DISSERTATION

Bounding the Worst-Case Execution Time
of General Loops and Recursion

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Johann Blieberger
Institut fiir Rechnergestiitzte Automation (E183-1)

eingereicht an der Technischen Universitat Wien
Technisch-Naturwissenschaftl. Fakultit

von

Dipl.-Ing. Roland Lieger
Matr.Nr. 8825560

Goethegasse 39
2340 Modling

Wien, im Oktober 2002

Kurzfassung

Bounding the Worst-Case Execution Time
of General Loops and Recursion

von Dipl.-Ing. Roland Lieger

Im Bereich der Echtzeitsysteme ist es von grofer Bedeutung, die mazimale Laufzeit
eines Programmes (worst-case execution time (WCET)) bestimmen zu konnen
(etwa um damit die erforderliche Rechenkapazitit abschitzen zu konnen oder
korrekte Schedulingentscheidungen zu treffen).

Solange ein Programm nur aus einer linearen Abfolge von primitiven Befehlen
besteht (Zuweisungen, Unterprogrammaufrufen (ohne Rekursion)), ist eine solche
Laufzeitbestimmung trivial. Fiir For-Schleifen (mit bekannten Start- und End-
werten) erhdlt man die (exakte) Laufzeit durch Multiplikation der Laufzeit fiir
einen Schleifendurchlauf mit der Zahl der Durchlaufe. Bei Alternativen im Pro-
grammablauf (if-then-else, switch-case) kann man den maximal erforder-
lichen Rechenaufwand durch die Laufzeit der aufwendigsten Alternative abschran-
ken. Allgemeine Schleifen (while, repeat) lassen sich auf diese Weise aber nicht
abschranken, da durch einfache Codeanalyse nicht feststellbar ist, wie oft sie
durchlaufen werden. Auch Rekursionen mit ihrer unbekannten Rekursionstiefe/
-breite sind nicht abschrankbar.

Im Echtzeitbereich ist es daher iiblich, auf allgemeine Schleifen und Rekur-
sionen zu verzichten und den Programmierer zu notigen, stattdessen auf for-
Schleifen auszuweichen, wodurch nur allzu oft die Eleganz und damit die Fehler-
freiheit des Programms leidet.

Aus der theoretischen Informatik ist bekannt, dass eine generelle Abschrankung
der Laufzeit allgemeiner Schleifen und Rekursionen wegen des Halteproblems
unmoglich ist. In dieser Dissertation wird allerdings gezeigt, dass sich grofe
Klassen praktisch relevanter Fille allgemeiner Schleifen mit den hier vorgestell-
ten discreten-Scheifen behandeln lassen. Ausgehend von (vom Programmierer
angegebenen) Bedingungen ist es dabei moglich, automatisch eine Laufzeitab-
schrankung vorzunehmen und trotzdem (fast) die gesamte Leistungsfiahigkeit all-
gemeiner Schleifen zu nutzen. Weiters wird gezeigt, wie sich das Konzept der
Bedinungen auch auf Rekursionen ausdehnen 1dft, sodass auch dieses michtige

Konzept fiir die Echtzeitprogrammierung zur Verfiigung steht.

Abstract

Bounding the Worst-Case Execution Time
of General Loops and Recursion

by Dipl.-Ing. Roland Lieger

In the field of real-time systems it is essential to know the worst-case execution
time (WCET) of a program (e.g. for estimating the necessary hardware capacity
or for making correct scheduling decisions).

While a program consists only of a linear sequence of primitive commands (as-
signments, subroutine calls (without recursion)), computing the WCET is triv-
ial. For-loops (with known upper and lower bounds) pose no problem either,
since their WCET can easily be computed by multiplying the WCET of one pass
through the loop body with the number of passes. For conditional statements
(if-then-else, switch-case) the WCET can be bounded using the WCET of the
most demanding alternative. Unfortunatly the WCET of general loops (while,
repeat) cannot be bounded, since it is not possible to determine the (maximal)
number of passes through the loop from simple code analysis. Similar reasoning
applies to recursions that have undetermined recursion depth/width.

In real-time programming it is therefore common to forbid the usage of general
loops and recursion and thus force the programmer to use for-loops as only
loop construct. Often this forced transformation totally destroys the programs
elegance and drastically increases the proneness for errors. It is well known from
theoretical computer science that a bound on the WCET of general loops and
recursion cannot be found due to the halting-problem. However this thesis will
introduce discrete loops and will show that a wide class of commonly used
general loops can also be easily expressed as discrete loops. Using additional
conditions (given by the programmer) it is possible for the compiler to compute
the WCET of these loops while the ease of use and computational power of general
loops is (almost completely) maintained. The idea of adding conditions to loops
for the computation of WCET can also be applied to recursion, making this

powerful tool available for real-time programming too.

Contents

Chapter 1 Introduction

1.1
1.2
1.3
14

OVEIVIEW o o o o o e e s
Loops e
Recursion

Notation o s

Chapter 2 Discrete Loops

2.1

2.2

2.3

2.4

2.5

Discrete Loops o oL
2.1.1 Introduction to Discrete Loops
2.1.2 Theoretical Treatment
Monotonical Discrete Loops
2.2.1 Syntactical and Semantical Issues of Monotonical Discrete
Loops o e
2.2.2 Some Examples of Monotonical Discrete Loops.
The Number of Iterations of a Monotonical Discrete Loop
2.3.1 Lower and Upper Bounds
2.3.2 Some Results on Special Iteration Functions
2.3.3 Nested Monotonical Discrete Loops
Non-Monotonical Discrete Loops
241 Binary Search o o L
Discrete Loops with a Remainder Function
2.5.1 Syntactical and Semantical Issues of Discrete Loops with
Remainder Functions
2.5.2 Some Examples of Monotonical Discrete Loops with Re-
mainder Functionso,
2.5.3 The Number of Iterations of a Monotonical Discrete Loop

with a Remainder Function

[NS B S S Gt

© - = =

10

32

2.6 Computational Power of Discrete Loops with a Remainder Function 33

2.7

Summary . .o ...l e

34

Chapter 3 Multi-Staged Discrete Loops 36

3.1 Multi-Staged Discrete Loops 36
3.2 Additional Notation. 36
3.3 Some Interesting Examples oL, 37
3.4 'Theoretical Treatment 38
3.5 Iteration Bounds for MSDL 40
3.6 Number of Iterations of a MSDL 42
3.7 Iteration Functions and Programming Language Features 42
3.7.1 Monotonically increasing MSDLs 42
3.7.2 Monotonically decreasing MSDLs 44
3.7.3 Syntax and semantics of MSDLs 45
3.8 MSDLs with Remainder Functions 47
3.8.1 Syntactical and semantical issues of MSDLs with remainder
functions 48
3.8.2 Examples for MSDLs with remainder functions 50
3.9 Summary e e 52
Chapter 4 Recursion 53
4.1 Recursion 53
4.1.1 Additional Notation 53
4.1.2 Examples 53
4.2 Definitions and Preliminary Results 54
4.3 Computational Model and Space and Time Effort 59
4.3.1 Recurrence Relations for Sand 7 60
4.3.2 Monotonical Space and Time Effort 62
4.4 'The Space Effort of Recursive Procedures 63
4.5 The Time Effort of Recursive Procedures 68
4.6 Discussion of Examples 000 71
4.7 Parameter Space Morphisms 71
4.8 Programming Language Issues 77
4.8.1 Therecursiondepth 78
4.8.2 Checking Space Properties 79
4.8.3 Space behavior and morphisms 79
4.8.4 Checking Time Properties 79

4.8.5 Time behavior and morphisms 80

4.9 Summary

Chapter 5
Chapter 6

References

Conclusion

List of Symbols and Operators

iii

83

84

85

87

Chapter 1
INTRODUCTION

1.1 Overview

The most significant difference between real-time systems and other computer
systems is that the system behavior must not only be correct but the result of a
computation must be available within a predefined deadline. It has turned out
that a major progress in order to guarantee the timeliness of real-time systems
can only be achieved if the scheduling problem is solved properly. Most scheduling
algorithms assume that the runtime of a task is known a priori (cf. e.g. [30, 19, 33]).
Thus the worst-case execution time (WCET) of a task plays a crucial role.

The most difficult task in estimating the timing behavior of a program is to
determine the number of iterations of a certain loop and handling the problems
introduced by the use of recursion.

In this thesis we will present methods for the handling of loops in Chapters 2
and 3.

In Chapter 4 we will present a system for handling recursive procedures. In
addition to an analysis of the execution time required by a recursive procedure,
a detailed examination of the stack space requirements of such a function will be

performed.

1.2 Loops

Common programming languages support two different forms of loop-statements:

FOR-LOOPS A loop variable assumes all values of a given integer range. Starting
with the smallest value of the range, the loop variable is incremented on

each iteration of the loop until its value is outside the given range.

Some programming languages are more flexible and allow for starting with
the largest value and decrementing the loop variable, others allow for defin-
ing a fixed step size by which the loop variable is incremented or decre-

mented.

2

GENERAL LOOPS The other loop-statement is of a very general form and is con-
sidered for implementing those loops that cannot be handled by for-loops.

These loops include while-loops, repeat-loops, and loops with exit-statements
(cf. e.g. [2], [14])-

Computing the number of iterations of a for-loop is trivial. For example the

loop-body of the loop

for i in 1..N by S loop
-- loop body
end loop;

is performed exactly [/N/S] times.
Even nested loops do not constitute any problem. For example the innermost

body of the loops

for il in 1..N loop
for i2 in 1..i1 loop
for i3 in 1..i2 loop

for ir in 1..i{r-1} loop
-- innermost loop-body
end loop;

end loop;
end loop;
end loop;

is performed exactly

N il i2 'i'r—l N + r— 1
NI NS
! : : : r
t1=1142=1123=1 tp=1
times.

Analyzing general loops is a much more difficult task. In order to avoid the
problems connected with estimating the WCET of general loops used in real-time
systems, some researchers simply forbid general loops and force the programmer
into supplying a constant upper bound for the number of iterations. Thus actually
transforming the general loop into a for-loop with an additional exit-statement,
or they directly require a constant time bound within which the loop has to
complete (e.g. [38]). Other researchers attempt to do static and dynamic program

path analysis using regular expressions (e.g. [37]).

3

e In [38] language constructs have been introduced in order to let the pro-
grammer integrate knowledge about the actual behavior of algorithms which
cannot be expressed using standard programming language features. These
constructs are scopes, markers, and loop sequences. Markers are used to de-
fine the number of loop iterations if this number cannot be estimated from
the program automatically, e.g., if a general loop is used. Nevertheless all

loops are forced to have a constant upper bound.

e In [19]| the programming language Real-Time Euclid and a corresponding
schedulability analyzer are described. The estimation of worst-case execu-
tion time is facilitated by restricting language constructs, e.g. constant loop
bounds are required and recursion and dynamic data structures are forbid-

den.

e Partial evaluation is used in [36] to estimate the execution time of programs
at compile time. This is done by use of compile time variables, i.e., a variable
whose value is definitely known at compile time. Taking advantage of these
values, programming language constructs can be simplified thereby speeding

up the program in most cases.

This approach does not need to restrict programming language constructs
such as loops, recursion, or dynamic storage allocation as long as compile
time known values are involved. It can even solve certain simple problems
of concurrent programming and synchronization of concurrent processes at

compile time.

e The idea to estimate worst-case execution time of programs written in
higher-level languages has been introduced in [41]. So-called schemas are
used to estimate the best and worst-case execution time of statements of
higher-level languages and an extension of Hoare logic (cf. [20]) is employed
to prove the timeliness (and correctness) of real-time programs. The method
is also able to handle certain real-time language constructs such as delays

and time-outs.

Although Hoare logic is employed, the user has to give constant loop bounds
in order to let the compiler determine upper and lower bounds of the number

of iterations of a loop.

e Continuing and extending [41] best and worst-case execution time is es-

timated by employing static and dynamic program paths analysis in [37].

4

This is done by specifying program paths by reqular expressions. Since pro-
cessing this information sometimes requires exponential time, an interface
definition language is introduced which allows efficient analysis but does not

have the expressive power of regular expressions.

The reported examples (cf. [37]) show that tight bounds can be derived
using this method. On the other hand, the user must specify upper bounds

for general loop statements.

e Determining the execution time of a code segment is also mentioned in [17].
Real-time concurrent C uses a tool which originally is based on [34]. The

code can have loops with user-specified loop bounds.

e Real-Time Java [15] provides classes for real-time scheduling. Unfortunatly
all these classes expect that the programmer manually provides the worst-
case execution time (in nanoseconds). RT-Java then uses this information to
produce appropriate real-time schedules. If a scheduled thread still executes,
after its deadline has passed, RT-Java executes a DeadlineMissHandler,
provided by the programmer, for that thread. There is no support for an

automatic estimation of suitable bounds of the worst-case execution time.

Summing up, most researchers try to ease the task of estimating the number
of general loop iterations by forbidding general loops, i.e., by forcing the user to
supply constant upper bounds for the number of iterations. Another approach is
to let the user specify a time bound within the loop has to complete (cf. e.g. [22]).

In any case the user, i.e., the programmer, has to react to such exceptional cases.

In this thesis we will follow a different approach: We will narrow the gap
between general loops and for-loops by defining discrete loops. These loops are
known to complete and are easy to analyze (especially their number of itera-
tions) and capture a large part of applications which otherwise would have been

implemented by the use of general loops.

Chapter 2 will introduce the general concept of discrete loops and demonstrate
their use in many common programming situations. In Chapter 3 multi-staged
discrete loops (MSDL) will be introduced to handle some more tricky cases that
cannot be handled by single-staged discrete loops.

1.3 Recursion

If recursive procedures are to be used in implementing real-time applications,

several problems occur:

1. Tt is not clear, whether a recursive procedure completes or not (cf. e.g. Ex-

ample 5 below).

2. If it completes, it must be guaranteed that its result is delivered within a

predefined deadline.

3. Since most real-time systems are embedded systems with limited storage
space, the result of a recursive procedure must be computed using a limited

amount of stack space.

In view of these problems most designers of real-time programming languages
decide to forbid recursion in their languages, e.g. RT-Euclid (cf. [23, 19]), PEARL
(cf. [12]), Real-Time Concurrent C (cf. [17]), and the MARS-approach (cf. |26,
38]).

Other so-called real-time languages allow recursions to be used, but do not
provide any help to the programmer in order to estimate time and space behavior
of the recursive procedures, e.g. Ada (cf. [2]) and PORTAL (cf. [10]). Interest-
ingly, a subset of Ada (cf. [16]) designed for determining the worst-case timing
behavior forbids recursion. PORTAL uses RECURSION resources and terminates
a recursive computation if the resource is exhausted. Although it is not clear from
the description, one can suspect that a RECURSION resource is equivalent to an
area of memory that contains the stack space. Both Ada and PORTAL cannot
handle the time complexity of recursive procedures.

Other approaches do not address recursion at all (cf. e.g. [34, 41, 37, 22]),
others (cf. e.g. [38]) propose to replace recursive algorithms by iterative ones or to
transform them into non-recursive schemes by applying program transformation
rules. Certainly, if a simple iterative version of a recursive algorithm exists and it
is also superior in space and time behavior, it should be used instead of a recursive
implementation. On the other hand there are the following reasons why recursive

algorithms should be implemented by recursive procedures:

e The space and time behavior of transformed programs are by no means
easier to investigate than their recursive counterparts, since the stack has to

be simulated and because they contain while-loops. In general, the number

6

of iterations of these loops cannot be determined at compile time, even with

the use of discrete loops.

e A recursive algorithm originates from recursiveness in the problem domain.
From the view of software engineering, a program reflecting the problem

domain is considered better than others not doing so (cf. e.g. [9]).

e Often recursive algorithms are easier to understand, to implement, to test,

and to maintain than non-recursive versions.

The approach presented in Chapter 4 is different in that it does not forbid
recursion, but instead constrains recursive procedures such that their space and
time behavior either can be determined at compile time or can be checked at
runtime. Thus timing errors can be found either at compile time or are shifted to
logical errors detected at runtime.

The constraints mentioned above are more or less simple conditions. If they
can be proved to hold, the space and time behavior of the recursive procedure

can be estimated easily.

1.4 Notation

In this thesis we will use the following notations.
e N denotes the set of natural numbers {1,2,3,...}.
e Z denotes the set of integers {...,—3,—-2,—1,0,1,2,3,...}.
e log N =log, N denotes the natural logarithm of V.
e Id N denotes the binary logarithm of V.
e log, N = ll%gg—zj denotes the logarithm to the base a.
e The greatest integer n < x is denoted by |z].

e The smallest integer n > z is denoted by [z].

o Af(z):= f(x+1) — f(z) denotes the difference operator of finite calculus.

Chapter 2
DISCRETE LOOPS

2.1 Discrete Loops

In this Chapter we give an informal introduction to discrete loops, before we
perform a theoretical treatment, i.e., an exact definition and some mathematical

results.

2.1.1 Introduction to Discrete Loops

In contrast to for-loops, discrete loops allow for a more complex dependency
between two successive values of the loop-variable. In fact an arbitrary functional
dependency between two successive values of the loop-variable is admissible, but
this dependency must be constrained in order to ensure that the loop completes
and to determine the number of iterations of the loop. Details of this constraints
will follow below.

Like for-loops discrete loops have a loop-variable and an integer range associ-
ated with them!. The fact that the loop is allowed to range over discrete values,
coined the name discrete loop. The major difference to for-loops is that the loop-
variable is not assigned each of the values of the range. Which values are assigned
to the loop-variable, is completely governed by the loop-body. The loop-header,
however, contains a list of all those values that can possibly be assigned to the
loop-variable during the next iteration. In fact each item of this list of values is
a function of the loop-variable.

A simple example is shown in Figure 2.1. In this example the loop-variable k

discrete k in 1..N new k := 2%k loop

-- loop body
end loop;

Figure 2.1: A simple example of a discrete loop

will assume the values 1,2,4,8,16,32,64, ... until finally a value greater than N

In Section 2.4 a more general form of discrete loops is introduced which does not need a
discrete range, but we defer a thorough discussion of these loops until then.

8

would be reached. Of course the effect of this example can also be achieved by a
simple for-loop, where the powers of two are computed within the loop body.

A more complex example is depicted in Figure 2.2. In this example the loop-

discrete k in 1..N new k := 2%k | 2xk+1 loop
-- loop body
end loop;

Figure 2.2: A more complex example of a discrete loop

variable k can assume the values 1,2,4,9,18,37,75, ... until finally a value greater
than N would be reached. But it is also possible that k follows the sequence
1,3,6,13,26,52,105,.... Here the same effect cannot be achieved by a for-loop,
because the value of the loop variable cannot be determined exactly before the
loop body has been completely elaborated. The reason for this is the indetermin-
1sm involved in discrete loops.

The term "indeterminism" requires some explanation: Clearly the loop body
determines exactly which of the given alternatives is chosen, thus one can say
that there definitely is no indeterminism involved. On the other hand, from an
outside-view of the loop one cannot determine which of the alternatives will be
chosen, without having a closer look at the loop body or without exactly knowing
which data are processed by the loop. It is this "outside-view" indeterminism we
mean here. Furthermore this indeterminism enables us to estimate the number
of loop iterations quite accurately without having to know all details of the loop
body. Thus discrete loops ease estimating the WCET time of real-time programs.

By the way, a loop like that in Figure 2.2 occurs in a not-recursive imple-
mentation of Heapsort (cf. |25] or [39] for a more readable form in a high-order
programming language). Sections 2.2.2 and 2.5.2 will be concerned with algo-
rithms that can profit from discrete loops; Heapsort will be treated in detail in
Section 2.2.2.

There are two main reasons for stating this functional dependency between

successive values of the loop-variable in the loop-header:

1. The compiler or, if it cannot be done statically at compile-time, the runtime
system should check if the loop-variable does in fact obtain one of the pos-
sible values stated in the loop-header. This will evidently ease debugging
and shift some runtime errors to compile-time errors. In fact, if the infor-

mation given in the loop-header is incorrect, this results in a programming

9

error, not in a timing error. Of course this programming error could cause

a timing error.

2. Under some circumstances, the information in the loop-header will make

determining the number of loop iterations feasible.

2.1.2 Theoretical Treatment

Discrete loops can be defined using a range of any discrete type, e.g. an enumer-
ation. In our theoretical treatment, however, we will assume that the range is
1..N and that the loop-variable starts with k£; = s, where s is the starting value
of the loop. This restriction, however, does not inhibit transferring our results
to the cases mentioned above. If s is not in the range 1..N, the loop-body is
not executed, rather the control-flow of the program is transferred to the first

statement after the loop.

Definition 2.1.1 (Discrete Loop). A discrete loop is characterized by N € N
and a finite number of functions f; : N - N, 1 <17 <e.

Definition 2.1.2 (Iteration Sequence). An iteration sequence (k,) is defined

by the recurrence relation

ki:=s, sell,N]
ku—f—l = fz(ku)

for some i. The set of all possible iteration sequences is denoted by K = {(k,)}.
Remark 2.1.1. Note that k£, € N for all v € N.

Definition 2.1.3 (Completing Iteration Sequences). An iteration sequence
(k,) is said to complete if 1 < k, < N for all v < w but k41 < 1 or ky 1 > N for
some w € N. The number w is denoted by len &, and called the length of (k,). It
corresponds to the number of iterations of the discrete loop if the loop variable
iterates through (&,).

Definition 2.1.4 (Completing Discrete Loops). A discrete loop is called a
completing discrete loop if all (k,) € K are completing sequences for all N and
for all s € [1, N].

10
Definition 2.1.5 (Loop Digraphs). Let a discrete loop be characterized by N

and the iteration functions f;(z), 1 < i < e. Let the initial value of the loop

variable be s. For 1 < 2 < N associating to each function f; a function f, by

fi(x) =< fi(z), if 1 < f;(z) < N, and
N+1, if fi(z) > N,

we define the corresponding loop digraph G by the set of vertices
V={0,1,...,N,N +1}

and the set of edges E, where E is defined by

(v,w)e E < w= f;(v)

for some i € [1, €].
With these definitions the following lemma is trivially true.

Lemma 2.1.1. A discrete loop completes if the corresponding loop digraph is

acyclic. O

Each acyclic digraph can be topologically sorted (cf. [31]), i.e., we can find
a mapping ord : V — {0,1,..., N, N + 1} such that for all edges (v,w) € F
we have ord(v) < ord(w). Since we are only interested in completing discrete
loops, we restrict ourselves to discrete loops that result in topologically sorted
loop digraphs. This is certainly the case if f;(z) > z or if fj(z) < z for allz € N

and for all ¢ € [1,e]. The next section is devoted to such loops.

2.2 Monotonical Discrete Loops

Definition 2.2.1 (Monotonic Iteration Sequences). A sequence (k,) is called
strictly monotonically increasing if k,,1 > k, for all v > 1. It is called strictly

monotonically decreasing if k, 1 < k, for all v > 1.

Definition 2.2.2 (Monotonic Loops). A discrete loop is called a monotoni-
cally increasing discrete loop if all (k,) € K are strictly monotonically increasing
sequences. It is called a monotonically decreasing discrete loop if all (k,) € K are
strictly monotonically decreasing sequences. A discrete loop is called a monoton-
ical discrete loop if it is either monotonically increasing or monotonically decreas-

ing.

11

Lemma 2.2.1. A monotonical discrete loop is completing.

Proof. 1f all (k,) are strictly monotonically increasing, there certainly must exist
some w > 1 such that k, < N < k,;1. Thus the loop completes.

On the other hand, if all (k,) are strictly monotonically decreasing, there
certainly must exist some w > 1 such that k, > 1 > k,r;. Thus the loop

completes in this case too. O

Lemma 2.2.2. Let a monotonically increasing discrete loop be characterized by
N and the functions f;. Then all functions f; fulfill

fi(z) >z
for all z € [1, N].

Proof. If there would exist some fy such that fy(z) < z, there would exist an
iteration sequence (k,) such that k,.1 = fq(k,) < k, which contradicts Defini-
tion 2.2.2. O

Lemma 2.2.3. Let a monotonically decreasing discrete loop be characterized by
N and the functions f;. Then all functions f; fulfill

filz) <z
for all z € [1, N].

Proof. If there would exist some f; such that f;(x) > x, there would exist an
iteration sequence (k,) such that k,1 = f;(k,) > k, which contradicts Defini-
tion 2.2.2.]

2.2.1 Syntactical and Semantical Issues of Monotonical Discrete Loops

Although the syntax of discrete loops is certainly important, we consider the
semantical issues more important. In order to be able to demonstrate the advan-
tages of discrete loops over conventional loops, however, we define an Ada-like
syntax which will be used in the following examples. But it is important to note
that an appropriate syntax can be defined for other languages too.

The syntax of a monotonical discrete loop is given by a notation similar to
that in [2].

12

loop statement ::=
[loop simple name:|
literation_scheme| loop
sequence_of statements

end loop [loop simple name];

iteration scheme ::= while condition
| for for_loop parameter_specification

| discrete discrete_loop parameter _specification

for _loop parameter specification ::=

identifier in [reverse| discrete range

discrete loop parameter specification ::=
identifier := initial value in [reverse| discrete_range

new identifier := list_of iteration_ functions

list of iteration functions ::=

iteration_function { | iteration function }

iteration _function ::= expression

For a loop with a discrete iteration scheme, the loop parameter specification
is the declaration of the loop variable with the given identifier. The loop variable
is an object whose type is the base type of the discrete range. The initial value of
the loop variable is given by initial value. The optional keyword reverse defines
the loop to be monotonically decreasing; if it is missing the loop is considered to
be monotonically increasing. Within the sequence of statements the loop variable
behaves like any other variable, i.e., it can be used on both sides of an assignment
statement for example.

Before the sequence of statements is executed, the list of iteration functions
is evaluated. This results in a list of possible successive values. It is also checked
whether all of these values are greater than the value of the loop variable if the
keyword reverse is missing, or whether they are smaller than the value of the
loop variable if reverse is present. If one of these checks fails, the exception
monotonic __error is raised.

After the sequence of statements has been executed, it is checked whether the

13

value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor _error is raised.

If the value of the loop variable is still within the discrete range stated in the
loop header, the loop is iterated (at least) once more. If it is not within the range,

the loop completes.

Remark 2.2.1. The semantics of monotonical discrete loops ensure that such a
loop will always complete, either because the value of the loop variable is outside
the given discrete range or because one of the above checks fail, i.e., one of the

exceptions monotonic__error or successor _error is raised.

Remark 2.2.2. A corresponding compiler is free to perform as many checks as it
likes in order to inhibit one of the runtime exceptions monotonic error and
successor _error. This can be done by ensuring that the iteration functions are
monotonical functions and by performing data-flow analysis to make sure that
successor__error will never be raised. Thus a lot of runtime checks can be
avoided.

Moreover the compiler might even detect the number of iterations of the loop,
which is a valuable result for real-time applications. Clearly the number of it-
erations depends on the initial value of the loop variable, on the discrete range

(especially the number of elements in the range), and on the iteration functions.
2.2.2 Some Examples of Monotonical Discrete Loops

Heapsort

An Ada-like implementation of Heapsort using a monotonical discrete loop is
shown in Figure 2.3. Referring to the code shown in Figure 2.3, we easily see that
the number of iterations of the discrete loop in procedure siftdown is bounded
above by the length of (hS™™), where (hS™™) fulfills the recurrence relation

hgmin) —k
hoty) = 2h{m®) (2.1)

since the length of any loop sequence containing two successive elements that fulfill
kyi1 = 2k, +1 will be smaller than that of (h™™). (How lower and upper bounds
of the number of iterations of discrete loops can be estimated, is investigated in
detail in Section 2.3.)

Solving (2.1) we arrive at

h‘(/min) — k2u—1)

© 00 O Ok W N

B W W W W WWWwWwWwWNNNNMNDNNDNNDNNRFE PR
O O 00 IO WNEFEF OO OU R WNRFRE OO O Uk WwNnH—-OoO

N: constant positive := 77; -- number of elements to be sorted

subtype index is positive range 1 .. N;
type sort_array is array(index) of integer;

procedure heapsort (

arr: in out sort_array) is
N: index := arr’length;
t: index;

procedure siftdown(N,k:index) is
j: index;
v: integer;
begin
v := arr(k);
discrete h := k in 1..N/2 new h := 2%¥h | 2%h+1 loop
j = 2x%h;
if j<N and then arr(j)<arr(j+1) then
j o= j+1;
end if;
if v >= arr(j) then
arr(h) := v;
exit;
end if;
arr(h) := arr(j);
h := j;
end loop;
end siftdown;

begin -- heapsort
for k in reverse 1..N/2 loop
siftdown(N,k);
end loop;
for M in reverse 2..N loop
t := arr(1);
arr(1) := arr(M);
arr(M) := t;
siftdown(M,1);
end loop;
end heapsort;

Figure 2.3: Implementation of Heapsort using a Discrete Loop

14

15

We want to determine the value of w such that

h(mm < N/2 < hwn—il—l{l)’

thus taking logarithms we obtain
w=|ldN —=1dk| < [IdN] — |ld k|

for the number of iterations of the discrete loop in procedure siftdown.
The number F' of iterations of the first for-loop in the main procedure is

bounded above by

[N/2] [N/2]
F < Z [IdN] — |ldk] = |N/2][ldN] — Z |1d k.

Using (cf. [18, problem 3.34|)
D Ndk] = nfldn] — 28" +1 (2.2)

and noticing that

0 if k£ is a power of 2, and
[Idk] — [ldk| =
1 otherwise,

we obtain

Z[ldk =n[ldn] —n—2M" 4 |1dn]| + (2.3)

Hence

LN/2]
— > lldk] = —|N/2| || N/2]] + |N/2] + 2MWN2T — 1d| N/2] | - 2.

Furthermore we have (cf. [18, problem 3.19])
[Id[N/2|1 = [Id|[N/2]| = [1d(N/2)] = [ldN] -1

and
[Id|N/2]] < |Id|N/2]| +1= [ldN].

16
Thus

F <|N/2] ([IAN] — [ldN| +2) + 20N _1dN| -1 <

3[N/2] + 294N — [ldN| —1< ENJ — [ldN]| - 1.

The number L of iterations of the second for-loop in the main procedure is
bounded above by
N
L <) dt].
t=2
Using (2.3), L can be estimated by

L<N[dN] =N —2MN L 1dN| +2.

In a very similar way a lower bound for the number of iterations can be found.

These computations are very easy and we think that they can also be per-
formed by an automated tool during compile-time. Section 2.3 contains some
theoretical foundations in order to ease the task of these compile-time computa-
tions.

Concluding we would like to remark that the purpose of this section was not to
show how to analyze Heapsort. In fact, the worst-case timing behavior (cf. [25])
and even the average timing behavior (cf. [39]) of Heapsort are well understood.
The purpose of this section was to show that monotonical discrete loops can
ease the task of worst-case timing analysis of algorithms significantly. Sometimes
the analysis is so easy that it can be performed by an automated tool. The
development of such a tool is part of an ongoing project which is carried out at
the Department of Computer Aided Automation at the Technical University of

Vienna.

Other Examples

Other examples showing the advantages of discrete loops over general while or
repeat-loops include the bottom-up version of Mergesort (cf. [40]), Euclid’s algo-
rithm, and the solution of Josephus’ Problem (cf. [18]).

2.3 The Number of Iterations of a Monotonical Discrete Loop

Because of the indeterminism involved in the definition of discrete loops, the

number of iterations of such a loop cannot be determined exactly. We can, how-

17

ever, find lower and upper bounds for the number of iterations. Corresponding

theoretical results are given in the following subsection.

2.3.1 Lower and Upper Bounds

Definition 2.3.1 (Length of Sequences). Let w(K) denote the multi-set of

the length of all sequences (k,) € K of a monotonical discrete loop and let
[=minw(K) and u= maxw(K)

denote the lower and upper bound of the length of the sequences. These represent

lower and upper bounds for the number of iterations of the discrete loop too.

In the rest of this section we will only be concerned with montonically in-
creasing discrete loops. Of course the following treatment can easily be modified
in order to deal with monotonically decreasing discrete loops. Besides the loop
digraph corresponding to a certain loop is very important in this section to prove
properties of discrete loops. Note, however, that the vertex 0 can be avoided since
the underlying loop is monotonically increasing.

In order to calculate u we can use an algorithm given in [31] which determines
the longest path in topologically sorted digraphs. The path is supposed to start

at node s.

for k in 1..N+1 loop

c(k) := -0
end loop;
c(s) := 0;

for k in s..N loop
for i in 1..e loop
c(fi(k)) := max{c(f;(k)), c()+1};
end loop;
end loop;

A similar procedure can be used to determine the shortest path in G.

for k in 1..N+1 loop

c(k) := +o00
end loop;
c(s) := 0;

for k in s..N loop
for i in 1..e loop
c(j%(k)) 1= nﬁn{c(}}(k)), c(k)+1};
end loop;
end loop;

18
Remark 2.3.1. The shortest and longest path, i.e., the final value of ¢(N + 1),

computed by the algorithms above, correspond to [and u, respectively.

Summing up, we have found algorithms that compute lower and upper bounds
of the number of iterations of monotonical discrete loops in time O(Ne). The
following Theorem 2.3.1 will show that under certain conditions u and [can be

determined much easier. Before that we need some further definitions and lemmas.

Definition 2.3.2 (Smallest and Largest Sequences). Let a monotonically
increasing discrete loop be given by the number N and the iteration functions
fi(z). Then we denote by

kS = min £ (k™) and by k5% = max f;(£0m)

v v

the sequences that always assume the smallest and largest possible values, respec-

tively.

Lemma 2.3.1. If for all 4, f;(1) > 1 and Af;(z) > 1 for all z € N, then f;(z) > z

for all z € N, i.e., the corresponding discrete loop completes.
Proof. Lemma 2.3.1 is easily proved by induction. O

Lemma 2.3.2. We have Af(z) > 1 for all z € N if and only if % > 1 for
all z,y e N, z # y.

Proof. Setting y = x + 1 clearly implies one part of the proof.
To prove the other part we will in fact show that

fl@+k)—flz) >k (2.4)

for all £ > 1,k € N. We prove this by induction.
Setting k = 1 gives the starting point of the induction. Assuming that (2.4)

is correct, we have to show that it is correct in the case k£ + 1, too. But we have
fla+k+) = fl@)=(flz+k+1) = flz+k)+ (flz+k)— f(z))>1+k.

Thus we have proved the lemma. O
The following lemma is trivially true.
Lemma 2.3.3. If y > z and w > 1, then f(y) > f(x). O

—Z

Theorem 2.3.1. Ifforall 1 <i<e f;(1) > 1 and Af;(z) > 1 for all z € N, then

19

1. the corresponding discrete loop completes,
2. the length of (k2**) is equal to I, and
3. the length of (k™) is equal to u.

Proof. Case (1) follows immediately from Lemma 2.3.1.

We will only prove case (2), the proof of (3) is very similar.

First we define a path along (k,(,max)), i.e., given a node v of this path we choose
the next node of the path to be max;{fi(v)}.

Now assume that there exists a shorter path from node s to node 2 = N + 1,

i.e., we must have a situation like that depicted in Figure 2.4.

O—w
o

Figure 2.4: Paths in a Loop Digraph

The "lower" path (s, ..., v, V1,02, -, Up, Ty ..., W, ..., N+1=0Q) is the path
along (k,(,max)) and we want to show that a shorter path like the "upper" path
!

(S5 00,0], .. 0w, ..., N+1=8Q), v] #vq,...,v. # v, cannot exist. Denot-

ing by fmax(z) = max;{fi(z)}, we clearly have

U1 = fmax(UO) > Ull = fi1 (UO)'

Furthermore
Uy = fmax(vl) 2 fiz(vl) > fm(UD = Ué

because of Lemma 2.3.3.
Continuing this procedure we finally arrive at v, > v. and z > w, which
contradicts the fact that G is topologically sorted, i.e., fi(z) > x for all z € N.

(max)

Thus, no shorter path exists than that along (ks). O

20
If foin(z) = min{ f;(2)} and fiax(z) = max;{f;(x)} can be determined in-

dependently of x, Theorem 2.3.1 enables us to restrict our interest to two single
functions in estimating lower and upper bounds of the number of iterations of a

discrete loop.

2.3.2 Some Results on Special Iteration Functions

In this subsection we prove some theorems which cover many important cases. We
study monotonically increasing discrete loops which are characterized by N € N
and the iteration functions f;(z) and we assume that f(z) = fmin(z) can be
determined independently of x. The initial value of the loop variable is assumed

to be k; = 1, but our results can easily be generalized.

Theorem 2.3.2. If f(z) = [az + [, @ > 1, B > 0, then the length of the

corresponding loop sequence is bounded above by
Na-1)+p
1 _ 1].
{Og‘“(a+f-1 >+ J
Proof. We clearly have

f(z) =[x+ B8] > oz + .

Thus

a7t -1 a1 at+tf-1\ B
a—1 a—1"

To estimate len k£, we must have

au—1<a+ﬁ_1>_ ﬁ >N
a—1 a—1

which is equivalent to

v—1

N(a—1) I5;
a+ﬂ—1+a+5—r

Taking logarithms we have proved the theorem. O

Theorem 2.3.3. If f(z) = [az?” +], « > 1, 8 > 0, v > 1, then the length of

the corresponding loop sequence is bounded above by

[log, ((y —1)log, N + 1) +1].

21
Proof. We clearly have

f(x) = [ax” + 3] > ax” + B.
Thus k, > [, where
I =1,

lyn=all +8=al) <1+£).

al)

Taking logarithms and setting m, = log!, we obtain
m; = O,

my+1 = ym, + log a + log (1 + %) .
Since log (1 + a’%) > 0, we have m, > n, where

n1:0,

Nyy1 = YN, + log a.

Hence
v—1

-1
n,=——Ioga«a
v—1
and to estimate len k£, we must have

u—171

k, > o 7T > N.
Thus
77> (v = 1)log, N +1
and taking logarithms once more, we have proved the theorem. O
Theorem 2.3.4. If f(z) = [¢(z) + f], where § > 0 and ¢(z) =), 02", a; > 1,

v; > 1, then the length of the corresponding loop sequence is bounded above by

[log,Ym ((Vm —1)log, N + 1) + 1J ,
where the index m is defined such that v, = max; ;.

Proof. We clearly have
f(z) > apz™ + B.

Applying Theorem 2.3.3 to this we have proved Theorem 2.3.4. O

22

By similar methods lower bounds for the number of iterations of monotonically
increasing discrete loops can be derived.

Integrating the results of Theorems 2.3.2, 2.3.3, 2.3.4, and similar theorems
into a compiler, the number of iterations of discrete loops can often be estimated
at compile time, thus producing valuable information for a tool estimating the

WCET of a real-time program and for a real-time scheduler.

2.3.3 Nested Monotonical Discrete Loops

In this subsection we consider the number of iterations of nested monotonical
discrete loops, i.e., the question, how often the innermost loop-body of nested
monotonical discrete loops is executed.

In the following we denote by w(/N) the upper bound of the number of iter-
ations of a monotonical discrete loop with the associated range 1..N. With this
notation an upper bound for the number of iterations of r nested monotonical

discrete loops can be estimated by

) w2 (kzl w3(k12) Wr (k”'T 1)

Sy Yy

11=1 d2=1 i3=1 ip=1

This general formula cannot be presented in a simpler form. It simplifies, however,

if more special cases are considered.

Nested Identical Monotonical Discrete Loops

If all involved discrete loops are the same or if fui,(z) = min{f;(z)} can be
determined independently of x for all involved discrete loops and if all these

functions are the same, we clearly have
wi(ki,_y) = w(ki,_,) = ie-1.

Thus

z7'1
§:]'_w Ip— 1):7;"'_1

ip=1

and by induction

W(N) wlkiy) wksy) wiki,_)

Z Z 1_(;LT_1>

11=1 22=1 143=1 ir=1

23

Some Simple Examples
Next we study some examples involving a for-loop and a simple discrete loop.

for i in 1..N loop

discrete j :=1 in 1..i new j := 2%j loop
-- innermost loop body
end loop;
end loop;

Here we have w;(N) = N and w;(N) = [ld N + 1|. Hence the number of

executions of the innermost loop body is bounded above by

N |1di+1] N

Z Z 1—Z[ldz+1

which by (2.3) is equal to
N[IAN] — 2N L 1A N| + 2.

Exchanging the loops of the previous example, we get:

discrete i := 1 in 1..N new i := 2%i loop
for j in 1..i loop
-- innermost loop body
end loop;
end loop;

Here we have w;(N) = [IdN + 1| and w;j(N) = N. Hence the number of

executions of the innermost loop body is bounded above by

[ld N+1] 9i-1 [1d N+1]
Z 21 Z 2i=1 — oldN+1] _ | < 9N 1.
i=1 j=1 i=1

2.4 Non-Monotonical Discrete Loops

Although monotonical discrete loops are interesting for their own, many applica-
tions rely on discrete loops which are not monotonical. One example is binary
search, where the corresponding loop sequences are non-monotonical, but the
number of iterations is bounded above. An Ada-like implementation using a dis-
crete loop is shown in Figure 2.5. Note that we have omitted the range of the

discrete loop since it does not make sense in this connection and that we have

© 00 ~J O O i W N

I I I O R R e e N e
B W N O OO0 Ui W= O

24

N: constant positive := 77; -- number of elements
subtype index is positive range 1 .. N;
type sort_array is array(index) of integer;

function binary_search(

item: in integer;
arr: in sort_array)
return index is
1: index := arr’first;
u: index := arr’last;
m: index;
-- sucessful search only
begin

discrete (1,u) new (1,u) := (1,(1+uw)/2-1) | ((1+u)/2+1,u) loop
m := (1+u)/2;
if item < arr(m) then
u :=m-1;
elsif item > arr(m) then
1l := mt+1;
else
return m;
end if;
end loop;
end binary_search;

Figure 2.5: Implementation of Binary Search using a Discrete Loop

25

used a non-Ada-like notation for two-dimensional vectors for the loop variable
(1,u). Correct syntactical and semantical considerations of the kind of loop we
are discussing in this section are postponed until Section 2.5.1.

In studying binary search we will investigate how we can generalize monoton-
ical discrete loops such that we still can guarantee that the loop completes but

the corresponding loop sequence is not monotonical.

2.4.1 Binary Search

The essential property of binary search is a sequence of intervals which become
smaller and smaller with each iteration of the loop. The starting interval is
i1 = [l1,u1] = [1, N] and with each iteration the interval i, = [l,,u,] is changed

according to

l,, bl _ q or
2

7:1/—1—1 = [lu—l—l; uu—l—l] =
L2 +1))

depending on which sub-interval contains the element being sought. If the sought
element is equal to | % |, the algorithm terminates. In the worst case this is
true if the interval contains just one element, i.e., if [,, = u,, for some w > 1.

On one hand this shows a clear relationship to discrete loops, e.g. the inde-
terminism and the recurrently defined loop variable, on the other hand the corre-
sponding loop sequences are non-monotonical in general. But a closer inspection
shows that there is a monotonical sequence hidden in the algorithm, namely the
length of the intervals.

We can even determine an upper bound for the number of loop iterations. Let
l, = u, — I, + 1 denote the length of the interval 7,,. Then

{,.1 = max Uy + by — 1, u, — Uy + by
v+1l — 2 vy Uy 9 .

We have
u, + 1, _ly<u,,+l,,_lu_u,, l,
2 2
and
w u, + 1, _u,,—i—l,,—l_ul,—l,,—i—l
v 2 = 2 N 2
Thus

26

Mentioning ¢,,; € N, we must have £, < |£,/2| and the length of the interval

¢, is bounded above by U, which satisfies the recurrence relation

U =N,
U1 =1U,/2]. (2.5)
Hence the number of iterations performed by binary search is bounded above

by w which is defined by w = min{v : U, = 0}.
Solving equation (2.5) by applying standard techniques (cf. e.g. [18]) we obtain

Ui
-]

Thus U, = 0if 271 > N, ie., if v > 1d N + 1. Hence the number of iterations

performed by binary search is bounded above by

w=|ldN +2].

The ideas we have seen in studying binary search, can be generalized to a new

kind of discrete loop which is treated in the following section.

2.5 Discrete Loops with a Remainder Function

Definition 2.5.1 (Loop Sequence with Remaining Items). In contrast to
the previous sections we now define a loop sequence of remaining items to be the
sequence of the number of data items that remain to be processed during the
remaining iterations of the loop. Such a loop sequence is denoted by (r,) and the
set of all loop sequences by R = {(r,)}. A corresponding discrete loop is called a

discrete loop with a remainder function.

Remark 2.5.1. Definition 2.5.1 is justified by the fact that normally each iteration
of a loop excludes a certain number of data items from future processing (within
the same loop statement). Thus the sequence of the number of the remaining
items is responsible for the overall number of loop iterations. This situation is
typical for divide and conquer algorithms. In our example of binary search the

number of the remaining items is equal to the length of the remaining interval.

Definition 2.5.2 (Monotonical Loop Sequence). A loop sequence of remain-

ing items is called monotonical if r, 1 <7,.

27

Definition 2.5.3 (Monotonical Discrete Loop). A discrete loop with a re-
mainder function is called monotonical if all its loop sequences (r,) € R are

monotonical.

Lemma 2.5.1. A monotonical discrete loop with a remainder function is com-

pleting.

Proof. Since a monotonically decreasing discrete function will become smaller

than 1 in finitely many steps, the corresponding loop will complete. O

2.5.1 Syntactical and Semantical Issues of Discrete Loops with Re-

mainder Functions

The syntax of a discrete loop with a remainder function is again given by a nota-

tion similar to that in |2]. In fact we add to the syntax definition of Section 2.2.1.

loop _statement ::=
[loop _simple name:|
[iteration scheme| loop
sequence of statements

end loop [loop simple name];

iteration _scheme ::= while condition
| for for_loop _parameter_specification

| discrete discrete loop parameter specification

for _loop parameter specification ::—

identifier in [reverse| discrete range

discrete loop parameter specification ::=
monotonical _discrete_loop_parameter _specification |

discrete_loop with remainder function parameter specification

monotonical _discrete loop parameter specification ::=
identifier := initial value in [reverse| discrete range

new identifier := list of iteration functions

discrete loop with remainder function parameter specification ::=

[identifier := initial value

28

new identifier := list of iteration functions]

with rem_identifier := initial value new remainder function

list _of iteration functions ::=

iteration function { | iteration function }
iteration function ::= expression

remainder function ::=
rem_identifier = expression |

rem__identifier <= expression | and rem_identifier >= expression |

For a discrete loop with a remainder function, the corresponding loop param-
eter specification is the optional declaration of the loop variable with the given
identifier. The loop variable is an object whose type is the base type of result type
of the iteration functions, which must be the same for all iteration functions. The
initial value of the loop variable is given by initial value. Within the sequence
of statements the loop variable behaves like any other variable,i.e., it can be used
on both sides of an assignment statement for example.

After the keyword with the remainder loop variable is declared by the given
identifier (rem_ identifier). Its type must be a subtype of natural in the cases (1)
and (2) below or an interval between two natural numbers in the case (3). Its
initial value is given by initial value. The remainder function itself may have

three different forms:

1. If the remainder function can be determined exactly, it is given by an equa-

tion.

2. If only an upper bound of the remainder function is available, it is given by

an inequality (<=).

3. If in addition to (2) a lower bound of the remainder function is known, it
can be given by an optional inequality (>=). The second inequality must
be separated from the first one by the keyword and.

The base type of the expressions defining the remainder function or its bounds
must be natural.
In case (1) the remainder loop variable behaves like a constant within the

sequence of statements. In cases (2) and (3) the remainder loop variable behaves

29

like any other variable within the sequence of statements. If the value of the
remainder loop variable is changed during the execution of the statements, we
call the original value previous value and the new value current value.

Before the sequence of statements is executed, the list of iteration functions
is evaluated if a loop variable is given. This results in a list of possible successive
values.

After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor _error is raised.

After the sequence of statements has been executed, the remainder function or
its bounds (depending on which are given by the programmer) are evaluated. In
case (1) the new value of the remainder loop variable is set to the value calculated
by the remainder function if it is smaller than the previous value, otherwise the
exception monotonic _error is raised.

In case (2) the new value of the remainder loop variable is set to the value
calculated by the remainder function if the previous value of the remainder loop
variable is equal to its current value and if the calculated value is smaller than
the current value, otherwise the exception monotonic _error is raised. If the
previous and the current value differ, the remainder loop variable is set to the
current value if it is smaller than or equal to the calculated value, which in turn
must be smaller than the previous value. If this is not true, the exception mono-
tonic__error is raised.

In case (3) the new value of the remainder loop variable is set to the value
calculated by the remainder function if the current value is equal to the previous
value and if the calculated interval is contained strictly in the previous one. If the
current value and previous value differ, the new value is set to the current value if
the current interval is contained (not necessarily strictly) in the calculated inter-
val, which in turn must be contained strictly in the previous interval. Otherwise
the exception monotonic error is raised. This exception is raised too if the
interval does not contain at least one element.

If in cases (1) and (2) the value of the remainder loop variable is zero or if in
case (3) the upper bound is zero, the exception loop _error is raised, otherwise
the loop is continued.

The regular way to complete a discrete loop with a remainder function is to

use an exit statement, before the remainder loop variable is equal to zero.

Remark 2.5.2. The semantics of discrete loops with remainder functions ensure

30

that such a loop will always complete, either if the loop is terminated by an
exit statement or because one of the above check fails, i.e., one of the exceptions

monotonic error, successor error, or loop error is raised.

Remark 2.5.3. A corresponding compiler is free to perform as many checks as
it likes in order to inhibit one of the runtime exceptions monotonic error,
successor _error, and loop error. This can be done by ensuring that the re-
mainder function or its bounds are monotonical, by performing data-flow analysis
to make sure that successor _error will never be raised, or by ensuring that the
loop will complete before the remainder loop variable is equal to zero. Thus a lot
of runtime checks can be avoided.

Moreover the compiler might even detect bounds of the number of iterations

of the loop, which is a valuable result for real-time applications.

2.5.2 Some Examples of Monotonical Discrete Loops with Remainder

Functions

One illustrative example, binary search, has already been discussed in Section 2.4.1,
but one syntactical remark is necessary: Line 14 of Figure 2.5 must be replaced
with

14a discrete (1,u) new (1,u) := (1,(1+u)/2-1) | ((1+u)/2+1,u)
14b with i := u-1+1 new i <= i/2 loop

Some more runtime checks can be achieved if we insert

22a i := u-1+1;

between lines 22 and 23.
In the following we will give further examples of discrete loops with remainder

functions.

Traversing Binary Trees

Discrete loops with remainder functions are especially well-suited for algorithms
designed to traverse binary trees. A template showing such applications is given
in Figure 2.6. In this figure root denotes a pointer to the root of the tree, height
denotes the maximum height of the tree, and node_pointer is a pointer to a node
of the tree. The actual value of height depends on which kind of tree is used,

e.g. standard binary trees or AVL-trees.

31

1 discrete node_pointer := root

2 new node_pointer := node_pointer.left | node_pointer.right
3 with h := height

4 new h := h-1 loop

9

6 -- loop body:

7 -- Here the node pointed at by node_pointer is processed
8 -- and node_pointer is either set to the left or right

9 -- successor.

10 -- The loop is completed if node_pointer = null;

11

12 end loop;

Figure 2.6: Template for Traversing Binary Trees

Weight-Balanced Trees

So-called weight-balanced trees have been introduced in [35] and are treated in
detail in [32] and in [8].

Definition 2.5.4. We define:

1. Let T be a binary tree with left subtree 7, and right subtree 7;.. Then
p(T) = [To|/IT| =1 = [T.[/|T|

is called the root balance of 7. Here |T'| denotes the number of leaves of
tree 1.

2. Tree T is of bounded balance « if for every subtree T" of T

a<p(T)<1l-a

3. BB|q] is the set of all trees of bounded balance .

If the parameter a satisfies 1/4 < a < 1 — \/§/2, the operations Access,
Insert, Delete, Min, and Deletemin take time O(log N) in BB|a]-trees. Here N is
the number of leaves in the BB[a]-tree. Some of the above operations can move
the root balance of some nodes on the path of search outside the permissible

range [o, 1 —a]. This can be "repaired" by single and double rotations (for details
see [32] and |[8]).

0 ~J O O W N

Q0 ~J O O s W N+~

32

BBJa]-trees are binary trees with bounded height. In fact it is proved in [32]

that
IdN -1

= Tl —a)

where N is the number of leaves in the BB[a]-tree T'.

height(T) +1

)

A template for the above operations is shown in Figure 2.7, where floor(x) is

discrete node_pointer := root
new node_pointer := node_pointer.left | node_pointer.right
with h := floor(1d(N)/(-1d(1-alpha)))+1
new h := h-1 loop
-- loop body
end loop;

Figure 2.7: A Template for Operations on BB[a]-trees

supposed to implement |x]|. Since the notion of height defined in [32] is not well-
suited for direct application of discrete loops, the remainder function in Figure 2.7
has been slightly modified.

A semantically equivalent template for traversing BB[a/]-trees is shown in Fig-

ure 2.8. The remainder function of Figure 2.8 has the advantage that it does not

discrete node_pointer := root
new node_pointer := node_pointer.left | node_pointer.right
with r := N -- N = number of leaves of tree
new r := floor((1-alpha)*r) loop
-- loop body
end loop;

Figure 2.8: Another Template for Operations on BB|a/]-trees

need logarithms since it works with the number of leaves instead of the height of

the tree. In addition it does require less mathematical skill from the programmer.
2.5.3 The Number of Iterations of a Monotonical Discrete Loop with
a Remainder Function

A special case has already been discussed in Section 2.4.1, but these computations

can be generalized.

Theorem 2.5.1. If a loop sequence of remaining items fulfills

T = N,
Tv+1 = Lru//j'Ja

where p > 1, then lenr, is bounded above by
|log, N +2].

Proof. We clearly have
Lrv/u) < 7/

Thus

Taking logarithms the theorem is proved.

33

O

2.6 Computational Power of Discrete Loops with a Remainder Func-

tion

In this section we prove that the computational power of discrete loops with

remainder functions is considerably great if we restrict our interest to applications

which do not loop forever.

Theorem 2.6.1. If the number of iterations of a general loop can be determined

by an integer-valued computable function [11] ®, a discrete loop with a remainder

function can be used to achieve the same effect.

Proof. We define the remainder function of the discrete loop by

r1:=®, i.e., the number of iterations of the general loop

Tyy1 =1, — L.

Clearly, after ® iterations, r = 0 and thus the loop completes.

34

Remark 2.6.1. Obviously, in practical applications the remainder function in the
proof of Theorem 2.6.1 will not always be the best choice with regard to software
engineering, but it is the purpose of Theorem 2.6.1 to show the computational
power of discrete loops with remainder functions and not to set up a style-guide

for discrete loops with remainder functions.

Remark 2.6.2. If, on the other hand, the number of iterations of a general loop
can only be determined by a partially computable function, the procedure in the

proof of Theorem 2.6.1 may loop forever in computing r := ®.

2.7 Summary

In this Chapter we have introduced discrete loops which narrow the gap between
general loops and for-loops. Since they are well-suited for determining the num-
ber of iterations, they form an ideal frame-work for estimating the worst-case
execution time of real-time programs.

It remains to compare discrete loops with recent approaches in the domain of
real-time systems. Some of these approaches have already been mentioned in the

introduction.

1. Assume that the only thing that is known is U € N, an upper bound for
the number of iterations of a general loop. Then we define the remainder

function of a discrete loop by

T = U:

Tyy1 =1, — L.
Obviously this is semantically equivalent to the approaches described in the
introduction (cf. [19, 38, 37, 41, 17]): If the upper bound U is exceeded, the

exception loop _error is raised, which must be caught by an appropriate

exception handler in order to treat this exceptional case.

2. An upper bound for the amount of time 7" the loop uses can be given by

Ty = T,
ry+1 =1, — time(loop body), (2.6)

where time(loop body) is the time that passed since (2.6) has been elabo-

rated the last time.

35
Hence the loop completes if the upper bound 7" has been exceeded. But

an unpredictable amount of time may pass, until this fact is recognized,
if the process executing the loop has been set into a waiting state by the

scheduler.

Thus we have shown that discrete loops can simulate all important recent
concepts that have been invented to handle general loops in the domain of real-
time systems. It is, however, more important that we have demonstrated in the
previous sections, how to use discrete loops in applications and how easy the

timing behavior of discrete loops can be analyzed.

36

Chapter 3

MULTI-STAGED DISCRETE LOOPS

3.1 Multi-Staged Discrete Loops

In the previous Chapter we have introduced the concept of dicrete loops.

Like a for-loop a discrete loop uses a loop variable that is adjusted on every
iteration of the loop until if does no longer fall into a given range. Unlike for-
loops, where the adjustment of the loop-variable always consists of adding (or
subtracting) a fixed amount (usually one), discrete loops allow a wide range of
functions for the adjustment of the loop variable. One limitation that remains is
that only the previous value of the loop variable can be used to compute the next
value. In this Chapter we will extend the concept of discrete loops to include
multi-staged discrete loops (MSDL) that permit the use of all previous values
of the loops variable for the computation of the next value. Nevertheless tight

bounds on the number of iterations can be computed at compile-time.

3.2 Additional Notation

A n-dimensional vector (ay,as, ..., a,) of natural numbers is written as [a,]. A
constant n-dimensional vector (c,c,...,c) is written as [c],. We define some

binary relations on n-dimensional vectors

[a,] = [bn] <= ar =b forall1 <k <n,
[an] < [bn] <= ar, < by foralll <k <mn,
[an] < [bn] <= [an] < [bn] and [an] # [bn]-

Note that we are only comparing vectors of equal length. Note further that there
are vectors [a,], [b,] such that neither [a,] < [b,] nor [a,] > [b,] (e-g. [a2] = (2,5),
[b2] = (3,4)).

We will see that it can be useful to base the comparison of two vectors on

37

their trailing ends. Thus we define for all 1 < d <n

[an] =4 [bn) <= ar = by foralln—(d—1) <
[an] <a [bn] <= ax < b foralln—(d—1) <

[an] <a [bn] <= [an] <4 [bx] and [an] #4 [ba]-

For d = n these definitions are equivalent to the original relations on vectors.
Obviously [ag] = [bk] = [ar] =a [bx] and [ax] < [bk] = [ak] <a [be]-

Let (ax) denote a sequence of natural numbers (i.e. a function N — N).

We write f*) : N¥ — N for a k-dimensional function and (F) = (f, f®,...)
for a sequence of functions.

Furthermore we denote (F')(z) = (ax) such that

a1 =T

aps1 = fO([ag)) forall k+1> 1.

3.3 Some Interesting Examples

Ezample 3.3.1. Catalan Numbers

a)p = 1
k—2
ar = 2ap_1 + Z Q;Ap—1—; forall k > 1

i=1
Evaluating for a few elements of [a,| we get [1,2,5,14,42,132,429,1430, .. .

Ezample 3.3.2. Fibonacci Numbers

CL1:1

az = fi(la]) =2

A = Qp—1 + Qp—2 forall k > 2

The vector [ag] of Fibonacci Numbers begins with [1,2,3,5,8,13,21,34,55,..].
Ezample 3.3.3. Factorial Numbers k!

CL1:1

ap, =k -ai_1 forall k > 1

Thus the first few elements of [ay] are [1,2,6, 24,120, 720, 5040, 40320, . . .].

38
Ezxample 3.3.4.

Qg—1

1 ap—1
ay = |V (1+ Z ak_t)w forall k > 1
t=1
This formula produces the sequence [ax] = [1, 2,2, 3,3,3, 4,4,4,4, 5,...].

3.4 Theoretical Treatment

Definition 3.4.1 (Multi-Staged Discrete Loops). A multi-staged discrete
loop (MSDL) L is characterized by a value N € N (producing arange [1...N]) and
a finite number of sequences of successor functions (F;), 1 < i < e. Furthermore
we require a set of starting values S C N. In addition we write s = mingg s and

§ = MaXges S.

Definition 3.4.2 (Paths in MSDL). Let £ be a MSDL. A path P through
L is defined by a starting value s € S and a sequence of successor functions
(fi(ll), fi(f), ...) where 1 < i; < e for all j > 1. The vector [ay] of traveled places

along the path P is therefore

a, =S8 the starting value s € §

g1 = fi(f)([ak]) for some i : 1 < iy <e, forall k+1> 1.

Let IC be the set of all possible paths P.

Definition 3.4.3 (Length of a Path). Let [a;] be a path P of a multi-staged
discrete loop, and [be the smallest value with a; > N, then we call [the length
of P and write len(P) = .

Definition 3.4.4 (History Depth). Let D(f*)) = max (j : aj;1_; is accessed
to compute ag1 = f®([ag])). If there exists a C € N such that D(f¥) < C
for all £ € N, then D(F) = maxy>; D(f®) is called the history depth of (F).
Otherwise we define D(F') = oo.

The history depth of a MSDL L is defined as D(L£) = max;<;<. D(F;).

Definition 3.4.5 (Monotonic Functions, Sequences, and Loops). We call
f®) a monotonic function if for all [ax] < [bx], we have f®)([ax]) < f®)([be]). Tt
is called a strictly monotonic function if [a;] < [by] implies f®)([ax]) < f® ([bx])

39

and strictly d-monotonic if it is monotonic and [ax] <4 [be] implies f*)([ax]) <
f®)([b]). Note that strict monotonicity is a special case of strict d-monotonicity
(i.e. d=k).

Similarly (F) = (f®, f®, f® ...} is called a monotonic sequence of functions
if all f*), k > 1 are monotonic. A MSDL is called monotonicifall (F}),1<i<e
are monotonic.

An analogous definition is used for strictly (d-)monotonic MSDL.

Theorem 3.4.1. When checking whether a function f®*) is monotonic or not, it
is sufficient to look at the monotonicity in the last d = D(f®*)) elements of the

argument, i.e.

(lax] < [be] = £ ([ar]) < FP(04]) <= ([ar] <a] = FP (ar]) < FO([Ba]))
for any d > D(f®).

Proof. If d = k then [a;] <4 [bg] < [ax] < [bk] and the theorem is trivial. Thus
the case k > d > D(f*) remains to be proved:

< As (o] < [be] = [ax] <a [be] and [ax] <q [b] = O ([ax]) < FB((b]) we
have [ax] < [be] = £® ([ax]) < £® ([bx)).

=: Let [ax] <q [bx] where [ax] = (a1,..., kg, Gk—(d-1),---,0k_1,0;) and
k] = (b1 - - bk—ar Ok—(@—1)» - - - » Ok—1, bk
We now construct a [b,] = (a1,-..,k—a,bk—(a—1)s - - - > bk—1,bx). Obviously

we have [a;] <4 [b}] and as the first £ — d elements of [a;] and [b}] are the
same also [a;] < [b}]. By definition of D(f%*)) we know that f*)([b,]) =
F®([B]). All together we now have [ay] <4 [br] = [ax] < [B4], [ax] <
B] = f®([ap]) < fR([BL]) as well as fF([b1]) = f®)([b]) and therefore
[ax] <a [b] = F® ([ar]) < FE([be))-
Definition 3.4.6 (Complete, Partial and Bounded History). Depending on

D(L) various forms of MSDLs can be distinguished. If D(£) = 1 (e.g. Exam-
ple 3.3.3 - Factorial Numbers) we have a (plain, single staged) discrete loop. This

O

case as been studied extensively in the previous Chapter and will not be treated
here. If 1 < D(L) < oo (e.g. Example 3.3.2 - Fibonacci Numbers) we call £ a
MSDL with bounded history.

Otherwise D(L) = oco. If D(f®) = k for all k (e.g. Example 3.3.1 - Cata-
lan Numbers) then we say L uses the complete history. Otherwise (e.g. Exam-
ple 3.3.4) we speak of partial histories.

40
3.5 Iteration Bounds for MSDL

Definition 3.5.1 (Min./Max. Successor and Min./Max. Path). Let £ be
a monotonic MSDL and i([a;]) be defined by fz((lzik])([ak]) = maxj<<e fi(k)([ak]).
Then fz((lfik])([ak]) is called the mazimum successor and f;((lfik]) one of the mazimum
successor functions of [ay]. This leads to the definition of a mazimum path P along

(]

a_1—§

p ([a])-

Q41 = Z(ak

Also let i([ax]) be such that £{[) , ([a]) = mini<ice £ ([ax]). Then £ | ([ax])
is called the minimum successor and fz’([ak]) a minimum successor function of [ag].

The minimum path P along [a] is defined by

a; =S

an = [l (as])-

Lemma 3.5.1. Let £ be a monotonic multi-staged discrete loop, then we know
for any path P € K that

P<P<LP or equivalently lag] < [ak) < [@)-
Proof. We only show P < P. The other half of the proof is analogous.
e k= 1: Obviously we have [a1] = (a1) = (s) < (5) = (a7) = [a1]
e k> 1: By induction we know that [ax 1] < [@x_1]. Now

ap = f](’“_l)([ak_l]) for some value j: 1 < j<e

< f"“*”([ak 1)
< max [(@) =@ O

1<i<e

Theorem 3.5.1. Let £ be a monotonic MSDL and let fi(k)([ak]) > ay, for all
1<i<e k&N then

1. the multi-staged discrete loop completes,

2. [:=len(P) = minpek len(P),

41
3. [:=len(P) = maxpex len(P).

In other words the longest path can be found by always following the minimum

successor and vice versa.

Proof. We will elaborate only the proof of the first two properties, and just
hint the idea to the proof of (3), which is quite similar to that of (2).

1. By requirement we have a1 = fi(k) [ag] > ai for all & € N. As the a are
elements of N there are only a finite number of elements (exactly: N) in the

range [1...N]. Thus the loop must complete after at most IV iterations.

2. By definition of [:= len(P) (cf. Def. 3.4.3) it is obvious that a;_; <
N < @. In Lemma 3.5.1 we have shown P < P for all P € K. Thus
a;—1 < @—; < N and hence len(P) > [—1, ie., len(P) > [for all P € K.
Thus minpeg len(P) > 1. As P € K we also know that minpcx len(P) <
len(P) = 1. Thus [> minpex len(P) > [or I = minpek len(P).

3. Similar to the above case we have N < g; < g7 and thus len(P) < [. O

Theorem 3.5.1 requires that f*)([a;]) > a;. Sometimes an alternative condi-

tion is easier to prove.

Theorem 3.5.2. If (F) is strictly d-monotonic for some d > 1 and f®)([1];) > 1
for all &, then f%)([ax]) > a.

Proof. Induction on ay:

o If a, = 1, we have [ax] = (a1,a2,...,a,-1,1),a; > 1 forall1 < j < k.
Thus [ax] > [1]g. As (F) is strictly d-monotonic f®)([az]) > f®)([1]x) and
®)([1]) > 1 we have f®)([ax]) > 1 = ay.

e If ; > 1, we assume that we have already shown f®)([a}]) > d} for all
[a}] = (a1, a9,...,a5-1,0a}),1 < a} < ag. By definition we know that [ag] >
[ak] (= lar] >a [a}] and therefore f®)([ar]) > f®)([a}]) ie. f®([a]) >

f®(a}]) +1 > a) + 1. Using the special case a}, = a, — 1 it is obvious that
f® ([ar]) > ax. O

Remark 3.5.1. Note that the above condition not only provides f*)([a;]) > aj, but
also f®)([ay]) > Z?Zk_(d_l)(aj -1)+1= Z] k—(a—1) @ —d+1. Ford =1 thisis
equivalent to the original f*)([a;]) > a; or agy1 > ax+1. Mentioning that a; > 1
it is obvious that a; > k. For d = 2 this sum expands to f*) ([a]) > ax+ap 1—1

42

Or ayy1 > Qi + ax—1. Using the smallest possible values a; = 1 and a, = 2 it is
easy to show that a; > Fib(k), the kth Fibonacci Number. In the extreme case
of d = k (i.e., (F) is strictly monotonic) we have f®*)([a;]) > Zle(aj —-1)+2.
Together with a; > 1 this means that a; > 2¥=2 4 1.

3.6 Number of Iterations of a MSDL

Note that P is independent of any run-time parameters. Thus it can effectively
be constructed during compile-time making it simple to obtain I. As discussed in
Theorem 3.5.1, [is the upper bound for the length of any path through the MSDL.
Obviously the length of a path through a MSDL is the same as the number of
iterations it takes to complete the loop. Thus [is an upper bound for the number
of iterations of the MSDL.

Using [, it is easy to compute maximum amounts of processing time required
to execute the loop.

An upper bound for the time required to process the loop is simply obtained
by multiplying { with an upper bound for the time required to execute a single
pass through the loop body.

Obviously it is possible, that the loop body itself does contain loops. Note
that this does not create any additional problem, because the same concepts that
were used on the outer loop can also be used on the inner loops. As there has to
be an innermost loop, this recursion is bound to end.

The stack space required to hold the vector [ax] is proportional to k. The
requirements of other variables, e.g. temporary internal variables to store inter-
mediate results can easily be computed at compile time. Thus the worst case
stack usage is the sum of the space needed for auxiliary variables plus [times the
space needed for a natural.

Frequently D(F) < | making it inefficient to store the entire history. Major
reductions of space consumptions can be obtained by keeping only the last D(F)

elements (e.g. in a cyclic list).

3.7 Iteration Functions and Programming Language Features

3.7.1 Monotonically increasing MSDLs

In this section we investigate which programming language features can be used
for implementing iteration functions that are consistent with the conditions of
Theorems 3.5.1 and 3.5.2.

43

At first, the loop variable is considered to be an array of “suitable” size within
the code of the iteration functions. By “suitable” we mean that if the jth value
of the loop variable a is computed, the 7th value, 0 <7 < j, of a can be accessed
by writing a(i).

Generally speaking, there are several possible ways how iteration functions

can be specified by the programmer:

1. If the MSDL uses only a bounded history, the iteration functions can be
given by a simple expression, e.g. by a(i) = a(i-1) + a(i-2), provided

that the initial values are specified too.

In this case the condition of Theorems 3.5.1 and 3.5.2 are easy to verify

even at compile time.

2. If a complete or a partial history is used in order to define a MSDL, more
sophisticated programming language features must be used to specify the

iteration functions. Here we can discriminate two cases:

(a) Either we introduce new language features for implementing sums, con-

volutions, and so on, or

(b) we choose a more general approach by constraining conventional lan-

guage features.
The last case will be treated in the rest of this section.

To guarantee that the conditions of Theorems 3.5.1 and 3.5.2 are met, the syn-
tax of the programming language must be constrained suitably. In the following

we list necessary constraints which meet these conditions:

1. All expressions used to compute the next value of the loop variable must only
contain “positive” operators, namely "+", "x" and "*x*" i.e., the operators
for adding and multiplying two operands and the operator for raising one

operand to the power of the second, where the latter must be greater than 1.

The expressions involved in the computation of the next value of the loop

variable can easily be determined by data-flow analysis.

2. The expressions mentioned in (1) are also allowed to contain the "-'"-

operator if only constant values are subtracted and if the sum of the constant
values encountered during the computation is not larger than the number

of “recent” values of the loop variable used.

44

3. If- and case-statements can be used in the code of iteration functions.
4. The same applies to for-loops.

5. Since we are primarily interested in real-time systems, general while-loops

must not be used in the code of iteration functions.
6. Instead discrete loops (see Chapter 2) or MSDLs can be used.

7. Even the use of appropriately constrained recursions (see Chapter 4) is

allowed to implement iteration functions.

Constraints (1) and (2) are consistent with Theorem 3.5.2. Constraints (3) to (6)
are obvious. Note that Constraint (6) does not constitute problems although
it introduces some form of “recursiveness”. The same applies to Constraint (7)
provided that the code of the recursive procedure or function adheres to con-
straints (1) to (7). In addition, note that all constraints can be checked at compile
time.

Notice that these constraints allow to implement Example 3.3.1, but disallow
Example 3.3.4.

The syntactical and semantical issues given above can easily be incorporated
into a suitable (real-time) programming language. Thus a programmer can be
“forced” to implement only correct MSDLs.

Of course the constraints listed above are sufficient to meet the conditions
of Theorems 3.5.1 and 3.5.2. Other, even weaker, constraints are possible, and
can be supplied by the designers of real-time programming languages. These
constraints, however, must be consistent with Theorems 3.5.1 and 3.5.2 and it

should be possible to check them at compile time.

3.7.2 Monotonically decreasing MSDLs

Until now only monotonically increasing MSDLs have been considered. In this
section we will be concerned with monotonically decreasing MSDLs.

Clearly we can discriminate between monotonically increasing and decreasing
iteration functions and iteration functions which are neither monotonically in-
creasing nor decreasing. Although the set of monotonically increasing and that of
monotonically decreasing iteration functions are disjoint, their complement sets
are not. Thus we have to find a characterization for monotonically decreasing

iteration functions different from that given in Subsection 3.7.1.

45

It, however, turns out that monotonically decreasing iteration functions are
not so easy to characterize than their increasing counterparts, because the con-
straints given in 3.7.1 cannot simply be “inverted” to obtain constraints valid for
monotonically decreasing iteration functions. For example allowing "-" or "/"-
operators and forbidding the "+" and "*"-operators does not result in constraints
that produce monotonically decreasing iteration functions.

Defining a monotonically decreasing iteration function d by |1/i] where 4
denotes a monotonically increasing iteration function also does not work, because
in this case d can only assume the values 0 and 1.

We choose a different approach.

Definition 3.7.1 (Monotonically Decreasing Iteration Function). Let i
denote a monotonically increasing iteration function, let the range of the corre-
sponding loop be 1..V, and let the length of the path induced by 7 be denoted by
¢. Let i; denote the jth value of the loop variable. Then we define a monotonically

decreasing iteration function d by
d]’ = N - ’l;g_j+1 + 1.

Remark 3.7.1. Definition 3.7.1 defines a one-to-one correspondence between mono-

tonically increasing and monotonically decreasing iteration functions.

In the following subsection we give an example of how the syntax and semantics
of MSDLs can be defined.

3.7.3 Syntax and semantics of MSDLs

We define an Ada-like syntax, but it is important to note that an appropriate
syntax can be defined for other languages too.

The syntax of a monotonic MSDL is given by a notation similar to that in [2].

loop statement ::=
[loop simple name:|
literation_scheme| loop
sequence_of statements

end loop [loop_simple name];

iteration scheme ::= while condition

| for for loop parameter specification

46

| discrete discrete loop parameter specification

for _loop parameter specification ::=

identifier in |reverse| discrete _range

discrete loop parameter specification ::=
identifier := initial value in |[reverse| discrete range

new identifier := list_of iteration_functions

list _of iteration functions ::=

iteration_function { | iteration_ function }

iteration function ::= expression

For a loop with a discrete iteration scheme, the loop parameter specification
is the declaration of the loop variable with the given identifier. The loop variable
is an object whose type is the base type of the discrete range. The initial value of
the loop variable is given by initial value. The optional keyword reverse defines
the loop to be monotonically decreasing; if it is missing the loop is considered to
be monotonically increasing. Within the sequence of statements the loop variable
behaves like any other variable, i.e., it can be used on both sides of an assignment
statement for example.

Before the sequence of statements is executed, the list of iteration functions
is evaluated. This results in a list of possible successive values. It is also checked
whether all of these values are greater than the value of the loop variable if the
keyword reverse is missing, or whether they are smaller than the value of the
loop variable if reverse is present. If one of these checks fails, the exception
monotonic _error is raised.

After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor _error is raised.

If the value of the loop variable is still within the discrete range stated in the
loop header, the loop is iterated (at least) once more. If it is not within the range,

the loop completes.

Remark 3.7.2. The semantics of monotonic MSDLs ensure that such a loop will

always complete, either because the value of the loop variable is outside the given

47

discrete range or because one of the above checks fail, i.e., one of the exceptions

monotonic_error Or successor __error is raised.

Remark 3.7.3. A corresponding compiler is free to perform as many checks as it
likes in order to inhibit one of the runtime exceptions monotonic error and
successor _error. This can be done by ensuring that the iteration functions
are monotonic functions and by performing a data-flow analysis to make sure
that successor _error will never be raised. Thus a lot of runtime checks can be
avoided.

The syntax and semantics of the iteration functions can be defined analogous
to our investigation in Subsection 3.7.1 in order to guarantee syntactically correct,
monotonically increasing iteration functions. An exact treatment is left to the
reader.

If the keyword reverse is present, the next value of the loop variable may be
computed by the method shown in Subsection 3.7.2.

Moreover the compiler might even detect the number of iterations of the loop,
which is a valuable result for real-time applications. Clearly the number of it-
erations depends on the initial value of the loop variable, on the discrete range

(especially the number of elements in the range), and on the iteration functions.

Remark 3.7.4. The syntax of single-staged discrete loops (cf. [3]) and MSDLs
differ only in that in the latter case iteration functions refer to recent values of

the loop variable in terms of array elements.

3.8 MSDLs with Remainder Functions

Definition 3.8.1 (Loop Sequence of Remaining Items). In contrast to the
previous sections we now define a loop sequence of remaining items to be the
sequence of the number of data items that remain to be processed during the
remaining iterations of the loop. Such a loop sequence is denoted by (r) and
the set of all loop sequences by R = {(ry)}. A corresponding MSDL is called a

MSDL with a remainder function.

Remark 3.8.1. Definition 3.8.1 is justified by the fact that normally each iteration
of a loop excludes a certain number of data items from future processing (within
the same loop statement). Thus the sequence of the number of the remaining
items is responsible for the overall number of loop iterations. This situation is

typical for divide and conquer algorithms.

48

Definition 3.8.2 (Monotonic Loop Sequence). A loop sequence of remaining

items is called monotonic if ry 1 < rg.

Definition 3.8.3 (Monotonic Remainder Function). A MSDL with a re-
mainder function is called monotonic if all its loop sequences () € R are mono-

tonic.
Lemma 3.8.1. A monotonic MSDL with a remainder function is completing.

Proof. Since a monotonically decreasing discrete function will become smaller

than 1 in finitely many steps, the corresponding loop will complete. O

3.8.1 Syntactical and semantical issues of MSDLs with remainder

functions

The syntax of a MSDL with a remainder function is again given by a notation

similar to that in [2]. In fact we add to the syntax definition of Section 3.7.3.

loop statement ::=
[loop simple name:|
[iteration_scheme| loop
sequence of statements

end loop [loop_simple name];

iteration scheme ::= while condition
| for for_loop_parameter_specification

| discrete discrete_loop_parameter_specification

for _loop parameter specification ::=

identifier in [reverse| discrete range

discrete loop parameter specification ::=
monotonical discrete loop parameter specification |

discrete_loop with remainder function parameter specification

monotonical discrete loop parameter specification ::=
identifier := initial value in [reverse| discrete range

new identifier := list _of iteration functions

49

discrete loop with remainder function parameter specification ::=
[identifier := initial value
new identifier := list_of iteration_functions|

with rem_identifier := initial value new remainder_ function

list of iteration functions ::=

iteration function { | iteration_function }
iteration function ::= expression

remainder function ::=
rem_identifier = expression |

rem_identifier <= expression | and rem_identifier >= expression |

For a MSDL with a remainder function, the corresponding loop parameter
specification is the optional declaration of the loop variable with the given identi-
fier. The loop variable is an object whose type is the base type of the result type
of the iteration functions, which must be the same for all iteration functions. The
initial value of the loop variable is given by initial value. Within the sequence of
statements the loop variable behaves like any other variable, i.e., it can be used
on both sides of an assignment statement for example.

After the keyword with the remainder loop variable is declared by the given
identifier (rem_identifier). Its type must be a subtype of natural and its initial
value is given by initial value. The remainder function itself may have three

different forms:

1. If the remainder function can be determined exactly, it is given by an equa-

tion.

2. If only an upper bound of the remainder function is available, it is given by

an inequality (<=).

3. If in addition to (2) a lower bound of the remainder function is known, it
can be given by an optional inequality (>=), too. The second inequality
must be separated from the first one by the keyword and.

The base type of the expressions defining the remainder function or its bounds

must be natural.

50

Before the sequence of statements is executed, the list of iteration functions
is evaluated if a loop variable is given. This results in a list of possible successive
values.

After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor _error is raised.

After the sequence of statements has been executed, the remainder function
or its bounds (depending on which are given by the programmer) are evaluated.
If the new value is smaller than that of the remainder loop variable, the new
value is assigned to the remainder loop variable. Otherwise the exception mono-
tonic _error is raised. If the value of the remainder loop variable is zero, the
exception loop error is raised, otherwise the loop is continued. The regular
way to complete a MSDL with a remainder function is to use an exit statement,

before the remainder loop variable is equal to zero.

Remark 3.8.2. The semantics of MSDLs with remainder functions ensure that
such a loop will always complete, either if the loop is terminated by an exit
statement or because one of the above check fails, i.e., one of the exceptions

monotonic _error, successor _error, or loop _error is raised.

Remark 3.8.3. A corresponding compiler is free to perform as many checks as
it likes in order to inhibit one of the runtime exceptions monotonic error,
successor__error, and loop error. This can be done by ensuring that the re-
mainder function or its bounds are monotonic, by performing a data-flow analysis
to make sure that successor error will never be raised, or by ensuring that the
loop will complete before the remainder loop variable is equal to zero. Thus a lot
of runtime checks can be avoided.

The compiler might also ensure that the remainder function is monotonically
decreasing by enforcing the conditions of Subsections 3.7.1 and 3.7.2.

Moreover the compiler might even detect bounds of the number of iterations of
the loop, which is a valuable result for real-time applications. Clearly the number
of iterations depends on the initial value of the remainder loop variable and on

the remainder functions or its bounds.

3.8.2 Examples for MSDLs with remainder functions

Consider a tree structure with Fibonacci-like degrees, i.e.,

1. the root of the tree has degree 2,

51

2. the sons of the root have degree 3,
3. the nodes at level 3 have degree 5, and

4. in general the nodes at level £ > 3 have degree f,, where

f1=2, fa =23,
fe= fe+ fooa.

Assume that this tree structure is balanced, i.e., all subtrees rooted at a certain
level have the same number of nodes. Now, we would like to implement an
algorithm for searching in such a balanced tree structure. Let the overall number
of nodes be N.

The tree is traversed top down. Thus, after doing the necessary computations

at level £, there are at most
¢
{N/ 11 fzw
i=1

to consider further on.
Since f; = 1¢/7¢+1, we obtain by simple properties of the Fibonacci Numbers

the following recurrence relation for ry, the number of remaining items,

T’1:N, T'QZN/Q, 7‘3:N/6,

To—1 Te—2

This formula allows for computing the number of remaining items without explicit
usage of the Fibonacci Numbers.

In the following we estimate the number of iterations. Mentioning (cf. e.g. [24,
18])

L i
fi \/545

where ¢ = (1 ++/5)/2, we easily find for the number of iterations w
N = \~ T2 5w/2 (w—|—3)(w—|—2)/2—3'
[[I 121 70 ¢

Hence we conclude that the number of iterations fulfils

w~ 4/2log, N.

A more accurate treatment is left to the reader.

52

3.9 Summary

In this Chapter we have introduced multi-staged discrete loops and demonstrated
how they help to bridge the gap between for-loops and general loops. Since
MSDLs are well suited for determining bounds of the number of iterations they
form an excellent frame-work for estimating the worst-case execution time of a
real-time program.

Obviously discrete loops are a special case of MSDLs where D(L£) = 1. As
shown in the previous Chapter, for-loops and loops with a bound for the maximum
runtime can also be expressed in terms of discrete loops and therefore also in terms

of MSDLs, proving MSDL a very powerful, yet simple tool.

93

Chapter 4
RECURSION

4.1 Recursion

In this Chapter we will show how bounds on both execution time and stack usage
of recursive procedures can be determined at compiletime or checked at runtime,
if certain constraints are met. Thus timing errors can be found either at compile
time or are shifted to logical errors detected at runtime.

The constraints mentioned above are more or less simple conditions. If they
can be proved to hold, the space and time behavior of the recursive procedure

can be estimated easily.

4.1.1 Additional Notation
In this Chapter we will use the following notational conventions:

e When we speak of recursive procedures, we mean both recursive procedures

and recursive functions.

e When we speak of space, we mean stack space and not heap space. If dy-
namic data structures are used for the internal representation of an object,
the space allocated from the heap is under control of the object/class man-
ager. On the other hand, the space allocated from the stack originating from
the use of recursive procedures cannot be explicitly controlled by the appli-
cation. This case requires a delicate treatment, which will be performed in
this Chapter.

4.1.2 Examples

Throughout this Chapter we will use 4 examples to illustrate our theoretical

treatment.

Ezample 1. The Factorial Numbers n! given by the recursion

n-fac(n — 1) if n >0,
1 it n=0.

fac(n) =

o4

Ezample 2. The Fibonacci Numbers f(n) given by the recursion (n > 2)

=1
(n—1)+ fn—2)

- =
—_
s e
i
S

Ezample 3. The Ackermann Function A(zx,y) given by

A0, y)=y+1
Az +1,0) = A(z, 1)
Alz+1,y+1) = Az, A(z + 1,y))

Example 4. A recursive version of Mergesort, the source code of which is shown
in Figure 4.1. Note that the Ada source code contains a hidden for-loop, namely

at line 17, and a discrete loop starting at line 18.

Further examples will be given in the text but those listed above will be our
major references.

It is obvious that the first three examples of recursive procedures introduced
above will not be used in practical applications. Rather the first two will be
implemented without recursion and we suppose the third one will not occur in
any practical application. Nevertheless we will use these examples throughout
this Chapter because they are simple enough to illustrate our ideas. Of course
this does not mean that our approach can only be applied to simple cases. In fact
it is applicable to very complex and general cases as can be seen in the following

sections.

4.2 Definitions and Preliminary Results

Definition 4.2.1 (Parameter Space, Terminating Values). Essential prop-
erties of a recursive procedure p are the parameter space F, i.e., the set of all
possible (tuples of) values of parameters of p, a set Fy C F, the terminating
values of F, and its code. If p is called with actual parameters f, € Fg, the code
being executed must not contain a recursive call of p to itself. If p is called with
actual parameters f € F \ Fo, the code being executed must contain at least one

recursive call of p to itself.

Definition 4.2.2 (Well-Defined Procedure). We call a recursive procedure p
well-defined if for each element of F the procedure p completes correctly, e.g. does
not loop infinitely and does not terminate because of a runtime error (other than
those predefined in this Chapter).

© 00 ~J O O = W N

CO W W WNNIDNDNDDNDNNDNDNDDNRFEFE = = H ===
WN R OO0 U WNRFEOO©OWTO U WO

N: constant integer := ... ; -- number of elements to be sorted
subtype index is integer range 1 .. N;

type gen_sort_array is array (index range <>) of ... ;

subtype sort_array is gen_sort_array (index);

sort_arr: sort_array;

procedure merge_sort(from,to: index) is
m: constant integer := (from+to)/2 + 1;
subtype aux_array is gen_sort_array(m..to);
aux: aux_array;
p,q,r: integer;
begin
if from = to then
return;
end if;
merge_sort (from,m-1) ;
merge_sort(m,to) ;

aux := sort_arr(m..to);
discrete (p,q,r) := (m-1,aux’last,to)
in reverse (m-1,aux’last,to) .. (from-1,aux’first,from)

new (p,q,r) := (p-1,q9,r-1) | (p,q-1,r-1) loop
if p < from or else target(p) < aux(q) then
target(r) := aux(q);

r :=r-1;
q :=q-1;

else
target(r) := target(p);
r :=r-1;
p := p-1;

end if;

end loop;

end merge_sort;

Figure 4.1: Ada Source Code of Mergesort using a Discrete Loop

95

o6

From now on, when we use the term recursive procedure, we mean well-defined

recursive procedure.

Definition 4.2.3 (Direct Successor). We define a set R(f) C F, (f € F\ Fo)
by f € R(f) iff p(f) is directly called in order to compute p(f). R(f) is called
the set of direct successors of f. If f € Fy, the set R(f) = 0, i.e., it is empty.

Remark 4.2.1. We assume that if f € R(f), it is not essential how often p is

called with parameter f. Note that it can be guaranteed by the runtime system

that p(f) is evaluated only once.

Definition 4.2.4 (Successors / Necessary Parameter Values). We define

a sequence of sets Ry (f) by

Ro(f) ={f}
Ris1(f) = Ri(f)U{f | F € R(g) where g € Ri(f)}

and we define the set R*(f) by

R*(f) = lim Ry(f).

k—o0
We call R*(f) the set of necessary parameter values to compute p(f).

Note that R(f) = R(f) from Definition 4.2.3.

Definition 4.2.5 (Parameter Classes by Recursion Depth). We define a

sequence of sets Fj, inductively by

1. Fyis defined as above (cf. Definition 4.2.1), i.e., Fy contains the terminating

values of F.
2. Let Fy,...,Fi be defined. Then we define Fy; by

RWQUE}

=0

k
Fr = {fef\Uﬂ
=0

Lemma 4.2.1. We have J,, Fr = F.

Proof. By definition we clearly have | J,-, Fr C F.
On the other hand assume that there exists some f € F for which f & (U, Fr
holds.)
Now R(f) contains at least one element, say f, which is not contained in

Ug>o Fr- The same argument applies to R(f) and so on. Thus p is not well-
defined. Hence F C ;o Fi- O

o7

Corollary 4.2.1. By definition and by Lemma 4.2.1 we see that the sequence Fy
partitions the set F, i.e., for each f € F holds that there exists exactly one £ € N
such that f € F and f & F; for all © # k. Thus the Fj are equivalence classes.

Definition 4.2.6 (Recursion Depth). Let f € F and let k be such that f € F,
then £ is called the recursion depth of p(f). We write k& = recdep(f). For f,g € F,
we write f & g iff recdep(f) = recdep(g) .

Definition 4.2.7 (Monotonical Recursive Procedures). A recursive proce-
dure p is called monotonical if for all f, € F and for f; € F;, 0 <1 < k, we have
fi < fr, where "<" is a suitable binary relation that satisfies for all fi, fo, f3 € F

1. either f; < fy or fo < f1 or fi = fo and

2. if f1 < fo and fy < f3, then f; < fs.
We write f; <X fy if either f; < fo or fi = f.
Remark 4.2.2. Note that a trivial "<"-relation can always be obtained by defining
fi < fa & recdep(fi) < recdep(fz). We will return to this topic in Section 4.8.
Remark 4.2.3. If p is a monotonical recursive procedure, then f < f for all
fFeR().
Ezample 1. For the Factorial Numbers we have F = N, R(k) = {k — 1}, and
Fo = {0}, Fr, = {k}. Furthermore we have recdep(k) = k and the "<"-relation

for F is the "<"-relation for integers. O

Ezample 2. For the Fibonacci Numbers we obtain F = N, R(k) = {k — 1,k —2},
and Fy = {0,1}, Fx, = {k+1}. Furthermore we have recdep(k) = k-1, if £ > 1,
the "<"-relation for F is the "<"-relation for integers. O

Ezample 3. The Ackermann Function gives

F=N,
0 ifx =0,
R((z,y)) = {{(z - LA(z,y - 1)), (z.y - 1)} ify>1,
{(z-1,1)} if y =0

and (cf. [28], where proofs of the following facts can be found)

Fo={(0,y) |y € N},
Fr ={(z,y) | Alz,y) + = — 2=k, z > 0}.

o8

Furthermore we have

recdep((0,y)) = 0 and for > 0
recdep((z,y)) = A(z,y) + = - 2,

the "<"-relation for F is
(z1,11) < (22,y2) © A(x1,y1) + 21 < A(22,92) + 22

if.Tl,ﬂ?Q > 0.]

Example 4. For Mergesort we derive

F=N,

wie={(=[57])- (57 10))

and

Furthermore we have

recdep((z,y)) = [ld(y —z + 1)],

the "<"-relation for F is given by

(T1,11) < (T2,2) © Y1 — 71 < Yo — o,

where "<" denotes the "<"-relation of integer numbers. O

Ezample 5. An interesting example is the "wondrous" function (cf. [21]). This
function is not known to be well-defined, but we will study it anyway since it has
interesting properties. It is defined by

d(n/2) if n = 0(2) and

i) = d(3n+1) if n=1(2).

It has been conjectured that finally the "wondrous" function finds itself repeating
the three numbers 4, 2, and 1 infinitely, irrespective of the initial value n € N.

This, however, has not been proved.

99

Now defining a (possibly not well-defined) recursive procedure by

F =N,

Fo={1,2,4}, and
k/2 if k= 0(2)
3k+1 if £ =1(2),

R(k) =

we obtain

Fi ={8}, Fo ={16}, F3 = {5, 32},
Fu = {10,64}, F5 = {3,20,21,128},... .

It is not obvious how recdep(n) and a suitable "<"-relation can be expressed by

a simple formula. O

4.3 Computational Model and Space and Time Effort

The time effort T of a recursive procedure p is a recursive function
T:F—-R

or

T:F—N.

If time is measured in integer multiples of say micro-seconds or CPU clock ticks,
one can use an integer valued function 7 instead of a real valued one.

In a similar way S, the space effort of p, is a recursive function
S:F—N,

where space is measured in multiples of bits or bytes.

Both functions 7 and S are defined recursively depending on the source code
of p. How the recurrence relations for 7 and S are derived from the source code
and which statements are allowed in the source code of p, is described in the

following subsection.

60
4.3.1 Recurrence Relations for S and 7

The source code of a recursive procedure is considered to consist of
e simple segments of linear code, the performance of which is known a priori,
e if-statements,

e loops with known upper bounds of the number of iterations which can be
derived at compile time, e.g. for-loops or discrete loops (cf. Chapters 2 and
3),! and

e recursive calls to the procedure itself.

In terms of a context-free grammar this is stated as follows

code(f) == if f € F, then nonrecursive(f) else recursive(f) end if
recursive(f seq(f)
seq(f) == statement(f) {statement(f)}
statement(f

compound(f
ifs(f
bloops(f

= ifs(f) | bloops(f)
= if cond(f) then seq(f) else seq(f) end if

)
)
)
) = simple(f) | compound(f) | rproc(f — f)
)
)
) == loop <bound(f)> seq(f)

The syntax of nonrecursive(f) is defined exactly the same way but rproc(f — f)
is not part of statement(f). By f — f we denote that the parameters f are used
for the recursive call.

We use these definitions to derive a recurrence relation for the time effort 7:
T(f) =7[f € Fo] + T[nonrecursive(f)] if f € Fo,

where the first 7-constant comes from the evaluating the condition whether f
belongs to the terminating values or not and is known a priori; the second one
can be computed using the method described below, but without giving rise to a

recurrence relation,

T(f) = 7[f € Fo] + 7[recursive(f)] if f & Fo,

1This means that the number of iterations does not depend on the result of one or more
recursive calls.

61

where

T [recursive(f)] = T[seq(f)]

Tlseq(f)] = D _ Tlstatement(f)]

T [s€qrrue (f)] if the condition evaluates to true,
T[seqra1se (f)] otherwise.
Tlbloops(f)] = <bound(f)>Tlsea()]

Tsimple(f)] = T(simple)

Tlrproe(f — f)l = T(f)

Tlifs(f)] = T[cond(f)] + {

where 7(simple) is known a priori.
Note that <bound(f)> may depend on f, e.g. a for-loop with iterations de-
pending on f.

The recurrence relation for the space effort S is given by:
S(f) = S(decl_part(f)) + max(o[f € Fo|,o[nonrecursive(f)]) if f € Fo,

where the first o-constant is known a priori and the second one can be computed

in a similar way as shown below, but without giving rise to a recurrence relation,
S(f) = S(decl_part(f)) + max(o[f € Fo|, o[recursive(f)]) if f & Fo,
where

Slrecursive(f)] = S[seq()]

S[seq(f)] = max (S[statement(f)])

max (S[cond(f)], S[seqrrue (f)]) if the condition evaluates to true,
max (S[cond(f)], S[sedraise (f)]) otherwise.

S|bloops(f)] = max(Slseq(f)])

S|simple(f)] = o(simple)

Slrproc(f — f)] = S(f)

S[ifs(f)] = {

where o (simple) is known a priori and S(decl_part(f)) denotes the space effort of
the declarative part of the recursive function, e.g. space used by locally declared
variables. Note that the space effort of the declarative part may depend on f,

since one can declare arrays of a size depending on f for example.

62
4.3.2 Monotonical Space and Time Effort
Given some actual parameters f € F, T(f) and S(f) can easily be determined
at compile time. This can even be done if only upper and lower bounds of f

exist, e.g. | < f < u, l,u € F, since max;<<, 7(f) and max;<s<, S(f) can be

computed effectively.

Definition 4.3.1. If f; < f, implies S(f1) < S(f2) and T(f1) < T(f2), we

call the underlying recursive procedure globally space-monotonical and globally

time-monotonical, respectively.

Remark 4.3.1. Note that f; ~ f, implies S(f1) = S(f2) and T(f1) = T(f2),

respectively.

There are two cases:
1. S and 7 can be shown to be monotonical at compile-time and

2. S and T can be solved at compile-time and the (non-recursive) solution can

be proved to be monotonical.
In both cases we clearly have:

Theorem 4.3.1. If p is globally space or time-monotonical, then

S(l,u) = max S§(f) = maxS(g)

I<f=u grRuU
and
T(l,u) = =
(l,u) = max T(f) = maxT(g),
respectively. O

The difference between case (1) and (2) is that in case (2) Theorem 4.3.1
can even be applied during runtime, e.g., when generic objects are instantiated
(cf. e.g. [2, 13]), while in case (1) for real-time applications Theorem 4.3.1 can
only be applied at compile time, because case (1) requires one or more recursive
evaluations of S or 7.

If no proofs are available at compile time that p is globally space or time-
monotonical, runtime tests can be performed. Of course this requires some over-
head in computing the result of a recursive call to p.

In the following sections we will define "local" conditions. If these conditions
hold, the underlying recursive procedure is called locally space or locally time-

monotonical. It will turn out that if a recursive procedure is locally space (time)

63

monotonical, then it is also globally space (time) monotonical. (It is worth noting
that the converse is not true, i.e., if a certain recursive procedure is globally space
or time monotonical, it need not be locally space or time monotonical respectively)

Thus it suffices to prove that a certain recursive procedure is locally space
or time-monotonical, before Theorem 4.3.1 can be applied. This proof often is
simpler than proving the corresponding global property.

If the local properties can be proved at compile time, Theorem 4.3.1 can be
applied at compile time. If there is a (non-recursive) solution of S or 7 known
and verified at compile time, Theorem 4.3.1 can also be applied at runtime.

In addition, the local properties can be checked at runtime, such that it is
not necessary to have proofs at compile time. Rather an appropriate exception
is raised at runtime when the runtime system finds that the local property does
not hold in a particular case. Thus timing errors are shifted to runtime errors or
in other words timing errors become testable.

The major advantages of local properties are that

e they can easily be proved at compile time and

e they are well-suited for real-time applications.

In the following sections we give several examples of how easy these proofs can be
derived. We think that in many cases they can be found by a (smart) compiler.
In general, proofs of global properties and solving recurrence relations are more
difficult.

4.4 The Space Effort of Recursive Procedures

Definition 4.4.1 (Declarative Stack Space). Let p be a recursive procedure.
We define the function D : F — N such that D(f) denotes the space being part
of the declarative part of p if p is called with parameter f.

The general form of S(f) simplifies to
S(f)=o0, iffeF
S(f) :D(f)+max (Umaxas(fl)a"'as(?m)) lff gFO;

where R(f) = {f,,..., f.,}- Since the opay-term is present in all S(f) provided
that f & Fy, we obtain

S(f) =0y iffeF
S(f) = D(f) + max (S(f1),---,S(fn)) if f & Fo, (4.1)

64

where 0y = max(0(, Omax). Note that this does not change the value of S(f)
if f e f\ Fo.

Remark 4.4.1. Evaluating S(f) for recursive functions increases the height of the
stack if the recursive call is part of an expression, but this can be avoided by
introducing temporary variables in the declarative part of the recursive function.
(Note that this can be done at compile time!)

Definition 4.4.2 (Recursion Digraph). For each f € F the recursion digraph
G(f) is defined by the set of vertices V = R*(f) and the set of edges E = {(g,9) |
g9, €V and g € R(g)}. Each vertex g is weighted by D(g).

Remark 4.4.2. Let M denote the path from f to some fy € Fy, fo € R*(f) with
maximum weight W(f) = > D(g), where g runs through all vertices on M.
Then W (f) is equal to S(f).

Remark 4.4.3. Using G(f), the quantity S(f) can be computed off-line at compile
time in O(||V|| + ||E]|) time (cf. e.g. [31]).

Definition 4.4.3 (Successor with maximal remaining Recursion Depth

and maximal Stack Requirement). Let p be a monotonical recursive proce-
dure. We define N : F — F to be a function such that N'(f) = fmax, where fmax

is such that D(fmax) = maxzcg ;) D(f) and recdep(fmax) = recdep(f) — 1.

Definition 4.4.4 (Locally Space-Monotonical Procedure). We call a mono-

tonical recursive procedure p locally space-monotonical if fi < fo implies D(f;) <

D(f) and, if f = f, and D(f1) < D(f2) implies DN (f1)) < DN (f2))-

Remark 4.4.4. If D(f) is constant, then the underlying recursive procedure is

locally space-monotonical.

Theorem 4.4.1. If p is a locally space-monotonical recursive procedure, then

S(fy=oo+ Y. DNWB(f)),

0<k<recdep(f)
where N (k) is the kth iterate of A and for simplicity N (f) = f.

Proof. Theorem 4.4.1 is proved if we can show that in G(f) no path M’ exists
such that W/(M') > W(M).
Assume on the contrary that M’ exists. This means we must have a situation

like that depicted in Figure 4.2. The path along (f,...,vo,v1,..., 0, w,..., fo),

65

Figure 4.2: Paths in a Recursion Digraph

fo € Fo is identical to M. The path along (f,..., v, Z1,...,Ts,w,..., fo), fo €
Fo is denoted by M.
By definition we have D(v1) > D(z1). Thus

D(N(v1)) = D(v2) 2 D(N(21)) 2 D(z2).

Continuing this procedure, we get D(v3) > D(x3), and so on.
Because of Def. 4.4.3 we must have r > s since recdep(v;) = recdep(v;41) + 1.

Hence we obviously have a contradiction. O

Corollary 4.4.1. If D(f) = d, d € N constant for all f € F,
S(f) = o9 + d - recdep(f).

Remark 4.4.5. Theorem 4.4.1 and Corollary 4.4.1 show the intuitively clear con-
nection between the recursion depth (the height of the stack) and the space com-

plexity of recursive procedures.

The following lemma is needed in order to prove our main result on the space

effort of recursive procedures, which is given in Theorem 4.4.2.

Lemma 4.4.1. If p is locally space-monotonical and f; < fs, f1, fo € F, then
S(f1) < S(fa).
Proof. Clearly we have for all 0 < k < recdep(f;)

NE(f1) < NE(f).

Hence we also have

DN®(f1)) < DVO(£)
for all 0 < k < recdep(fy).

Thus we obtain
S(f1) < S(f2)

and the lemma is proved.

Theorem 4.4.2. If p is locally space-monotonical, then

S(l,u) = max §(f) = maxS(g).

I=<f<u gRIU

Proof. By virtue of Lemma 4.4.1,

S(f) <S(u) foralll <X f < u.

It remains to take into account all g & u. Thus the theorem is proved.

Remark 4.4.6. Lemma 4.4.1 does even hold if
R*(f1) "R (fo) = 0.
The same applies to Theorem 4.4.2, i.e., it even holds if

] R(f)=0.

I2f=u

66

In the following examples the constants oy, 04, and & are derived from the

(source) code of the recursive procedures.

Ezample 1. For the Factorial Numbers we get D(n) = o4, constant. Thus they

are locally space-monotonical (cf. Remark 4.4.4) and we can even show that

8(0) =0y,
Sn)=04+8S(n—-1).

Mentioning recdep(n) = n and N (n) =n — 1 we derive
n—1

S(n)zao—i-Zad:oo—i-n-od. O
k=0

67

Ezample 2. For the Fibonacci Numbers we obtain D(n) = o4, constant. Thus

they are locally space-monotonical (cf. Remark 4.4.4) and we can even show that

S(0) = S(1) = oy,
S(n) =04+ 8(n—1).

Mentioning recdep(n) =n — 1 and N'(n) = n — 1 we derive for n > 1

n—2

S(n)zoo-l-ZUd:JO—i-(n—l)-od. O
k=0

Ezample 3. Since D((z,y)) = o4, constant, the Ackermann Function is locally

space-monotonical (cf. Remark 4.4.4). In addition, since
N((x:y)) = (‘T - 1,./4(.T,y - 1))7
we get for the Ackermann Function (cf. [28])

S((0,9)) = oo,
S((z,y)) =00+ 04 (Alz,y) +2—2). O

Example 4. Mergesort is treated a little inexactly. An exact treatment is possible
by use of parameter space morphisms which are introduced in Section 4.7.

Writing n =y — z + 1 we get D(n) = 04+ |n/2|6. Thus Mergesort is locally
space-monotonical.

But we can also determine the exact behavior of Mergesort. We obtain

8(($, x)) = 0o,

stom=an o= [)ovs (o 12])

N((z,9) = (2, [(z +y)/2])-

because

Since S(z,y) does only depend on the length of the array under consideration,

we write again n =y — x + 1 and obtain

S(n) =04+ |n/2|6 +S([n/2]).

68
This can be solved and we finally get

S(n) =09+ [ldn]og+ (n — 1)5. O

4.5 The Time Effort of Recursive Procedures

Denoting by 7(f), f € F the time used to perform p(f) without taking into

account the recursive calls, we have

T =rH+ D 7.

FER()

Definition 4.5.1 (Ordering Operator for local Time). For all f;, fo € F we
write f; C fo (or equivalently fo 3 f1) if fi < fo and 7(f1) < 7(f2).

Definition 4.5.2 (Locally Time-Monotonical Procedure). Let fi, f, € F,
R(fi) = {fixs--+ fimi}s © = 1,2, such that fiy 3 fio ... 3D fimm, 1 3 fime
i=1,2.

If for all fi T fo, we have m; < mg and fi, C fo,, 7 = 1,...,mq, then the

underlying recursive procedure is called locally time-monotonical.

Remark 4.5.1. If for all fi, fo € F f1 < foimplies 7(f1) < 7(f2) and if [|R(f)] < 1

for all f € F, then the underlying recursive procedure is locally time-monotonical.

Lemma 4.5.1. If a monotonical recursive procedure p is locally time-monotonical,

then fi T fo implies 7(f1) < T (fa)-

Proof. Let fi; € F; and fo € F;, 1 < j. We prove the theorem by double induction

on the recursion depth.

e At first let « = 0. We prove by induction on j that our claim is correct.

— If 7 =0, we have
T(f1) =7(f1) < 7(f2) = T(fo)-
— If 7 > 0, we obtain

T(h)=7(h) S7(f) <t(f)+ Y. T(Fa)=T(f).

69

e Next we consider 7 > 0.

For 5 > 7 we derive

T =7f)+ >, T(f) and (4.2)
F1€R(f1)

T(f)=r(f)+ Y, T(f,). (4.3)
F2€R(f2)

By induction hypothesis the sum in (4.2) is smaller than or equal to the
sum in (4.3). Since 7(f1) < 7(f2), we get

T(f1) < T(f2)-

Hence the lemma is proved. O

Remark 4.5.2. If we have f; C f; and fo C f;, we conclude that f; ~ f, and
7(f1) = 7(f2). By Lemma 4.5.1 this implies 7 (f1) = T (f2)-
Lemma 4.5.1 enables us to find upper and lower bounds of the timing behavior

if a range of parameter values is given.

Theorem 4.5.1. If p is locally time-monotonical, then

T(l,u) = max T(f) = maxT(g). O

I<f=<u grRu

In the following examples the constants 7y, 71, 79, and 7, are derived from the

(source) code of the recursive procedures.

Example 1. Because of Remark 4.5.1 the Factorial Numbers are locally time-
monotonical.

In addition, we get

T(0) = T,
T(n)=m4+T(n—1).

Mentioning recdep(n) = n we derive
n—1

T(n)=T0+ZTd=T0+TL-Td. O
k=0

70

Example 2. It is easy to see that the Fibonacci Numbers are locally time-mono-
tonical.

In addition, we derive

T(0) =T(1) = 0,
Tn)=1q+T(n—1)+T(n-—2).

Thus for n > 2

T(n) = f(n)7o+ (f(n) — 74,

where f(n) denotes the nth Fibonacci Number. O

Example 3. It turns out that the Ackermann Function is not locally and not
globally time-monotonical. The following gives a simple counter-example:

Let (z1,71) = (1,13) and (z2,y2) = (3,1). Because of recdep((1,13)) = 14 =
recdep((3,1)) and (for all reasonable implementations) 7(1,13) = 7(3,1) we find
that (1,13) ~ (3,1) and (1,13) C (3,1) as well as (for reasons of symmetry)
(1,13) 3 (3,1) (cf. Remark 4.5.2).

Now R((1,13)) = {(1,12),(0,14)} and R((3,1)) = {(3,0),(2,5)}.

As expected recdep(1,12) = recdep(2,5) =13 =14 -1, 7(1,12) = 7(2,5) and
therefore (1,12) C (2,5) and (1,12) 3 (2, 5).

Unfortunately recdep((0,14)) = 1 # 6 = recdep((3,0)) and thus (0,14) 2
(3,0), which contradicts Remark 4.5.2 and Remark 4.3.1. O

Ezample 4. Writing n =y —z + 1, we have 7(n) = 71 + n7y. Clearly, if ny < no,
then 7(ny) < 7(ng). This together with the fact that the length of the subarrays
is [n/2] and [n/2] shows that Mergesort is locally time-monotonical.

In addition, we are able to show that

T(l) =170
Tn) <71 +nr+T(n/2])+ T([n/2]).

The "<" originates from the fact that we can only find an upper bound for the
number of iterations of the discrete loop from line 18 to 30 in Figure 4.1. The

above recurrence relation can be solved and we finally get

T(n) <nmo+ (n—1)7 + (n—2M" +n[ldn]) . O

71

4.6 Discussion of Examples

In this section we summarize and comment our Examples 1 to 4.

Example 1. Our computations show that the Factorial Numbers can be computed
in O(n) space and time. Using a simple for-loop, however, they can be computed
in O(n) time and O(1) space.

Thus we conclude that the Factorial Numbers should not be calculated with
help of recursion. The purpose of this example was to show how recursive proce-

dures can be analyzed (automatically) and not to rephrase common places.

Example 2. Here our results show that the Fibonacci Numbers can be calculated
in O(n) space and O(f(n)) time. Again this is a rather academic example since

f(n) can be computed in O(1) time and space via

1 1+\/5 n+1 1 1\/5 n+1
f(n)—%(:) +%(:) |

Ezample 3. The results of [28] show that the Ackermann Function A(z,y) can

be evaluated in O(A(z,y)) space and in Q(A(x,y)) time. Both results are not
very encouraging.

Ezample 4. Mergesort performs in O(nlogn) time and needs O(logn) stack
space. It is a very useful algorithm for real-time applications and can be analyzed

easily by the devices developed in this Chapter.

4.7 Parameter Space Morphisms

The theoretical results of the previous sections are impressive in that they are
valid for recursive procedures with very general parameter space. For many ap-
plications, however, only a small "part" of the parameter space is responsible for
the space and time behavior of the recursive procedure. In this section we are
concerned with the problem how to "abstract" from unnecessary details of the
parameter space.

Commonly, data structures are analyzed by informally introducing some sort
of complezity measure (cf. [42]) or size (cf. [32, 1]) of the data structure. We

prefer a more formal approach.

Definition 4.7.1 (Parameter Space Morphism). A parameter space mor-
phism is a mapping H : F — F' such that for all f € F the set

M(f) = max{g : H(f) = H(g)},

72

where the elements of the max-term are ordered by the "<"-relation of F, and

the target recursion depth

recdepy, (f') := recdep(g) where g € M(f) and f' = H(f),

are well-defined and recdepy, (f') < oo for all f' € F'.
Remark 4.7.1. Note that | M(f)|| > 1, but recdep(g1) = recdep(go) if g1 € M(f)
and gs € M(f)

Remark 4.7.2. Note that recdep,, implies a (trivial) "<"-relation upon F’, namely
['<9¢ & recdepy(f’) < recdepy(g’) (4.4)

for f',¢' € F'. We will assume in the following that a "<"-relation exists which
is consistent with equation (4.4) and denote it by "<z".

Definition 4.7.2. In the following we will frequently apply H to subsets of F.
Let G C F denote such a subset. Then we write H(G) to denote the multiset
g'=H(G) ={H(9) | g € G}.

In order to estimate space and timing properties of recursive procedures, we

define how space and time will be measured in F'.

Definition 4.7.3. The functions Sy and 7z are defined in the following way:
Su(f)= max S and
3 (f") F=3(g) (9)

Tu(f) = max T(g)

f'=M(g)
where f' € ' and g € F.
Definition 4.7.4 (Global 7-Space/Time Monotonical Procedure). If
fi 24 fiimplies Sx(f]) < Su(f3) and Tx(f1) < Tu(f5), we call the underlying re-
cursive procedure globally H-space-monotonical and globally H-time-monotonical,

respectively.

Definition 4.7.5. In addition, we need the following definitions:

Du(f) = max D(g) (4.5)

(/) = max () (4.6)

Ru(f)= U {HR©)} (4.7)
f'=H(g)

N’H (.f’) = fr,nax ’ (48)

73
where

r'(f=1{4d| max recdepHT = recdepyg'},
JERR eRy(f")
' € L(f"), and

max

Dy(fmax) = max D(g").

maxt o ger(sn)

Remark 4.7.3. Note that H(R(g)) is a multiset and Ry(f’) is a set of multisets.

Definition 4.7.6 (H-Monotonical Procedure). A recursive procedure p is
called ‘H-monotonical if for all ¢ € R’ and for all R' € Ry(f’) it holds that

g =<u f
With these definitions it is easy to prove the following results.

Lemma 4.7.1. If p is H-monontonical, the following relation holds:

Tull) S ul(f) + | max | %;TH

Proof. By definition

gER(9)
which can be estimated by
< tu(f) + max (9)
Y geR(g)
< 74(f') + max Z ~max T (k)
'=M(g) FeHR) =H(k)
= mu(f) + max > Tu@)
Y g en(r())
— ! !
=7 (f") R’g&}%f'),z, Tu(d')
gEeER
Thus the lemma is proved. O

Lemma 4.7.2. If p is H-monontonical, the following relation holds:

Su(f') < Dy(f' S
w(f) < H(f)+R,g§{>§f,) max oy

74

Proof. The proof is suppressed since it is very similar to the proof of Lemma 4.7.1.
U

Definition 4.7.7 (Locally #-Space-Monotonical Proc.). A #-monotonical
recursive procedure p is called locally H-space-monotonical if f{ <3 f5 implies
Du(f1) < Dulfz), fi 2u fy implies Ny, (f1) <o Ny(f3), and, if f{ ~ f; and
Dy (f1) < Du(f3) implies Dy (Ny (f1)) < Du(Ny(f3))-

Definition 4.7.8. For all f|, f; € F' we write f] T4 f5 (or equivalently f3 Jy f1)
if fi 2w fo and m(f1) < ™ (f3)-

Definition 4.7.9 (Locally H-Time-Monotonical Procedure). Let p be
a H-monotonical recursive procedure and let f{, f, € F', R;,(f]) € Ru(f)),
— — . — — —
Ri(f) = Ui+ Fipimds © = 1,2, such that f550 I 50 oo 2 fjim,
i=1,2.
If for all ?/1 C 7’2, we have m;, 1 < mj, o and f;l,u C f;-ﬂ,r, r=1,...,mj 1,
for all 71, jo such that R, (f!) € Ry (f!), then pis called locally H-time-monotonical.

By slightly modifying the proofs of Theorem 4.4.1 and Lemmas 4.4.1 and 4.5.1,

‘H-versions of Theorems 4.4.2 and 4.5.1 can easily be proved.

It is worth noting that a globally (#-)time-monotonical recursive procedure
does not need to be locally (H-)time-monotonical. A prominent example, Quick-

sort, is studied in the following.

Ezample 6. We start by showing that Quicksort? (without a parameter space
morphism) is not locally and not globally time-monotonical. We assume that the
time spent for arrays of length one and zero is equal to 75 and that the local time

spent for comparing the elements of an array of length n is equal to (n— 1)1 + 7.

In the following we set up two permutations 7m; and 7, of integer numbers. The
recursion depth of Quicksort applied to both of them is the same (equal to 6).
The length of 7; is 14 and the length of 79 is 13, but Quicksort uses more (overall)

time to sort w9 than it needs to sort .

m = 1[8,3,1,2,6,5,7,4,9,10,11,12,13, 14] is transferred by Quicksort in the

2An implementation of the well-known Quicksort algorithm can be found in any good book
on algorithms and data structures (cf. e.g. [25, 32, 40]).

75

following way (underlined elements are placed at their final position)

This results in 7 (7)) = 107y + 3871 + 97.
On the other hand 7y = [7,2,3,4,5,6,1,8,9,10,11,12, 13] is sorted by Quick-

sort in the following way

2

Here we get T (my) = 1279+ 427 + 1179, which proves that Quicksort is not locally
and not globally time-monotonical, because m; & m5 would imply 7 (m;) = T (m2)
(cf. Remark 4.5.2 and Remark 4.3.1).

Now, mapping input arrays of Quicksort to their length by H(f) = size(f) =
n, we obtain a parameter space morphism. It is easy to see that recdepy, (n) =
n—1,

Rum) = |J {i-1,n—i}},
1<i<n
and Quicksort is H-monotonical.

Clearly, we have 7(n) = (n — 1)1y 4+ 7. In order to see that Quicksort is not
locally H-time-monotonical, consider n; = 5 and ny, = 6. Obviously n; <y no,
but the direct successors of n; include (2,2) and those of ny include (4,1). As
expected 2 <y 4, but 2 £4 1.

76

Nevertheless, strengthening Lemma 4.7.1, the following recurrence relation is

valid:

Tu(n) =(n—=1)1 + 72+ 112%?% (Tu(i = 1) + Tu(n — 1)) .

Mentioning 7#(0) = T3(1) = 7o, this relation can be solved and we finally obtain
foralln >0

1
= 7)7'1 +nm+ (n+ 1)1,
which shows that Quicksort is globally H-time-monotonical. O

Example 6 shows that a recursive procedure p which is not globally time-
monotonical, can be globally H-time-monotonical for some suitable morphism
H. Interestingly, we loose information on the timing behavior by applying H
(consider the max-terms in various definitions), but we gain monotonicity, i.e.,
we get coarser, but more well-behaved estimates.

Finally, we would like to note that in most cases a morphism H : F — N will

be used. This can be supported by the following arguments:

e Parameter space morphisms are useful only if Dy and 75 (cf. Def. 4.7.5)
can be found easily. In most cases this can be obtained if already D and 7
do depend on some f' € F' and not on some f € F. Thus we are left with

determining how the function D and 7 will look like.

e The function D will usually depend on the size of locally declared ob-
jects. Typical "sizes" originate in the length of arrays or the size of two-
dimensional arrays, and so on. Hence we can expect D to be a polynomial

function from N to N.

e The function 7 will usually depend on the number of iterations of the loops
within the code of the underlying recursive procedure. Again, we expect
7 to be a function from N to N (or R) since the number of iterations can
usually be expressed in terms of n* and (Idn)* for for-loops and discrete

loops (cf. Chapters 2 and 3), respectively.

Summing up, usually D and 7 are functions from N to N (or R). Thus one can
suspect that a morphism from F to N will be helpful in determining the space

and time behavior.

7

4.8 Programming Language Issues

Before we discuss details of how (real-time) programming languages are influenced
by our previous results, we restate Theorems 4.4.2 and 4.5.1 in a way more suitable

to programming language issues.

Definition 4.8.1 (Totally Ordered Procedure). If an additional ordering on
F by f1 < fo exists such that for all f, fo € F, fi < fo (f1 # f2) implies

1 fi 2 fo,

2. the underlying recursive procedure is locally space-monotonical, and

3. the underlying recursive procedure is locally time-monotonical,
we call F totally ordered.

The advantage of the "<«"-relation is that it can be used to compare elements
with the same recursion depth in a useful manner. Note that for Mergesort the
"<"-relation is a valid "<«"-relation too (cf. end of Section 4.2). We are able to

show the following theorems.

Theorem 4.8.1. If the parameter space of a recursive procedure is totally or-
dered, then
S(l,u) = maxS(f) = S(u).

lafu
Proof. In conjunction with Theorem 4.4.2 it remains to show that

maxS(g) = S(u).

gRu

Because of Definition 4.8.1, however, we have D(g) < D(u) for all g<u. A slight
modification of Lemma 4.4.1 shows that in this case S(g) < S(u) too. Thus the

theorem is proved. 0

Theorem 4.8.2. If the parameter space of a recursive procedure is totally or-
dered, then
T(l,u) =maxT(f) =T (u).

Iaf<u
Proof. In conjunction with Theorem 4.5.1 it remains to show that

max 7 (g) = T (u).

gRu

Because of Definition 4.8.1, however, we have 7(g) < 7(u) for all g <u. A slight
modification of Lemma 4.5.1 shows that in this case 7 (g) < 7 (u) too. Thus the

theorem is proved. 0

78

Obviously H-versions of these theorems can also be proved.

If F is totally ordered, we assume that there exists a programming language
defined function pred, which given some f € F computes pred(f) such that
pred(f) < f and there is no g € F such that pred(f)<g< f.

4.8.1 The recursion depth

Let p be a locally time- and space-monotonical recursive procedure with parameter
space F. In order to perform a time and space analysis of p, the programmer has
to supply a non-recursive function without while loops recdep: F — N that for
all f € F computes recdep(f).

This implies that we can decide effectively (at runtime) whether

J1<fo, fa=<[1, or fimf

for all fi, fo € F.

If no "«"-relation exists, the recursion depth must be bounded by a program-
mer supplied constant R. If a "<"-relation exists, a bound of the recursion depth
can be derived from a programmer supplied upper bound of the parameter values,
say U.

Since it is extremely difficult to verify the function recdep supplied by the pro-
grammer at compile time?, the correctness of recdep is checked at runtime. Note
that it is this check that enforces the well-definedness of the recursive procedure.

To be more specific, the following conditions must be met:
1. recdep(£f) can be computed for each f € F without a runtime error
2. for all f € R(f), recdep(f) < recdep(f)

3. if no parameter space morphism is used, at least one f € R(f) has to exist

such that recdep(f) = recdep(f) — 1
4. for all f € F, recdep(f) <R

All these conditions can be checked at runtime with little effort. If one of them

is violated the exception recursion_depth_error is raised.

3In fact it is undecidable, whether two given Turing machines accept the same language.

79
4.8.2 Checking Space Properties

If D(f) is constant or if there is a simple connection between D(f) and recdep(f),
the compiler can derive that the underlying recursive procedure is locally space-

monotonical. Thus no runtime checks are necessary.

Checking of global space properties without a "<"-relation

In this case the programmer must supply a function maxspacearg: N — F, which

given some k = recdep(f) returns f such that f ~ f and S(f) = maxy,, S(g).
At runtime for each f € F, it is checked whether S(f) < S(uy) where k =

recdep(f) and uy = maxspacearg(k). If this condition is violated, the exception

space_monotonic_error is raised.

Checking of local space properties with help of a "<"-relation

Here we can perform an exhaustive enumeration of all parameter values with help
of the function pred at compile time. For each pair of these values it can be
checked whether Definition 4.8.1 is valid.

Hence we do not need any runtime checks except testing the recursion depth

in order to guarantee the upper bound of the space behavior (cf. Theorem 4.8.1).

4.8.3 Space behavior and morphisms

Everything is still valid if we take into account parameter space morphisms. The
only exception is that we can perform an exhaustive enumeration of all parameter
values with help of a"<"-relation only if the morphism is a function from F to N.
This, however, as already noted at the end of Section 4.7, covers most important
cases.

It is, however, crucial in this context to perform checks of local properties
since global properties can only be checked for f € F and not for f' € F' (i.e. for
[eN).

4.8.4 Checking Time Properties

If there is a simple connection between 7(f) and recdep(f) and if |R(f)|| < 1, it
can be derived at compile time that the underlying recursive procedure is locally

time-monotonical. Thus no runtime checks are necessary.

80

Checking of global time properties without a "«"-relation

In this case the programmer must supply a function maxtimearg: N — F, which

given some k = recdep(f) returns f such that f ~ f and T(f) = MaXz,, T(g).
At runtime for each f € F, it is checked whether T (f) < T (uy) where k =

recdep(f) and uy = maxtimearg(k). If this condition is violated, the exception

time_monotonic_error is raised.

Checking of local time properties with help of a "<"-relation

Here we can perform an exhaustive enumeration of all parameter values with help
of the function pred at compile time. For each pair of these values it can be
checked whether Definition 4.8.1 is valid.

Hence we do not need any runtime checks except testing the recursion depth

in order to guarantee the upper bound of the space behavior (cf. Theorem 4.8.1).

4.8.5 Time behavior and morphisms

Here the same arguments are valid as in Section 4.8.3.

FExample 4. In our discussion of Mergesort the reader will discover that morphisms
have been used several times. We leave it to the reader to perform an exact

treatment. O

Example 7. Balanced trees are interesting since operations defined upon them can
easily be implemented by recursion and their recursion depth is usually bounded
above by O(ldn), where n denotes the number of nodes in the tree. We study
BBJa]-trees (cf. [32, 8, 35]) in some detail. In Figure 4.3 part of the specification of
a BB[aJ-tree package is given. Figure 4.4 shows all additional functions necessary

for a recursive implementation of the procedure insert using a morphism.

In the following let denote £ the set of elements stored in the BB|a]-tree and
let denote B, the set of all BB[a]-trees. Then the function insert is a mapping
insert: B, x & — B, and the current_size of the tree can be considered a

function current_size: B, — N.
Let B € B, and E € £. Then H(B) = current_size(B) = n implies

n+1, if E ¢ B, and
n, if £ € B.

current_size(insert(B, F)) =

In the following we will assume that only the first case is encountered.

© 00 ~J O O i W N

DN N DD b= = b = e e e s e e
N = O © o~ Ui W -=O

81

generic

size: natural;

alpha: float range 0.25 .. 0.2928932;

type element is private;

with function "<"(left,right:element) return boolean is <>;

package BB_alpha_tree is
type tree is limited private;
procedure insert(an: element; into: tree);
-- other operations suppressed
private
type tree is
record
current_size: natural; -- the current number of nodes in the tree
-- other stuff representing the tree structure suppressed

end record;
end BB_alpha_tree;

Figure 4.3: Ada Code of Specification of BB[«a]-tree (Fragment)

©O© 00 O Ut i W N

NN DD DN = = = s = e e e
WNHH OO0 Ui WwNheF=—O

82

package body BB_alpha_tree is
subtype node_number is natural range 0 .. size;
recursive procedure insert(an: element; into: tree)

with function morphism(t: tree)
return node_number is
begin
return t.current_size;
end morphism;

with function recdep(current_size: node_number)
return natural is
begin
return floor(1.0+(1ld(current_size+1)-1.0)/1d(1.0/(1.0-alpha)));
end recdep;

is
begin
-- recursive implementation of insert
end insert;
end BB_alpha_tree;

Figure 4.4: Recursive Implementation of BB[a]-tree (Fragment)

83
Obviously the set M exists and the recursion depth is found to be

10g(n+1)—1J

recdepy(n) =1+ Log(l/(l - a))

In addition, we have
1. Dy(n) = oy,
2. my(n) = 1,
3. Ru(n) = {{i} | [an] <i < [(1—a)n]}, and
4. Ny(n) = [(1 - a)n].

Clearly insert is H-monotonical. Thus it is also locally H-space-monotonical
(cf. Remark 4.4.4) and locally H-time-monotonical (cf. Remark 4.5.1).

The required function pred is given by the function node_number’PRED, which
is predefined in Ada. Thus compile time checks of local space and time properties
can be performed with help of pred. The function recdep in conjunction with

morphism is checked during runtime. 0

4.9 Summary

Note that Theorems 4.4.2 and 4.5.1 are valid although we do not study static
bounds of space and time behavior. This is in strict contrast to [38]|, where the
execution time of code blocks is estimated statically without taking into account
that the execution time may depend on certain parameters (or global data). Any-
way, the MARS approach [38| excludes recursions.

In [37] such information on data influencing execution time can be incorpo-
rated into the program by means of program path analysis, but [37] does not
address recursion at all.

Our results are impressive in that they assume very general parameter spaces,
and are very useful together with parameter space morphisms. These morphisms
allow for concentrating on the essential properties of the recursive procedure while

estimating time and space behavior.

84

Chapter 5
CONCLUSION

In this thesis discrete loops have been introduced. They are much more flexible
than for-loops and can be used instead of general loops in many common real-
world algorithms. Discrete loops are easy to use for a programmer and while it
is almost impossible to bound the worst-case execution time of a general loop,
the time required by a discrete loop can be computed automatically. Usually this
can be done by an apropriate tool at compile time. In those cases where this
is not possible the compiler can at least automatically create code, that checks
proper behaviour of the program at runtime. Thus timing errors are transformed
to logical errors, that are much easier to debug.

Extending the concept of discrete loops towards multi-staged discrete loops,
it becomes possible to express even more algorithms. Even so MSDLs are more
flexible than (single-staged) discrete loops, they are still analysable by a compiler.

Furthermore is has been shown how the worst-case execution time of recursive
procedures can be bounded by adding a few constraints that are frequently fulfilled
by real-world algorithms. In addition to execution time, recursive algorithms
require an analysis of their stack space requirements to be safely used in real-time
systems. Both space and time analysis can be frequently done using automated
tools.

We have seen how discrete loops and recursion can be bounded in both execu-

tion time and stack space usage making them safe for use in real-time systems.

85

Chapter 6

LIST OF SYMBOLS AND OPERATORS

log,
logz :=log,
ldz :=logy x

Ed

K= {(k,)}
g

w=lenk,
w(K)

[:= minw(K)

set of natural numbers {1,2,3,...}
set of natural numbers with zero {0,1,2,3,...}
set of integer numbers {...,-3,-2,-1,0,1,2,3,...}

set of real numbers

logarithm of = to the base a

natural logarithm of x

binary logarithm of x)

the greatest integers n < z

the smallest integers n > x

the difference operator of finite calculus (f(z + 1) — f(z))

successor funciton of a discrete loop

iteration sequence of a discrete loop

set of all possible iteration sequences

loop digraph of a discrete loop or recursive function
length of an iteration sequence

multi-set of the length of all iteration sequences

lower bound of the length of an iteration sequence
upper bound of the length of an iteration sequence

loop sequence of a discrete loop with remainder function
set of all loop sequences for discrete loops

with remainder functions

Multistaged Discrete Loop (MSDL)

Set of starting values

Path in a MSDL

n-dimensional vector of numbers (a1, as, as, - - ., an)
constant n-dimensional vector (c, ¢, ¢, ..., c)
maximum path of a MSDL

minimum path of a MSDL

history depth of a (f) - Number of recent elements
needed to compute the next element

length of a path

parameter space of a recursive function
terminating values of F

values of F that terminate at recursion level k

set, of direct succesors

set, of successors of degree k

stack space used for the declarative part of a procedure
local stack requirement of a procedure

(without effort for recursion)

(stack) space requirement of a recursive function
worst case stack space requirement

local time requirement of a procedure

(without effort for recursion)

time requirement of a recursive function

worst case execution time

86

87

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] ANSI/MIL-STD 1815 A. Reference manual for the Ada programming lan-
gquage, 1983.

[3] Johann Blieberger. Discrete loops and worst case performance. Computer
Languages, 20(3):193-212, 1994.

[4] Johann Blieberger. Loops for safety-critical applications. In Proceedings of
Safecomp 95, pages 269-282, Belgirate, Italy, 1995.

[5] Johann Blieberger. Real-time properties of indirect recursive procedures.

Information and Computation, pages 156-182, 2001.

[6] Johann Blieberger and Roland Lieger. Worst-case space and time complexity

of recursive procedures. Real-Time Systems, 11:193-212, 1994.

[7] Johann Blieberger and Roland Lieger. Using discrete loops for easy compre-
hension of algorithms. In Proceedings of the Workshop on Automation and
Control Engineering in Higher Education, pages 125-135, Vienna, Austria,
1995.

|8] Norbert Blum and Kurt Mehlhorn. On the average number of rebalancing
operations in weight-balanced trees. Theoretical Computer Science, 11:303—
320, 1980.

[9] Grady Booch. Object-oriented design with applications. Ben-
jamin/Cummings, Redwood City, CA, 1991.

[10] Arnold Businger. PORTAL Language Description, volume 198 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1985.

[11] Martin Davis. Computatbility and Unsolvability. Dover, New York, N.Y.,
1982.

[12] DIN 66 253, Teil 2, Beuth Verlag, Berlin. Programmiersprache PEARL, Full
PEARL, 1982.

88

[13] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, Reading, MA, 1990.

[14| Alice E. Fischer and Frances S. Grodzinsky. The Anatomy of Programming
Languages. Pretience Hall, Englewood Cliff, New Jersey 07632, 1993.

[15] Real-Time for Java Expert Group (http://www.rtj.org). The Real-Time
Specification for Java. Addison-Wesley, 2000.

[16] Charles Forsyth. Using the worst-case execution analyser. Technical report,
York Software Engineering Ltd., University of York: Task 8, Volume D De-
liverable on ESTEC contract 9198/90/NL/SF, May 1993.

[17] Narain Gehani and Krithi Ramamritham. Real-time Concurrent C: A lan-
guage for programming dynamic real-time systems. The Journal of Real-
Time Systems, 3:377-405, 1991.

[18] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, Reading, MA, 1989.

[19] Wolfgang A. Halang and Alexander D. Stoyenko. Constructing predictable

real time systems. Kluwer Academic Publishers, Boston, 1991.

[20] Charles Anthony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of ACM, 12:576-580, 1969.

[21] Douglas R. Hofstadter. Gddel, Escher, Bach - an Eternal Golden Braid.
Basic Books, New York, 1979.

[22] Yutaka Ishikawa, Hideyuki Tokuda, and Clifford W. Mercer. Object-
oriented real-time language design: Constructs for timing constraints. In
ECOOP/OOPSLA 90 Proceedings, pages 289-298, October 1990.

[23|] Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: A language
for reliable real-time systems. IEEE Transactions on Software Engineering,
12(9):941-949, 1986.

[24] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, Mass., second edition, 1973.

[25] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, Mass., 1973.

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

89

Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolf-
gang Schwabl, Christoph Senft, and Ralph Zainlinger. Distributed fault-
tolerant real-time systems: The Mars approach. IEEE Micro, pages 25—40,
19809.

Leslie Lamport. BTgX- User’s Guide and Reference Manual. Addison Wesley,
1994.

Roland Lieger and Johann Blieberger. The Ackermann-function effort in
space and time. Technical Report 183/1-48, Department of Automation,
Technical University Vienna, 1994.

Roland Lieger and Johann Blieberger. Multi-staged discrete loops for real-
time systems. In Proceedings of the 8th EUROMICRO Workshop on Real-
Time Systems, I’Aquila, Italy, 1996.

C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46-61, 1973.

Kurt Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of Data
Structures and Algorithms. Springer-Verlag, Berlin, 1984.

Kurt Mehlhorn. Sorting and Searching, volume 1 of Data Structures and
Algorithms. Springer-Verlag, Berlin, 1984.

Aloysius K. Mok. The design of real-time programming systems based on
process models. In Proceedings of the IEEE Real Time Systems Symposium,
pages 516, Austin, Texas, 1984. IEEE Press.

Aloysius K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating
tight execution time bounds of programs by annotations. In Proc. IEEE

Workshop on Real-Time Operating Systems and Software, pages 74-80, 1989.

I. Nievergelt and E.M. Reingold. Binary search trees of bounded balance.
SIAM Journal of Computing, 2(1):33—-43, 1973.

Vivek Nirkhe and William Pugh. A partial evaluator for the Maruti hard
real-time system. The Journal of Real-Time Systems, 5:13-30, 1993.

Chang Yun Park. Predicting program execution times by analyzing static
and dynamic program paths. The Journal of Real-Time Systems, 5:31-62,
1993.

90

[38] Peter Puschner and Christian Koza. Calculating the maximum execution
time of real-time programs. The Journal of Real-Time Systems, 1:159-176,
19809.

[39] Russel Schaffer and Robert Sedgewick. The analysis of heapsort. Journal of
Algorithms, 15:76-100, 1993.

|[40] Robert Sedgewick. Algorithms. Addison-Wesley, Reading, MA, second edi-
tion, 1988.

[41] Alan C. Shaw. Reasoning about time in higher-level language software. IEEE
Transactions on Software Engineering, 15(7):875-889, 1989.

[42] Jeffrey S. Vitter and Phillipe Flajolet. Average-case analysis of algorithms
and data structures. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume A: Algorithms and Complexity, pages 431-524.
North-Holland, 1990.

