
DIPLOMA THESISThe WOOP PreprocessorAn Implementation of Discrete Loops in Ada95.carried out at the Department of Automationof the Vienna University of Technologyunder guidance ofUniv.Doz. Dr. Ulrich SchmidandUniv.Ass. Dr. Johann BliebergerbyBernd BurgstallerMatr.Nr. 8925663Mitterberg 118665 Langenwang
November 29, 1996

WIDMUNGEines Nachts hatte ich einen Traum-mir tr�aumte, da� ich mit dem HERRN am Ufer des Meeres entlangging.Am Himmel ammten Szenen aus meinem Leben auf.Bei jeder Szene entdeckte ich zwei Paar Fu�abdr�ucke im Sand,ein Paar von mir, das andere vom HERRN.Als die letzte Szene au�ammte,sah ich mich um nach meinen Fu�spuren im Sand.Ich bemerkte, da� oftmals auf meinem Lebenspfadnur eine Fu�spur zu sehen war.Und es �el mir auf, da� dies immer w�ahrend derdunklen und traurigen Zeiten meines Lebens geschehen war.Dies bewegte mich sehr, und ich fragte den HERRN,weshalb das so sei."HERR, als ich mich entschlo�, dir nachzufolgen,versprachst du mir, meinen ganzen Weg mit mir zu gehen.Nun habe ich aber bemerkt, da� in den schwersten Zeitenmeines Lebens nur ein Paar Fu�abdr�ucke zu sehen ist.Ich verstehe nicht, warum du mich allein gelassen hast,als ich dich am allermeisten n�otig hatte." Der HERR antwortete:"Mein teures, liebes Kind,ich liebe dich und w�urde dich nie, nie allein gelassen habenw�ahrend den Zeiten des Leidens und der Anfechtung.Wenn du nur ein Paar Fu�abdr�ucke gesehen hast,so war das deshalb,weil ich dich getragen habe."Diese Arbeit widme ich meinen Eltern, die mich fortw�ahrend unterst�utzten undmir damit erst dieses Studium erm�oglicht haben.In Dankbarkeit,Euer Sohn Bernd. i

ii
ACKNOWLEDGMENTSI wish to thank Johann Blieberger, my supervisor, for his constant enthusiasmand guidance during the course of this work.I would also like to thank my WOOP team-mates for their interesting commentsand insights and for the fun we had, in particular: Bernhard Scholz, Roland Lieger,Astrid Koizar, and Mario Weilguni.Thanks also to the GNAT team, especially Prof. Robert Dewar, for providinginsight on some of the more sophisticated details of GNAT.I also want to thank my brother J�org for the countless hours and days we spentbiking, skiing and hiking in the mountains of Styria.Finally a big thank you to everyone at Haus Technik for putting up with mydrumming during all those years.

AbstractThe WOOP PreprocessorAn Implementation of Discrete Loops in Ada95.by Bernd BurgstallerWOOP, as an acronym forWorst-Case Performance of Object-Oriented Programs,is a research project at the Vienna University of Technology that is aimed at thedetermination of the timing behavior of software for real-time systems1. One ofWOOP's early achievements was the introduction of the so-called discrete loopstatement [Bli94], a loop construct which narrows the gap between general loops(e.g. repeat, while) and for-loops. Like for- but contrary to while-loops, discreteloops are known to complete in any case, but they provide much greater semanticpower. Furthermore it is possible to determine the number of iterations of adiscrete loop, which can be an extremely di�cult task with general loops.In order to utilize this new and up to this point solely theoretical concept fora real-world programming environment, it was necessary to provide a translationmechanism that would enable programmers to use discrete loops in their code.Although in principle there was no cause to favor any particular programminglanguage, it was the reliability and maintainability of Ada95 that �nally lead tothe decision to build a preprocessor capable of translating discrete loop augmentedAda95 code into standard Ada95 in a way that would preserve the semantics ofdiscrete loops.The goal of this thesis is to present the implementation of this preprocessor.It is in fact built on top of the source code of GNAT, the Gnu Ada Translator2,because its analytical tasks blend well with the analysis that GNAT performson its input. Calculations aimed at the estimation of upper bounds for discreteloops are carried out with help of Mathematica3, a commercial computer algebrapackage. Parts of this preprocessor are therefore written in Mathematica's internalprogramming language. An Ada to C interface has also been implemented in order1Project WOOP is supported by the Austrian Science Foundation (FWF) under grantP10188-MAT.2GNAT is an Ada95 compiler that has been developed at New York University and its sourcecode is distributed under terms of the GNU General Public License ([GPL91]).3Mathematica is a trademark of Wolfram Research

to call Mathematica's kernel from within this preprocessor. Calculated upperbounds are inserted into the generated code and represent viable information fordetermining a program's worst-case timing behavior.

Note To The Reader On Reading Mathematical EquationsDespite the well-known fact that every mathematical formula cuts down the read-ership by half, I had to resort to their use at some places in this book. If youare a reader who �nds any formula intimidating (and most people do), then Irecommend a procedure that I normally adopt myself when such an o�ending linepresents itself. The procedure is, more or less, to ignore that line completely andto skip over to the next actual line of text! Well, not exactly this; one shouldspare the poor formula a perusing, rather than a comprehending glance, and thenpress onwards. After a little, if armed with new con�dence, one may return tothat neglected formula and try to pick out some salient features. The text itselfmay be helpful in letting one know what is important and what can safely be ig-nored about it. If not, then do not be afraid to leave an o�ending formula behindaltogether[PE].

vi
ContentsChapter 1 Introduction 11.1 Discrete Loops : 11.1.1 Monotonical Discrete Loops : : : : : : : : : : : : : : : : : 31.1.2 Discrete Loops with Remainder Functions : : : : : : : : : : 61.2 Multi-Dimensional Discrete Loops : : : : : : : : : : : : : : : : : : 91.2.1 Multi-Dimensional Monotonical Discrete Loops : : : : : : : 91.2.2 Multi-Dimensional Discrete Loops with a Remainder Function 14Chapter 2 Implementation Considerations 172.1 Extending the GNAT System : 182.2 A Math-Package to Count On : 192.3 What Name? : 20Chapter 3 Shaking the Tree 213.1 The Internal Representation of the Abstract Syntax Tree : : : : : 213.1.1 De�nition of a Single Tree Node : : : : : : : : : : : : : : : 213.1.2 Extended Nodes : 223.1.3 Abstract Interface to the Abstract Syntax Tree : : : : : : : 233.2 Basic Tree Structure : 243.3 WPP-Speci�c Leaves : 263.3.1 Constructs Related to the Loop Variable : : : : : : : : : : 273.3.2 Constructs Related to the Remainder Loop Variable : : : : 303.3.3 Connecting Subtrees to the Abstract Syntax Tree : : : : : 303.3.4 Flags : 31Chapter 4 The Scanner 34Chapter 5 Syntactic Analysis 38Chapter 6 Semantic Analysis 406.1 Semantic Analysis of One-Dimensional Monotonical Discrete Loops 40

vii6.2 Semantic Analysis of Multi-Dimensional Monotonical Discrete Loops 416.3 Semantic Analysis of Discrete Loops with Remainder Functions : : 446.3.1 Semantic Analysis of the Loop Variable : : : : : : : : : : : 446.3.2 Semantic Analysis of the Remainder Loop Variable : : : : : 466.4 Pragma Restrictions (No General Loops) : : : : : : : : : : : : : : 47Chapter 7 Estimating the Number of Iterations of Discrete Loops 557.1 Methods of Choice : 557.1.1 Solving Involved Recurrence Relations : : : : : : : : : : : 557.1.2 Theoretical Foundations for Certain Iteration- and Remainder-Functions : 567.1.3 Extensive Enumeration : 587.2 The Mathematical Subsystem of WPP : : : : : : : : : : : : : : : : 597.2.1 Implementation : 59Chapter 8 Transformation of Discrete Loops into Standard Ada 668.1 Transformation of Monotonical Discrete Loops into Standard Ada 668.1.1 One-Dimensional Discrete Loops : : : : : : : : : : : : : : : 668.1.2 Multi-Dimensional Discrete Loops : : : : : : : : : : : : : : 708.2 Transformation of Remainder Function Loops into Standard Ada : 738.2.1 Case1 Remainder Function Loops : : : : : : : : : : : : : : 738.2.2 Case2- & Case3 Remainder Function Loops : : : : : : : : : 76Chapter 9 Code Generation 799.1 The Name Generation Algorithm : : : : : : : : : : : : : : : : : : 799.2 Package WoopDefs : 809.3 Write Discrete Loop : 81Chapter 10 Conclusions and Further Work 84Appendix A Syntax Summary 86Appendix B Examples of Discrete Loops and their Transformations 89B.1 Weight-Balanced Trees : 89B.2 Mergesort : 91

viiiAppendix C The Ada to Mathematica Binding 96C.1 Basic Pieces of MathLink Programming : : : : : : : : : : : : : : : 96C.1.1 Package MathLink : 96C.1.2 Link Variable Declarations : : : : : : : : : : : : : : : : : : 98C.1.3 Opening a Link : 98C.1.4 Put and Get Functions : 98C.1.5 Moving from One Expression to the Next : : : : : : : : : : 99C.1.6 Closing a MathLink Connection : : : : : : : : : : : : : : : 99Appendix D Bonus Proofs 104Bibliography 107

1
Chapter 1INTRODUCTIONThe most signi�cant di�erence between real-time systems and other computersystems is that the system behavior must not only be correct but the result of acomputation must be available within a prede�ned deadline. It has turned outthat a major progress in order to guarantee the timeliness of real-time systems canonly be achieved if the scheduling problem is solved accordingly. Most schedul-ing algorithms assume that the runtime of a task is known a priori. Thus theworst-case performance of a task plays a crucial role. Determining the numberof iterations of general loops is one of the most di�cult tasks when estimatingthe timing behavior of a program. Most researchers try to ease the task of es-timating the number of general loop iterations by forbidding general loops, i.e.,by forcing the user to supply constant upper bounds for the number of iterations.Another approach is to let the user specify a time bound within which the loophas to complete. Project WOOP follows a di�erent approach: The gap betweengeneral loops and for-loops is narrowed by de�ning discrete loops. These loopsare known to complete and are easy to analyze (especially their numbers of iter-ations) and capture a large part of applications which otherwise would have beenimplemented by the use of general loops. These include Heapsort, a bottom-upversion of Mergesort and Euclid's Algorithm to compute the greatest common di-visor of two positive numbers. Furthermore all divide and conquer algorithms canbe handled by discrete loops, e.g. binary search and tree traversing algorithmssuch as weight-balanced trees (BB[�]-trees) or AVL-trees.1.1 Discrete LoopsThe following is a brief summary on Discrete Loops that provides the necessaryinsight to understand their implementation. The exact theoretical treatment canbe found in [Bli94].The syntax of discrete loops is described using the notation in [Ada95](1.1.4).In contrast to for-loops, discrete loops allow for a more complex dependency

2between two successive values of the loop-variable. In fact an arbitrary functionaldependency between two successive values of the loop-variable is admissible, butthis dependency must be constrained in order to ensure that the loop completesand to determine the number of iterations of the loop. Which values are assignedto the loop-variable is completely governed by the loop-body. The loop-header,however, contains a list of all those values that can possibly be assigned to theloop-variable during the next iteration. In fact each item of this list of values isa function of the loop-variable. A simple example is shown in Figure 1. In thisexample the loop-variableK will assume the values 1,2,4,8,16,32,64,.. until �nallya value greater than N would be reached.discrete K in 1 .. N new K := 2�K loop-- loop bodyend loop;Figure 1: A simple example of a discrete loopOf course the e�ect of this example can also be achieved by a simple for-loop,where the powers of two are computed within the loop-body. A more complexexample is depicted in Figure 2. In this example the loop-variable K can assumethe values 1,2,4,9,18,37,75,... until �nally a value greater thanN would be reached.discrete K in 1 .. N new K := 2�K j 2�K+1 loop-- loop bodyend loop;Figure 2: A more complex example of a discrete loopBut it is also possible that K follows the sequence 1,3,6,13,26,52,105,.... Herethe same e�ect can not be achieved by a for-loop, because the value of the loop-variable cannot be determined exactly before the loop-body has been completelyelaborated.The reason for this is the indeterminism involved in discrete loops: Clearly theloop-body determines exactly which of the given alternatives is chosen, thus onecan say that there de�nitely is no indeterminism involved. On the other hand, froman outside view of the loop one cannot determine which of the alternatives will bechosen, without having a closer look at the loop-body or without exactly knowingwhich data is processed by the loop. It is this "outside-view" indeterminism thatis meant here. Furthermore this indeterminism enables us to estimate the number

3of loop iterations quite accurately without having to know all the details of theloop body.
1.1.1 Monotonical Discrete LoopsMonotonical Discrete Loops can be characterized best by the sequence of valuesthe loop variable can take: if this sequence is strictly monotonically increasing (e.g.Figure 1), we speak of so-called monotonically increasing discrete loops. In thecase of monotonically decreasing sequences we speak of monotonically decreasingdiscrete loops. The syntax of a monotonical discrete loop is given in conjunctionwith the syntax of for- and while-loops below.loop statement ::=[loop simple name:][iteration scheme] loopsequence of statementsend loop [loop simple name];iteration scheme ::= while condition| for for loop parameter speci�cation| discrete discrete loop parameter speci�cationfor loop parameter speci�cation ::=identi�er in [reverse] discrete subtype de�nitiondiscrete loop parameter speci�cation ::=identi�er := initial value in [reverse] discrete subtype de�nitionnew identi�er := list of iteration functionslist of iteration functions ::=iteration function f | iteration functiongiteration function ::= expression

4Semantics of Monotonical Discrete LoopsFor a loop with a discrete iteration scheme, the loop parameter speci�cationdeclares a loop parameter, which is an object whose subtype is de�ned by the ini-tial value, the discrete subtype de�nition and the list of iteration functions. Notethat type information is collected from the list of iteration functions although itis possible for the loop parameter to occur within the list of iteration functions.The loop parameter is required to be of a discrete type.Elaboration of the discrete loop parameter speci�cation creates the loop para-meter and elaborates the inital value and the discrete subtype de�nition. If thediscrete subtype de�nition de�nes a subtype with a null range, execution of theloop is complete.The optional keyword reverse de�nes a loop to be monotonically decreasing;if it is missing, the loop is considered to be monotonically increasing. Within thesequence of statements, the loop variable behaves like any other variable, i.e., itcan be used on both sides of an assignment statement.Before the sequence of statements is executed, the list of iteration functions isevaluated to produce a list of possible successive values. It is also checked whetherall of these values are greater than the value of the loop variable if the keywordreverse is missing, or whether they are smaller than the value of the loop variableif reverse is present. If one of these checks fails, the exceptionmonotonic erroris raised.After the sequence of statements has been executed, it is checked whether thevalue of the loop variable is contained in the list of possible successive values. Ifthis check fails, the exception successor error is raised.If the value of the loop variable is still within the discrete range stated in theloop header, the loop is iterated (at least) once more. If it is not within the range,the loop completes.These semantics ensure that such a loop always completes, either because thevalue of the loop variable is outside the given range or because one of the abovechecks fails.A lot of these runtime checks can be avoided by ensuring at compile time thatthe iteration functions are monotonical functions, or by means of data-ow analysisin order to make sure that successor error will never be raised. Moreover wemight even detect the number of iterations of the loop, which clearly depends onthe initial value of the loop variable, on the discrete subtype de�nition, and on thelist of iteration functions.

5The following code shows an implementation of Heapsort using a discrete loop:
1 N : constant Positive := ??; -- Number of elements to be sorted.2 subtype Index is Positive range 1 .. N;3 type Sort Array is array(Index) of Integer;4 procedure Heapsort (Arr : in out Sort Array) is5 N : Index := Arr'Length;6 T : Index;7 procedure Siftdown(N,K : Index) is8 J : Index;9 V : Integer;10 begin11 V := Arr(K);12 discrete H := K in 1 .. N=2 new H := 2�H j 2�H+1 loop13 J := 2�H;14 if J < N and then Arr(J) < Arr(J+1) then15 J := J+1;16 end if ;17 if V >= Arr(J) then18 Arr(H) := V;19 exit;20 end if ;21 Arr(H) := Arr(J);22 Arr(J) := V;23 H := J;24 end loop;25 end Siftdown;26 begin -- Heapsort27 for K in reverse 1 .. N=2 loop28 Siftdown(N,K);29 end loop;30 for M in reverse 2 .. N loop31 T := Arr(1);32 Arr(1) := Arr(M);33 Arr(M) := T;34 Siftdown(M-1,1);35 end loop;36 end Heapsort; Figure 3: Heapsort

61.1.2 Discrete Loops with Remainder FunctionsAlthough monotonical discrete loops are applicable to many problems where ageneral loop would have to be used otherwise, it is sometimes not desirable or evennot possible to have the loop variable follow a monotonical iteration sequence.Many times this does not mean that the problem under consideration does notimpose some upper bound on the number of iterations of the loop.To be able to treat such cases, the concept of the remainder loop variablehas been introduced. The remainder loop variable draws its name from the factthat it usually describes the amount of work that remains to be done at somestage of the loop1. The value of the remainder loop variable is computed duringeach iteration by the so-called remainder function, which must be a monotonicallydecreasing function. By that means we are able to guarantee upper bounds as wellas termination in a similar way as for monotonical discrete loops.Since the remainder loop variable must be of a discrete type, this restrictionis not imposed on the loop variable anymore. Therefore the programmer has thefreedom to iterate over whatever he chooses except limited [Ada95](7.5) or abstract[Ada95](3.9.3) types, which is considered a major advantage over the traditionalfor loop. 1 discrete Node Pointer := Root2 new Node Pointer := Node Pointer.Left j Node Pointer.Right3 with H := Height4 new H = H - 1 loop5 { loop body:6 { Here the node pointed at by node pointer is processed7 { and node pointer is either set to the left or right8 { successor.9 { The loop is completed if node pointer = null.10 end loop; Figure 4: Binary Tree TraversalFigure 4 shows an example of a discrete loop with a remainder function. Itspurpose is the traversal of a binary tree. The loop variable points to the currentnode, whereas the remainder loop variable describes the height of the remainingsubtree.1e.g. the number of remaining data items

7Syntactical and Semantical Issues of Discrete Loops with RemainderFunctionsThe syntax of discrete loops with remainder functions di�ers from the syntax givenin Section 1.1.1 only in its loop parameter speci�cation. Therefore only this partis given here. A comprehensive syntax for all kinds of discrete loops can be foundin appendix A.discrete loop with remainder function parameter speci�cation ::=[identi�er := initial valuenew identi�er := list of iteration functions]with rem identi�er := initial value new remainder functionremainder function ::=rem identi�er = expression |rem identi�er <= upper bound expression[and rem identi�er >= lower bound expression]For a discrete loop with a remainder function, the corresponding loop parameterspeci�cation is the optional declaration of the loop variable with the given iden-ti�er. The type of the loop variable is derived from the initial value and thelist of iteration functions. It can be anything but a limited or an abstract type.The initial value of the loop variable is given by initial value. Within the sequenceof statements, the loop variable behaves like any other variable, i.e., it can be usedon both sides of an assignment statement.After the keyword with the remainder loop variable is declared by the givenidenti�er (rem identi�er). It must be of subtype natural or of a subtype witha static lower bound of zero that has natural among its ancestors. The rea-minder function itself may have three di�erent forms:Case 1: If the remainder function can be determined exactly, it is given by an equa-tion.Case 2: If only an upper bound of the remainder function is available, it is given byan inequality (<=).Case 3: If in addition to (2) a lower bound of the remainder function is known, itcan be given by an optional inequality (>=). The second inequality mustbe separated from the �rst by the keyword and.

8In case (1) the remainder loop variable behaves like a constant within the sequenceof statements. In cases (2) and (3) the remainder loop variable behaves like anyother variable within the sequence of statements. If the value of the remainderloop variable is changed during execution of the statements, we call the originalvalue previous value and the new value current value.Before the sequence of statements is executed, the list of iteration functions isevaluated if a loop variable is given. This results in a list of possible successivevalues. The remainder function or its bounds (depending on which are given bythe programmer) are also evaluated.After the sequence of statements has been executed, it is checked whether theloop variable is contained in the list of possible successive values. If this checkfails, the exception successor error is raised.Thereafter the remainder loop variable is set to its new value. In case (1) thisis the value calculated by the given expression, provided that it is smaller than thecurrent value of the remainder loop variable. If not, exception monotonic erroris raised. Case (2) consists of two possibilities:1. Previous value = current value (the code in the loop body did not touch theremainder loop variable): The remainder loop variable is set to the valuecalculated by the upper bound expression if this value is smaller than thecurrent value. Otherwise exception monotonic error is raised.2. Previous value not equal current value: In this case the following condi-tion must hold: current value <= value of upper bound expression <previous value. Otherwise exception monotonic error is raised.Case (3) is the same as case (2), but it is also checked that this iteration'slower bound expression is not greater than last iteration's lower bound expressionand that the interval [lower bound expression; current value] contains at leastone element. Any violation of the conditions above triggers a monotonic errorexception.If in cases (1), (2), and (3) the value of the remainder loop variable is zero, theexception loop error is raised, otherwise the loop is continued. The regular wayto complete a discrete loop with a remainder function is to use an exit statementbefore the remainder loop variable reaches zero.Remark 1.1.1 The semantics of discrete loops with remainder functions ensurethat such a loop will always complete, either if the loop is terminated by an exit

9statement or because one of the above checks fails, i.e., one of the exceptionsmonotonic error, successor error or loop error is raised.1.2 Multi-Dimensional Discrete LoopsThe concept of discrete loops can be extended easily in order to support morethan one loop variable. Although this might contrast with the appearance of thetraditional for-loop, it is justi�ed by the following facts:� Sometimes it is hard to pick a single entity of the problem domain that canserve as the loop variable. Instead, several entities together play the part ofthe loop variable.� Many times the loop variable is not the only entity that changes its valueduring each iteration in a prede�ned and deterministic way. For the analysisof programs it can be of great value to have this regularity declared explicitlyin the loop header.� Static and dynamic checks can make use of the information speci�ed insuch a loop header, which in turn facilitates testing and veri�cation of theunderlying program.Since one can think of several loop variables as one big aggregate containing thosevariables, we speak of them as discrete loops with aggregate variables, but theycan also be refered to as multi-dimensional discrete loops.1.2.1 Multi-Dimensional Monotonical Discrete LoopsThe scenario given in Figure 5 may serve as an introductory example for the use ofa multi-dimensional monotonical discrete loop. Suppose Pac Man wants to leavethe building. Depending on the contents of each of the 16 �elds he has severalpossibilities to make his way to the exit (a path is characterized as a series oftupels of x- and y- coordinates):((1; 1); (2; 1); (3; 1); (4; 1); (4; 2); (4; 3); (4; 4))or ((1; 1); (2; 2); (3; 3); (4; 4))

10
?

x1 2 3 4

1

2

3

4

y

Figure 5: Introductory Example for Multi-Dimensional Discrete Loopsor ((1; 1); (1; 2); (1; 3); (2; 4); (3; 4); (4; 4)) :::An auto-pilot could be coded as follows:1 discrete (X,Y) := (1,1) in (1 .. 4 , 1 .. 4)2 new (X,Y) := (X+1,Y)j(X,Y+1)j(X+1,Y+1)3 loop4 -- Eat, compute next �eld, move.5 end loop;In this example X and Y together play the role of an aggregate loop variablerepresenting Pac Man's position. The iteration functions in line 2 specify thatwithin the prede�ned range of 1..4 Pac Man is allowed to advance to the right(X+1,Y), up (X,Y+1) or diagonal (X+1,Y+1). However, he is not allowed tomove backwards or to stand still, since this would violate the loop's monotony.As it is the case with single-dimensional loops, the value of the loop variable iscalculated in the loop body. The loop header only provides a de�nite forecast.Another prominent example is Euclid's algorithm [SE88] (confer Figure 6). Itcomputes the greatest common divisor (gcd) of two positive integers. Keywordreverse de�nes both dimensions of the loop to be monotonically decreasing. Theloop variable (M,N) takes the following values((M;N); (N;M mod N); (M mod N;N mod (M mod N))) :::during subsequent iterations, until a value of (X,0) terminates the loop.

111 function Euclid (A, B : Positive) return Positive is2 H : Positive;3 begin4 if B > A then5 return Euclid (B, A); -- swap6 end if ;7 discrete (M,N) := (A,B) in reverse (1..A, 1..B)8 new (M,N) := (N, M mod N) loop9 H := M;10 M := N;11 N := H mod N;12 end loop;13 return H;14 end Euclid;Figure 6: Euclid's AlgorithmSyntax of Multi-Dimensional Monotonical Discrete LoopsThe syntax of multi-dimensional monotonical discrete loops di�ers from the syntaxgiven in Section 1.1.1 only in its loop parameter speci�cation. Therefore only thispart is given here. A comprehensive syntax for all kinds of discrete loops can befound in Appendix A.multi dimensional monotonical discrete loop parameter speci�cation ::=identi�er aggregate := initial value aggregate in [reverse] range aggregatenew identi�er aggregate := iteration function speci�cationidenti�er aggregate ::= (identi�er f , identi�er g)initial value aggregate ::= (initial value f , initial value g)range aggregate ::= ([reverse] discrete subtype de�nitionf, [reverse] discrete subtype de�nitiong)iteration function speci�cation ::= iteration function aggregatef| iteration function aggregategiteration function aggregate ::= (list of iteration functionsf,list of iteration functionsg)

12The identi�er aggregate determines the number of dimensions of the discrete loop.Initial value aggregate, range aggregate and iteration function aggregates have tocorrespond to the number of dimensions of the identi�er aggregate. Note thatan Iteration Function Aggregate of the form (AjB;C) is meant as a shorthandnotation for two aggregates (A;C) and (B;C).Semantics of Multi-Dimensional Monotonical Discrete LoopsThe elaboration of the loop parameter speci�cation declares a parameter for everydimension of the loop. Types are derived from the initial value of the correspond-ing initial value aggregate and the discrete subtype de�nition of the correspondingrange aggregate. All parameters together make up the loop variable. Within theloop body the loop variable is referenced through its parameters. They behave likeany other variable, i.e., they can be used on both sides of an assignment statement.Elaboration of the loop parameter speci�cation also elaborates the initial valuesof the initial value aggregate as well as the discrete subtype de�nitions of therange aggregate. If one of the discrete subtype de�nitions de�nes a subtype witha null range, execution of the loop is complete.The optional keyword reverse can appear before the range aggregate. Thisde�nes all dimensions of the loop to be monotonically decreasing. If keywordreverse appears right before some discrete subtype de�nition within the range -aggregate, this particular dimension of the loop is de�ned to be monotonically de-creasing. Keyword reversemust not appear before andwithin the range aggregate.Before the sequence of statements is executed, the iteration functions in theiteration function speci�cation are evaluated for every dimension of the loop. Alldimensions together recruit the possible successive values of the loop variable.Like with the one-dimensional case, it has to be checked whether these valuesobey monotony. What monotony actually means in this context is subject of thenext paragraph.Monotony in the Case of Multi-Dimensional Discrete LoopsDe�nition 1.2.1 A multi-dimensional discrete loop L with N (N 2 N) identi-�ers in its identi�er aggregate is said to be of dimension N . This is denoted byDim(L) = N .De�nition 1.2.2 As a shorthand notation for a loop variable (a1; a2; ::; ai) wewrite (ai). The ith parameter of (ai) is written as ai.

13De�nition 1.2.3 (ai) = (bi), 8i1�i�Dim(L(ai);(bi)) ai = biDe�nition 1.2.4 (ai) < (bi), 8i1�i�Dim(L(ai);(bi)) ai � bi ^ 9j : aj < bjIf discrete loops were required to be uniformly reverse or not reverse in all dimen-sions, De�nition 1.2.4 would su�ce in order to to de�ne monotony.Problem 1.2.1 It is possible for an N - dimensional loop (N > 1) to deploydiscrete subtype de�nitions with and without keyword reverse at once e.g.1 discrete (A,B) := (1,100) in (1..100, reverse 1..100)2 new (A,B) := (A�2, B-A)3 loop4 -- Body suppressed.5 end loop;In this example the loop variable (A,B) takes the values((1; 100); (2; 99); (4; 97); (8; 93); (16; 85); (32; 69); (64; 37))until the loop completes. While the iteration sequence of the �rst dimension ismonotonically increasing, the second dimension bears a monotonically decreasingiteration sequence. Therefore De�nition 1.2.4 has to be modi�ed slightly to beable to cope with such mixed cases.De�nition 1.2.5 We de�ne relation 'Z' as an extension of the common 'smaller'-relation '<' between two integers: For a given loop L and two values (ai) and (bi)of the loop variableaj Z bj , 8<: aj < bj if jth dimension of L not de�ned to be reverseaj > bj elseaj Z bj , 8<: aj � bj if jth dimension of L not de�ned to be reverseaj � bj elseDe�nition 1.2.6 With de�nition 1.2.5 we are able to de�ne monotony betweentwo values of an mixed-case aggregate loop variable of loop L:(ai) Z (bi), 8i1�i�Dim(L(ai);(bi)) aiZ bi ^ 9j : aj Z bj

14Before the sequence of statements is executed, the current value of the loop variable(ai) is compared to the set of possible successive values f(psvi)g. Every value(psvi) has to ful�ll the relation (psvi)Z (ai). Otherwise exeption monotonic erroris raised.After the sequence of statements has been executed, it is checked whether thevalue of the loop variable is contained in the set of possible successive valuesf(psvi)g. If this check fails, the exception successor error is raised.If the value of the loop variable is still within the bounds stated in the loopheader, the loop is iterated (at least) once more. If not, the loop completes.Remark 1.2.1 The semantics of multi-dimensional monotonical discrete loopsensure that such a loop will always complete, either because the value of the loopvariable is outside its bounds or because one of the above checks fail, i.e., one ofthe exceptions monotonic error or successor error is raised.1.2.2 Multi-Dimensional Discrete Loops with a Remainder FunctionMonotonical discrete loops with remainder functions can also be extended to sup-port aggregate loop variables. Binary Search is an algorithm that lends itselfnicely to an implementation powered by a discrete loop (confer Figure 7).The essential property of binary search is a sequence of intervals which becomesmaller and smaller with each iteration of the loop. The starting interval [l1; u1] =[1; N] is changed with each iteration of the loop according to[li+1; ui+1] = 8<: [li; bui+li2 � 1c] or[bui+li2 + 1c; ui]depending on the sub-interval that contains the element being sought. The interval[li; ui] is represented by the loop variable [L; U], the remainder loop variable Irepresents the number of remaining data items which equals the interval length.Syntax of Multi-Dimensional Discrete Loops with Remainder FunctionsThe syntax of multi-dimensional discrete loops with remainder functions di�ersfrom the syntax given in Section 1.1.1 only in its loop parameter speci�cation.Therefore only this part is given here. A comprehensive syntax for all kinds ofdiscrete loops can be found in Appendix A.multi dimensional discrete loop with remainder function parameter spec ::=

15[identi�er aggregate := initial value aggregatenew identi�er aggregate := iteration function speci�cation]with rem identi�er := initial value new remainder functionremainder function ::=rem identi�er = expression |rem identi�er <= upper bound expression[and rem identi�er >= lower bound expression]identi�er aggregate ::= (identi�er f , identi�er g)initial value aggregate ::= (initial value f , initial value g)iteration function speci�cation ::= iteration function aggregatef| iteration function aggregategiteration function aggregate ::= (list of iteration functionsf,list of iteration functionsg)Semantics of Multi-Dimensional Loops with Remainder FunctionsEssentially the same as in Section 1.1.2, with the di�erence that the loop variableis an aggregate variable as opposed to one of an elementary type.

16

1 N : constant Positive := ??; -- Number of elements.2 subtype Index is Positive range 1 .. N;3 type Sort Array is array (Index) of Integer;4 function Binary Search5 (Item : in Integer;6 Arr : in Sort Array)7 return Index is8 M : Index;9 begin -- Successful search or runtime error.10 discrete (L,U) := (Arr'First, Arr'Last)11 new (L,U) := (L , (L+U)=2 - 1) j ((L+U)=2 + 1 , U)12 with I := Natural (U-L+1) new I <= I=213 loop14 M := (L+U)=2;15 if Item < Arr (M) then16 U := M - 1;17 elsif Item > Arr (M) then18 L := M + 1;19 else20 exit;21 end if ;22 I := U-L+1;23 end loop;24 return M;25 end Binary Search;Figure 7: Binary Search

17
Chapter 2IMPLEMENTATION CONSIDERATIONSIt has ever been seen as an integral part of Project WOOP to implement atool that incorporates the theoretical results gathered. Concerning discrete loopsit was therefore necessary to provide a translation-mechanism that would enableprogrammers to use discrete loops in their code. Although in principle there wasno cause to favor any particular programming language, it was the reliability andmaintainability of Ada95 that �nally lead to the decision to build a preprocessorcapable of translating discrete loop augmented Ada95 code into standard Ada95in a way that would preserve the semantics of discrete loops. The resulting codecould then be compiled by any Ada compiler. The preprocessor would have toperform the following tasks:� Scan its input.� Perform syntax checks� Perform semantic checks.� Analyze discrete loops in order to �nd an upper bound for the number ofiterations.� Transform discrete loops into their equivalent in standard Ada, preservingthe semantics of those loops.� Generate the resulting Ada code.Note 2.0.1 Syntactic and semantic analysis has to be done for the entire program,considering only those statements belonging to a discrete loop does by no meanssu�ce! A complete description of Ada95's syntax and semantics can be found in[Ada95] p.1 - 551.Two possibilities seemed to exist to get the job done:� Build from scratch.� Use a scanner/parser generator to simplify things a little bit.

18In this situation it was the availability of GNAT that saved a lot of workand enabled me to focus on the main problems. It prevented me from coding acomplete front-end for the whole Ada programming language (comp. note 2.0.1)while providing every facility I needed to build upon. GNAT itself is writtenentirely in Ada, which makes this huge piece of software (over 12 Megabyte ofsource code) very modular. In fact this is also an achievement of the GNAT Team,since good tools alone do not necessarily lead to good programs. The couplingbetween its modules is really loose. In this way one can apply modi�cations locallyand need not know all the details of the program as a whole. The source code ofGNAT is very well structured and fully documented. It left me with enough spaceto add where I needed and in the way I wanted.2.1 Extending the GNAT SystemGNAT itself is a front-end and runtime system that uses the back-end of GCC as aretargetable code generator. The front-end uses an Abstract Syntax Tree (AST)1as the underlying data structure and it comprises three phases:� Syntactic Analysis� Semantic Analysis� Transformation of the AST to a representation suitable for the back-endSince only a minor part of the third phase is coded in a language other than Ada,the strengths of the Ada programming language also come into play in the sourcecode of GNAT which properly reects the structure of the corresponding chaptersof the Reference Manual [Ada95]. This leads to a very modular functional designwith no coupling between unrelated units.Although the current release of GNAT has already been validated, developmentof the compiler is not yet �nished. This means that modi�cations of the currentrelease of GNAT might have to be taken over to a future release. Therefore I haveattempted to keep modi�cations of the original code as small as possible whileproviding 'extra'- functionality in separate units that are called where appropriate(e.g. on encountering keyword discrete during syntactic or semantic analysis).Because of arising dependencies it was on the other hand necessary to properlyintegrate extensions into the original code.1Details can be found in Section 3.

19Although these requirements seem to contradict each other, the hierarchicallibrary mechanism of Ada95 actually made it possible to ful�ll both of them inmost cases:� Code that is totally independent of GNAT is kept in separate library units.� Code that extends the functionality of an existing library unit is usually keptin a child of that unit. In this way we not only inherit the context providedby the context clauses of the parent, but we are also able to directly accessall the entities that are declared in the spec of the parent from within thechild. The parent body itself may access the child by means of a with clause.Children however are not allowed for subprograms since [Ada95] requiresthe parent unit to be a (generic) package.� Code that depends on entities declared in the body of a library unit or codethat is meant to extend a library unit that is a subprogram can only beseparated by means of subunits. Visibility in the subunit is the same asat the corresponding stub in the parent body, except for di�erences due tocontext clauses of the subunit itself. Coupling of subunits to the originalcode is usually tighter than in the previous cases.The following data illustrates this approach:� The whole GNAT system consists of about 300000 lines of code.� Modifying it to build a preprocessor for discrete loops took 4772 lines ofcode.� Only 107 out of 4772 lines had to be applied to the original code. Thosemodi�cations are always preceded by a comment line like '-- BB:', whichshould make it easy to locate them within the original code. The two-lettercombination 'BB' has something to do with the author's name :-)2.2 A Math-Package to Count OnEstimating the number of iterations of a discrete loop often involves complic-ated recurrence relations which have to be solved accordingly. Checking iterationfunctions for monotonic sequences of loop values also requires solving linear andnon-linear equations. Although it should be possible in theory to implement acomputer algebra system from scratch, in practice it can be considered a rather

20time-consuming and costly task. The kernel of Wolfram Research's Mathematicaalone, for instance, consists of 300K lines of C code. An additional package thatextends Mathematica to solve recurrence relations takes another 2,5K lines of code,the whole Mathematica system consists of about 4-6 megabytes of compiled code.With those �gures in mind the decision was made to take some computer al-gebra system and incorporate it into the preprocessor. From all packages availableat that time, only Mathematica o�ered a fully documented programming interfaceto the kernel. Only in this way it was possible to start the math-subsystem asa slave process and have it evaluate the expressions passed to it from the pre-processor. It is also a fact that Mathematica's programming interface is the onlyinterface to its kernel and that therefore also Wolfram Research's own front-endsuse it. This information directly adds to the performance and dependability ofthat interface. Some other highlights of Mathematica were� Comprehensive calculation and analysis tools.� Open and extendible architecture.� High-level programming language.� Documentation and programs available on the net.� Available on a wide variety of platforms.If for some reason another (i.e. non-commercial) computer algebra system shouldturn out to be superior to Mathematica, an additional level of abstraction hasbeen implemented within the preprocessor to allow easy replacement of the mathsubsystem.2.3 What Name?Another contribution to the devastating cluttering of our world with acronyms...WPP, theWoopPreprocessor, also known as double(UP) or simplyDoubleUP.WPP = double(U)PP = double(U) double(P) = double(UP)Possible further transformations, suggested by my supervisor:double(UP) = U2P 2 = (UP)2

21
Chapter 3SHAKING THE TREEThe Abstract Syntax Tree (or AST for short) is perhaps GNAT's single mostimportant data structure. It is constructed by the recursive descent parser andrepresents the input program in a tree-like form. Subsequent processing in thefront end traverses the tree, transforming it in various ways and adding semanticinformation. Therefore no separate symbol table structure is needed.3.1 The Internal Representation of the Abstract Syntax TreePackage Atree de�nes the basic structure of the tree and its nodes and providesthe basic abstract interface for manipulating the tree. Two other packages usethis interface to de�ne the representation of Ada programs using this tree format.The package Sinfo de�nes the basic representation of the syntactic structure ofthe program, as output by the parser. The package Einfo de�nes the semanticinformation which is added to the tree nodes that represent declared entities (i.e.the information which might typically be described in a separate symbol tablestructure).3.1.1 De�nition of a Single Tree NodeThe representation of the tree is completely hidden, using a functional interfacefor accessing and modifying the contents of nodes. Logically a node contains anumber of �elds, much as though the nodes were de�ned as a record type. Those�elds that are used for WPP-speci�c modi�cations are summarized here.� Nkind: Indicates the kind of the node. This �eld is present in all nodes.� Sloc: Location (Source Ptr) of the corresponding token in the Source bu�er.� Comes From Source: This ag is present in all nodes. It is set if the node isbuilt by the scanner or parser, and clear if the node is built by the analyzer orexpander. It indicates that the node corresponds to a construct that appearsin the original source program.

22� Field1 - Field5: Five �elds holding a union of the following values1:{ ListN: Synonym for FieldN typed as List Id, a list of nodes.{ NameN: Synonym for FieldN typed as Name Id, an entry into thenames table. This table is used to store character strings for identi�ersand operator symbols, as well as other string values such as unit namesand �le names.{ NodeN: Synonym for FieldN typed as Node Id, a link to another node.{ UintN: Synonym for FieldN typed as Uint (GNAT's basic universalinteger type)� Flag4 - Flag18: Fifteen Boolean ags.� Link: Pointer to parent node, i.e. node which points to the node whichreferences this �eld.The actual usage of FieldN (i.e. whether it contains a List Id, Name Id, Node Id,Uint), depends on the value in Nkind. Generally the access to this �eld is alwaysvia the functional interface, so the �eld names ListN, NameN, NodeN, and UintNare used only in the bodies of the access functions (i.e. in the bodies of Sinfo andEinfo). These access functions contain debugging code that checks that the use isconsistent with Nkind values.The use of the Boolean ags also depends on Nkind and Ekind, as describedfor FieldN. Again the access is usually via subprograms in Sinfo and Einfo whichprovide high-level synonyms for these ags, and contain debugging code thatchecks that the values in Nkind and Ekind are appropriate for the access.3.1.2 Extended NodesAs stated above, the AST contains not only the full syntactic representation ofthe program, but also the results of semantic analysis. In particular, the nodesfor de�ning identi�ers, de�ning character literals and de�ning operator symbols,collectively referred to as entities, represent what would normally be regarded asthe symbol table information. In order to store this additional information, a nodecontaining an entity can be extended in order to provide extra space for additional�elds and ags. The use of those �elds and ags is de�ned in package Einfo. It1Again, only those values important for WPP are listed

23depends on the entity kind, as de�ned by the contents of the Ekind �eld. Someother important �elds:� Etype: Present in all entities. Represents the type of the entity, which isitself another entity. For a type entity, this pointer is selfreferential. For asubtype entity, Etype is the base type.� First Subtype: Applies to all types and subtypes. For types, yields the �rstsubtype of the type. For subtypes, yields the �rst subtype of the base typeof the subtype [Ada95](3.2.1(6)).� Homonym: Present in all entities. Contains a link to chain entities that arehomonyms and that are declared in the same or enclosing scopes. (Hom-onyms in the same scope are overloaded).� Is Abstract: Present in all types, and also for functions and procedures. Setfor abstract types and abstract subprograms.� Is Discrete Type: De�ned for all entities, true for all discrete types andsubtypes.� Is Enumeration Type: De�ned for all entities, true for enumeration typesand subtypes.� Scope: Present in all entities. Points to the entity for the scope (block, loop,subprogram, package etc.) in which the entity is declared.� Type High Bound De�ned for scalar types. Returns the tree node that con-tains the high bound of a scalar type.� Type Low Bound: See previous �eld.3.1.3 Abstract Interface to the Abstract Syntax TreePackage Atree.Unchecked Access provides generic �eld access routines for treenodes. These routines are used by package Sinfo and Einfo to provide a high-level interface based on logical synonyms for �elds and ags.

243.2 Basic Tree StructurePackage Sinfo de�nes how the tree structure provided by package Atree is usedto represent the syntax of an Ada program. The layout of every syntactic con-struct is described in a comment at the beginning of the spec of package Sinfo.The speci�cation and the body of that package follow the de�nitions given in thecomment. As an example the comments associated with the loop statement aregiven below.sinfo.ads------------------------------------ 5.5 Loop Statement -------------------------------------- LOOP STATEMENT ::=-- [loop STATEMENT IDENTIFIER :]-- [ITERATION SCHEME] loop-- SEQUENCE OF STATEMENTS-- end loop [loop IDENTIFIER];-- N Loop Statement-- Sloc points to LOOP-- Identi�er (Node1) loop identi�er (set to Empty if no identi�er)-- Iteration Scheme (Node2) (set to Empty if no iteration scheme)-- Statements (List3)------------------------------------ 5.5 Iteration Scheme -------------------------------------- ITERATION SCHEME ::=-- while CONDITION j for LOOP PARAMETER SPECIFICATION-- N Iteration Scheme-- Sloc points to WHILE or FOR-- Condition (Node1) (set to Empty if FOR case)-- Loop Parameter Speci�cation (Node4) (set to Empty if WHILE case)-- 5.5 Loop parameter speci�cation -- LOOP PARAMETER SPECIFICATION ::=-- DEFINING IDENTIFIER in [reverse] DISCRETE SUBTYPE DEFINITION-- N Loop Parameter Speci�cation

25-- Sloc points to �rst identi�er-- De�ning Identi�er (Node1)-- Reverse Present (Flag15)-- Discrete Subtype De�nition (Node4)
According to this de�nition, the layout of a tree fragment for a while- or for-loop looks as follows (note that a loop can only contain a condition (while) or aLoop Parameter Speci�cation (for), but not both):

..Identi�erNode1De�ning Identi�er Discrete Subtype De�nitionReverse Present ConditionStatements
Node2 List3

Node1 Node4
N Iteration SchemeNode4 Node1N Loop Parameter Speci�cationFlag15
N Loop Statement

Figure 8: AST fragment for while- and for-loops.
For each node (e.g. N Loop Statement, N Iteration Scheme, N Loop Parameter -Speci�cation) package sinfo provides access functions that are named after thelogical synonyms as stated in the comments. The bodies of those functions makeuse of the abstract interface mentioned in Section 3.1.3.

261 function Iteration Scheme2 (N : Node Id) return Node Id is3 begin4 pragma Assert (False5 or else NT (N).Nkind = N Loop Statement);6 return Node2 (N);7 end Iteration Scheme;8 procedure Set Iteration Scheme9 (N : Node Id; Val : Node Id) is10 begin11 pragma Assert (False12 or else NT (N).Nkind = N Loop Statement);13 Set Node2 With Parent (N, Val);14 end Set Iteration Scheme;Figure 9: Logical Synonyms based on the Abstract InterfaceLines 4-5 and 11-12 of Figure 9 are part of the debugging code that checksthat the use of the logical synonyms is consistent with Nkind values (you cannotconvince GNAT to provide you with a loop-body out of a case-statement, for thatreason). Since GNAT is very picky about this, we created our own high-levelinterface for WOOP-speci�c parts of the AST. It is de�ned in package WoopSinfoand it is discussed in the next section.3.3 WPP-Speci�c LeavesIt is necessary for the abstract syntax tree to grow a little extra-branch in orderto accommodate the syntactic representation of a discrete loop. Node N Loop -Parameter Speci�cation can therein serve as a starting point, because down tothe Loop Parameter Speci�cation the syntax for for-loops and discrete loops is thesame (confer Appendix A). Tree fragments for discrete loops can be divided intwo categories:� Syntactic constructs related to the loop variable.� Syntactic constructs belonging to the remainder loop variable.The purpose of the following two subsections is to grow subtrees for the syntacticcategories given above. For the sake of clarity and understanding they are givenin the same graphical notation that has already been used in Figure 8. The thirdsubsection shows how those subtrees are connected (grafted) to the abstract syntaxtree.

273.3.1 Constructs Related to the Loop VariableAccording to Appendix A this includes the following entities:� Identi�er� Initial Value� Discrete Subtype De�nition (in case of a monotonical discrete loop)� List Of Iteration FunctionsA suitable data structure capable of storing those entities might look as follows:
.. ...Identi�er List Of Iteration FunctionsInitial Value Discrete Subtype De�nitionN Loop Parameter Speci�cationNode2 Node3 List4Node1 Figure 10: Simple Data StructureMulti-dimensional discrete loops need a list that can store such a subtree foreach of their N dimensions. Although this works well for Identi�er, Initial Valueand Discrete Subtype De�nitions, it won't work for iteration functions.Problem 3.3.1 If iteration functions are stored on a per-dimension basis, theinformation that maps a certain iteration function to a certain Iteration Function-Aggregate gets lost. Consider the algorithm for Binary Search given in Figure7 on page 16. The possible successive values for the loop variable (L,U) are(L; (L+U)=2� 1) and ((L+U)=2+1; U) respectively. Storing the iteration func-tions on a per-dimension basis, we get fL; (L+ U)=2 + 1g for the �rst dimensionand f(L + U)=2 � 1; Ug for the second one. We have now successfully discardedthe information on how the iteration functions of the two dimensions were con-nected. Building all possible combinations e.g. (L; (L+U)=2� 1); (L; U); ((L+U)=2 + 1; (L + U)=2 � 1); ((L + U)=2 + 1; U) does not help either, because notall combinations have been speci�ed in the loop header.In this way the data structure given in Figure 10 cannot be used to store iterationfunctions of multi-dimensional loops. Nevertheless it is suitable for Identi�er,Initial Value, and Discrete Subtype De�nition:

28................................
..
................................

..

...

.. ..

.. ..
List Id

Dimension 1

Dimension N

Discrete Subtype De�nitionIdenti�er Initial ValueN Loop Parameter Speci�cationNode2 Node3

Discrete Subtype De�nitionIdenti�er Initial ValueN Loop Parameter Speci�cationNode2 Node3

Node1

Node1
Figure 11: Data Structure without Iteration FunctionsIteration FunctionsBefore the tree segment for iteration functions can �nally be de�ned, a shortparagraph on the nature of GNAT's lists is needed.Package Nlists provides facilities for manipulating lists of nodes. A node listis a list that is threaded through nodes (using the Link �eld). This means thatit takes minimum space, but a node can be on at most one such node list. Foreach node list, a list header is allocated in the lists table, and a List Id valuereferences this header which may be used to access the nodes in the list using theset of routines that de�ne the interface.Problem 3.3.2 A node list can contain nodes or extended nodes, but it is notpossible to build a list of lists.To overcome this little shortage, one can build a list of nodes, where each nodeserves as a pointer to another list. This list of nodes-to-lists is equivalent to a listof lists.Now consider an N -dimensional loop with M Iteration Function Aggregates.Due to the shorthand notation de�ned in Section 1.2.1 we also have to take into

29account that dimension n (1 � n � N) of Iteration Function Aggregate m (1 �m � M) contains k (k � 1) iteration functions. This is denoted by Km;n. Theiteration functions are indexed as IFm;n;k.� m: mth Iteration Function Aggregate, 1 � m � M� n: nth dimension, 1 � n � N� k: kth iteration function of dimension n of Iteration Function Aggregate m,1 � k � Km;nFigure 12 makes use of this notation in order to de�ne a subtree that can accom-modate the common case(IF1;1;1j : : : jIF1;1;K1;1; : : : ; IF1;N;1j : : : jIF1;N;K1;N) j: : :j(IFM;1;1j : : : jIFM;1;KM;1; : : : ; IFM;N;1j : : : jIFM;N;KM;N)of an Iteration Function Speci�cation. ... Dimensions 1-N
... Dimensions 1-N

.. Aggregates 1-M.. ..

.. ..
..

.. ..
..

..

..
List Id Node Id (Aggregat 1) List Id Node Id List Id

Node Id List Id IFIF1,1,K1,1IFIF1,N,K1,N
List Id Node Id List Id

Node Id List Id IFM,1,1IFM,1,KIFM,N,1IFM,N,KM,N

1,1,1
1,N,1

M,1Node Id (Aggregat M)
Figure 12: Data Structure for an Iteration Function Speci�cation

30Since every discrete loop consists of at least one dimension, the iteration func-tion's subtree is connected to the data structure given in Figure 11 via Node4 ofthe �rst N Loop Parameter Speci�cation node.3.3.2 Constructs Related to the Remainder Loop VariableDue to the fact that only one remainder function is allowed for each discrete loop,this subtree is rather simple (Figure 13). The �eld 'Token' (Uint3) in fact contains
..N Loop Parameter Speci�cation Node5Node1Rem Identi�er Lower Bound ExpressionTokenInitial ValueNode2 (Upper Bound) ExpressionUint3 Node4

Figure 13: Data Structure for a Remainder Function Speci�cationone of the values Tok Equal or Tok Less Equal of type Token Type (packagescans) depending on the token ('=' or '<=') given in the remainder function.3.3.3 Connecting Subtrees to the Abstract Syntax TreeThe constructs related to the loop variable (Figure 11) as well as those related tothe remainder loop variable (Figure 13) have to be connected to the AST throughnode N Loop Parameter Speci�cation. Since the exact layout of the abstract syn-tax tree as it is given in package sinfo is subject to change2, it is wise to implementan additional layer of abstraction between GNAT's AST and WPP's amendments.Figure 14 illustrates the approach chosen. The nodes within the 'cloud' represent..
.. Discrete Subtype De�nitionNode4N Loop Parameter Speci�cationNode1 Flag15De�ning Identi�er Reverse PresentListX NodeYFigure 14: Connection to the AST.2Only GNAT-speci�c implementational details may change, the big picture is more or lessde�ned in [Ada95]

31what usually gets stored in the tree for a for-loop. For a discrete loop this cloudis replaced by two �elds:� ListX: This is the �eld containing the constructs related to the loop variable(the subtree illustrated in Figure 11).� NodeY: This �eld contains the subtree related to the remainder loop variableas illustrated in Figure 13.Instead of assigning speci�c nodes (Node1, Node2,...) to ListX and NodeY, whichmight conict with future releases of GNAT, their actual names are hidden in thebody of package woopsinfo. There is no need for the outside world to referencethese names anyway, because an interface based on logical synonyms is provided.From within package woopsinfo, only two functions named 'ListX' and 'NodeY'are used to access WPP-speci�c subtrees. In this way it should be of very littlee�ort to adjust the GNAT-WPP tree-connection to further releases of GNAT.3.3.4 FlagsWPP also makes use of a couple of Boolean ags. The following ags are storedwithin the tree:� Case1: Needed in conjunction with remainder function loops. True if the newvalue of the remainder function is speci�ed as 'rem identi�er = expression'.� Case2: Needed in conjunction with remainder function loops. True if thenew value of the remainder function is speci�ed as 'rem identi�er <= up-per bound expression'.� Case3: Needed in conjunction with remainder function loops. True if thenew value of the remainder function is speci�ed as 'rem identi�er <= up-per bound expression and rem identi�er >= lower bound expression'.� Custom Reverse Present: True if keyword 'reverse' appears within a range-aggregate of an N > 1 dimensional discrete loop.� Implicit Type Required: True if some range of a discrete loop is given in theform of a constrained discrete subtype indication ([Ada95](3.2.2(3)). Thismeans that during code generation an implicit subtype has to be declared(see Chapter 9).

32� Is Discrete Loop: True for an N Loop Parameter Speci�cation that containsa discrete loop.� Needs Package WoopDefs: False till the �rst occurrence of a discrete loop isdetected. At this point this ag becomes 'True.' It is then checked whetherpackage WoopDefs is already visible within the current compilation unit. Ifthis is not the case, ag Needs WoopDefs Context Clause is set.� Needs WoopDefs Context Clause: Set if in the code-generating phase a with-clause for package WoopDefs has to be issued.The remaining attributes are synthesized from the tree.� Compilation Unit: For any node 'N' of the AST returns the node N Com-pilation Unit to which it belongs.� Dimensions: Returns the number of parameters of the loop variable.� Fake Initial Value: If an N-dimensional loop variable comprises M>N ini-tial values in its initial value aggregate, the �rst of those superuous ini-tial values is returned (used for error messages during semantic analysis).� Fake Discrete Subtype De�nition: Similar purpose as Fake Initial Value.� Fake List Of Iteration Functions: Similar purpose as Fake Initial Value.� Has Loop Variable: Needed in conjunction with remainder function loops.True if the loop contains a loop variable besides the remainder loop variable.� Has Several PSVs: True in case of an N dimensional loop variable wherethe iteration function speci�cation de�nes more then one vector of values.In case of a one-dimensional loop variable this is true if the list of iteration-functions includes more than one element.� Is Loop With Remainder Function: True in case of a discrete loop with aremainder function.� Is Monotonical Loop: True in case of a monotonical discrete loop.� LOIF Nr Of Aggregates: Returns the number of aggregates of an itera-tion function speci�cation.

33� Needs Lower Range Constant: True if the discrete subtype de�nition of amonotonical discrete loop is given as a range with a non-static lower bound.In this case the code generator needs to generate a constant that is initializedwith the lower bound of the range before execution of the loop. In this waythe evaluate-once semantics of the range is ensured (see Chapter 9).� Needs Upper Range Constant: Similar to Needs Lower Range Constant.� Nr Of Iteration Functions: Returns the number of iteration functions for agiven dimension of a given aggregate of the loop variable.� Reverse Present: True if a given dimension of the loop variable is of a 're-verse' nature (either Custom Reverse Present or keyword reverse beforerange aggregate).

34
Chapter 4THE SCANNERInstead of using freely available scanner- and parser generators like Lex andYacc, the developers of GNAT chose to hand-code their own scanner and parserdue to reasons of increased performance and user-friendliness. Since the source-�les belonging to the scanner have a name starting with 'sc', they can be identi�edeasily within the about 800 di�erent �les GNAT consists of. Concerning discreteloops, it takes only minor modi�cations to make the scanner aware of the additionaltoken 'discrete'.Package scans de�nes an enumeration-type 'Token Type' that is used to identifythe tokens returned by the scanner. Subsequent subtype declarations de�ne token-classes. Type 'Token Type' is given in a table, where the classes applying to atoken are given as comment lines. We have to add an enumeration-literal for token'discrete'.scans.adstype Token Type is (-- Token name Token type Class(es)Tok Integer Literal, -- numeric lit Literal, Lit Or NameTok Real Literal, -- numeric lit Literal, Lit Or Name: : :Tok Begin, -- BEGIN Eterm, Sterm, After SM, Labeled StmtTok Declare, -- DECLARE Eterm, Sterm, After SM, Labeled Stmt-- BB: entered Token Tok Discrete for the keyword 'discrete'.Tok Discrete, -- DISCRETE Eterm, Sterm, After SM, Labeled StmtTok For, -- FOR Eterm, Sterm, After SM, Labeled StmtTok Loop, -- LOOP Eterm, Sterm, After SM, Labeled StmtTok While, -- WHILE Eterm, Sterm, After SM, Labeled Stmt: : :);

35From the scanner's point of view, there is no di�erence between a discrete loopand any other kind of loop provided by the Ada programming language. Thereforeour token belongs to the same classes that the tokens 'for', 'loop' and 'while' do:� Eterm which means that the token is an expression terminator (it can neverappear within a simple expression). This is used for error recovery purposes(if GNAT encounters an error in an expression, it simply scans to the nextEterm token).� Sterm: Terminator for simple expressions.� After SM: Tokens which always, or almost always, appear after a semicolon.Of signi�cance only for error recovery.� Labeled Stmt: Tokens which start labeled statements.The speci�cation of package Snames contains de�nitions of standard names (i.e.entries in the Names table) that are used throughout the GNAT compiler. Uponinitialization of the scanner, they are loaded into the Names table. These alsoinclude all of Ada95's reserved words, since they ought to be recognized by thescanner. Names are de�ned as constants that derive their values depending onsome prede�ned constants plus their respective positions within this spec. Everyadditional token increases the respective positions of all the following tokens inthe spec. In this way not only their positions but also their values are changed. Inorder to keep the number of obsolete de�nitions low, the name for token 'discrete'is inserted at the end of the reserved words:snames.adsName Abort : constant Name Id := N + 313;Name Abs : constant Name Id := N + 314;Name Accept : constant Name Id := N + 315;Name And : constant Name Id := N + 316;Name All : constant Name Id := N + 317;Name Array : constant Name Id := N + 318;: : :Name When : constant Name Id := N + 368;Name While : constant Name Id := N + 369;Name With : constant Name Id := N + 370;

36Name Xor : constant Name Id := N + 371;-- BB: Add constant Name Id for keyword 'discrete'.Name Discrete : constant Name Id := N + 372;As stated above, one has to be added to the declaration of all the constantsthat follow Name Discrete in the �le. Note that constants with the syllable 'First 'pass their value over to the following constant, whereas constants with the syl-lable 'Last ' take their value from the previous constant. This scheme is used forgrouping purposes.The string-representation of the new token must be provided in the packagebody of Snames. It is important that the token appears at the same position asin the spec. Note also that every string is terminated by '#'.snames.adbPreset Names : constant String :=" abort signal#" &" assign#" &" chain#" &: : :"when#" &"while#" &"with#" &"xor#" &-- BB: added string representation of keyword 'discrete'."discrete#" &: : :;It is the task of the scanner to return the appropriate token for each sequence ofcharacters that occurs in the input. To put it GNAT-speci�c, it has to establish amapping from the input to the values of type Token Type. In the case of reservedwords, this is done with help of the names table. At scanner initialization time, thewhole set of reserved words is loaded into the names table. Every entry that holdsthe string representation of such a reserved word uses an additional componentof the GNAT-internal type Byte to identify the position number of the reservedword's enumeration literal within type Token Type. For every other entry in thenames table, the value of this additional component is zero.Whenever the scanner encounters a sequence of characters, it consults thenames table looking for an entry already representing this sequence. If there exists

37an entry, this can either be a reserved word or a previously stored identi�er. Incase of a reserved word, Token Type'Val of the Byte-component mentioned abovereturns the appropriate token.Therefore the only thing that remains to be done is to modify the initializationroutine of the scanner that loads the names table.scn.adbprocedure Initialize Scanner(Unit : Unit Number Type;Index : Source File Index)isbegin-- Set up Token Type values in Names Table entries for reserved keywords-- We use the Pos value of the Token Type value. Note we are relying on-- the fact that Token Type'Val (0) is not a reserved word!-- BB: For Name Discrete: Set the corresponding position for-- 'Tok Discret' in the Name Table.Set Name Table Byte (Name Discrete, Token Type'Pos (Tok Discrete));Set Name Table Byte (Name Abort, Token Type'Pos (Tok Abort));Set Name Table Byte (Name Abs, Token Type'Pos (Tok Abs));: : :end Initialize Scanner;Since for this operation the sequence of statements is insigni�cant, the codehas been added right at the beginning of procedure Initialize Scanner.

38
Chapter 5SYNTACTIC ANALYSISThe Par function and its subunits contain all the parsing routines for GNAT'stop-down recursive descent parser that constructs the Abstract Syntax Tree. Withinfunction Par the parsing routines are grouped by chapters as given in [Ada95].Every chapter is reected as a package containing parse-functions for its con-structs. The bodies of those packages are given as stubs, which means that theyreside in separate �les. The naming convention for such �les is de�ned in [LIB94].To put it in a nutshell, the �le-layout for the parser looks as follows:� par.ads: Spec of function Par.� par.adb: Body of function Par.� par-ch2.adb : : : par-ch13.adb: Parse-functions for constructs of correspond-ing chapters of [Ada95].Loops belong to statements, which are treated in Chapter 5. Therefore we addfunction P Discrete Statement in the body of package Par.Ch5 and make it asubunit:par-ch5.adbfunction P Loop Statement (Loop Name : Node Id := Empty) return Node Id;-- Parse loop statement. If Loop Name is non-Empty on entry, it is-- the N Identi�er node for the label on the loop. If Loop Name is-- Empty on entry (the default), then the loop statement is unlabeled.function P For Statement (Loop Name : Node Id := Empty) return Node Id;-- Parse for statement. If Loop Name is non-Empty on entry, it is-- the N Identi�er node for the label on the loop. If Loop Name is-- Empty on entry (the default), then the for statement is unlabeled.function P Discrete Statement (Loop Name : Node Id := Empty) return Node Id;-- Parse discrete statement. If Loop Name is non-Empty on entry, it is-- the N Identi�er node for the label on the loop. If Loop Name is-- Empty on entry (the default), then the discrete statement is unlabeled.function P Discrete Statement (Loop Name : Node Id := Empty) return Node Id isseparate;

39On encountering token Tok Discrete, the parser has to call this function. Thishappens two times within function P Sequence Of Statements.par-ch5.adb-- Loop Statement (labeled Loop Statement)if Token = Tok Loop thenAppend To (Statement List,P Loop Statement (Id Node));-- BB: Entered function call to P Discrete Statement.-- (labeled discrete statement)elsif Token = Tok Discrete thenAppend To (Statement List, P Discrete Statement (Id Node));The �rst call deals with labeled discrete loops, a similar call deals with loopswithout a label. It is the duty of function P Discrete Statement to parse the wholediscrete loop and to return a subtree as speci�ed in Chapter 3 which is thenappended to the Abstract Syntax Tree. The following tasks are carried out withinthis function:1. Push a new entry on the scope stack [Ada95](3.1(8)). This is necessary forall nested constructs in order to deal with 'END' nesting errors.2. Create a new node N Loop Statement.3. Connect a new N Iteration Scheme node to node N Loop Statement.4. Parse the discrete loop parameter speci�cation and connect the resultingtree to node N Iteration Scheme. This is a tedious task that has to take intoaccount all syntactic variations between monotonical loops and loops withremainder functions, both single- and multi-dimensional. Due to this factthe declaration of a separate function within function P Discrete Statementseemed appropriate. Its name is P Discrete Loop Parameter Speci�cationand it is also made into a subunit.5. Parse the loop body and connect the resulting tree to node N Loop Statement.This task is rather simple, because the body of a discrete loop does notsyntactically di�er from any other loop body. It is therefore su�cient tocall function P Sequence Of Statements that is already provided in packagePar.Ch5.6. Set attribute Is Discrete Loop.

40
Chapter 6SEMANTIC ANALYSISSemantic analysis in general performs name and type resolution, decorates theAST with various attributes and performs all static legality checks on the program.Type resolution is done using a two-pass algorithm. During the �rst (bottom-up) pass, each node within a complete context is labeled with its type, or ifoverloaded with the set of possible meanings of each overloaded reference. Duringthe second (top-down) pass, the type of the complete context is used to resolveambiguities and choose a unique meaning for each identi�er in an overloadedexpression [GNAT]. In the case of a loop statement the loop's iteration scheme aswell as the sequence of statements have to be analyzed.The body of a discrete loop di�ers from the body of a for-loop only in onesense: The discrete loop variable behaves like a variable rather than a constantwithin the body of the loop. It is therefore possible to assign a value to a discreteloop variable within the loop body. With that minor di�erence in mind we canleave the latter task to GNAT using procedure Analyze Statements of packageSem Ch5 in order to analyze the loop body.The sole purpose of the semantic analysis of the iteration scheme of a discreteloop is to determine the type of the loop variable (and/or remainder loop variable)and to verify that the type is appropriate for the given type of loop.6.1 Semantic Analysis of One-Dimensional Monotonical Discrete LoopsThe discrete loop parameter speci�cation of an iteration scheme contains threeentities that provide type information:� The expression representing the initial value.� The discrete subtype de�nition.� The iteration functions contained in the list of iteration functions.The algorithm that is used for type resolution is depicted in pseudo-code in Fig-ure 15. It starts with calls to procedure Analyze to carry out the bottom-up passfor the loop's init id and discrete subtype de�nition. This leaves us with at least

41one possible type for both arguments. Strictly speaking, we get one type for non-overloaded entities and N (N 2 N; N >1) for overloaded ones. Code lines (3)to (17) aim at computing the intersection between these two sets of types. Toavoid ambiguity, we require that the resulting set contains at most one type. Anempty set means that init id and discrete range were type-incompatible which isequivalent to �nding a bad type. To recover from such an error, bad types aretreated as 'type wild-cards' that match any given type (they are said to be oftype 'Any Type'). This is exactly the di�erence between statement issue error(lines 2 & 15) and return error (lines 21 & 31): the �rst one complains put con-tinues execution, whereas the latter one quits issuing an error-message. Note thatthe algorithm does in no way terminate before having passed line 19! This en-sures that the loop variable is visible during subsequent analysis of the loop body.Furthermore it allows a loop variable to appear in an iteration function.The remaining part of the algorithm (lines 22 - 40) distinguishes between twocases:� We have found type 'Universal Integer', which makes us consult the itera-tion functions to �nd some speci�c integer-type (line 29). If the iterationfunctions do not yield a speci�c type either, then 'Universal Integer is castedto 'integer'.� We have already found a speci�c type that has to �t the iteration functions.In order to avoid anonymous base types (which cannot be referenced in the sourcecode that WPP creates) we have to compute their so-called �rst named subtypes1(lines 23 & 35). What remains to be done is to resolve all three entities (init id, dis-crete subtype de�nition & list of iteration functions) with the type derived. Thiscorresponds to pass two (top-down) of GNAT's type resolution algorithm.6.2 Semantic Analysis of Multi-DimensionalMonotonical Discrete LoopsUnfortunately this is a bit more complicated than the previous one. First of all,multi-dimensional loops add a new dimension of errors on the programmer's side.New checks are introduced accordingly:� An identi�er must not occur twice within a loop variable.1First named subtypes are somewhat explained in [Ada95](3.2.1(7))

42� The number of dimensions of the initial value aggregate, range aggregate,identi�er aggregate after 'new', and iteration function speci�cation must bethe same as that of the identi�er aggregate at the beginning of the loop.� The names that occur in the N dimensions of the identi�er aggregate afterkeyword 'new' must match their counterparts in the identi�er aggregate atthe beginning of the loop statement.� Keyword 'reverse' can occur right before the range aggregate that containsN discrete subtype de�nitions. This means that keyword 'reverse' standsfor all N dimensions of the loop variable. On the other hand keyword'reverse' can also appear inside the range aggregate, right before any ofthe discrete subtype de�nitions. In this case it must not occur outside therange aggregate too.Note that one can argue whether these are syntactic or semantic checks. Thereason that they are carried out during semantic analysis is that we can givebetter user-feedback from here.The second reason that makes semantic analysis of multi-dimensionalmonoton-ical discrete loops a bit more complicated is that they allow mutual dependenciesbetween single parameters of the loop variable within the iteration functions. Con-sider the following loop which has been taken from Euclid's Algorithm (Figure 6,page 11). 1 discrete (M,N) := (A,B) in reverse (1..A, 1..B)2 new (M,N) := (N, M mod N) loop3 H := M;4 M := N;5 N := H mod N;6 end loop;Figure 16: Discrete Loop taken from Euclid's AlgorithmThe loop variable of this loop consists of two parameters namely M and N.The iteration function speci�cation (line 2) has it that parameter M depends onparameter N (it is assigned N's value), whereas parameter N depends on M andN. If type resolution was done on a per-dimension basis using the algorithm forone-dimensional monotonical discrete loops, this circular dependency could not beresolved, because at the time the �rst dimension is analyzed, the type system knowsnothing about parameter N. Switching dimensions does not help either because

43of the dependency of parameter N on M and N. For this reason it is necessary tomake all parameters of a multi-dimensional loop variable visible before any of theiteration functions can be analyzed.Figure 17 may serve as a (hypothetical) example for another (hypothetical)problem that can occur with multi-dimensional discrete loops. The point withthis example is that initial value and discrete subtype de�nition of all parametersof the loop variable are of type 'Universal Integer'.1 discrete (A,B,C) := (1,2,3) in (1..10,1..10,1..10)2 new (A,B,C) := (A+1,3 Short Integer (B) + A,4 Long Integer (C) + A)5 loop6 -- loop body7 end loop;Figure 17: Hypothetical Discrete LoopOur type resolution algorithm for one-dimensional discrete loops suggests toconsult the iteration functions for more speci�c type information in such a case.However, because of possible mutual dependencies of parameters this informa-tion may be spread across all N dimensions of the iteration function speci�cation.Consider parameter A of Figure 17:� The �rst dimension (line 2) proposes A to be of type 'Universal Integer'(casted to 'Integer').� Dimension 2 casts B to 'Short Integer', which also requires A to be of type'Short Integer', provided that '+' is not overloaded with a function capableof adding objects of type 'Short Integer' and 'Integer'.� Dimension 3 �nally requires A to be of type 'Long Integer', provided that'+' is not overloaded either.Obviously the requirements of the second and third dimension contradict eachother, but this example shows that not only data but also type-information ispropagated between di�erent dimension's iteration functions. A type resolutionalgorithm capable of such cases must implement some sort of backtracking thatveri�es that typing is still consistent within the iteration function speci�cationafter a new type has been derived. However this is only necessary for loops where

44a parameter's type is only determined in the iteration function speci�cation. Sincethis requires the initial value and the discrete subtype de�nition to be of type 'Uni-versal Integer', this seldomly is the case. For this reason the current implement-ation of WPP requires the type of a multi-dimensional discrete loop's parameterto be determined solely from the initial value and the discrete subtype de�nition.If the type of both constructs is 'Universal Integer', then the type is casted to'Integer'. If this introduces a type clash with the iteration function speci�cation,then the programmer has to convert the initial value or discrete subtype de�nitionto the desired type manually (confer Figure 18).1 discrete (A,B,C) := (1, Short Integer (2), Long Integer (3))2 in (1..10,1..10,1..10) new (A,B,C) := (A+1,3 Short Integer (B) + Short Integer (A),4 Long Integer (C) + Long Integer (A))5 loop6 -- loop body7 end loop;Figure 18: Type Conversation for Hypothetical Discrete LoopThe algorithm that is used for type resolution of multi-dimensionalmonotonicaldiscrete loops is depicted in pseudo-code in Figure 19.� Part one (lines 1 to 33) consists of a loop that iterates over all dimensions ofthe discrete loop under consideration. For every dimension it attempts to de-rive a type from the initial value and the discrete subtype de�nition. There-after the loop parameter for the current dimension is made visible. In caseof an appropriate type the initial value and the discrete subtype de�nitionare resolved.� Part two (lines 34 to 39) analyzes each dimension's iteration functions andresolves them with the type derived for that dimension in Part one.6.3 Semantic Analysis of Discrete Loops with Remainder Functions6.3.1 Semantic Analysis of the Loop VariableDiscrete loops with remainder functions can (but need not) contain the declara-tion of a loop variable. Contrary to monotonical discrete loops this declarationdoes not contain a discrete subtype de�nition. The loop variable of a remainder

45function loop may be of any type except limited or abstract. Again type resolutiondistinguishes between one- and multi-dimensional loops.One-Dimensional LoopsThe algorithm used for type resolution is depicted in pseudo-code in Figure 20.In line 1 it is checked whether the loop variable and the remainder loop vari-able denote the same entity which of course is not allowed. Lines 4 to 10 at-tempt to derive a type from the initial value construct. The call to functionYields Appropriate Type (line 5) removes all limited as well as abstract typesfrom the typeset computed by the call to procedure Analyze. If the resultingtypeset contains more than one possible type we have to issue an error, becauseunlike monotonical discrete loops the initial value construct is the only source oftype-information here. Only in the case of a universal type (Universal Integer orUniversal Real) the list of iteration functions is consulted to �nd a more speci�ctype (lines 13 - 26).Multi-Dimensional LoopsThe following checks have to be introduced with multi-dimensional loops:� An identi�er must not occur twice within a loop variable.� The number of dimensions of the initial value aggregate, identi�er aggregateafter 'new', and iteration function speci�cation must be the same as that ofthe identi�er aggregate at the beginning of the loop.� The names that occur in the N dimensions of the identi�er aggregate afterkeyword 'new' must match their counterparts in the identi�er aggregate atthe beginning of the loop statement.Type resolution is depicted in pseudo-code in Figure 21. Because of possiblemutual dependencies between parameters of the loop variable within the iterationfunctions all the parameters of the loop variable have to be visible before any ofthe iteration functions can be analyzed. Therefore the type of a loop parameter issolely determined by the initial value construct.� The �rst part of the type resolution algorithm (lines 1 to 22) consists of a loopthat iterates over all dimensions of the discrete loop under consideration. Foreach dimension it attempts to derive a type from the initial value construct.

46Thereafter the loop parameter for the current dimension is made visible. Incase of an appropriate type the initial value is resolved.� Part two (lines 23 to 28) analyzes each dimension's iteration functions andresolves them with the type derived for that dimension in part one.6.3.2 Semantic Analysis of the Remainder Loop VariableThe purpose of semantic analysis of the remainder loop variable is the derivationof a type for the remainder loop variable. As stated in Section 1.1.2 we expect theremainder loop variable to be of subtype natural or of a subtype that has naturalamong its ancestors. Type resolution of the remainder loop variable makes use offunction Yields Natural several times. The purpose of this function is to take thetypeset of an expression-node computed by a call to procedure Analyze and toremove all types except natural or subtypes that have natural among its ancestors.If the resulting typeset contains more than one type, ag Is Overloaded is set onthe node. Yields Natural returns true if the resulting typeset contains at least onesuch type.The algorithm used for type resolution of the remainder loop variable is de-picted in pseudo-code in Figure 22. It starts with the initialization of rem init id(which is set to the remainder loop variable's initial value), exp1 (which is set tothe expression (or upper bound expression) of the remainder function), and exp2(which is set to the lower bound expression of the remainder function). There-after a call to Analyze on the rem init id is made. Lines 3 to 10 attempt to pickan appropriate type from the resulting typeset. If it turns out to be of type Uni-versal Integer we have to postpone type derivation until exp1 (and exp2) havebeen analyzed in order to �nd a more speci�c discrete type. A rem init id thatis overloaded with two or more speci�c types causes an error, because no otherconstruct containing further type information is available.Note 6.3.1 Exp1 and exp2 cannot be used for that purpose, because the re-mainder loop variable is allowed to occur in those constructs. This makes itnecessary to set the remainder loop variable to an appropriate type (at least Uni-versal Integer) before exp1 and exp2 can be analyzed.Remainder loop variables of Case1 remainder loops are declared as being con-stant. In this way semantic analysis will not allow the user to assign a value tothe remainder loop variable in the loop body. Case2 and Case3 remainder loopvariables are treated as variables (lines 11 & 12). Note that the algorithm does in

47no way terminate before having passed line 12. This ensures that the remainderloop variable is visible during subsequent analysis of the loop body. Furthermoreit allows a remainder loop variable to appear within a remainder function. Theremaining part of the algorithm distinguishes between two cases:� We have found 'Universal Integer' which makes us consult exp1 (and exp2)in order to �nd some speci�c type (lines 19 to 39).� We have already found a speci�c type that has to �t the remainder function(line 17).Calls to procedure Resolve �nally �nish the derivation of a type for the remainderloop variable.6.4 Pragma Restrictions (No General Loops)Package restrict is solely devoted to the implementation of pragma restrictions.It de�nes an enumeration type called Restriction Id which contains all possiblerestrictions as literals. In conformance to [Ada95, 13.12] these are called restric-tion identi�ers. In order to make WPP recognize a new restriction, a restrictionidenti�er has to be added to this type.restrict.adstype Restriction Id is (Immediate Reclamation, -- (RM H.4(10))No Abort Statements, -- (RM D.7(5), H.4(3))No Access Subprograms, -- (RM H.4(17))No Allocators, -- (RM H.4(7)): : :-- BB: added pragma No General LoopsNo General Loops, -- WPP: : :No Unchecked Deallocation, -- (RM H.4(9))Not A Restriction Id);All requests for restrictions are stored in a data structure de�ned in packagerestrict. It also provides the following functions which operate on this data struc-ture. Their aim is to check whether the restriction corresponding to the given

48restriction identi�er has been requested by the user. If this is the case, thesefunctions post an appropriate error message.restrict.adsprocedure Check Restriction (R : Restriction Id; N : Node Id);-- Checks that the given restriction is not set, and if it is set,-- an appropriate message is posted on the given node.procedure Check Restriction(R : Restriction Parameter Id;N : Node Id);-- Checks that the given restriction parameter identi�er is not set to-- zero. If it is set to zero, then the node N is replaced by a node-- that raises Storage Error, and a warning is issued.procedure Check Restriction(R : Restriction Parameter Id;V : Uint;N : Node Id);-- Checks that the count in V does not exceed the maximum value of the-- restriction parameter value corresponding to the given restriction-- parameter identi�er (if it has been set). If the count in V exceeds-- the maximum, then post an error message on node N.What remains to be done is to make WPP call one of the above functionswhenever it encounters a loop that might be rejected in the presence of pragmarestrictions (No General Loop). This can be achieved at that point during se-mantic analysis where the kind of a given loop is determined. Procedure Ana-lyze Loop Statement performs semantic analysis of a loop. If the given loop hasno iteration scheme, we have encountered a general loop that certainly is subjectto our restriction:sem ch5.adbif No (Iteration Scheme (N)) then-- In�nite loop-- BB: In case of a pragma restrictions (No General Loops)-- we have to complain now!Check Restriction (No General Loops, N);elseAnalyze Iteration Scheme (Iteration Scheme (N));end if ;

49In case of an iteration scheme the loop can either be a discrete,- while- or for-loop. If the loop turns out to be a while- loop, we have to check for the presenceof pragma restrictions (No General Loop).sem ch5.adbif Present (Cond) then-- BB: In case of pragma restrictions (No General Loops)-- we don't appreciate while-loops either.Check Restriction (No General Loops, N);Analyze And Resolve (Cond, Any Boolean);else-- Else we have a FOR loop: : :end if ;

501 Analyze (init id); Analyze (discrete subtype de�nition);2 if they do not yield discrete types then issue error; end if ;3 if Is Overloaded (init id) and Is Overloaded (discrete subtype de�nition) then4 T := Compute the Intersection of both Typesets;5 elsif Is Overloaded (init id) and not Is Overloaded (discrete subtype de�nition) then6 if Typeset(init id) contains Type(discrete subtype de�nition) then7 T := Type(discrete subtype de�nition);8 end if ;9 elsif not Is Overloaded (init id) and Is Overloaded (discrete subtype de�nition) then10 if Typeset(discrete subtype de�nition) contains Type(init id) then11 T := Type(init id);12 end if ;13 else14 if Type(init id) not compatible to Type(discrete subtype de�nition) then15 issue error;16 end if ;17 end if ;1819 Make the entity of the loop variable visible;2021 if no suitable type found then return error; end if ;22 if T = = Universal Integer then23 T := First Named Subtype (Base Type (T));24 Resolve Init Id (T);25 Resolve Discrete Subtype De�nition (T);26 Analyze List Of Iteration Functions;27 Resolve List Of Iteration Functions (T);28 else29 Analyze List Of Iteration Functions;30 T := Determine Type of Iteration functions;31 if T = Any Type then return error; end if ;32 if T = Universal Integer then33 T := Standard Integer;34 else35 T := First Named Subtype (Base Type (T));36 end if ;37 Resolve Init Id (T);38 Resolve Discrete Subtype De�nition (T);39 Resolve List Of Iteration Functions (T);40 end if ;Figure 15: Pseudo-code type resolution of a one-dimensional monotonical discrete loop.

511 for Index in 1 .. Dim (L) loop2 init id := Initial Value (L, Index);3 discrete subtype de�nition := Discrete Subtype De�nition (L, Index);4 Analyze (init id); Analyze (discrete subtype de�nition);5 if they do not yield discrete types then issue error; end if ;6 if Is Overloaded (init id) and Is Overloaded (discrete subtype de�nition) then7 T (L, Index) := Compute the Intersection of both Typesets;8 elsif Is Overloaded (init id) and not Is Overloaded (discrete subtype de�nition) then9 if Typeset(init id) contains Type(discrete subtype de�nition) then10 T (L, Index) := Type(discrete subtype de�nition);11 end if ;12 elsif not Is Overloaded (init id) and Is Overloaded (discrete subtype de�nition) then13 if Typeset(discrete subtype de�nition) contains Type(init id) then14 T (L, Index) := Type(init id);15 end if ;16 else17 if Type(init id) not compatible to Type(discrete subtype de�nition) then18 issue error;19 end if ;20 end if ;2122 Make the parameter of the Ith dimension of the loop variable visible;2324 if suitable type found then25 if T (L, Index) = Universal Integer then26 T (L, Index) := Standard Integer;27 else28 T (L, Index) := First Named Subtype (Base Type (T (L, Index)));29 end if ;30 Resolve (Initial Value (L, Index), T);31 Resolve (Discrete Subtype De�nition (L, Index), T);32 end if ;33 end loop;34 for Aggregate in 1 .. LOIF Nr Of Aggregates (L) loop35 for Index in 1 .. Dimensions (L) loop36 Analyze (List Of Iteration Functions (L, Index, Aggregate));37 Resolve (List Of Iteration Functions (L, Index, Aggregate), T (L, Index));38 end loop;39 end loop;Figure 19: Pseudo-code type resolution of a multi-dimensional monotonical discrete loop.

52
1 if loop variable = remainder loop variable then return error; end if ;2 init id := Initial Value (L, 1);3 list of iteration functions := List Of Iteration Functions (L, 1);4 Analyze (init id);5 if not Yields Appropriate Type (init id) then issue error; end if ;6 if Is Overloaded (init id) then7 issue error;8 else9 T := Type (init id);10 end if ;11 Make the entity of the loop variable visible.12 if no suitable type found then return error; end if ;13 if Is Universal Type (T) then14 Analyze (list of iteration functions);15 T := Determine Type (list of iteration functions);16 if T = Any Type then17 return error;18 elsif T = Universal Integer then19 T := Standard Integer;20 elsif T = Universal Real then21 T := Standard Float;22 else23 T := First Named Subtype (Base Type (T));24 end if ;25 Resolve (init id, T);26 Resolve (list of iteration functions, T);27 else28 T := First Named Subtype (Base Type (T));29 Resolve (init id, T);30 Analyze (list of iteration functions);31 Resolve (list of iteration functions, T);32 end if ;Figure 20: Pseudo-code type resolution of a one-dimensional loop variable of a remainderfunction loop.

53
1 for Index in 1 .. Dim (L) loop2 if loop parameter (index) = remainder loop variable then return error; end if ;3 init id := Initial Value (L, Index);4 Analyze (init id);5 if not Yields Appropriate Type (init id) then issue error; end if ;6 if Is Overloaded (init id) then7 issue error;8 else9 T (L, Index) := Type (init id);10 end if ;11 Make the parameter of the Ith dimension of the loop variable visible;12 if suitable type found then13 if T (L, Index) = Universal Integer then14 T (L, Index) := Standard Integer;15 elsif T (L, Index) = Universal Real then16 T (L, Index) := Standard Float;17 else18 T (L, Index) := First Named Subtype (Base Type (T (L, Index)));19 end if ;20 Resolve (Initial Value (L, Index), T (L, Index));21 end if ;22 end loop;23 for Aggregate in 1 .. LOIF Nr Of Aggregates (L) loop24 for Index in 1 .. Dimensions (L) loop25 Analyze (List Of Iteration Functions (L, Index, Aggregate));26 Resolve (List Of Iteration Functions (L, Index, Aggregate), T (L, Index));27 end loop;28 end loop;Figure 21: Pseudo-code type resolution of a multi-dimensional loop variable of a remainderfunction loop.

541 rem init id := Rem Initial Value (L); exp1 := Expression1 (L); exp2 := Expression2 (L);2 Analyze (rem init id);3 if Type (rem init id) = = Universal Integer and then not Yields Natural (rem init id) then4 issue error;5 end if ;6 if Is Overloaded (rem init id) then7 issue error;8 else9 T := Type (rem init id);10 end if ;11 if Case1 (L) then declare entity for remainder loop variable as constant;12 else declare entity for remainder loop variable as variable; end if ;13 if no suitable type found then return error; end if ;14 Analyze (exp1);15 if Case3 (L) then Analyze (exp2); end if ;16 if T = = Universal Integer then17 Resolve (rem init id, T);18 else19 if Case1 (L) or Case2 (L) then20 if not Yields Natural (exp1) or Is Overloaded (exp1) then return error; end if ;21 T := Type (exp1);22 else -- Case323 if not Yields Natural (exp1) or not Yields Natural (exp2) then return error; end if ;24 if Is Overloaded (exp1) and Is Overloaded (exp2) then25 T := Compute the Intersection of both Typesets;26 elsif Is Overloaded (exp1) and not Is Overloaded (exp2) then27 if Typeset (exp1) contains Type (exp2) then28 T := Type (exp2);29 end if ;30 elsif not Is Overloaded (exp1) and Is Overloaded (exp2) then31 if Typeset (exp2) contains Type (exp1) then32 T := Type (exp1);33 end if ;34 else35 if Type (exp1) = Type (exp2) then36 T := Type (exp1);37 end if ;38 end if ;39 if no suitable type found then return error; end if ;40 Resolve (rem init id, T);41 end if ;42 end if ;43 Resolve (exp1, T);44 if Case3 (L) then Resolve (exp2, T); end if ;Figure 22: Pseudo-code type resolution of a remainder loop variable.

55
Chapter 7ESTIMATING THE NUMBER OF ITERATIONS OFDISCRETE LOOPS7.1 Methods of ChoiceAccording to [Bli94] there exist three methods suitable for the calculation of lowerand upper bounds for the number of iterations of discrete loops:� Solving involved recurrence relations.� Exploiting theoretical foundations that apply to certain kinds of iteration-and remainder-functions ([Bli94], Section 4 & 6.3).� Extensive Enumeration7.1.1 Solving Involved Recurrence RelationsAs an example we take the discrete loop of the Heapsort-algorithm depicted inFigure 3, page 5, derive the underlying recurrence relation and solve it. Clearly1 discrete H := K in 1 .. N=2 new H := 2�H j 2�H+1 loop2 -- Loop body3 end loop;Figure 23: Discrete loop taken from Heapsortthe number of iterations of this loop is bounded above by the length of (h(min)�)which full�lls the recurrence relationh(min)1 = kh(min)�+1 = 2h(min)�since the length of any loop sequence containing two successive elements that ful�llh�+1 = 2h� + 1 will be smaller than that of (h(min)�). Solving the above recurrencerelation we get h(min)� = k2��1We want to determine the value of ! such thath(min)! � N=2 � h(min)!+1

56Taking logarithms we obtain ! = bldN � ldkcfor the number of iterations of the discrete loop. The method of choice for solving(more complicated) recurrence relations are generating functions and exponen-tial generating functions. The same can be achieved with help of Mathematica(transcript of Mathematica session follows).In[1]:= <<DiscreteMath`RSolve` -- Load package RSolve.In[2]:= RSolve[{h[n+1]== 2 h[n], h[0] == k}, h[n], n]Out[2]= {{h[n] -> (2^n k)/2}}In[3]:= Solve [2^(n-1)k==N/2,n]Out[3]= {{n -> Log[N/k]/Log[2]}}7.1.2 Theoretical Foundations for Certain Iteration- and Remainder-FunctionsProofs for the following theorems can be found either in [Bli94] or in Appendix D.Here f(x) is used to denote an iteration function. For convenience of the readerthe numbering of the theorems is that of [Bli94].Theorem 4.2If f(x) = d�x + �e, � > 1, � � 0, the length of the corresponding loop sequenceis bounded above by $log� N(�� 1) + �� + � � 1 !+ 1% :The corresponding lower bound is$log� N(�� 1) + � + 1� + � + 1% :

57Theorem 4.3If f(x) = d�x + �e, � > 1, � � 0, > 1, the length of the corresponding loopsequence is bounded above byblog((� 1) log�N + 1) + 1c:The corresponding lower bound isjlog((� 1) log�+�+1N + 1) + 1k :Theorem 4.4If f(x) = dq(x)+�e, where � � 0, and q(x) = Pi �ixi , �i > 1, i > 1, the lengthof the corresponding loop sequence is bounded above byblogm((m � 1) log�m N + 1) + 1c;where the index m is de�ned such that m = maxi i.Theorem 4.5If f(x) = x + �; � > 0 with initial value k1 = K the length of the correspondingloop sequence is bounded above by$N �K� + 1% :Theorem 6.1If a loop sequence of remaining items ful�llsr1 = Nr�+1 = br�=�c;where � > 1, then the length of the corresponding remainder loop sequence isbounded above by blog�N + 2c:

587.1.3 Extensive EnumerationExtensive enumeration is the so-called 'brute-force' method we resort to wheneverything else fails. The extensive enumeration algorithm can handle a set ofiteration functions (as opposed to the previous methods which can only be appliedto single iteration functions. Its major drawback (besides being extensive) isthat it cannot handle symbolic values. The algorithm is depicted in pseudo-codein Figure 24. For 'reverse' discrete loops and for remainder function loops the1 c := 0;2 cur := initial value;3 while cur in discrete subtype de�nition loop4 c := c+1;5 if reverse loop or remainder function loop then6 cur := max(fi(cur));7 else8 cur := min(fi(cur));9 end if ;10 end loop;Figure 24: Algorithm used for extensive enumeration of discrete loops.minimum min must be replaced by the maximum (line 5). Variable c representsthe counter for the number of iterations. It is initialized with zero. The currentvalue of the loop variable is represented by cur. As long as the current value of theloop variable stays within the discrete subtype de�nition, the iteration functionsare evaluated. Depending on the kind of loop, the greatest or the smallest valueis added to the current value of the loop variable. After termination of the loop,variable c contains an upper bound for the number of iterations of the loop underconsideration.The methods explained so far work with one-dimensional monotonical discreteloops and with remainder function loops. For multi-dimensional monotonical dis-crete loops they have to be extended. The reason for this lies in the fact that withmulti-dimensional monotonical discrete loops the behavior of the loop variable isdetermined by the multi-dimensional iteration function speci�cation. An upperbound for the number of iterations of a multi-dimensional monotonical discreteloop is Dim(L)Xi=1 maxUB(fi;j); 1 � j � MXm=1Km;iwhere the maxUB(fi;j) term denotes the maximum upper bound of all iteration

59functions of all aggregates of dimension i. By means of symbolic analysis of theloop body it should be possible to derive more accurate bounds.7.2 The Mathematical Subsystem of WPPEvery piece of mathematics that WPP throws at discrete loops has its roots inpackage Math. The interface of this package is used as an abstraction betweenthe implementation of the math-subsystem and its client. It provides a givenfunctionality via a set of functions. The most prominent among them are:� Math Initialize: Initialization of the math subsystem.� Math Evaluate (S : String; Kind : Evaluation): Have string 'S' evaluatedby the math subsystem. If no error occurs during evaluation, Math Evaluatereturns true. The result can be fetched with function Math Get Expression.Parameter 'Kind' determines the kind of evaluation: numeric or symbolic.� Math Get Expression: Returns the result of the last query.� Cannot Raise Monotonic Error: Takes an iteration function and a discreteinterval [Lb,Ub]. Returns 'true' if the given iteration function cannot raiseexception monotonic error within the given interval. Note that the currentimplementation of the math subsystem does not support symbolic values forthis function.� Monotonic UB: This function tries to derive an upper bound for the numberof iterations of a monotonical discrete loop from the given list of iterationfunctions, the initial value, and the discrete subtype de�nition. If it succeeds,it returns 'true' and a string representing the upper bound can be fetchedwith function Math Get Expression. Note that the current implementationof the math subsystem does not support symbolic values for this function.� Math End: Finalizes the math subsystem.7.2.1 ImplementationIt has been stated in the section about implementation considerations that WPP'smath subsystem utilizes the kernel of Mathematica. Communication takes place viaMathLink, a general mechanism for exchanging mathematical expressions between

60Mathematica and other programs. MathLink can use various data transport sys-tems such as pipes or TCP. In this way it is even possible to talk to a Mathematicakernel hosted on a remote computer.In fact MathLink is a set of library functions capable of initializing MathLinkconnections, of sending and receiving data, and of shutting down connections.Since the whole Mathematica system is coded in C, we had to bridge the gapbetween Ada and C by means of a binding (see Appendix C).The �rst goal of the math subsystem is to trade expressions back and forthbetween Mathematica and WPP. This of course is implemented within the packagebody of Math. The second goal, however, is to carry out the computations that ittakes in order to derive upper bounds or track down monotonic error exceptions.This part is implemented in Mathematica's internal Lisp-like programming lan-guage [WR4]. Its code is kept in a separate Mathematica-package that is loadedduring initialization (function Math Initialize) of the math subsystem. In this wayit is possible to modify functions of the math subsystem without recompiling oreven relinking of the preprocessor. Note also that by means of executing ourcode within the kernel of Mathematica we have the power of all of Mathematica'sfeatures [WO92] at hand.Monotonic UBSemantic analysis is the last preprocessor phase that extracts information aboutprogram entities from the underlying source code. After semantic analysis iscompleted we know facts like the kind of the loop, the type of the loop (or remainderloop) variable, and whether the expressions contained are static or not. Anyattempts aimed at determining the upper bound for the number of iterations of adiscrete loop are therefore carried out right after semantic analysis of the givenloop. The following code calls function Monotonic UB for every dimension of amonotonical discrete loop:sem ch5-woopsem ch5.adb1 for Index in 1 .. Dimensions (L) loop2 if Monotonic UB3 (List Of Iteration Functions (L, Index),4 Identi�er (L, Index),5 Discrete Subtype De�nition (L, Index),6 Initial Value (L, Index),7 Reverse Present (L, Index))8 then

619 -- Fetch upper bound.10 else11 -- No upper bound found.12 end if ;13 end loop;At this point we are still talking about tree fragments that are passed to themath subsystem. List Of Iteration Functions (L, Index) contains a List Id with allthe iteration functions of dimension 'index', identi�er contains the loop variable andso on. Within function Monotonic UB this call is transformed into an expressionsuitable for Mathematica.As an example we take procedure Siftdown from the Heapsort algorithm (Fig-ure 3): 1 N : constant Positive := 100;2 subtype Index is Positive range 1 .. N;3 : : :4 procedure Siftdown(N,K : Index) is5 J : Index;6 V : Integer;7 begin8 V := Arr(K);9 discrete H := K in 1 .. N=2 new H := 2�H j 2�H+1 loop10 J := 2�H;11 if J < N and then Arr(J) < Arr(J+1) then12 J := J+1;13 end if ;14 if V >= Arr(J) then15 Arr(H) := V;16 exit;17 end if ;18 Arr(H) := Arr(J);19 Arr(J) := V;20 H := J;21 end loop;22 end Siftdown;Figure 25: Procedure Siftdown from the Heapsort algorithmIf function Monotonic UB is invoked for the discrete loop in procedure Sift-down, it transforms its arguments into expressionTimeConstrained[MonUB[{2 * h, 2 * h + 1},h,1,100],10,$Timeout]

62that is then sent to Mathematica. TimeConstrained[expr, t, failexpr] is abuilt-in function of Mathematica. It attempts to evaluate expr within deadlinet. If the deadline is missed, it returns failexpr. We use this function in orderto put down extensive enumeration that turns out to be infeasible to be carriedout in a reasonable amount of time. MonUB[List, lv, lb, ub] is a functionthat belongs to our Mathematica-package. It takes its arguments and tries toderive an upper bound for it. Note that the initial value and the upper boundof the discrete subtype de�nition (line 9) have been replaced by the bounds ofsubtype index (line 2). The reason for this is that the current implementation ofour Mathematica-package cannot handle symbolic values. In this way we replaceevery non-static entity by the corresponding bound of its type in order to derive asomewhat reasonable upper bound. An alternative would be to take -In�nity and+In�nity, but this would result in less accurate upper bounds...Mathematica-package: function Mon UB1 MonUB[LoIF_List,lv_,lb_,ub_] :=2 If[IsPolynomialQ[LoIF,lv] && EnumerateQ[LoIF,lv,lb,ub],3 Block[{IFS,SmIF},4 IFS=RemoveDummies[Union[LoIF],lv];5 SmIF=SmallestIF[IFS,lv,lb,ub];6 (* Is there one smallest7 iteration function in [lb,ub] ? *)8 If[SmIF===$Failed,9 (* There is no single smallest iteration function,10 so we enumerate all iteration functions *)11 Enumerate[LoIF,lv,lb,ub],12 (* There is a single smallest iteration function,13 check whether a theorem applies to it *)14 If[TMon[SmIF,lv]===$Failed,15 (* No theorem applicable16 to single iteration function. *)17 Enumerate[{SmIF},lv,lb,ub],18 (* Theorem applicable19 to single iteration function. *)20 CalculateUB[SmIF,lv,lb,ub]21]

6322]23],24 $Failed25]The above code is executed by Mathematica's kernel as soon as it gets our requestfrom the link. It ensures that the given iteration functions are polynomials ofthe loop variable and that they do not contain any symbolic coe�cients (line 2).Function RemoveDummies (line 4) deletes any iteration function f from the listLoIF for which the following property holds:f(x) Z g(x) 8x 2 [�1; 1]; f(x); g(x) 2 LoIFThis simply means that we forget about all iteration functions that cannot con-tribute to the upper bound because they compute a value which is greater (smallerif 'reverse' loop) than the value of some other iteration function (iteration function2 � h + 1 of procedure Siftdown is such a dummy). Function SmallestIF (line 5)tries to extract the iteration function that computes the smallest (greatest) valuewithin the discrete interval [lb; ub]. If such an iteration function exists, we checkwhether some theorem applies to it (Theorem 4.2 for iteration function 2 � h ofthe above example). If this is the case, the upper bound is computed using thistheorem, otherwise the iteration function(s) have to be enumerated. Although ithas been stated at the beginning of this chapter that one could also attempt tosolve the arising recurrence relation, our current implementation does not supportit. The reason for this shortcut is that although Mathematica is good at solvingrecurrence relations, the solutions often involve transcendental functions as soonas they are put into equations. Unfortunately Mathematica is not quite as goodwith that...The result of function Mon UB (7 in the above example) is put back on thelink by the kernel where it is read by function Monotonic UB.Cannot Raise Monotonic ErrorThe aim of this function is to determine whether a given iteration function canraise exception monotonic error or not. An iteration function f(x) cannot raiseexception monotonic error in a given discrete interval [lb, ub], ifx Z f(x) 8x 2 [lb; ub]:

64Consider the iteration function 2x4 � 3x2 + x depicted in Figure 26. Withinthe discrete intervals [�1;�2] and [2;1] the values computed by the iterationfunction are smaller than x (the graph of the iteration function is above the linedenoting x. This means that the iteration function cannot raise monotonic errorin case of a monotonically increasing discrete loop (f(x) > x). However, this doesnot hold for the interval [�1; 1].In order to determine whether a given iteration function f(x) can raise excep-tion monotonic error we therefore have to intersect the iteration function with xand examine the resulting intervals: If we can show that the bounds of the dis-crete subtype de�nition of the loop are within an interval where x Z f(x) holds,then it is save to omit the run-time checks for exception monotonic error.

-2 -1 1 2

-2

2

4

x

2x^4-3x^2+x

Figure 26: Plot of x and f(x) = 2x4 � 3x2 + xMathematica-package: function NoMonotonicError1 (* NoMonotonicError[LoIF_List,lv_,lower_,upper_,cond_]2 Returns 'True' if the the iteration functions in LoIF cannot3 raise monotonic_error in the given interval [lower,upper].4 'cond' is used to distinguish between increasing and5 decreasing (keyword 'reverse') iteration functions. It is6 either FXGreaterX (increasing) or FXSmallerX (decreasing).

657 Requirements: LoIF : must be polynomials in lv, no symbolic8 coefficients or exponents.9 lower, upper : non-symbolic values .10 *)11 NoMonotonicError[LoIF_List,lv_,lower_,upper_,cond_] :=12 If[!(IsPolynomialQ[LoIF,lv]13 && EnumerateQ[LoIF,lv]14 && BEnuQ [lower,upper]),15 False,16 Block[{CommonInterval := IntersectIntervals17 [Map[ToInterval[Intervals[#,lv,cond]]&,LoIF]]},18 IntervalMemberQ[CommonInterval,Interval[{lower,upper}]]19]20]It should be stated that functions IntersectIntervals, ToInterval and Intervalsare also part of the implementation of the math-subsystem. Interval is one ofMathematica's built-in functions. The purpose of those functions is expressedthrough their names, the implementational details are of minor importance andare omitted due to space considerations.

66
Chapter 8TRANSFORMATION OF DISCRETE LOOPS INTOSTANDARD ADATwo prerequisites have to be met under all circumstances when transformingdiscrete loops into Ada:1. For every discrete loop that has to be transformed the semantics given inSection 1.1 have to be preserved.2. The enclosing program's semantics must not be changed.The overall approach is to replace every discrete loop by a standard Ada loopconstruct the body of which is extended to behave in a 'discrete' way. The rep-resentation of a discrete loop in Ada95 comprises two related parts:� Declarations of entities that are needed by the extensions in the loop body. Inorder to meet prerequisite (2) stated above, everything is declared locally bymeans of Ada's block statement. In this way these declarations are not visiblefrom outside of the block. However, they might hide other entities with thesame name from direct visibility ([Ada95](8.3(5)) within the block (e.g.:in the loop body). For that reason a name-generation algorithm has beenimplemented that checks for possible conicts with existing names (conferSection 9.1).� Standard Ada loop construct. The body of this loop contains the discreteloop's body enclosed by extensions that ensure 'discrete' behavior of theloop.The next sections illustrate how the various kinds of discrete loops are trans-formed into Ada95.8.1 Transformation of Monotonical Discrete Loops into Standard Ada8.1.1 One-Dimensional Discrete LoopsThe following discrete loop has been taken from the Heapsort algorithm given inFigure 3, page 5.

67Heapsort: Source1 discrete H := K in 1 .. N=2 new H := 2�H j 2�H+1 loop2 J := 2�H;3 if J < N and then Arr(J) < Arr(J+1) then4 J := J+1;5 end if ;6 if V >= Arr(J) then7 Arr(H) := V;8 exit;9 end if ;10 Arr(H) := Arr(J);11 Arr(J) := V;12 H := J;13 end loop;The following code represents the transformation of the loop.Heapsort: Transformation1 declare2 type PSV Type 1 is record3 out of range : Boolean := false;4 value : integer;5 end record;6 PSV1 1 : PSV Type 1;7 PSV1 2 : PSV Type 1;8 h : integer := k;9 Range UB 1 : constant integer := n = 2;10 begin11 while h in 1 .. Range UB 1 loop12 if not PSV1 1.Out Of Range then13 begin14 PSV1 1.Value := 2 � h;15 if PSV1 1.Value <= h then16 raise WoopDefs.MONOTONIC ERROR;17 end if ;18 exception19 when CONSTRAINT ERROR =>20 PSV1 1.Out Of Range := True;21 when others =>22 raise;23 end;24 end if ;25 if not PSV1 2.Out Of Range then26 begin27 PSV1 2.Value := 2 � H + 1;

6828 if PSV1 2.Value <= h then29 raise WoopDefs.MONOTONIC ERROR;30 end if ;31 exception32 when CONSTRAINT ERROR =>33 PSV1 2.Out Of Range := True;34 when others =>35 raise;36 end;37 end if ;38 -- Sequence of Statements:39 j := 2 � h;40 if j < n and then arr (j) < arr (j + 1) then41 j := j + 1;42 end if ;43 if v >= arr (j) then44 arr (h) := v;45 exit;46 end if ;47 arr (h) := arr (j);48 arr (j) := v;49 h := j;50 if (PSV1 1.Out Of Range or else PSV1 1.Value = = h)51 and then (PSV1 2.Out Of Range or else PSV1 2.Value = = h)52 then53 raise WoopDefs.SUCCESSOR ERROR;54 end if ;55 end loop;56 end;The discrete loop has been replaced by a while loop with the conditionidentifier in discrete subtype definitionThe body of the discrete loop has not been touched during transformation (lines39 - 49). The code before and afterwards corresponds to that 'extra work' it takesto make a while-loop behave in a 'discrete' way. It consists of three steps:1. Declare the types and objects needed.2. Compute the possible successive values (done on a per iteration basis).3. Check whether the new value of the loop variable is contained in the list ofpossible successive values and whether it is still within its range (done on aper iteration basis).

69The following paragraphs elaborate on the topics given above.Step 1: Declaration of Types and Objects.Type PSV Type 1 is declared to hold possible successive values of the loop variable(lines 2 - 5). It consists of two components:� out of range: A Boolean ag that is set if an iteration function computes avalue that is out of the range of the type of the loop variable.� value: Object used to hold a possible successive value while the loop bodyis executed. It is of the type of the loop variable.For every iteration-function of a one-dimensional loop we declare an object of typePSV Type 1 (lines 6 and 7). Those objects are indexed as PSV1 i where i standsfor the ith iteration function of the discrete subtype de�nition.The loop variable is declared and initialized with the initial value at line 8. Itstype has been derived by the algorithm in Figure 15.Line 9 declares a so-called range constant for the upper bound of the dis-crete subtype de�nition. Range constants are necessary in case of non-static boundsto ensure evaluate-once semantics of the discrete subtype de�nition.Note that for any declaration except the loop variable that we introduce it hasto be ensured that it does not hide some other entity declared in an enclosingscope of the program.Step 2: Computation of the Possible Successive Values.A possible successive value has to be computed for each iteration function beforeeach iteration of the loop (conf. lines 12 - 24 and lines 25 - 37). The reason for theexception handler (lines 18 - 23 and 31 - 36) is that we do not want an overowingiteration function to alter the ow of execution by means of a constraint errorexception. If such an overow occurs, we catch the corresponding exception andexclude the iteration function from further evaluation by setting its out of rangeag. We also have to ensure that the values that an iteration function computesare monotonically increasing (or decreasing if keyword 'reverse' is present).Step 3: Consistency Checks.An iteration of a discrete loop cannot be called complete until we have ensuredthat the loop variable has been assigned a value in the loop body that conforms to

70the iteration functions. This of course has to be done after the loop body has beenexecuted (conf. lines 50 & 51). If no iteration function predicted the value of theloop variable, or if all iteration functions are already out of range, the exceptionsuccessor error is raised.8.1.2 Multi-Dimensional Discrete LoopsThe following discrete loop has been taken from Euclid's algorithm given in Figure6, page 11.Euclid's Algorithm: Source1 discrete (M,N) := (A,B) in reverse (1..A, 1..B)2 new (M,N) := (N, M mod N) loop3 H := M;4 M := N;5 N := H mod N;6 end loop;Euclid's Algorithm: Transformation1 declare2 type PSV Type 1 is record3 out of range : Boolean := false;4 value : integer;5 end record;6 PSV1 1 : PSV Type 1;7 PSV2 1 : PSV Type 1;8 m : integer := a;9 n : integer := b;10 Range UB 1 : constant integer := a;11 Range UB 2 : constant integer := b;12 begin13 while (m in 1 .. Range UB 1) and then (n in 1 .. Range UB 2) loop14 if not PSV1 1.Out Of Range then15 begin16 PSV1 1.Value := n;17 if PSV1 1.Value > m then18 raise WoopDefs.MONOTONIC ERROR;19 end if ;20 exception21 when CONSTRAINT ERROR =>22 PSV1 1.Out Of Range := True;23 when others =>24 raise;

7125 end;26 end if ;27 if not PSV2 1.Out Of Range then28 begin29 PSV2 1.Value := m mod n;30 if PSV2 1.Value > n then31 raise WoopDefs.MONOTONIC ERROR;32 end if ;33 exception34 when CONSTRAINT ERROR =>35 PSV2 1.Out Of Range := True;36 when others =>37 raise;38 end;39 end if ;40 if not (PSV1 1.Out Of Range or else PSV2 1.Out Of Range)41 and then (PSV1 1.Value = m and then PSV2 1.Value = n)42 then43 raise WoopDefs.MONOTONIC ERROR;44 end if ;45 -- Sequence of Statements:46 h := m;47 m := n;48 n := h mod n;49 if (PSV1 1.Out Of Range or else PSV1 1.Value = = m) or else (50 PSV2 1.Out Of Range or else PSV2 1.Value = = n)51 then52 raise WoopDefs.SUCCESSOR ERROR;53 end if ;54 end loop;55 end;The discrete loop has been replaced by a while loop with the condition8i1�i�Dim(L) identifier(L; i) in discrete subtype definition(L; i)Transformation of multi-dimensional discrete loops works pretty much the sameas transformation of their one-dimensional counterparts. Di�erences are due tothe fact that we are now dealing with aggregate variables.Step 1: Declaration of Types and Objects.Type PSV Type i is used to hold the successive values for parameter ai of theloop variable. For every distinct type among the parameters one PSV Type i has

72to be declared. Since in this example both dimensions of the loop variable are ofthe same type, we only need to declare one of them.For every iteration function of every dimension of the loop one object of thecorresponding PSV Type has to be declared. Those objects are indexed as PSVi jwhere i stands for the ith dimension and j for the jth iteration function of thatdimension. Lines 8 & 9 declare the parameters of the loop variable. Dimensionone as well as dimension two need a range constant for the upper bound of theirdiscrete subtype de�nitions (lines 10 & 11). Range constants are indexed throughthe dimension they belong to.Step 2: Computation of the Possible Successive Values.Computing the possible successive values and checking monotony can be done inone step with one-dimensional monotonic discrete loops. Either the new value isgreater (smaller with reverse loops) than the loop variable or it is not. Monotonyin the case of multi-dimensional discrete loops however is a little trickier to check.De�nition 1.2.6 requires only one parameter of a possible successive value (pi)to be greater (smaller if reverse loop) than the corresponding parameter of theloop variable. The remaining parameters may keep their value. For this reasonmonotony can only be checked in two passes:� Pass one computes the possible successive values on a per-dimension basis(lines 14 - 26 & lines 27-39 in this example). Monotony of a loop variable(pi) cannot be ensured by examining only single parameters. Therefore thegoal of the �rst pass can only be to ensure that no parameter's new valueis smaller (greater if reverse loop) then the current value of that parameter.This corresponds to the �rst part of De�nition 1.2.6:8i1�i�Dim(L(ai)) aiZ biIf this check fails exception monotonic error is raised.� Pass two deals with Part two of De�nition 1.2.6:9j : aj Z bjLines 40 - 44 are devoted to this check. If all parameters of the loop variablehave kept their value, then the second part of De�nition 1.2.6 is violatedand exception monotonic error is raised accordingly. Note that this example

73contains only one possible successive value for the loop variable. Checks foradditional possible successive values can be 'ored' to lines 40 & 41.Step 3: Consistency Checks.It must be ensured that the loop variable has been assigned a value during execu-tion of the loop body that conforms to the iteration function speci�cation. If theiteration function speci�cation failed to predict the new value of the loop variableexception successor error is raised (lines 49 - 53).8.2 Transformation of Remainder Function Loops into Standard AdaDiscrete loops with remainder functions can (but need not) contain the declarationof a loop variable. The following sections elaborate on the transformation of case1,case2, and case3 remainder function loops. Since the transformation of the loopvariable's part does not change with the di�erent kinds of remainder functionloops, it is only explained in the �rst section. Thereafter only transformationsrelated to the remainder loop variable are explained and code-samples have beenstripped from code related to the loop variable to increase clarity and to reducespace. The complete (unstripped) code samples can be found in Appendix B.8.2.1 Case1 Remainder Function LoopsThe following example has been taken from Section 1.1.2 on page 6.Binary Tree Search: Source1 discrete Node Pointer := Root2 new Node Pointer := Node Pointer.Left j Node Pointer.Right3 with H := Height4 new H = H - 1 loop5 { loop body:6 { Here the node pointed at by node pointer is processed7 { and node pointer is either set to the left or right8 { successor.9 { The loop is completed if node pointer = null.10 end loop;

74Binary Tree Search: Transformation1 declare2 type PSV Type 1 is record3 out of range : Boolean := false;4 value : tree pointer;5 end record;6 PSV1 1 : PSV Type 1;7 PSV1 2 : PSV Type 1;8 node ptr : tree pointer := root;9 h : natural := height;10 Calculated h : natural;11 begin12 loop13 if h = 0 then14 raise WoopDefs.LOOP ERROR;15 end if ;16 Calculated h := h - 1;17 if not PSV1 1.Out Of Range then18 begin19 PSV1 1.Value := node ptr.left;20 exception21 when CONSTRAINT ERROR =>22 PSV1 1.Out Of Range := True;23 when others =>24 raise;25 end;26 end if ;27 if not PSV1 2.Out Of Range then28 begin29 PSV1 2.Value := node ptr.right;30 exception31 when CONSTRAINT ERROR =>32 PSV1 2.Out Of Range := True;33 when others =>34 raise;35 end;36 end if ;37 -- Sequence of statements (suppressed for space considerations).38 if Calculated h >= h then39 raise WoopDefs.MONOTONIC ERROR;40 else41 h := Calculated h;42 end if ;43 if (PSV1 1.Out Of Range or else PSV1 1.Value = = node ptr)

7544 and then (PSV1 2.Out Of Range or else PSV1 2.Value = =45 node ptr)46 then47 raise WoopDefs.SUCCESSOR ERROR;48 end if ;49 end loop;50 end;Transformations related to the Loop VariableThe code associated with the loop variable of a remainder function loop di�ers intwo important aspects from a monotonical discrete loop variable's code:� It cannot raise exception monotonic error (lines 17 - 26 & 27 - 36).� No discrete subtype de�nition can occur with remainder function loops. Thisis the reason why remainder function loops have to be transformed into anordinary loop without an iteration scheme as opposed to a while-loop in caseof monotonical discrete loops (confer line 12).Apart from the above di�erences we code on the analogy of monotonical discreteloops: Lines 2 - 5 declare a PSV Type used to hold possible successive values.Again we might need several types with multi-dimensional loops. Thereafter wedeclare objects of the PSV Type(s) (lines 6 - 7). The loop variable is declaredand initialized in line 8. After execution of the sequence of statements we haveto ensure that one of the possible successive values contains the new value of theloop variable. Otherwise exception successor error is raised (lines 43 - 47).Transformations related to the Remainder Loop VariableLine 9 declares and initializes the remainder loop variable. Its type has beenderived by the algorithm depicted in Figure 22. Another object of that type isneeded for the value computed by the remainder function. For case1-remainderfunction loops this object is named Calculated <rem identi�er> (line 10).Within the loop body it has to be ensured that the value of the remainderloop variable has not reached zero. Otherwise exception loop error is raised (lines13 - 15). Thereafter we compute the value of the remainder function (line 16).After the sequence of statements it is checked whether this value is smaller thanthe current value of the remainder loop variable. If this is the case the remainderloop variable is assigned the value of the remainder function. Otherwise exceptionmonotonic error is raised (lines 38 - 42).

768.2.2 Case2- & Case3 Remainder Function LoopsThis section's example contains a template for the traversal of BB[�]-trees. Notethat its transformation has been stripped from code that relates to the loop vari-able. A summary on BB[�]-trees as well as a non-stripped transformation of thisexample can be found in Appendix B.Template for Operations on BB[�]-trees: Source1 discrete Node Pointer := Root2 new Node Pointer := Node Pointer.Left j Node Pointer.Right3 with R := N -- N = number of leaves of the tree4 new R <= Floor ((1-Alpha)�R) and R >= Floor (Alpha�R)5 loop6 -- loop body (suppressed)7 end loop;Template for Operations on BB[�]-trees: Transformation1 declare2 r : natural := n;3 Previous UB : natural := r;4 Previous LB : natural := r;5 Calculated UB : natural;6 Calculated LB : natural;7 begin8 loop9 if r = 0 then10 raise WoopDefs.LOOP ERROR;11 end if ;12 Calculated UB := oor ((1 - alpha) � r);13 Calculated LB := oor (alpha � r);14 -- loop body (suppressed)15 if Previous UB = r then16 if not (Calculated UB < R17 and then Calculated LB <= Previous LB18 and then Calculated LB <= Calculated UB)19 then20 raise WoopDefs.MONOTONIC ERROR;21 else22 r := Calculated UB;23 end if ;24 else25 if not (Previous UB > Calculated UB26 and then Calculated UB >= r27 and then Calculated LB <= Previous LB

7728 and then Calculated LB <= R)29 then30 raise WoopDefs.MONOTONIC ERROR;31 end if ;32 end if ;33 Previous UB := r;34 end loop;35 end;Line 2 declares and initializes the remainder loop variable. Its type has beenderived by the algorithm depicted in Figure 22. The remainder function's up-per bound expression provides an upper bound for the value of the remainder loopvariable. Case3-loops provide an additional lower bound in their lower bound-expression. In order to ensure monotony of the remainder loop variable duringsubsequent iterations of the loop, it is necessary to compare the current value ofeach bound to its previous value. Naturally this takes two objects per bound.They are named Previous X and Calculated X where 'X' stands for 'UB' (upperbound) or 'LB' (lower bound). Those objects are declared to be of the same typeas the remainder loop variable (lines 3 - 6).Within the loop body it has to be ensured that the value of the remainder loopvariable has not reached zero. Otherwise exception loop error is raised (lines 9 -11). Thereafter (lines 12 & 13) the current values for the bounds are calculated.Execution of the loop body (body suppressed due to space considerations)leaves us with two possibilities:� The value of the remainder loop variable has not been altered in the loopbody: Here the current value of the upper bound has to be smaller thanthe value of the remainder loop variable (line 16). Since the value of theremainder loop variable and the previous value of the upper bound are thesame in this case, it is implicitly checked that the current value of the upperbound is smaller than the previous value of the upper bound. Additionalchecks are introduced with case3-remainder function loops:{ The current value of the lower bound must not be greater than theprevious value of the lower bound (line 17).{ The interval [current value of lower bound, current value of upperbound] must contain at least one element (line 18).If one of this checks fails, exception monotonic error is raised. Otherwise

78the remainder loop variable is assigned the current value of the upper bound(line 22).� The value of the remainder loop variable has been altered in the loop body:Here it has to be checked explicitly that the current value of the upper boundis smaller than the previous value of the upper bound (line 25). The currentvalue of the the loop variable has to be equal or smaller than the currentvalue of the upper bound (line 26). This ensures that the remainder loop vari-able cannot do worse in the loop body than predicted by the upper bound.Additional checks are introduced with case3-remainder function loops:{ The current value of the lower bound must not be greater than theprevious value of the lower bound (line 27).{ The interval [current value of lower bound, current value of remainderloop variable] must contain at least one element (line 28).If one of the above checks fails exception monotonic error is raised (line 30).Line 33 �nally assigns the current value of the loop variable to the previous upperbound. Note that right before this point the propertycurrent value of upper bound � current value of remainder loop variableholds in any case. If the second branch of the if-statement (lines 24 - 32) is taken,even the propertycurrent value of upper bound > current value of remainder loop variableholds. If we would take the current value of the upper bound as the next iteration'sprevious value of the upper bound, a 'Byzantine' remainder loop variable couldexploit the interval[current value of upper bound; current value of remainder loop variable]to go backwards without notice.The consequence of this assignment statement is that if we talk about theprevious value of the upper bound, we actually mean the previous value of theremainder loop variable. Another consequence is that by that means we save oneobject that would be used to store the previous value of the remainder loop variableotherwise. The initialization of the bounds with the initial value of the remainderloop variable (lines 3 & 4) conforms to this scheme.

79
Chapter 9CODE GENERATIONIt is one of GNAT's built-in abilities to dump the source code from the gener-ated abstract syntax tree. Despite the fact that this feature was only meant fordebugging purposes, we climb the band wagon and exploit it for our needs. Themode of operation is as follows: we let GNAT do all the work until it encounters adiscrete loop in the tree. This is the point were we take over in order to generatewhat has been explained in Section 8. For the loop body and at the end of theloop we return control to GNAT.Package Sprint contains the code responsible for tree dumps. Two proceduresand one function are necessary to accommodate code-generation of discrete loops:� Generate Name: Used to generate distinct names that are not occupied bysome other entity (see next section).� Check Context Clauses: Called on encountering a node N Compilation Unit.Checks for the necessity of a context clause for package WoopDefs (see nextsection but one).� Write Discrete Loop: Outputs the source code for discrete loops.Since all three functions depend on entities declared in the body of package Sprint,they have to be declared as subunits instead of procedures within a child packageof Sprint.9.1 The Name Generation AlgorithmIt has been stated in Section 8 that the entities that are generated by WPP mustnot hide entities of the same name. It is the purpose of the name generationalgorithm to �nd a name that is not already occupied by some other entity.My �rst guess was to take the desired name and append the current systemtime to it if the name is already visible. Trying this for about N + 1 times shouldresult in a distinct name (provided that any Ada program that we can think ofcontains only N named entities). Since the other WOOP people did not like thismethod, I resorted to something more common: If the desired name is already

80visible, su�x " wpp" is appended to it. If an entity of that name is also visible,an index gets appended. This index is replaced by index'SUCC until a distinctname is �nally found.Note that the names used in Section 8 are 'desired' names throughout.9.2 Package WoopDefsThe code that we generate depends heavily on three exceptions: monotonic error,successor error and loop error. They are declared in package WoopDefs. To havethem at hand, this package is added to a compilation unit's context clause if it isnot already visible.woopdefs.ads1 package WoopDefs is2 MONOTONIC ERROR : exception;3 SUCCESSOR ERROR : exception;4 LOOP ERROR : exception;5 end WoopDefs;sprint-check context clauses.adb1 procedure Check Context Clauses (Node : Node Id) is2 begin3 if Needs WoopDefs Context Clause (Node) then4 Write Indent;5 Write Str With Col Check ("with WoopDefs;");6 if Woop.Woop Debug then7 Write Indent;8 Write Str ("-- BBdb: wpp includes package WoopDefs!");9 end if ;10 end if ;11 end Check Context Clauses;The ag Needs WoopDefs Context Clause gets set during semantic analysison encountering a discrete loop provided that this package is not already visible.

819.3 Write Discrete LoopThis is really a big one. It does the code generation for all kinds of discrete loops. Itis called from within package Sprint which contains a huge case-statement over allkinds of nodes that GNAT supports. Fiddling with the case statement alternativefor node N Loop Statement (node-kinds are sorted in alphabetical order withinSprint) makes it call procedure Write Discrete Loop in case of a discrete loop:sprint.adb1 : : :2 when N Loop Statement =>3 Write Indent;4 -- BB: If 'Node' contains a discrete loop, we use our own5 -- output-function:6 if Present (Iteration Scheme (Node)) and then7 Is Discrete Loop (Iteration Scheme (Node)) then8 Write Discrete Loop (Node);9 else10 -- Print common Ada95 loop statement.11 end if ;12 : : :The structure of procedure Write Discrete Loop is as follows:1. Declarations of pointers to strings are used to hold the names of the entitiesthat are generated by WPP (lines 5 - 9).� Previous *, Calculated *: Entities used to hold the bounds of a re-mainder function loop (see Section 8.2).� Implicit Type: Used for constrained discrete subtype de�nitions e.g.:discrete ... in integer range In this case we have to cre-ate a subtype with the speci�ed constraint. The reason for this extrawork is that Ada does not allow constraint subtype indications in iter-ation schemes (like while s in integer range ...).� Range UB, Range LB: Constants that help enforce single evaluation ofthe 'while'-iteration scheme.2. Procedures devoted to the generation of various parts of discrete loops. Theresponsibilities of the di�erent procedures are spelled out here. Line numbers

82refer to the transformation of the discrete loop of the BB[�]-tree example(Appendix B). If the line numbers of some procedure are contained in thoseof another one, this means that the procedure is called by the 'enclosing'one.� Write Discloop Declarations: Depending on the 'Loop Type', declara-tions related to the loop variable are generated for monotonical loopsor loops with remainder functions (lines 2-8).� Write Remainder Declarations: Generates additional declarations forloops with remainder functions (lines 9 - 13).� Write DiscLoop Step1 And Step2: Generates code for the calculationof the possible successive values and checks for monotonic error in caseof a monotonical discrete loop (lines 21-40).� Write Monotonic DiscLoop Body: Generates the body of a monoton-ical discrete loop. Returns control to GNAT for the generation of thesequence of statements.� Write Remainder DiscLoop Body: Generates the body of a remainderfunction loop (lines 15 - 63). Returns control to GNAT for the genera-tion of the sequence of statements.� Write DiscLoop Step3: Generate checks for exception successor error(lines 58-62).3. Body of procedure write discrete loop.sprint-write discrete loop.adb1 separate (Sprint)2 procedure Write Discrete Loop (N : Node Id) is3 I : constant Node Id := Iteration Scheme (N);4 L : constant Node Id := Loop Parameter Speci�cation (I);5 Previous UB : String Ptr;6 Previous LB : String Ptr;7 Calculated UB : String Ptr;8 Calculated LB : String Ptr;9 Implicit Type : array (1 .. Dimensions (L)) of String Ptr;10 Range UB : array (1 .. Dimensions (L)) of String Ptr;

8311 Range LB : array (1 .. Dimensions (L)) of String Ptr;12 procedure Write DiscLoop Declarations (LT : Loop Type);13 procedure Write DiscLoop Remainder Declarations;14 procedure Write DiscLoop Step1 And Step2 (LT : Loop Type);15 procedure Write Monotonic DiscLoop Body;16 procedure Write Remainder DiscLoop Body;17 procedure Write DiscLoop Step3;18 -- Procedure bodies of above declarations19 -- withheld due to space considerations!20 begin -- Write Discrete Loop21 if Is Monotonical Loop (L) then22 Write Indent Str ("declare");23 Write DiscLoop Declarations (M Loop);24 Write Indent Str ("begin");25 Write Monotonic DiscLoop Body;26 Write Indent Str ("end;");27 else28 Write Indent Str ("declare");29 if Has Loop Variable (L) then30 Write DiscLoop Declarations (R Loop);31 end if ;32 Write DiscLoop Remainder Declarations;33 Write Indent Str ("begin");34 Write Remainder DiscLoop Body;35 Write Indent Str ("end;");36 end if ;37 end Write Discrete Loop;The implementation of the body of procedure Write Discrete Loop is straight-forward. It contains two branches, one for monotonical discrete loops, the otherfor remainder function loops. Both start with the output of keyword 'declare'in order to start the block statement needed for declarations. Depending on thetype of loop the declarations are generated. Keyword 'begin' marks the end ofthe declarative part and the beginning of the handled sequence of statements ofthe block statement. The loop body is generated with a call to Write Monotonic-DiscLoop Body or Write Remainder DiscLoop Body. Keyword 'end' followed bya semi-colon ends code-generation of a discrete loop.

84
Chapter 10CONCLUSIONS AND FURTHER WORKThe development of the WOOP preprocessor made it possible to use the up tothis point solely theoretical concept of discrete loops in a real-world programmingenvironment. Although in principle there was no cause to favor any particularprogramming language, it was the reliability and maintainability of Ada95 that�nally lead to the decision to build a preprocessor for that language. Anotherimportant decision was to implementWPP by extending the source code of GNAT,the Gnu Ada Translator. Although it took some time to become familiar with thishuge piece of software, it payed o� in any respect. Since GNAT itself is writtenentirely in Ada, its overall structure can be regarded as very modular. Couplingbetween modules is really loose and one can apply modi�cations locally and neednot know all the details of the program as a whole.Upper bounds for the number of iterations of discrete loops are calculatedby means of Mathematica, a commercial computer algebra package. Parts ofthis preprocessor are therefore written in Mathematica's internal programminglanguage.In order to call Mathematica's kernel from withinWPP, an Ada to Mathematicabinding has been implemented.Starting with the �rst infant versions of WPP numerous examples from vari-ous books on algorithms (e.g. [SE88]) have been successfully programmed withdiscrete loops.The implementation of WPP also helped the de�nition of multi-dimensionaldiscrete loops. Code generation provided insight on run-time checks and theirpossible avoidance.Further WorkThere is much room for further work with WPP, ideas for improvements on variousparts of the system are given below.� The math-subsystem should be extended to support the generation of upperbounds for symbolic values.

85� Symbolic analysis should be performed on the loop body in order to obtainmore accurate bounds for multi-dimensional monotonical discrete loops.� The math-subsystem should be extended to support enumeration types andmodular types.� Run-time checks for exception successor error and loop error could be avoidedby means of symbolic analysis of the loop body.� Upper bounds for multi-dimensional discrete loops are computed on a per-dimension basis. Due to possible mutual dependencies between di�erent di-mension's loop parameters in the iteration function speci�cation this shouldbe done for all dimensions at once.

86
Appendix ASYNTAX SUMMARYThis Annex summarizes the complete syntax of discrete loops. A descriptionof the notation used can be found in [Ada95](1.1.4).loop statement ::=[loop simple name:][iteration scheme] loopsequence of statementsend loop [loop simple name];iteration scheme ::= while condition| for for loop parameter speci�cation| discrete discrete loop parameter speci�cationfor loop parameter speci�cation ::=identi�er in [reverse] discrete subtype de�nitiondiscrete loop parameter speci�cation ::=monotonical discrete loop parameter speci�cation| discrete loop with remainder function parameter speci�cation| multi dimensional monotonical discrete loop parameter speci�cation|multi dimensional discrete loop with remainder function parameter specmonotonical discrete loop paramter speci�cation ::=identi�er := initial value in [reverse] discrete subtype de�nitionnew identi�er := list of iteration functionsdiscrete loop with remainder function parameter speci�cation ::=[identi�er := initial valuenew identi�er := list of iteration functions]with rem identi�er := initial value new remainder function

87remainder function ::=rem identi�er = expression |rem identi�er <= upper bound expression[and rem identi�er >= lower bound expression]
multi dimensional monotonical discrete loop parameter speci�cation ::=identi�er aggregate := initial value aggregate in [reverse] range aggregatenew identi�er aggregate := iteration function speci�cationidenti�er aggregate ::= (identi�er f , identi�er g)initial value aggregate ::= (initial value f , initial value g)range aggregate ::= ([reverse] discrete subtype de�nitionf, [reverse] discrete subtype de�nitiong)iteration function speci�cation ::= iteration function aggregatef| iteration function aggregategiteration function aggregate ::= (list of iteration functionsf,list of iteration functionsg)
multi dimensional discrete loop with remainder function parameter spec ::=[identi�er aggregate := initial value aggregatenew identi�er aggregate := iteration function speci�cation]with rem identi�er := initial value new remainder functionremainder function ::=rem identi�er = expression |rem identi�er <= upper bound expression[and rem identi�er >= lower bound expression]

88identi�er aggregate ::= (identi�er f , identi�er g)initial value aggregate ::= (initial value f , initial value g)iteration function speci�cation ::= iteration function aggregatef| iteration function aggregategiteration function aggregate ::= (list of iteration functionsf,list of iteration functionsg)list of iteration functions ::=iteration function f | iteration functiongiteration function ::= expression

89
Appendix BEXAMPLES OF DISCRETE LOOPS AND THEIRTRANSFORMATIONSB.1 Weight-Balanced TreesWeight-balanced trees have been introduced in [NR73]. They are treated in detailin [ME84], the following summary is taken from [Bli94].1. Let T be a binary tree with left subtree Tl and right subtree Tr. Then�(T) = jTlj=jT j = 1� jTrj=jT jis called the root balance of T . Here jT j denotes the number of leaves oftree T .2. Tree T is of bounded balance � if for every subtree T 0 of T :� � �(T 0) � 1� �3. BB[�] is the set of all trees of bounded balance �.If the parameter � satis�es 1/4 < � � 1 � p2=2, the operations Access, Insert,Delete, Min, and DeleteMin take time O(Log N) in BB[�] trees. Here N is thenumber of leaves in the BB[�]-tree. Some of the above operations can move theroot balance of some nodes on the path of search outside the permissible range[�; 1� �]. This can be "repaired" by single and double rotations (for details see[ME84]).BB[�]-trees are binary trees with bounded height. In fact it is proved in[ME84] that height(T) � logN � 1�log(1� �) + 1;where N is the number of leaves in the BB[�]-tree T .The following template utilizes a discrete loop for the traversal of BB[�]-trees.The remainder function operates on the number of leaves of the tree.

90Template for Operations on BB[�]-trees: Source1 discrete Node Pointer := Root2 new Node Pointer := Node Pointer.Left j Node Pointer.Right3 with R := N -- N = number of leaves of the tree4 new R <= Floor ((1-Alpha)�R) and R >= Floor (Alpha�R)5 loop6 -- loop body (suppressed)7 end loop;Template for Operations on BB[�]-trees: Transformation1 declare2 type PSV Type 1 is record3 out of range : Boolean := false;4 value : tree pointer;5 end record;6 PSV1 1 : PSV Type 1;7 PSV1 2 : PSV Type 1;8 node pointer : tree pointer := root;9 r : natural := n;10 Previous UB : natural := r;11 Previous LB : natural := r;12 Calculated UB : natural;13 Calculated LB : natural;14 begin15 loop16 if r = 0 then17 raise WoopDefs.LOOP ERROR;18 end if ;19 Calculated UB := oor ((1 - alpha) � r);20 Calculated LB := oor (alpha � r);21 if not PSV1 1.Out Of Range then22 begin23 PSV1 1.Value := node pointer.left;24 exception25 when CONSTRAINT ERROR =>26 PSV1 1.Out Of Range := True;27 when others =>28 raise;29 end;30 end if ;31 if not PSV1 2.Out Of Range then32 begin33 PSV1 2.Value := node pointer.right;34 exception

9135 when CONSTRAINT ERROR =>36 PSV1 2.Out Of Range := True;37 when others =>38 raise;39 end;40 end if ;41 -- loop body (suppressed)42 if Previous UB = r then43 if not (Calculated UB < r and then Calculated LB <=44 Previous LB and then Calculated LB <= Calculated UB) then45 raise WoopDefs.MONOTONIC ERROR;46 else47 r := Calculated UB;48 end if ;49 else50 if not (Previous UB > Calculated UB51 and then Calculated UB >= r52 and then Calculated LB <= Previous LB and then Calculated LB <= R)53 then54 raise WoopDefs.MONOTONIC ERROR;55 end if ;56 end if ;57 Previous UB := r;58 if (PSV1 1.Out Of Range or else PSV1 1.Value = = node pointer)59 and then (PSV1 2.Out Of Range or else PSV1 2.Value = = node pointer)60 then61 raise WoopDefs.SUCCESSOR ERROR;62 end if ;63 end loop;64 end;B.2 MergesortThe algorithm performs a bottom-up (non-recursive) merge sort. A detailed de-scription of Mergesort can be found in [SE88].Mergesort: Source1 N : constant Integer := ??; -- Number of elements to be sorted.2 subtype Index is Integer range 1 .. N;3 type Gen Sort Array is array (Index range <>) of Integer;4 subtype Sort Array is Gen Sort Array (Index);5 Target : Sort Array;6 procedure Merge Sort (From, To : Index) is7 M : constant Integer := (From+To)=2 + 1;

928 subtype Aux Array is Gen Sort Array (M..To);9 Aux : Aux Array;10 begin11 if From = To then12 return;13 end if ;14 Merge Sort (From, M-1);15 Merge Sort (M, To);16 Aux := Target (M .. To);17 discrete (P,Q,R) := (M-1, Aux'Last, To)18 in reverse (From-1 .. M-1, Aux'First .. Aux'Last, From .. To)19 new (P,Q,R) := (P-1, Q, R-1) j (P, Q-1, R-1)20 loop21 if P < From or else Target (P) < Aux (Q) then22 Target (R) := Aux (Q);23 Q := Q-1;24 else25 Target (R) := Target (P);26 P := P-1;27 end if ;28 R := R-1;29 end loop;30 end Merge Sort;Mergesort: Transformation1 procedure merge sort (from, to : index) is2 m : constant integer := (from + to) = 2 + 1;3 subtype aux array is gen sort array (m .. to);4 aux : aux array;5 begin6 if from = to then return; end if ;7 merge sort (from, m - 1);8 merge sort (m, to);9 aux := target (m .. to);10 declare11 type PSV Type 1 is record12 out of range : Boolean := false;13 value : integer;14 end record;15 PSV1 1 : PSV Type 1;16 PSV1 2 : PSV Type 1;17 PSV2 1 : PSV Type 1;18 PSV2 2 : PSV Type 1;19 PSV3 1 : PSV Type 1;20 PSV3 2 : PSV Type 1;21 p : integer := m - 1;

9322 q : integer := aux'last;23 r : integer := to;24 Range LB 1 : constant integer := from - 1;25 Range UB 1 : constant integer := m - 1;26 Range LB 2 : constant integer := aux'�rst;27 Range UB 2 : constant integer := aux'last;28 Range LB 3 : constant integer := from;29 Range UB 3 : constant integer := to;30 begin31 while (p in Range LB 1 .. Range UB 1) and then (q in32 Range LB 2 .. Range UB 2) and then (r in Range LB 3 ..33 Range UB 3)34 loop35 if not PSV1 1.Out Of Range then36 begin37 PSV1 1.Value := p - 1;38 if PSV1 1.Value > p then39 raise WoopDefs.MONOTONIC ERROR;40 end if ;41 exception42 when CONSTRAINT ERROR =>43 PSV1 1.Out Of Range := True;44 when others =>45 raise;46 end;47 end if ;48 if not PSV1 2.Out Of Range then49 begin50 PSV1 2.Value := p;51 if PSV1 2.Value > p then52 raise WoopDefs.MONOTONIC ERROR;53 end if ;54 exception55 when CONSTRAINT ERROR =>56 PSV1 2.Out Of Range := True;57 when others =>58 raise;59 end;60 end if ;61 if not PSV2 1.Out Of Range then62 begin63 PSV2 1.Value := q;64 if PSV2 1.Value > q then65 raise WoopDefs.MONOTONIC ERROR;66 end if ;67 exception68 when CONSTRAINT ERROR =>69 PSV2 1.Out Of Range := True;

9470 when others =>71 raise;72 end;73 end if ;74 if not PSV2 2.Out Of Range then75 begin76 PSV2 2.Value := q - 1;77 if PSV2 2.Value > q then78 raise WoopDefs.MONOTONIC ERROR;79 end if ;80 exception81 when CONSTRAINT ERROR =>82 PSV2 2.Out Of Range := True;83 when others =>84 raise;85 end;86 end if ;87 if not PSV3 1.Out Of Range then88 begin89 PSV3 1.Value := r - 1;90 if PSV3 1.Value > r then91 raise WoopDefs.MONOTONIC ERROR;92 end if ;93 exception94 when CONSTRAINT ERROR =>95 PSV3 1.Out Of Range := True;96 when others =>97 raise;98 end;99 end if ;100 if not PSV3 2.Out Of Range then101 begin102 PSV3 2.Value := r - 1;103 if PSV3 2.Value > r then104 raise WoopDefs.MONOTONIC ERROR;105 end if ;106 exception107 when CONSTRAINT ERROR =>108 PSV3 2.Out Of Range := True;109 when others =>110 raise;111 end;112 end if ;113 if (not (PSV1 1.Out Of Range or else PSV2 1.Out Of Range114 or else PSV3 1.Out Of Range) and then (PSV1 1.Value = p115 and then PSV2 1.Value = q and then PSV3 1.Value = r))116 or else (not (PSV1 2.Out Of Range or else PSV2 2117 .Out Of Range or else PSV3 2.Out Of Range) and then (

95118 PSV1 2.Value = p and then PSV2 2.Value = q and then119 PSV3 2.Value = r))120 then121 raise WoopDefs.MONOTONIC ERROR;122 end if ;123 -- Sequence of Statements:124 if p < from or else target (p) < aux (q) then125 target (r) := aux (q);126 q := q - 1;127 else128 target (r) := target (p);129 p := p - 1;130 end if ;131 r := r - 1;132 if ((PSV1 1.Out Of Range or else PSV1 1.Value = = p)133 or else (PSV2 1.Out Of Range or else PSV2 1.Value = = q)134 or else (PSV3 1.Out Of Range or else PSV3 1.Value = = r))135 and then((PSV1 2.Out Of Range or else PSV1 2.Value = = p)136 or else (PSV2 2.Out Of Range or else PSV2 2.Value = = q)137 or else (PSV3 2.Out Of Range or else PSV3 2.Value = = r))138 then139 raise WoopDefs.SUCCESSOR ERROR;140 end if ;141 end loop;142 end;143 end merge sort;

Figure 27: Project leader commenting code size

96
Appendix CTHE ADA TO MATHEMATICA BINDINGThe MathLink functions built into Mathematica and included in the MathLinklibrary implement MathLink communication over various transport systems. TheUnix version supports communication via pipes or TCP. MathLink can be usedto exchange data between Mathematica and external programs, between a Math-ematica kernel and a front-end, or between two kernels. The MathLink libraryfunctions provide an interface between the elements of Mathematica expressionsand external data types. MathLink as well as Mathematica are implemented inthe C programming language. This binding is a thin binding which means thatit provides wrap-around Ada-functions that closely resemble they C-ish counter-parts. It strongly depends on package Interfaces.C in order to import functionsfrom C and to convert data(types) between Ada and C.C.1 Basic Pieces of MathLink Programming� Package MathLink (the Ada to Mathematica Binding).� MathLink library function for opening a link.� MathLink library functions for putting data to or getting data from link.� MathLink library functions for checking the type of incoming data elements.� MathLink library function for closing a link.Figure 28 contains a sample program that uses all of those elements.C.1.1 Package MathLinkThis package must be visible from all program units that use functions from theMathLink library. It contains all data types and functions that are necessary forMathLink programming. This package has been implemented according to thedeclarations given in the C �le 'mathlink.h' that comes with any Mathematicadistribution containing MathLink. It makes use of pragma Import in order to

97make C-entities accessible from Ada. The code of package MathLink is given atthe end of this Appendix.1 with MathLink; use MathLink;2 with Gnat.IO; use Gnat.IO;3 with System; use System;4 with Interfaces.C; use Interfaces.C;5 with Interfaces.C.Pointers;6 with Interfaces.C.Strings; use Interfaces.C.Strings;7 procedure Ada Addinteger is8 package C renames Interfaces.C;9 Env : MLEnvironment;10 Lp : MLINK;11 Err : C.Int; I1, I2 : Integer; Res : aliased C.Int :=0;12 Argv : aliased Chars Ptr Array (0 .. 2) := (New String ("ada addinteger"),13 New String ("-linkname"),14 New String ("math -mathlink"));15 begin16 Env := MLInitialize;17 Lp := MLOpen (Argv'Length, Argv'Access);18 Put Line ("Demo for the Ada - Mathematica Binding:");19 Put ("First Integer: "); Get (I1);20 Put ("Second Integer: "); Get (I2); New Line;21 Err := MLPutFunction (Lp, "Evaluate Packet", 1);22 err := MLPutFunction (Lp, "Plus", 2);23 Err := MLPutInteger (Lp, C.Int (I1));24 Err := MLPutInteger (Lp, C.Int (I2));25 Err := MlEndPacket (Lp);26 Err := MLNextPacket (Lp);27 while (Err = = RETURNPKT) loop28 Err := MLNewPacket (Lp);29 Err := MLNextPacket (Lp);30 end loop;31 Err := MLGetInteger (Lp, Res'Access);32 Put ("Sum: "); Put (Integer (Res)); New Line;33 MLClose (Lp);34 end Ada Addinteger;
Figure 28: MathLink sample program (adding two integers)

98C.1.2 Link Variable DeclarationsEvery time a program opens a link, the connection function will return an objectof type MLINK. An MLINK variable is a pointer to the link data structure that iscreated to manage communication over a MathLink connection. Every time such aconnection is accessed, the link has to be identi�ed by passing the MLINK objectas the �rst argument to a MathLink function.C.1.3 Opening a LinkMLOpen is a general function for opening a MathLink connection. Its commandline arguments may look familiar to C programmers. The sample program ofFigure 28 shows how this can be resembled with Ada (lines 12-14). External pro-grams that launch Mathematica can do so by passing the command-line arguments-linkname 'mathcommand' to MLOpen, where mathcommand is the appropriatecommand string for starting a Mathematica kernel on the system (for Unix versionsthis is usually 'math -mathlink'.C.1.4 Put and Get FunctionsThe MathLink library has a large number of functions for writing data to or readingit from a link. The following table shows a basic set of those functions.MLPutInteger(link,inum) MLGetInteger(link,inum'access)MLPutReal(link,rnum) MLGetReal(link,rnum'access)MLPutString(link,char array) MLGetString(link,access chars ptr)MLPutSympol(link,char array) MLGetSymbol(link,access chars ptr)MLPutFunction(link,char array,count) MLGetFunction(link,access chars ptr, count'access)MLDisown functions should be used together with some of the MLGet func-tions in order to manage memory properly. After a program has �nished lookingat a character string returned by MLGetString, MLGetSymbol or MLGetFunc-tion, it should call MLDisownString or MLDisownSymbol with the string as thesecond argument.

99C.1.5 Moving from One Expression to the NextWhen writing to a link, function MLEndPacket should be used any time after acomplete expression has been put on the link. When reading from a link, ML-NewPacket can be called in the middle of an expression to discard the remainderof that expression and go to the next one. MLNextPacket can be used at thebeginning of each incoming expression to determine what kind of packet it is.C.1.6 Closing a MathLink ConnectionMLClose(link) closes a link. A program must close all links it has opened beforeterminating.MathLink.ads1 with System; use System;2 with Interfaces.C; use Interfaces.C;3 with Interfaces.C.Strings; use Interfaces.C.Strings;4 package MathLink is5 pragma Linker Options ("-static"); -- Due to Wolfram's missing Libelf!6 pragma Linker Options ("-lMLelf");7 pragma Linker Options ("-lm");8 pragma Linker Options ("-DSTANDALONEMLINK");9 -- Due to the commands speci�ed in GNAT's Make�le the above pragmas don't10 -- work from within WPP.11 package C renames Interfaces.C;12 type MLINK is new System.Address;13 type MLEnvironment is new System.Address;14 NO MLINK : constant MLINK := MLINK (Null Address);15 -- Six types of expressions are supported by Mathematica:16 MLTKSYM : constant C.Char := 'Y'; -- symbol leaf node17 MLTKSTR : constant C.Char := 'S'; -- string leaf node18 MLTKINT : constant C.Char := 'I'; -- integer leaf node19 MLTKREAL : constant C.Char := 'R'; -- real leaf node20 MLTKFUNC : constant C.Char := 'F'; -- non-leaf node21 MLTKPCTEND : constant C.Char := ']'; -- at end of top level expression22 MLTKERROR : constant C.Char := C.Nul; -- (0) bad token23 -- The following constants represent di�erent packet type codes which24 -- functions like MLNextPacket might return.

10025 ILLEGALPKT : constant := 0;26 CALLPKT : constant := 7;27 EVALUATEPKT : constant := 13;28 RETURNPKT : constant := 3;29 INPUTNAMEPKT : constant := 8;30 ENTERTEXTPKT : constant := 14;31 ENTEREXPRPKT : constant := 15;32 OUTPUTNAMEPKT : constant := 9;33 RETURNTEXTPKT : constant := 4;34 RETURNEXPRPKT : constant := 16;35 DISPLAYPKT : constant := 11;36 DISPLAYENDPKT : constant := 12;37 MESSAGEPKT : constant := 5;38 TEXTPKT : constant := 2;39 INPUTPKT : constant := 1;40 INPUTSTRPKT : constant := 21;41 MENUPKT : constant := 6;42 SYNTAXPKT : constant := 10;43 SUSPENDPKT : constant := 17;44 RESUMEPKT : constant := 18;45 BEGINDLGPKT : constant := 19;46 ENDDLGPKT : constant := 20;47 FIRSTUSERPKT : constant := 128;48 LASTUSERPKT : constant := 255;49 -- MathLink errors:50 -- When some problem is detected within MathLink, routines51 -- will return a simple indication of failure and store52 -- an error code internally. (For routines that have nothing53 -- else useful to return, success is indicated by returning54 -- non-zero and failure by returning 0.) MLerror() returns55 -- the current error code; MLErrorMessage returns an English56 -- language description of the error.57 -- The error MLEDEAD is irrecoverable.58 -- For the others, MLClearError() will reset the error code to MLEOK.59 MLEUNKNOWN : constant := -1; -- unknown error60 MLEOK : constant := 0; -- everything ok so far61 MLEDEAD : constant := 1; -- link died, unrecoverable error62 MLEGBAD : constant := 2; -- inconsistent data was read63 MLEGSEQ : constant := 3; -- MLGet? out of sequence64 MLEPBTK : constant := 4; -- MLPutNext() was passed a bad token65 MLEPSEQ : constant := 5; -- MLPut? out of sequence66 MLEPBIG : constant := 6; -- MLPutData given too much data67 MLEOVFL : constant := 7; -- machine integer overow68 MLEMEM : constant := 8; -- out of memory69 MLEACCEPT : constant := 9; -- failure to accept socket connection70 MLECONNECT : constant := 10; -- a deferred connection is still

10171 -- unconnected72 MLECLOSED : constant := 11; -- the other side closed the link, you73 -- may still get undelivered data74 MLEPUTENDPACKET : constant := 21; -- unexpected call of MLEndPacket,75 -- currently atoms aren't counted on76 -- the way out so this error is raised77 -- only when MLEndPacket is called in78 -- the midst of an atom.79 MLENEXTPACKET : constant := 22; -- MLNextPacket called while the80 -- current packet has unread data81 MLEUNKNOWNPACKET : constant := 23; -- MLNextPacket read in an unknown82 -- packet head83 MLEGETENDPACKET : constant := 24; -- unexpected end-of-packet token84 MLEABORT : constant := 25; -- a put or get was aborted before85 -- a�ecting the link86 MLEINIT : constant := 32; -- the MathLink environment was not87 -- initialized88 MLEARGV : constant := 33; -- insu�cient arguments to open link89 MLEPROTOCOL : constant := 34; -- protocol unavailable90 MLEMODE : constant := 35; -- mode unavailable91 MLELAUNCH : constant := 36; -- launch unsupported92 MLELAUNCHAGAIN : constant := 37; -- cannot launch the program again from93 -- the same �le94 MLELAUNCHSPACE : constant := 38; -- insu�cient space to launch program95 MLENOPARENT : constant := 39; -- found no parent to connect to96 MLENAMETAKEN : constant := 40; -- the linkname was already in use97 MLENOLISTEN : constant := 41; -- the linkname was not found listening98 MLEBADNAME : constant := 42; -- the linkname was missing or not in99 -- the proper form100 MLEBADHOST : constant := 43; -- the location was unreachable or not101 -- in the proper form102 function MLClearError (Lp : MLINK) return C.Int;103 pragma Import (C, MLClearError, "MLClearError");104 procedure MLClose (Lp : MLINK);105 pragma Import (C, MLClose, "MLClose");106 function MLConnect (Lp : MLINK) return C.Int;107 pragma Import (C, MLConnect, "MLConnect");108 procedure MLDeinitialize (Env : MLEnvironment);109 pragma Import (C, MLDeinitialize, "MLDeinitialize");110 procedure MLDisownString (Lp : MLINK; Ptr : chars ptr);111 pragma Import (C, MLDisownString, "MLDisownString");

102112 procedure MLDisownSymbol (Lp : MLINK; Ptr : chars ptr);113 pragma Import (C, MLDisownSymbol, "MLDisownSymbol");114 function MLEndPacket (Lp : MLINK) return C.Int;115 pragma Import (C, MLEndPacket, "MLEndPacket");116 function MLError (Lp : MLINK) return C.Int;117 pragma Import (C, MLError, "MLError");118 function MLErrorMessage (Lp : MLINK) return chars ptr;119 pragma Import (C, MLErrorMessage, "MLErrorMessage");120 function MLFlush (Lp : MLINK) return C.Int;121 pragma Import (C, MLFlush, "MLFlush");122 function MLGetArgCount (Lp : MLINK; L : access C.Long) return C.Int;123 pragma Import (C, MLGetArgCount, "MLGetArgCount");124 function MLGetDouble (Lp : MLINK; F : access C.Double) return C.Int;125 pragma Import (C, MLGetDouble, "MLGetDouble");126 function MLGetInteger (Lp : MLINK; I : access C.Int) return C.Int;127 pragma Import (C, MLGetInteger, "MLGetInteger");128 function MLGetNext (Lp : MLINK) return C.Char;129 pragma Import (C, MLGetNext, "MLGetNext");130 function MLGetReal (Lp : MLINK; R : access C.Double) return C.Int;131 pragma Import (C, MLGetReal, "MLGetReal");132 function MLGetString (Lp : MLINK; Ptr : access chars ptr) return C.Int;133 pragma Import (C, MLGetString, "MLGetString");134 function MLGetSymbol (Lp : MLINK; Ptr : access chars ptr) return C.Int;135 pragma Import (C, MLGetSymbol, "MLGetSymbol");136 function MLInitialize (NULL PTR : System.Address := System.Null Address)137 return MLEnvironment;138 pragma Import (C, MLInitialize, "MLInitialize");139 function MLNewPacket (Lp : MLINK) return C.Int;140 pragma Import (C, MLNewPacket, "MLNewPacket");141 function MLNextPacket (Lp : MLINK) return C.Int;142 pragma Import (C, MLNextPacket, "MLNextPacket");143 function MLOpen (Argc : C.Int; Argv : access chars ptr array) return MLINK;144 pragma Import (C, MLOpen, "MLOpen");

103145 function MLPutFunction (Lp : MLINK; Str : char array; Count : C.Long)146 return C.Int;147 pragma Import (C, MLPutFunction, "MLPutFunction");148 function MLPutInteger (Lp : MLINK; I : C.Int) return C.Int;149 pragma Import (C, MLPutInteger, "MLPutInteger");150 function MLPutString (LP : MLINK; Str : char array) return C.Int;151 pragma Import (C, MLPutString, "MLPutString");152 function MLPutSymbol (Lp : MLINK; Str : char array) return C.Int;153 pragma Import (C, MLPutSymbol, "MLPutSymbol");154 function MLReady (Lp : MLINK) return C.Int;155 pragma Import (C, MLReady, "MLReady");156 end MathLink;

104
Appendix DBONUS PROOFSProof ITheorem 4.2 of [Bli94] gives an upper bound for an iteration function f(x) =d�x+ �e; � > 1; � � 0. The corresponding lower bound is$log� N(�� 1) + � + 1� + � + 1% :Proof. We clearly have f(x) = d�x + �e � �x + � + 1which leads to the iteration sequencek1 = 1k2 = f(1) = � + � + 1k3 = f(�+ � + 1) = �2 + �(� + 1) + � + 1: : :k� = ���1 + ���2(� + 1) + : : :+ � + 1 == ���1 + (� + 1)(���2 + ���3 + : : :+ � + 1)= ���1 + (� + 1) (���2+���3+:::+�+1)(��1)(��1)= ���1 + (� + 1)���1�1��1Thus k� � ���1 + (� + 1)���1�1��1 == ���1 ��1+�+1��1 � �+1��1 == ���1 �+���1 � �+1��1To estimate the length of the iteration sequence k� we must have���1 �+���1 � �+1��1 > N���1 > N(��1)�+� + �+1�+� = N(��1)+�+1�+��� > �N(��1)+�+1�+� ��Taking logarithms we get� > log� N(�� 1) + � + 1� + � + 1 �

105Proof IITheorem 4.3 of [Bli94] gives an upper bound for an iteration function f(x) =d�x + �e; � > 1; � � 0; > 1. The corresponding lower bound isjlog((� 1) log�+�+1N + 1) + 1k :Proof. We clearly have f(x) = d�x + �e � �x + � + 1:Thus k� � l� where l1 = 1l�+1 = �l� + � + 1 = �l� �1 + �+1�l� �Taking logarithms and setting m� = log l� we obtainm1 = 0m�+1 = m� + log � + log �1 + �+1�l� �Since l� > 0 we have m� < n� wheren1 = 0n�+1 = n� + log �+ log ��+�+1� �= n� + log ���+�+1� �= n� + log (� + � + 1)Setting log (�+ � + 1) = d we getn1 = 0n2 = dn3 = d+ d = d(+ 1)n4 = 2d+ d+ d = d(2 + + 1): : :nn = d(n�2 + : : :+ + 1) = dn�1�1�1Therefore n� = ��1 � 1 � 1 log (� + � + 1)To estimate the length of the iteration sequence we must havek� � (�+ � + 1) ��1�1�1 > N

106Taking logarithms we obtain��1�1�1 > log�+�+1N��1 > (� 1) log�+�+1N + 1� > ((� 1) log�+�+1N + 1)Taking logarithms once more we get� > log((� 1) log�+�+1N + 1) + 1 �Proof IIIFor an iteration function f(x) = x+ �; � > 0 with initial value k1 = K the lengthof the corresponding loop sequence is bounded above by$N �K� + 1% :Proof: k1 = Kk2 = f(K) = K + �Thus k� = K + (� � 1)�To estimate the length of the corresponding remainder loop sequence we musthave K + (� � 1)� > Nwhich is equivalent to � > N �K� + 1which holds 8K 2 Z; 8N 2 Z; N � K:�It also works for monotonical discrete loops with keyword reverse and iteration-functions f(x) = x - �, � > 0 .

107
Bibliography[Ada95] ISO/IEC 8652, Reference manual for the Ada programming language,1995.[Bli94] J. Blieberger, Discrete loops and worst case performance, ComputerLanguages, 20 (1994), no. 3, 193-212.[Bli95] J. Blieberger, Project WOOP - Worst Case Performance of Object-Oriented Real-Time Programs, A position paper on Project WOOP,(1995).[BL94] J. Blieberger and R. Lieger,Worst-case space and time complexityof recursive procedures, Real-Time Systems 11, pp. 115 - 144, 1996.[BL95] J. Blieberger and R. Lieger, Real-time recursive procedures, Pro-ceedings of the 7th EUROMICRO Workshop on Real-Time Systems,Odense, Denmark, June 1995. IEEE Press.[BB95] J. Blieberger and B. Burgstaller, The Role of GNAT withinProject WOOP, Ada-Europe'95, Frankfurt, Germany, 1995[BLB96] J. Blieberger, R. Lieger, and Bernd Burgstaller, AugmentingAda 95 with Additional Real-Time Features, Ada-Europe'96, Montreux,Switzerland, June 1996[GNAT] E. Schonberg and B. Banner, The GNAT Project: A GNU-Ada9XCompiler, In Proceedings of Tri-Ada'94, Baltimore, Maryland, 1994.[GPL91] Free Software Foundation, GNU General Public License, 1991[LIB94] Robert B.K. Dewar, The GNAT Model of Compilation, In Proceed-ings of Tri-Ada'94, Baltimore, Maryland, 1994.[ME84] Kurt Mehlhorn, Sorting and Searching, Data Structures and Al-gorithms, vol. 1, Springer-Verlag, Berlin, 1984[NR73] I. Nievergelt and E. Reingold, Binary search trees of boundedbalance, SIAM Journal of Computing 2 (1973), no. 1, 33-43.

108[PE] Roger Penrose, The Emperor's New Mind, Vintage[SE88] Robert Sedgewick, Algorithms, Addison-Wesley, Reading, MA,second ed., 1988[WO92] Stephen Wolfram, Mathematica, Addison-Wesley, second ed., 1992[WR1] Wolfram Research, MathLink Reference Guide,http://mathsource.wri.com, second ed., 1993[WR2] Wolfram Research, A MathLink Tutorial,http://mathsource.wri.com[WR3] Roman E. Maeder, Programming in Mathematica,Reprint from The Mathematica Conference, June, 1992 Boston, MA,http://mathsource.wri.com[WR4] Wolfram Research, Major New Features in Mathematica Version2.2, Technical Report http://mathsource.wri.com[WR5] Alexei V. Bocharov, Solving equations symbolically with Mathem-atica, Reprint from The Mathematica Conference, June, 1992 Boston,MA, http://mathsource.wri.com

