lines 2 - 5). It consists of two components:

e out_of range: A Boolean flag that is set if an iteration function computes a

value that is out of the range of the type of the loop variable.

e value: Object used to hold a possible successive value while the loop body

is executed. It is of the type of the loop variable.

For every iteration-function of a one-dimensional loop we declare an object of type
PSV_Type_1 (lines 6 and 7). Those objects are indexed as PSV1.i where i stands
for the i*" iteration function of the discrete_subtype_definition.

The loop variable is declared and initialized with the initial_value at line 8. Its
type has been derived by the algorithm in Figure 15.

Line 9 declares a so-called range_constant for the upper bound of the dis-
crete_subtype_definition. Range_constants are necessary in case of non-static bounds
to ensure evaluate-once semantics of the discrete_subtype_definition.

Note that for any declaration except the loop variable that we introduce it has
to be ensured that it does not hide some other entity declared in an enclosing

scope of the program.

Step 2: Computation of the Possible Successive Values.

A possible successive value has to be computed for each iteration function before
each iteration of the loop (conf. lines 12 - 24 and lines 25 - 37). The reason for the
exception handler (lines 18 - 23 and 31 - 36) is that we do not want an overflowing
iteration function to alter the flow of execution by means of a constraint_error
exception. If such an overflow occurs, we catch the corresponding exception and
exclude the iteration function from further evaluation by setting its out_of_range
flag. We also have to ensure that the values that an iteration function computes

are monotonically increasing (or decreasing if keyword ’reverse’ is present).

Step 3: Consistency Checks.

An iteration of a discrete loop cannot be called complete until we have ensured

that the loop variable has been assigned a value in the loop body that conforms to
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the iteration functions. This of course has to be done after the loop body has been
executed (conf. lines 50 & 51). If no iteration function predicted the value of the
loop variable, or if all iteration functions are already out of range, the exception

successor_error is raised.

8.1.2 Multi-Dimensional Discrete Loops

The following discrete loop has been taken from Euclid’s algorithm given in Figure

6, page 11.

Euclid’s Algorithm: Source

1 discrete (M,N) := (A,B) in reverse (1..A, 1..B)
2 new (M,N) := (N, M mod N) loop

3 H:=M;

4 M := N;

5 N := H mod N;

6 end loop;

Euclid’s Algorithm: Transformation

1 declare

2 type PSV_Type_1 is record

3 out_of_range : Boolean := false;
4 value : integer;

5 end record;

6 PSV1.1: PSV_ Type. 1;

7 PSV2_1 : PSV_Type_1;

8 m : integer := a;

9 n : integer := b;

10 Range_UB_1 : constant integer := a;

11 Range_UB_2 : constant integer := b;

12 begin

13 while (m in 1 .. Range_.UB_1) and then (n in 1 .. Range_.UB_2) loop
14 if not PSV1_1.0ut_Of_Range then

15 begin

16 PSV1_1.Value := n;

17 if PSV1_1.Value > m then

18 raise WoopDefs. MONOTONIC_ERROR,;
19 end if;

20 exception

21 when CONSTRAINT_ERROR =>

22 PSV1_1.0ut_Of _Range := True;

23 when others =>

24 raise;
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25 end;

26 end if;

27 if not PSV2_1.0ut_Of_Range then

28 begin

29 PSV2_1.Value := m mod n;

30 if PSV2_1.Value > n then

31 raise WoopDefs. MONOTONIC_ERROR;
32 end if;

33 exception

34 when CONSTRAINT_ERROR =>

35 PSV2_1.0ut_Of_Range := True;

36 when others =>

37 raise;

38 end;

39 end if;

40 if not (PSV1_1.0ut_Of_Range or else PSV2_1.0ut_Of_Range)
41 and then (PSV1_1.Value = m and then PSV2_1.Value = n)
42 then

43 raise WoopDefs. MONOTONIC_ERROR,;

44 end if;

45 - Sequence of Statements:

46 h:=m;

47 m = n;

48 n := h mod n;

49 if (PSV1.1.0ut_Of_Range or else PSV1_1.Value / = m) or else (
50 PSV2_1.0ut_Of_Range or else PSV2_1.Value / = n)
51 then

52 raise WoopDefs.SUCCESSOR_ERROR,;

53 end if;

54 end loop;

55 end;

The discrete loop has been replaced by a while loop with the condition
Vii<i<pim(r) identifier(L, i) in discrete_subtype_de finition(L, i)

Transformation of multi-dimensional discrete loops works pretty much the same
as transformation of their one-dimensional counterparts. Differences are due to

the fact that we are now dealing with aggregate variables.

Step 1: Declaration of Types and Objects.

Type PSV_Type_i is used to hold the successive values for parameter a; of the

loop variable. For every distinct type among the parameters one PSV _Type_i has
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to be declared. Since in this example both dimensions of the loop variable are of
the same type, we only need to declare one of them.

For every iteration function of every dimension of the loop one object of the
corresponding PSV_Type has to be declared. Those objects are indexed as PSVi_j
where i stands for the i** dimension and j for the j* iteration function of that
dimension. Lines 8 & 9 declare the parameters of the loop variable. Dimension
one as well as dimension two need a range constant for the upper bound of their
discrete_subtype_definitions (lines 10 & 11). Range_constants are indexed through
the dimension they belong to.

Step 2: Computation of the Possible Successive Values.

Computing the possible successive values and checking monotony can be done in
one step with one-dimensional monotonic discrete loops. Either the new value is
greater (smaller with reverse loops) than the loop variable or it is not. Monotony
in the case of multi-dimensional discrete loops however is a little trickier to check.
Definition 1.2.6 requires only one parameter of a possible successive value (p;)
to be greater (smaller if reverse loop) than the corresponding parameter of the
loop variable. The remaining parameters may keep their value. For this reason

monotony can only be checked in two passes:

e Pass one computes the possible successive values on a per-dimension basis
(lines 14 - 26 & lines 27-39 in this example). Monotony of a loop variable
(p;) cannot be ensured by examining only single parameters. Therefore the
goal of the first pass can only be to ensure that no parameter’s new value
is smaller (greater if reverse loop) then the current value of that parameter.

This corresponds to the first part of Definition 1.2.6:
VilgigDz’m(L(ai)) a; M b;
If this check fails exception monotonic_error is raised.
e Pass two deals with Part two of Definition 1.2.6:
dj :a;mb;

Lines 40 - 44 are devoted to this check. If all parameters of the loop variable
have kept their value, then the second part of Definition 1.2.6 is violated

and exception monotonic_error is raised accordingly. Note that this example
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contains only one possible successive value for the loop variable. Checks for

additional possible successive values can be ’ored’ to lines 40 & 41.

Step 3: Consistency Checks.

It must be ensured that the loop variable has been assigned a value during execu-
tion of the loop body that conforms to the iteration_function_specification. If the
iteration_function_specification failed to predict the new value of the loop variable

exception successor_error is raised (lines 49 - 53).

8.2 Transformation of Remainder Function Loops into Standard Ada

Discrete loops with remainder functions can (but need not) contain the declaration
of a loop variable. The following sections elaborate on the transformation of casel,
case2, and case3 remainder function loops. Since the transformation of the loop
variable’s part does not change with the different kinds of remainder function
loops, it is only explained in the first section. Thereafter only transformations
related to the remainder loop variable are explained and code-samples have been
stripped from code related to the loop variable to increase clarity and to reduce

space. The complete (unstripped) code samples can be found in Appendix B.

8.2.1 Casel Remainder Function Loops

The following example has been taken from Section 1.1.2 on page 6.

Binary Tree Search: Source

1 discrete Node_Pointer := Root

2 new Node_Pointer := Node_Pointer.Left | Node_Pointer.Right
3  with H := Height

4 new H=H -1 loop

— loop body:

— Here the node pointed at by node_pointer is processed
and node_pointer is either set to the left or right

—  successor.

— The loop is completed if node_pointer = null.

© 0 ~N O O
|

10 end loop;
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declare

type PSV_Type_1 is record
out_of_range : Boolean := false;
value : tree_pointer;

end record;

PSV1.1: PSV_Type_l;

PSV1.2: PSV Type_1;

node_ptr : tree_pointer := root;

h : natural := height;

Calculated_h : natural;

begin

loop
if h = 0 then
raise WoopDefs.LOOP_ERROR;
end if;
Calculated_h := h - 1;
if not PSV1_1.0ut_Of_Range then
begin
PSV1_1.Value := node_ptr.left;
exception
when CONSTRAINT_ERROR =>
PSV1_1.0ut_Of_Range := True;
when others =>

raise;
end;
end if;
if not PSV1_2.0ut_Of_Range then
begin
PSV1_2.Value := node_ptr.right;
exception

when CONSTRAINT_ERROR =>
PSV1.2.0ut_Of_Range := True;
when others =>
raise;
end;
end if;

Sequence of statements (suppressed for space considerations).

if Calculated_h >= h then
raise WoopDefs. MONOTONIC_ERROR,;
else
h := Calculated_h;
end if;
if (PSV1.1.0ut_Of_Range or else PSV1_1.Value / = node_ptr)
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44 and then (PSV1.2.0ut_Of_Range or else PSV1_2.Value / =
45 node_ptr)

46 then

47 raise WoopDefs. SUCCESSOR_ERROR,;

48 end if;

49 end loop;

50 end;

Transformations related to the Loop Variable

The code associated with the loop variable of a remainder function loop differs in

two important aspects from a monotonical discrete loop variable’s code:

e It cannot raise exception monotonic_error (lines 17 - 26 & 27 - 36).

e No discrete_subtype_definition can occur with remainder function loops. This
is the reason why remainder function loops have to be transformed into an
ordinary loop without an iteration_scheme as opposed to a while-loop in case

of monotonical discrete loops (confer line 12).

Apart from the above differences we code on the analogy of monotonical discrete
loops: Lines 2 - 5 declare a PSV_Type used to hold possible successive values.
Again we might need several types with multi-dimensional loops. Thereafter we
declare objects of the PSV_Type(s) (lines 6 - 7). The loop variable is declared
and initialized in line 8. After execution of the sequence_of statements we have
to ensure that one of the possible successive values contains the new value of the

loop variable. Otherwise exception successor_error is raised (lines 43 - 47).

Transformations related to the Remainder Loop Variable

Line 9 declares and initializes the remainder loop variable. Its type has been
derived by the algorithm depicted in Figure 22. Another object of that type is
needed for the value computed by the remainder function. For casel-remainder
function loops this object is named Calculated_<rem_identifier> (line 10).
Within the loop body it has to be ensured that the value of the remainder
loop variable has not reached zero. Otherwise exception loop_error is raised (lines
13 - 15). Thereafter we compute the value of the remainder_function (line 16).
After the sequence of statements it is checked whether this value is smaller than
the current value of the remainder loop variable. If this is the case the remainder
loop variable is assigned the value of the remainder function. Otherwise exception

monotonic_error is raised (lines 38 - 42).
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8.2.2 Case2- & Case3 Remainder Function Loops

This section’s example contains a template for the traversal of BB[a]-trees. Note
that its transformation has been stripped from code that relates to the loop vari-
able. A summary on BB[a]-trees as well as a non-stripped transformation of this

example can be found in Appendix B.

Template for Operations on BB[a]-trees: Source

1 discrete Node_Pointer := Root

2 new Node_Pointer := Node_Pointer.Left | Node_Pointer.Right
3  withR:= N - N = number of leaves of the tree

4 new R <= Floor ((1-Alpha)*R) and R >= Floor (AlphaxR)
5 loop

6 -- loop body (suppressed)

7 end loop;

Template for Operations on BB[a]-trees: Transformation

1 declare

2 r : natural := n;

3 Previous_UB : natural :=r;

4 Previous_LB : natural := r;

5 Calculated_UB : natural;

6 Calculated_LB : natural;

7 begin

8 loop

9 if r = 0 then

10 raise WoopDefs.LOOP_ERROR,;

11 end if;

12 Calculated_UB := floor ((1 - alpha) x r);

13 Calculated_LB := floor (alpha * r);

14 - Joop body (suppressed)

15 if Previous_UB = r then

16 if not (Calculated_UB < R

17 and then Calculated_LB <= Previous_LB
18 and then Calculated_LB <= Calculated_UB)
19 then

20 raise WoopDefs. MONOTONIC_ERROR;
21 else

22 r := Calculated_UB;

23 end if;

24 else

25 if not (Previous_.UB > Calculated_UB

26 and then Calculated_UB >=r

27 and then Calculated_LB <= Previous_LB
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28 and then Calculated_ LB <= R)

29 then

30 raise WoopDefs. MONOTONIC_ERROR,;
31 end if;

32 end if;

33 Previous_UB := r;

34 end loop;

35 end;

Line 2 declares and initializes the remainder loop variable. Its type has been
derived by the algorithm depicted in Figure 22. The remainder_function’s up-
per_bound_expression provides an upper bound for the value of the remainder loop
variable. Case3-loops provide an additional lower bound in their lower_bound-
_expression. In order to ensure monotony of the remainder loop variable during
subsequent iterations of the loop, it is necessary to compare the current value of
each bound to its previous value. Naturally this takes two objects per bound.
They are named Previous X and Calculated_ X where "X’ stands for 'UB’ (upper
bound) or 'LB’ (lower bound). Those objects are declared to be of the same type
as the remainder loop variable (lines 3 - 6).

Within the loop body it has to be ensured that the value of the remainder loop
variable has not reached zero. Otherwise exception loop_error is raised (lines 9 -
11). Thereafter (lines 12 & 13) the current values for the bounds are calculated.

Execution of the loop body (body suppressed due to space considerations)

leaves us with two possibilities:

e The value of the remainder loop variable has not been altered in the loop
body: Here the current value of the upper bound has to be smaller than
the value of the remainder loop variable (line 16). Since the value of the
remainder loop variable and the previous value of the upper bound are the
same in this case, it is implicitly checked that the current value of the upper
bound is smaller than the previous value of the upper bound. Additional

checks are introduced with case3-remainder function loops:

— The current value of the lower bound must not be greater than the
previous value of the lower bound (line 17).
— The interval [current value of lower bound, current value of upper

bound] must contain at least one element (line 18).

If one of this checks fails, exception monotonic_error is raised. Otherwise
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the remainder loop variable is assigned the current value of the upper bound
(line 22).

e The value of the remainder loop variable has been altered in the loop body:
Here it has to be checked explicitly that the current value of the upper bound
is smaller than the previous value of the upper bound (line 25). The current
value of the the loop variable has to be equal or smaller than the current
value of the upper bound (line 26). This ensures that the remainder loop vari-
able cannot do worse in the loop body than predicted by the upper bound.

Additional checks are introduced with case3-remainder function loops:

— The current value of the lower bound must not be greater than the

previous value of the lower bound (line 27).

— The interval [current value of lower bound, current value of remainder

loop variable] must contain at least one element (line 28).

If one of the above checks fails exception monotonic_error is raised (line 30).

Line 33 finally assigns the current value of the loop variable to the previous upper

bound. Note that right before this point the property
current value of upper bound > current value of remainder loop variable

holds in any case. If the second branch of the if-statement (lines 24 - 32) is taken,

even the property
current value of upper bound > current value of remainder loop variable

holds. If we would take the current value of the upper bound as the next iteration’s
previous value of the upper bound, a ’Byzantine’ remainder loop variable could

exploit the interval
[current value of upper bound, current value of remainder loop variable]

to go backwards without notice.

The consequence of this assignment statement is that if we talk about the
previous value of the upper bound, we actually mean the previous value of the
remainder loop variable. Another consequence is that by that means we save one
object that would be used to store the previous value of the remainder loop variable
otherwise. The initialization of the bounds with the initial_value of the remainder

loop variable (lines 3 & 4) conforms to this scheme.
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Chapter 9
CODE GENERATION

It is one of GNAT’s built-in abilities to dump the source code from the gener-
ated abstract syntax tree. Despite the fact that this feature was only meant for
debugging purposes, we climb the band wagon and exploit it for our needs. The
mode of operation is as follows: we let GNAT do all the work until it encounters a
discrete loop in the tree. This is the point were we take over in order to generate
what has been explained in Section 8. For the loop body and at the end of the
loop we return control to GNAT.

Package Sprint contains the code responsible for tree dumps. Two procedures

and one function are necessary to accommodate code-generation of discrete loops:

e (Generate_Name: Used to generate distinct names that are not occupied by

some other entity (see next section).

o Check_Contert_Clauses: Called on encountering a node N_Compilation_Unit.
Checks for the necessity of a context clause for package WoopDefs (see next

section but one).
o Write_Discrete_Loop: Outputs the source code for discrete loops.

Since all three functions depend on entities declared in the body of package Sprint,
they have to be declared as subunits instead of procedures within a child package

of Sprint.

9.1 The Name Generation Algorithm

It has been stated in Section 8 that the entities that are generated by WPP must
not hide entities of the same name. It is the purpose of the name generation
algorithm to find a name that is not already occupied by some other entity.

My first guess was to take the desired name and append the current system
time to it if the name is already visible. Trying this for about N + 1 times should
result in a distinct name (provided that any Ada program that we can think of
contains only N named entities). Since the other WOOP people did not like this

method, I resorted to something more common: If the desired name is already
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visible, suffix ” _wpp” is appended to it. If an entity of that name is also visible,
an index gets appended. This index is replaced by index’SUCC until a distinct
name is finally found.

Note that the names used in Section 8 are 'desired’ names throughout.

9.2 Package WoopDefs

The code that we generate depends heavily on three exceptions: monotonic_error,
successor_error and loop_error. They are declared in package WoopDefs. To have
them at hand, this package is added to a compilation unit’s context_clause if it is

not already visible.

woopdefs.ads

1 package WoopDefs is

2 MONOTONIC_ERROR : exception;
3 SUCCESSOR_ERROR : exception,
4 LOOP_ERROR : exception,;

5 end WoopDefs;

sprint-check_context_clauses.adb

1 procedure Check_Context_Clauses (Node : Node_ld) is

2  begin

3 if Needs_WoopDefs_Context_Clause (Node) then

4 Write_Indent;

5 Write_Str_With_Col_Check ("with WoopDefs;");

6 if Woop.Woop_Debug then

7 Write_Indent;

8 Write_Str ("-- BBdb: wpp includes package WoopDefs!");
9 end if;

10 end if;

11 end Check_Context_Clauses;

The flag Needs_WoopDefs_Context_Clause gets set during semantic analysis

on encountering a discrete loop provided that this package is not already visible.



81
9.3 Write_Discrete_Loop

This is really a big one. It does the code generation for all kinds of discrete loops. Tt
is called from within package Sprint which contains a huge case-statement over all
kinds of nodes that GNAT supports. Fiddling with the case_statement_alternative
for node N_Loop_Statement (node-kinds are sorted in alphabetical order within

Sprint) makes it call procedure Write_Discrete_Loop in case of a discrete loop:

sprint.adb

1

2 when N_Loop_Statement =>

3 Write_Indent;

4 — BB: If 'Node' contains a discrete loop, we use our own
5 - output-function:

6 if Present (lteration_Scheme (Node)) and then
7 Is_Discrete_Loop (Iteration_Scheme (Node)) then
8 Write_Discrete_Loop (Node);

9 else

10 -- Print common Ada95 loop statement.

11 end if;

12

The structure of procedure Write_Discrete_Loop is as follows:

1. Declarations of pointers to strings are used to hold the names of the entities
that are generated by WPP (lines 5 - 9).

e Previous_*, Calculated_*: Entities used to hold the bounds of a re-

mainder function loop (see Section 8.2).

o Implicit Type: Used for constrained discrete_subtype_definitions e.g.:
discrete ... 1in integer range .... In this case we have to cre-
ate a subtype with the specified constraint. The reason for this extra
work is that Ada does not allow constraint subtype_indications in iter-

ation_schemes (like while s in integer range ...).
e Range_UB, Range_LB: Constants that help enforce single evaluation of

the ’while’-iteration_scheme.

2. Procedures devoted to the generation of various parts of discrete loops. The

responsibilities of the different procedures are spelled out here. Line numbers
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refer to the transformation of the discrete loop of the BB[a]-tree example

(Appendix B). If the line numbers of some procedure are contained in those

of another one, this means that the procedure is called by the ’enclosing’

one.

Write_Discloop_Declarations: Depending on the 'Loop_Type’, declara-
tions related to the loop variable are generated for monotonical loops

or loops with remainder functions (lines 2-8).

Write_Remainder_Declarations: Generates additional declarations for

loops with remainder functions (lines 9 - 13).

Write_DiscLoop_Step1_And_Step2: Generates code for the calculation
of the possible successive values and checks for monotonic_error in case

of a monotonical discrete loop (lines 21-40).

Write_Monotonic_DiscLoop_Body: Generates the body of a monoton-
ical discrete loop. Returns control to GNAT for the generation of the

sequence_of_statements.

Write_Remainder_DiscLoop_Body: Generates the body of a remainder
function loop (lines 15 - 63). Returns control to GNAT for the genera-

tion of the sequence_of_statements.

Write_DiscLoop_Step3: Generate checks for exception successor_error
(lines 58-62).

3. Body of procedure write_discrete_loop.

sprint-write_discrete_loop.adb

1

S~ w N

0 ~N O O

10

separate (Sprint)

procedure Write_Discrete_Loop (N : Node_ld) is

| : constant Node_ld := Iteration_Scheme (N);
L : constant Node_ld := Loop_Parameter_Specification (I);

Previous_UB : String_Ptr;
Previous_LB : String_Ptr;
Calculated_UB : String_Ptr;
Calculated_LB : String_Ptr;

Implicit_Type : array (1 .. Dimensions (L)) of String_Ptr;

Range_UB : array (1 .. Dimensions (L)) of String_Ptr;
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11 Range_LB : array (1 .. Dimensions (L)) of String_Ptr;

12 procedure Write_DiscLoop_Declarations (LT : Loop_Type);

13 procedure Write_DiscLoop_Remainder_Declarations;

14 procedure Write_DiscLoop_Stepl_And_Step2 (LT : Loop_Type);
15 procedure Write_Monotonic_DiscLoop_Body;

16 procedure Write_Remainder_DisclLoop_Body;

17 procedure Write_DiscLoop_Step3;

18 -- Procedure bodies of above declarations
19 -- withheld due to space considerations!

20 begin -- Write_Discrete_Loop
21 if Is_Monotonical_Loop (L) then

22 Write_Indent_Str ("declare");

23 Write_DiscLoop_Declarations (M_Loop);
24 Write_Indent_Str ("begin");

25 Write_Monotonic_DiscLoop_Body;

26 Write_Indent_Str ("end;");

27 else

28 Write_Indent_Str ("declare");

29 if Has_Loop_Variable (L) then

30 Write_DiscLoop_Declarations (R_Loop);
31 end if;

32 Write_DiscLoop_Remainder_Declarations;
33 Write_Indent_Str ("begin");

34 Write_Remainder_DiscLoop_Body;

35 Write_Indent_Str ("end;");

36 end if;

37 end Write_Discrete_Loop;

The implementation of the body of procedure Write_Discrete_Loop is straight-
forward. It contains two branches, one for monotonical discrete loops, the other
for remainder function loops. Both start with the output of keyword ’declare’
in order to start the block_statement needed for declarations. Depending on the
type of loop the declarations are generated. Keyword ’begin’ marks the end of
the declarative_part and the beginning of the handled_sequence_of_statements of
the block_statement. The loop body is generated with a call to Write_Monotonic-
_DiscLoop_Body or Write_Remainder_DiscL.oop_Body. Keyword ’end’ followed by

a semi-colon ends code-generation of a discrete loop.
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Chapter 10
CONCLUSIONS AND FURTHER WORK

The development of the WOOP preprocessor made it possible to use the up to
this point solely theoretical concept of discrete loops in a real-world programming
environment. Although in principle there was no cause to favor any particular
programming language, it was the reliability and maintainability of Ada95 that
finally lead to the decision to build a preprocessor for that language. Another
important decision was to implement WPP by extending the source code of GNAT,
the Gnu Ada Translator. Although it took some time to become familiar with this
huge piece of software, it payed off in any respect. Since GNAT itself is written
entirely in Ada, its overall structure can be regarded as very modular. Coupling
between modules is really loose and one can apply modifications locally and need
not know all the details of the program as a whole.

Upper bounds for the number of iterations of discrete loops are calculated
by means of Mathematica, a commercial computer algebra package. Parts of
this preprocessor are therefore written in Mathematica’s internal programming
language.

In order to call Mathematica’s kernel from within WPP, an Ada to Mathematica
binding has been implemented.

Starting with the first infant versions of WPP numerous examples from vari-
ous books on algorithms (e.g. [SE88]) have been successfully programmed with
discrete loops.

The implementation of WPP also helped the definition of multi-dimensional
discrete loops. Code generation provided insight on run-time checks and their

possible avoidance.

Further Work

There is much room for further work with WPP, ideas for improvements on various

parts of the system are given below.

e The math-subsystem should be extended to support the generation of upper

bounds for symbolic values.
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Symbolic analysis should be performed on the loop body in order to obtain

more accurate bounds for multi-dimensional monotonical discrete loops.

The math-subsystem should be extended to support enumeration types and

modular types.

Run-time checks for exception successor_error and loop_error could be avoided

by means of symbolic analysis of the loop body.

Upper bounds for multi-dimensional discrete loops are computed on a per-
dimension basis. Due to possible mutual dependencies between different di-
mension’s loop parameters in the iteration_function_specification this should

be done for all dimensions at once.
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Appendix A
SYNTAX SUMMARY

This Annex summarizes the complete syntax of discrete loops. A description
of the notation used can be found in [Ada95](1.1.4).

loop_statement ::=
[loop_simple_name:]
[iteration_scheme] loop
sequence_of_statements

end loop [loop_simple_name];

iteration_scheme ::= while condition
| for for_loop_parameter_specification

| discrete discrete_loop_parameter_specification

for_loop_parameter_specification ::=

identifier in [reverse] discrete_subtype_definition

discrete_loop_parameter_specification ::=
monotonical_discrete_loop_parameter_specification
| discrete_loop_with_remainder_function_parameter_specification
| multi_dimensional_monotonical_discrete_loop_parameter_specification

| multi_dimensional_discrete_loop_with_remainder_function_parameter_spec

monotonical_discrete_loop_paramter_specification ::=
identifier := initial value in [reverse| discrete_subtype_definition

new identifier := list_of_iteration_functions

discrete_loop_with_remainder_function_parameter_specification ::=
[identifier := initial value
new identifier := list_of_iteration_functions]

with rem_identifier := initial_value new remainder_function



87

remainder_function ::=
rem_identifier = expression |
rem_identifier <= upper_bound_expression

[and rem_identifier >= lower_bound_expression]

multi_dimensional_monotonical_discrete_loop_parameter_specification ::=
identifier_aggregate := initial value_aggregate in [reverse] range aggregate

new identifier_aggregate := iteration_function_specification
identifier_aggregate ::= ( identifier { , identifier } )
initial_value_aggregate ::= ( initial_value { , initial_value } )

range_aggregate ::= ( [reverse] discrete_subtype_definition

{, [reverse]| discrete_subtype_definition} )

iteration_function_specification ::= iteration_function_aggregate

{| iteration_function_aggregate}

iteration_function_aggregate ::= (list_of_iteration_functions

{,list_of_iteration_functions})

multi_dimensional_discrete_loop_with_remainder_function_parameter_spec ::=
[identifier_aggregate := initial_value_aggregate
new identifier_aggregate := iteration_function_specification]

with rem_identifier := initial_value new remainder_function

remainder_function ::=
rem_identifier = expression |
rem_identifier <= upper_bound_expression

[and rem_identifier >= lower_bound_expression]
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identifier_aggregate ::= ( identifier { , identifier } )

initial_value_aggregate ::= ( initial_value { , initial_value } )

iteration_function_specification ::= iteration_function_aggregate

{| iteration_function_aggregate}

iteration_function_aggregate ::= (list_of iteration_functions

{,list_of_iteration_functions})

list_of_iteration_functions ::=

iteration_function { | iteration function}

iteration_function ::= expression
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Appendix B

EXAMPLES OF DISCRETE LOOPS AND THEIR
TRANSFORMATIONS

B.1 Weight-Balanced Trees

Weight-balanced trees have been introduced in [NR73]. They are treated in detail
in [ME84], the following summary is taken from [Bli94].

1. Let T be a binary tree with left subtree 7; and right subtree 7,.. Then
p(T) = [T|/IT| =1 = |T,|/|T|

is called the root balance of T. Here |T'| denotes the number of leaves of
tree T'.

2. Tree T is of bounded balance « if for every subtree T" of T':

a<p(Th<l-a

3. BBJq] is the set of all trees of bounded balance a.

If the parameter « satisfies 1/4 < o <1 — \/5/ 2, the operations Access, Insert,
Delete, Min, and DeleteMin take time O(Log N) in BB[a] trees. Here N is the
number of leaves in the BB[a]-tree. Some of the above operations can move the
root balance of some nodes on the path of search outside the permissible range
[a, 1 — a]. This can be "repaired” by single and double rotations (for details see
[ME4]).

BB[a]-trees are binary trees with bounded height. In fact it is proved in
[ME84] that

logN — 1
height(T) < —F————
cight( )_—log(l—a)

where N is the number of leaves in the BB[a|-tree T

+1,

The following template utilizes a discrete loop for the traversal of BB[a]-trees.

The remainder function operates on the number of leaves of the tree.
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Template for Operations on BB[a]-trees: Source

1
2
3
4
5
6
7

discrete Node_Pointer := Root
new Node_Pointer := Node_Pointer.Left | Node_Pointer.Right

with R := N - N = number of leaves of the tree
new R <= Floor ((1-Alpha)+R) and R >= Floor (AlphaxR)
loop
-~ loop body (suppressed)
end loop;

Template for Operations on BB[a]-trees: Transformation

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

declare

type PSV_Type_1 is record
out_of_range : Boolean := false;
value : tree_pointer;

end record;

PSV1.1: PSV_Type_l;

PSV1.2: PSV Type_1;

node_pointer : tree_pointer := root;

r : natural := n;
Previous_UB : natural :=r;
Previous_LB : natural :=r;

Calculated_UB : natural;
Calculated_LB : natural;
begin
loop
if r = 0 then
raise WoopDefs.LOOP_ERROR;
end if;
Calculated_UB := floor ((1 - alpha) * r);
Calculated_LB := floor (alpha * r);
if not PSV1_1.0ut_Of_Range then
begin
PSV1_1.Value := node_pointer.left;
exception
when CONSTRAINT_ERROR =>
PSV1_1.0ut_Of_Range := True;
when others =>
raise;
end;
end if;
if not PSV1_2.0ut_Of_Range then
begin
PSV1_2.Value := node_pointer.right;
exception
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53
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when CONSTRAINT_ERROR =>
PSV1_2.0ut_Of_Range := True;
when others =>
raise;
end;
end if;
-~ loop body (suppressed)
if Previous_UB = r then
if not (Calculated_UB < r and then Calculated_LB <=
Previous_LB and then Calculated_LB <= Calculated_UB) then
raise WoopDefs. MONOTONIC_ERROR,;
else
r := Calculated_UB;
end if;
else
if not (Previous_.UB > Calculated_UB
and then Calculated_UB >=r
and then Calculated_LB <= Previous_LB and then Calculated LB <= R)
then
raise WoopDefs. MONOTONIC_ERROR,;
end if;
end if;
Previous_UB := r;
if (PSV1_.1.0ut_Of_Range or else PSV1_1.Value / = node_pointer)
and then (PSV1_2.0ut_Of_Range or else PSV1.2.Value / = node_pointer)
then
raise WoopDefs. SUCCESSOR_ERROR;
end if;
end loop;
end;

B.2 Mergesort

The algorithm performs a bottom-up (non-recursive) merge sort. A detailed de-

scription of Mergesort, can be found in [SE88|.

Mergesort: Source

1
2
3
4
5

~N O

N : constant Integer := 77; --  Number of elements to be sorted.
subtype Index is Integer range 1 .. N;

type Gen_Sort_Array is array (Index range <>) of Integer;
subtype Sort_Array is Gen_Sort_Array (Index);

Target : Sort_Array;

procedure Merge_Sort (From, To : Index) is
M : constant Integer := (From+To)/2 + 1;
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9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

subtype Aux_Array is Gen_Sort_Array (M..To);
Aux : Aux_Array;
begin
if From = To then
return;
end if;
Merge_Sort (From, M-1);
Merge_Sort (M, To);
Aux := Target (M .. To);
discrete (P,Q,R) := (M-1, Aux’Last, To)

in reverse (From-1.. M-1, Aux'First .. Aux’'Last, From ..

new (P,Q,R) := (P-1, Q, R-1) | (P, Q-1, R-1)
loop
if P < From or else Target (P) < Aux (Q) then
Target (R) := Aux (Q);
Q:=QL
else
Target (R) := Target (P);
P .= P-1;
end if;
R := R-1;
end loop;
end Merge_Sort;

To)
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Mergesort: Transformation

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21

procedure mergesort (from, to : index) is
m : constant integer := (from + to) / 2 + 1;
subtype aux_array is gen_sort_array (m .. to);
aux : aux-array;
begin
if from = to then return; end if;
merge_sort (from, m - 1);
merge_sort (m, to);
aux := target (m .. to);
declare
type PSV_Type_1 is record
out_of_range : Boolean := false;
value : integer;
end record;
PSV1.1: PSV_Type_l;
PSV1.2: PSV_ Type_1;
PSV2_1 : PSV_Type_1;
PSV2_2 : PSV_Type_1;
PSV3.1: PSV_Type_1;
PSV3.2 : PSV_Type_1;
p : integer := m - 1;
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q : integer := aux’last;
r: integer := to;
Range_LB_1 : constant integer := from - 1;
Range_UB_1 : constant integer := m - 1;
Range_LB_2 : constant integer := aux'first;
Range_UB_2 : constant integer := aux'last;
Range_LB_3 : constant integer := from;
Range_UB_3 : constant integer := to;
begin
while (p in Range_ LB_1 .. Range_.UB_1) and then (q in
Range_ LB_2 .. Range_UB_2) and then (r in Range LB_3 ..
Range_UB_3)
loop
if not PSV1_1.0ut_Of_Range then
begin
PSV1_1.Value :=p - 1;
if PSV1_1.Value > p then
raise WoopDefs. MONOTONIC_ERROR,;
end if;
exception
when CONSTRAINT_ERROR =>
PSV1_1.0ut_Of Range := True;
when others =>
raise;
end;
end if;
if not PSV1_2.0ut_Of_Range then
begin
PSV1_2.Value := p;
if PSV1_2.Value > p then
raise WoopDefs. MONOTONIC_ERROR,;
end if;
exception
when CONSTRAINT_ERROR =>
PSV1_2.0ut_Of Range := True;
when others =>
raise;
end;
end if;
if not PSV2_1.0ut_Of_Range then
begin
PSV2_1.Value := q;
if PSV2_1.Value > q then
raise WoopDefs. MONOTONIC_ERROR;
end if;
exception
when CONSTRAINT_ERROR =>
PSV2_1.0ut_Of Range := True;
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when others =>
raise;
end;
end if;
if not PSV2_2.0ut_Of_Range then
begin
PSV2_2.Value :=q - 1;
if PSV2_2.Value > q then
raise WoopDefs. MONOTONIC_ERROR,;
end if;
exception
when CONSTRAINT_ERROR =>
PSV2_2.0ut_Of Range := True;
when others =>
raise;
end;
end if;
if not PSV3_1.0ut_Of_Range then
begin
PSV3_1.Value :=r - 1;
if PSV3_1.Value > r then
raise WoopDefs. MONOTONIC_ERROR;
end if;
exception
when CONSTRAINT_ERROR =>
PSV3_1.0ut_Of Range := True;
when others =>
raise;
end;
end if;
if not PSV3_2.0ut_Of_Range then
begin
PSV3_2.Value :=r - 1;
if PSV3_2.Value > r then
raise WoopDefs. MONOTONIC_ERROR;
end if;
exception
when CONSTRAINT_ERROR =>
PSV3_2.0ut_Of_Range := True;
when others =>
raise;
end;
end if;
if ( not (PSV1_1.0ut_Of_Range or else PSV2_1.0ut_Of_Range
or else PSV3_1.0ut_Of_Range) and then (PSV1_1.Value = p
and then PSV2_1.Value = q and then PSV3_1.Value = r))
or else ( not (PSV1_2.0ut_Of_Range or else PSV2_2
.Out_Of_Range or else PSV3_2.0ut_Of_Range) and then (
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119 PSV3_.2.Value = r))

120 then

121 raise WoopDefs. MONOTONIC_ERROR;

122 end if;

123 -~ Sequence of Statements:

124 if p < from or else target (p) < aux (q) then

125 target (r) := aux (q);

126 qg:=q-1

127 else

128 target (r) := target (p);

129 p:=p-1

130 end if;

131 r=r-1;

132 if ((PSV1.1.0ut_Of_Range or else PSV1_1.Value / = p)

133 or else (PSV2_1.0ut_Of_Range or else PSV2_1.Value / = q)
134 or else (PSV3_1.0ut_Of_Range or else PSV3_1.Value / = r))
135 and then((PSV1_.2.0ut_Of_Range or else PSV1_2.Value / = p)
136 or else (PSV2.2.0ut_Of_Range or else PSV2_2.Value / = q)
137 or else (PSV3.2.0ut_Of_Range or else PSV3_2.Value / = r))
138 then

139 raise WoopDefs. SUCCESSOR_ERROR;

140 end if;

141 end loop;

142 end;

143 end merge sort;

very unpressivel
30 loc =143 loc

Figure 27: Project leader commenting code size
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Appendix C
THE ADA TO MATHEMATICA BINDING

The MathLink functions built into Mathematica and included in the MathLink
library implement MathLink communication over various transport systems. The
Unix version supports communication via pipes or TCP. MathLink can be used
to exchange data between Mathematica and external programs, between a Math-
ematica kernel and a front-end, or between two kernels. The MathLink library
functions provide an interface between the elements of Mathematica expressions
and external data types. MathLink as well as Mathematica are implemented in
the C programming language. This binding is a thin binding which means that
it provides wrap-around Ada-functions that closely resemble they C-ish counter-
parts. It strongly depends on package Interfaces.C in order to import functions

from C and to convert data(types) between Ada and C.

C.1 Basic Pieces of MathLink Programming

Package MathLink (the Ada to Mathematica Binding).

MathLink library function for opening a link.

MathLink library functions for putting data to or getting data from link.

MathLink library functions for checking the type of incoming data elements.

e MathLink library function for closing a link.

Figure 28 contains a sample program that uses all of those elements.

C.1.1 Package MathLink

This package must be visible from all program units that use functions from the
MathLink library. It contains all data types and functions that are necessary for
MathLink programming. This package has been implemented according to the
declarations given in the C file 'mathlink.h’ that comes with any Mathematica

distribution containing MathLink. It makes use of pragma Import in order to
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make C-entities accessible from Ada. The code of package MathLink is given at
the end of this Appendix.

SO W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

with MathLink; use MathLink;

with Gnat.l0; use Gnat.l10;

with System; use System;

with Interfaces.C; use Interfaces.C;

with Interfaces.C.Pointers;

with Interfaces.C.Strings; use Interfaces.C.Strings;

procedure Ada_Addinteger is
package C renames Interfaces.C;

Env : MLEnvironment;
Lp : MLINK;
Err: C.nt; I1, 12 : Integer; Res : aliased C.Int :=0;
Argv : aliased Chars_Ptr_Array (0 .. 2) := (New_String ("ada_addinteger"),
New_String ("-linkname"),
New_String ("math -mathlink"));
begin
Env := MLlInitialize;
Lp := MLOpen (Argv’'Length, Argv’Access);
Put_Line ("Demo for the Ada - Mathematica Binding:");
Put ("First Integer: "); Get (I1);
Put ("Second Integer: "); Get (I12); New_Line;
Err := MLPutFunction (Lp, "Evaluate_Packet", 1);
err :== MLPutFunction (Lp, "Plus", 2);
Err := MLPutlnteger (Lp, C.Int (11));
Err := MLPutlnteger (Lp, C.Int (12));
Err := MIEndPacket (Lp);
Err := MLNextPacket (Lp);
while (Err / = RETURNPKT) loop
Err := MLNewPacket (Lp);
Err := MLNextPacket (Lp);
end loop;
Err := MLGetInteger (Lp, Res'Access);
Put ("Sum: "); Put (Integer (Res)); New_Line;
MLClose (Lp);
end Ada_Addinteger;

Figure 28: MathLink sample program (adding two integers)
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C.1.2 Link Variable Declarations

Every time a program opens a link, the connection function will return an object
of type MLINK. An MLINK variable is a pointer to the link data structure that is
created to manage communication over a MathLink connection. Every time such a
connection is accessed, the link has to be identified by passing the MLINK object

as the first argument to a MathLink function.

C.1.3 Opening a Link

MLOpen is a general function for opening a MathLink connection. Its command
line arguments may look familiar to C programmers. The sample program of
Figure 28 shows how this can be resembled with Ada (lines 12-14). External pro-
grams that launch Mathematica can do so by passing the command-line arguments
-linkname "mathcommand’ to MLOpen, where mathcommand is the appropriate
command string for starting a Mathematica kernel on the system (for Unix versions

this is usually 'math -mathlink’.

C.1.4 Put and Get Functions

The MathLink library has a large number of functions for writing data to or reading

it from a link. The following table shows a basic set of those functions.

MLPutInteger(link,inum) MLGetInteger(link,inum’access)
MLPutReal(link,rnum) MLGetReal(link,rnum’access)
MLPutString(link,char_array) MLGetString(link,access chars_ptr)
MLPutSympol(link,char_array) MLGetSymbol(link,access chars_ptr)

MLPutFunction(link,char_array,count) MLGetFunction(link,

access chars_ptr, count’access)

MLDisown functions should be used together with some of the MLGet func-
tions in order to manage memory properly. After a program has finished looking
at a character string returned by MLGetString, MLGetSymbol or MLGetFunc-
tion, it should call MLDisownString or MLDisownSymbol with the string as the

second argument.
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C.1.5 Moving from One Expression to the Next

When writing to a link, function MLEndPacket should be used any time after a
complete expression has been put on the link. When reading from a link, ML-
NewPacket can be called in the middle of an expression to discard the remainder
of that expression and go to the next one. MLNextPacket can be used at the

beginning of each incoming expression to determine what kind of packet it is.

C.1.6 Closing a MathLink Connection

MLClose(link) closes a link. A program must close all links it has opened before

terminating.

MathLink.ads

1  with System; use System;
with Interfaces.C; use Interfaces.C;
3 with Interfaces.C.Strings; use Interfaces.C.Strings;

4  package MathLink is

pragma Linker_Options ("-static"); -- Due to Wolfram’s missing Libelf!
pragma Linker_Options ("-1MLelf");
pragma Linker_Options ("-1m");
pragma Linker_Options ("-DSTANDALONEMLINK");
-- Due to the commands specified in GNAT's Makefile the above pragmas don't
0 - work from within WPP.

= O 00 N O O

11 package C renames Interfaces.C;

12 type MLINK is new System.Address;
13 type MLEnvironment is new System.Address;

14 NO_MLINK : constant MLINK := MLINK (Null_Address);

15 - Six types of expressions are supported by Mathematica:

16 MLTKSYM : constant C.Char := "Y’; -- symbol leaf node

17 MLTKSTR : constant C.Char :='S’; -- string leaf node

18 MLTKINT : constant C.Char :='I"; - integer leaf node

19 MLTKREAL : constant C.Char := 'R’; -- real leaf node

20 MLTKFUNC : constant C.Char := 'F’; -- non-leaf node

21 MLTKPCTEND : constant C.Char :='|"; - at end of top level expression
22 MLTKERROR : constant C.Char := C.Nul; -- (0) bad token

23 -~ The following constants represent different packet type codes which
24 - functions like MLNextPacket might return.
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49
50
51
52
53
54
55
56
57
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59
60
61
62
63
64
65
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67
68
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ILLEGALPKT : constant := 0;
CALLPKT : constant ;= 7;
EVALUATEPKT : constant := 13;
RETURNPKT : constant := 3;
INPUTNAMEPKT : constant := 8;
ENTERTEXTPKT : constant := 14;
ENTEREXPRPKT : constant := 15;
OUTPUTNAMEPKT : constant := 9;
RETURNTEXTPKT : constant := 4;
RETURNEXPRPKT : constant := 16;
DISPLAYPKT : constant := 11;
DISPLAYENDPKT : constant := 12;
MESSAGEPKT : constant := 5;
TEXTPKT : constant := 2;
INPUTPKT : constant := 1;
INPUTSTRPKT : constant := 21;
MENUPKT : constant := 6;
SYNTAXPKT : constant := 10;
SUSPENDPKT : constant := 17;
RESUMEPKT : constant := 18;
BEGINDLGPKT : constant := 19;
ENDDLGPKT : constant := 20;
FIRSTUSERPKT : constant := 128;
LASTUSERPKT : constant := 255;

MathLink errors:

When some problem is detected within MathLink, routines

will return a simple indication of failure and store

an error code internally. (For routines that have nothing

else useful to return, success is indicated by returning

non-zero and failure by returning 0.) MLerror() returns

the current error code; MLErrorMessage returns an English
language description of the error.

The error MLEDEAD is irrecoverable.

For the others, MLClearError() will reset the error code to MLEOK.

MLEUNKNOWN : constant := -1; -- unknown error

MLEOK : constant := 0; -- everything ok so far

MLEDEAD : constant := 1; -- link died, unrecoverable error
MLEGBAD : constant := 2; -- inconsistent data was read
MLEGSEQ : constant := 3; -- MLGet? out of sequence

MLEPBTK : constant := 4; -- MLPutNext() was passed a bad token
MLEPSEQ : constant := 5; -- MLPut? out of sequence

MLEPBIG : constant := 6; -- MLPutData given too much data
MLEOVFL : constant := 7; -- machine integer overflow

MLEMEM : constant := 8; -- out of memory

MLEACCEPT : constant := 9; -- failure to accept socket connection
MLECONNECT : constant := 10; -- a deferred connection is still

100
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unconnected
MLECLOSED : constant := 11; -- the other side closed the link, you
may still get undelivered data
MLEPUTENDPACKET : constant := 21; -- unexpected call of MLEndPacket,
currently atoms aren’t counted on
the way out so this error is raised
only when MLEndPacket is called in
the midst of an atom.
MLENEXTPACKET : constant := 22; -- MLNextPacket called while the
current packet has unread data
MLEUNKNOWNPACKET : constant := 23; -- MLNextPacket read in an unknown
packet head
MLEGETENDPACKET : constant := 24; -- unexpected end-of-packet token
MLEABORT : constant := 25; -- a put or get was aborted before
affecting the link

MLEINIT : constant := 32; -- the MathLink environment was not
initialized
MLEARGYV : constant := 33; -- insufficient arguments to open link

MLEPROTOCOL : constant := 34; -- protocol unavailable
MLEMODE : constant := 35; -- mode unavailable
MLELAUNCH : constant := 36; -- /launch unsupported
MLELAUNCHAGAIN : constant := 37; -- cannot launch the program again from
the same file
MLELAUNCHSPACE : constant := 38; -- insufficient space to launch program
MLENOPARENT : constant := 39; -- found no parent to connect to
MLENAMETAKEN : constant := 40; -- the linkname was already in use
MLENOLISTEN : constant := 41; -- the linkname was not found listening
MLEBADNAME : constant := 42; -- the linkname was missing or not in
the proper form
MLEBADHOST : constant := 43; -- the location was unreachable or not
in the proper form

function MLClearError (Lp : MLINK) return C.Int;
pragma Import (C, MLClearError, "MLClearError");

procedure MLClose (Lp : MLINK);
pragma Import (C, MLClose, "MLClose");

function MLConnect (Lp : MLINK) return C.Int;
pragma Import (C, MLConnect, "MLConnect");

procedure MLDeinitialize (Env : MLEnvironment);
pragma Import (C, MLDeinitialize, "MLDeinitialize");

procedure MLDisownString (Lp : MLINK; Ptr : chars_ptr);
pragma Import (C, MLDisownString, "MLDisownString");
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procedure MLDisownSymbol (Lp : MLINK; Ptr : chars_ptr);
pragma Import (C, MLDisownSymbol, "MLDisownSymbol");

function MLEndPacket (Lp : MLINK) return C.Int;
pragma Import (C, MLEndPacket, "MLEndPacket");

function MLError (Lp : MLINK) return C.Int;
pragma Import (C, MLError, "MLError");

function MLErrorMessage (Lp : MLINK) return chars_ptr;
pragma Import (C, MLErrorMessage, "MLErrorMessage");

function MLFlush (Lp : MLINK) return C.Int;
pragma Import (C, MLFlush, "MLFlush");

function MLGetArgCount (Lp : MLINK; L : access C.Long) return C.Int;
pragma Import (C, MLGetArgCount, "MLGetArgCount");

function MLGetDouble (Lp : MLINK; F : access C.Double) return C.Int;
pragma Import (C, MLGetDouble, "MLGetDouble");

function MLGetInteger (Lp : MLINK; | : access C.Int) return C.Int;
pragma Import (C, MLGetInteger, "MLGetInteger");

function MLGetNext (Lp : MLINK) return C.Char;
pragma Import (C, MLGetNext, "MLGetNext");

function MLGetReal (Lp : MLINK; R : access C.Double) return C.Int;
pragma Import (C, MLGetReal, "MLGetReal");

function MLGetString (Lp : MLINK; Ptr : access chars_ptr) return C.Int;
pragma Import (C, MLGetString, "MLGetString");

function MLGetSymbol (Lp : MLINK; Ptr : access chars_ptr) return C.Int;
pragma Import (C, MLGetSymbol, "MLGetSymbol");

function MLInitialize (NULL_PTR : System.Address := System.Null_Address)
return MLEnvironment;
pragma Import (C, MLInitialize, "MLInitialize");

function MLNewPacket (Lp : MLINK) return C.Int;
pragma Import (C, MLNewPacket, "MLNewPacket");

function MLNextPacket (Lp : MLINK) return C.Int;
pragma Import (C, MLNextPacket, "MLNextPacket");

function MLOpen (Argc : C.Int; Argv : access chars_ptr_array) return MLINK;
pragma Import (C, MLOpen, "MLOpen");
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function MLPutFunction (Lp : MLINK; Str : char_array; Count : C.Long)
return C.Int;
pragma Import (C, MLPutFunction, "MLPutFunction");

function MLPutlnteger (Lp : MLINK; I : C.Int) return C.Int;
pragma Import (C, MLPutInteger, "MLPutInteger");

function MLPutString (LP : MLINK; Str : char_array) return C.Int;
pragma Import (C, MLPutString, "MLPutString");

function MLPutSymbol (Lp : MLINK; Str : char_array) return C.Int;
pragma Import (C, MLPutSymbol, "MLPutSymbol");

function MLReady (Lp : MLINK) return C.Int;
pragma Import (C, MLReady, "MLReady");

156 end MathLink;
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Appendix D

BONUS PROOFS

Proof 1

Theorem 4.2 of [Bli94] gives an upper bound for an iteration function f(z) =

[az + (], a >1, > 0. The corresponding lower bound is

N(a—1 1
log,, (a a—?-;ﬂ—i_ +1f.

Proof. We clearly have
f@)=laz+ Bl <ax+p+1
which leads to the iteration sequence
Ek =1

ke = f()=a+p4+1
ks = fla+B+1)=a?+a(f+1)+4+1

Lo 2B+ 1) .+ B+ 1=
(B D@0t ])
L (§ 4 1) e etad ) ecd)

. (a—1)
v—1 + (/B_"_ 1)& -1

a—1

|
2 R & R

Thus )
k, < o'+ (B+1)E—L =

a—1
— au—l a—1464+1  B+1 —
a—1 a—1
latf _ B+l

J— V—
= a—1 a—1

To estimate the length of the iteration sequence k, we must have

O{V_la_—i—ﬁ _ w > N
o ( aﬁl B+1 N(a—1)+8+1
v—1 N(a— +1 _ o—
Q >N(a+ﬁ) ;— atB ath
v a—1)+5+1
ar > ( o+f3 )a

Taking logarithms we get

Na—-1)+5+1

+1 O
a+ [

v > log,
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Proof II

Theorem 4.3 of [Bli94] gives an upper bound for an iteration function f(z) =
[az” 4+ 3], a>1, 3> 0, v > 1. The corresponding lower bound is

[logv((v —1)logy, 51 N+1) + lJ :
Proof. We clearly have

f(x) =Taz" +f] < az” +f+1.
Thus &k, <[, where

l1:]_
L1 =ol}+ 3 +1=aly (1+2)

Taking logarithms and setting m, = log [, we obtain

my =0
my+1 = ym, +log a+ log (1 + i—g)

Since [7 > 0 we have m, < n, where

nq =0
Nyy1 = Yy, +log a+ log (%ﬁ“)
= 7n, + log (a%ﬂﬂ)

= yn, +log (a+ B +1)

Setting log (v + f+ 1) = d we get

n, = 0
ng = d
ng = vyd+d=d(y+1)
ng = Yd+yd+d=d(*+y+1)
n— _ nfl_l
ny = d(y" 4.y 4 1) =d
Therefore
’)’V_l—l
nyzilog(a+ﬁ+1)

To estimate the length of the iteration sequence we must have

v—1_

k, < (a—|—ﬂ—i—1)77—11 >N
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Taking logarithms we obtain

=1
= log,ipi1 NV

o> (v =1)log s N +1
v > ((r=Dlogatg N +1)y

Taking logarithms once more we get

v>log, ((y—1)log,, sy N+1)+1 O

Proof II1

For an iteration function f(x) = x + 3, > 0 with initial value k; = K the length

of the corresponding loop sequence is bounded above by

{N - K N 1J
3 .
Proof:
k=K
ke = f(K) =K + 5
Thus

k, =K+ (v—-1)p

To estimate the length of the corresponding remainder loop sequence we must

have
K+(wv-1)p>N

which is equivalent to
N-K

v > +1

which holds YK € Z,YN € Z, N > K.O

It also works for monotonical discrete loops with keyword reverse and iteration-
functions f(z) =z -3, 5> 0.
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