
Discovery in SOA-Governed Industrial Middleware
with mDNS and DNS-SD

Ahmed Ismail, Wolfgang Kastner
Institute of Computer Aided Automation - Technische Universität Wien

Vienna, Austria
Email: {aismail, k}@auto.tuwien.ac.at

Abstract—Research efforts for the Industrial Internet of Things
(IIoT) have placed great emphasis on the use of vertical inte-
gration as a mainline strategy for the realisation of the fourth
industrial revolution (Industrie 4.0). The present paper proposes
the use of a distributed Gateway Service Bus (GSB) as a
plant-wide and resilient platform for vertical integration, field
level reconfiguration, and distributed execution in heterogeneous
environments. A basic service set composed of network, discovery,
and management services is developed using technologies from
P2P networks as cooperative systems and zero configuration net-
working to achieve a survivable distributed GSB. For evaluation,
the resulting implementation is executed on 11 virtual machines
(VM) and across two subnets in 33 consecutive runs. Results were
consistent in showing that the proposed service set is capable of
achieving network-wide discovery of published resources in less
than 3 seconds.

I. INTRODUCTION

As of recent years, the Internet of Things (IoT) has become
a well established research track in a number of academic
fields. Within the industrial domain, the IoT has emerged
synonymously with a promise for a fourth industrial revolu-
tion. Since then, many consortia and research collaborations
have invested extensively into investigating the technologies
necessary to make this revolution a reality. A predominant
theme found in the ensuing research efforts is focused on the
definition of methods for the advancement of Cyber-Physical
Production Systems (CPPS), which are hybrid systems of
computationally controlled physical processes. An architecture
for progress has been put forth by the VDI/VDE Society
Measurement and Automatic Control (GMA) as the Reference
Architecture Model Industrie 4.0 (RAMI 4.0) [1]. A mainline
strategy of RAMI 4.0 involves the use of vertical integration
to manage system heterogeneity. Such heterogeneity results
from the fact that industrial enterprises typically operate using
layer-specific protocols that do not necessarily interoperate.
This issue is complicated further when considering the long
life cycles associated with industrial systems. These lifetimes
ensure the presence of legacy protocols and devices in con-
temporary industrial environments. It is the task of vertical
integration to tackle this heterogeneity to provide enterprises
with the ability to adopt modern technologies, such as run-
time data anomaly detection, which increasingly depend on
the easy accessibility of data and devices.

Typical methods of vertical integration involve the use of
gateways for protocol translation or tunnelling routers for

protocol encapsulation [2]. The former approach operates by
carrying out the data mappings necessary to allow for commu-
nication to take place between two distinct protocols [3]. As
for the latter, tunnelling, this operates by having the message of
one protocol encapsulated in the payload of another and then
treating the channel as a transparent communication medium
[4]. Unfortunately, both of these methods are considered to
be costly and complex engineering efforts. However, as has
been outlined in [5] and [6], these costs may be justified if
the pervasive nature of gateway deployments is exploited and
combined with a service oriented architecture (SOA) to create
the counterpart of the enterprise service bus (ESB), that is, a
distributed GSB. In so doing, the resulting system, exploiting
the modularity and portability of SOA elements, may be an
idempotent and resilient platform for the execution of services
and the standardisation and semantic-enrichment of plant data
for easy accessibility by enterprise-layer applications.

To exemplify the potential of the proposed distributed GSB,
Fig. 1 shows the application of such a system over a heteroge-
neous industrial Ethernet network. To allow for the distributed
execution of production processes across heterogeneous cells,
GSB devices such as nodes A and B may intercept field level
communications and exploit tunnelling or translation tech-
niques on behalf of their respective local devices to allow for
the timely execution of the manufacturing process. However,
the distributed GSB may also simultaneously map the acquired
data to a set of models that standardises and semantically
enriches it. The mapped information may then be served from
a portal, such as device D of the DMZ layer, to allow business-
enhancing applications operating at the plant’s enterprise layer
to access a single standardised form of plant data. Furthermore,
a failure in node D may immediately be remedied given the
distributed nature of the GSB. Another node in the DMZ, for
example, may replicate the required service from node C to
allow the distributed GSB to continue serving semantically-
enriched plant data to the enterprise layer. In doing so,
the distributed GSB realises a survivable infrastructure for
enhanced vertical integration, while also actively participating
in desirable and complex technical manufacturing applications
such as distributed execution in heterogeneous environments.

To achieve these capabilities, a multitude of services for
modelling and communication is required by the distributed
GSB [7]. Specifically for communication, reliable mechanisms
for the coordination of the GSB nodes are a necessary pre-

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work 
in other works.



Fig. 1. Deployed Distributed GSB [5]

requisite to all functions. Therefore, within the scope of
this paper, we focus on the definition of a basic set of
services that would allow newly instantiated GSB devices
to join a survivable network of distributed GSB nodes and
participate in the most basic of functions (e.g. traffic re-
laying). Such a set consists of three services; namely, the
networking, discovery and management services. The first
of these establishes reliable communication mechanisms for
the transfer of messages between GSB nodes. The second
service is required to allow for the instantaneous detection
of service advertisements throughout the enterprise. Finally,
the management service is the orchestrator of all executed
services on a GSB node. The remainder of this paper is
concerned with detailing the development of the basic service
set. Consequently, the paper is structured as follows. To begin
with, Sections II and III detail the technologies governing
the networking and discovery layers of the SOA, respectively.
Section IV then outlines the management service and its role
in handling the networking and discovery services. Section V
proceeds with an experimental evaluation of the basic service
set. This is followed by Section VI, which discusses the
acquired results, and Section VII, which concludes and gives
some recommendations for future work.

II. THE NETWORKING SERVICE

It is the purpose of this service to provide autonomous and
reliable mechanisms for the coordination of nodes participat-

ing in the distributed GSB. Such mechanisms are critical if
the functions described in Section I are to be realised. The
networking service is based on previous work, namely [5],
which establishes arguments in support of using technologies
from the domain of P2P networks as cooperative systems for
the non-real time (RT) coordination of nodes in the distributed
GSB. According to [5], the selection of appropriate measures
from this domain would allow the distributed GSB to operate
as a survivable network that is capable of service-execution
and vertical integration, all without violating the governing
architecture of the targeted industrial Ethernet networks. This
is as this domain specifically concerns itself with the dynamic
creation, dissolution, and merging of independent overlay
networks, as well as facilitating the meaningful participation
of overlays in cooperative tasks such as intra- and inter-overlay
content-sharing and traffic engineering. In such a manner, the
distributed GSB network may in fact be composed of several
overlays, with message passing between them facilitated or
restricted in accordance with the governing constraints of the
target systems’ networking infrastructure.

To assess the aforementioned hypothesis, [5] converted a
P2P protocol, Chimera1, into a cooperative one. The resulting
protocol, as shown in Fig. 2, operated using bootstrap nodes,
co-located nodes, fault detection through the use of heartbeat
messages, and discovery by iterative peer exchange trans-
missions. The first of these, bootstrap nodes, initialise newly
joining nodes with the information needed by them to be able
to communicate with other peers in the network. Co-located
nodes, on the other hand, are bootstrap peers that are members
of multiple P2P networks. Co-located nodes are therefore both
capable of and tasked with relaying traffic between networks
on behalf of regular, non-co-located peers. Heartbeat messages
for fault detection involve the use of ping messages and
acknowledgements to detect and prune non-responsive nodes
from the network. Finally, a leaf set is a portion of the routing
table that contains information on the nodes of a single overlay.
The dissemination of this information uses a mechanism that
is inherited from the original implementation of Chimera that
requires that every node periodically creates and transmits a
packet containing a leaf set to all of the known peers of a
different leaf set.

The evaluation of this protocol in [5] was carried out using
50 virtual machines (VM) dispersed between a single 64 bit
server and two 32-bit embedded devices. The number of over-
lays and nodes per overlay were varied and all communication
logged. Acquired results highlighted two observable facts.
The first is that the optimal network structure should have
the number of overlays be double the number of nodes per
overlay, or vice versa. The second observation showed that
the discovery mechanism of the protocol that is dependent
on unicast transmissions of leaf sets is detrimental to the
performance of the network. These messages both overloaded
the network with traffic, especially the co-located nodes, and
were slow to deliver information necessary for the discovery

1Available: http://current.cs.ucsb.edu/projects/chimera/



Fig. 2. Mechanisms of Chimera post-modifications [5]

of peers and overlays. For this reason, this paper disables the
unicast-based discovery feature of the protocol and outsources
discovery to an independent service. It is worth mentioning
that another modification done within the scope of this paper
is the extension of the protocol implementation with IPv6
capabilities in accordance with the principles of contemporary
IoT-capable designs. With the networking layer discussed, the
following section will proceed to detail the appropriate features
of the discovery service.

III. THE DISCOVERY SERVICE

This section is concerned with the selection and implemen-
tation of a robust and efficient discovery mechanism for the
distributed GSB. It does not aim to provide an exhaustive
list of all existing methods for discovery. Rather, we limit
our discussion to mechanisms found in other P2P networks
as cooperative systems and one from the domain of zero
configuration networking.

To begin with the field of cooperative P2P systems, although
this subdomain is relatively new, it enjoys several implemen-
tations such as [9] and [10], that provide us with a number of
possible methods for discovery.

In the case of [9], a framework designed to enable the
cooperation of heterogeneous P2P networks is presented. Node
discovery within networks is left to the protocols of the
respective overlays, while the discovery of co-located nodes
is handled by the mechanisms of [9] which involve the use
of flooding or a secondary overlay network called the Internet
Indirection Infrastructure (i3). The former, flooding, is not an
acceptable option as it would only create the same network
conditions and strain as occurred in [5]. As for the i3 overlay
based method, this is based on the work of [11] and depends
on the use of a network of servers, called the i3 network,
that behave as discovery and forwarding servers. For example,
when a node becomes a cooperative node, it registers itself
with an i3 server using a ‘trigger’ message containing a service
identifier. Previously registered nodes periodically check in
with the i3 infrastructure by pushing a packet type message
containing a service identifier and their network address. The

i3 servers forward these messages to other nodes registered
with the same or similar identifiers. Once the new node re-
ceives this informational packet, it de-registers its trigger from
the i3 overlay. Applied to the distributed GSB, this method
would require the creation of a secondary infrastructure to
support the discovery of distributed GSB nodes. The daunting
complexity of this task causes us to look elsewhere for suitable
solutions.

As for [10], similar to [9], local discovery is managed by
the respective protocols of the member overlays. However, the
discovery of co-located nodes, termed synapse nodes in [10],
is done using message embedding, active notifications, peer
exchange and aggressive discovery mechanisms. The first of
these, message embedding, is when a node includes all of
the overlays it is connected to in outgoing messages. Any
synapse node that is part of the message path decodes this
information and updates its tables. Active notifications, on
the other hand, is when a synapse node, becoming aware
of a transiting message, pro-actively notifies the sender of
its connected overlays. As for peer exchange, this involves
the iterative transmission of discovery-relevant information.
Finally, aggressive discovery is an umbrella term imparted
upon the exploitation of specific attributes of the member
overlay protocols, such as leaf tables or peer lists, for discovery
purposes; hence, [10] offers no specific procedures for the
protocol. To evaluate these mechanisms, first off, both message
embedding and active notifications are opportunistic discovery
methods and do not guarantee the timely discovery of nodes.
Likewise, the peer exchange mechanism is similar to the one
already in place in [5] and would deliver no added benefit.
Lastly, aggressive discovery, being a generic term, lacks any
concise definition or specific procedure that would be useful
to our implementation.

Unfortunately, other implementations from the field of P2P
networks as cooperative systems either operate in a broadcast
medium [12], use the mechanisms of the aforementioned
protocols [13, 14], do not offer mechanisms for discovery [15],
or give incomplete solutions to our application’s needs [16].
For these reasons, the coming subsection will look into the



TABLE I
ADVANTAGES OF MDNS [8]

Factor Explanation
“Opportunistic Caching” A single multicast response may update all nodes in a network reducing the volume of queries in a network.

Query Suppression If several machines have the same query, only one device needs to transmit it, and yet, all nodes receive the response.
Passive Failure Detection If a node observes an unanswered query, this information may be used to prune stale data from the cache.

“Passive Conflict Detection” Multicast advertisements allow all nodes to promptly detect violations to required unique attributes i.e. peer keys.
Constrained Devices Multicasting reduces the need for resources for response transmissions. These would otherwise be required to

accommodate a list of destination nodes for each response.
Multiple Subnets If a node receives an advertisement published in a subnet, multicasting guarantees that the advertised services exist

on the local link, regardless of the source address.
Robustness In the case where every node’s address, default gateway, subnet mask, and DNS server addresses are incorrectly

configured, the use of a multicast address ensures that all peers will still be able to receive advertisement on the
local link.

Fig. 3. Transmission of mDNS advertisements in a distributed GSB deployment

application of flexible dedicated service discovery frameworks
that may be tailored to our system. Specifically, due to the
local nature of the distributed GSB deployment, a multicast-
based framework may be used in favour of a unicast-based
scheme to reduce traffic. However, out of the various multicast-
based discovery frameworks available, we specifically take
into account the use of multicast-DNS (mDNS) and DNS
Service Discovery (DNS-SD) as a possible solution due to
the benefits listed in Table I, and sourced from [8], which
guarantee a system with low overhead.

To achieve low discovery times, however, please refer to
Fig. 3, which exemplifies the application of the mDNS and
DNS-SD framework to our SOA. Here, an example of a
service advertisement is created by node A of subnet 1. The
advertisement has the service name set to the peer’s key, the
service type to GSB. tcp, and the text field is split to contain
the overlay key of the node as well as flags to indicate the
services or resources locally available for consumption by
other nodes. This advertisement is published by node A using
the IPv4 and/or IPv6 multicast address. All nodes in subnet
1 with running mDNS discovery services promptly receive
the advertisement and update their caches accordingly. To
allow the nodes of subnet 2 to also receive this advertisement,
and, hence, allow for instantaneous discovery throughout the
infrastructure, an mDNS reflector may be executed on a multi-

homed device that connects both subnets 1 and 2, which in
this case is node B. The mDNS reflector allows node B to
replicate an advertisement received from one interface on all
of its other interfaces. This replication may also be used to
allow for reflection between IPv4 and IPv6. In such a way,
the advertisement of node A may be forwarded to subnet
2, allowing all of the GSB nodes of Fig. 3 to receive the
advertisement of node A in a timely manner and with minimal
effort. It is prudent to mention at this point, however, that the
allocation of service advertisement fields such as the service
name, or type, in the manner described above is only as such
for exemplary and testing purposes. These assignments may
change as the SOA of the distributed GSB matures to allow
for extensive advertisements as will be discussed later on
in Section VI. As for the integration of the aforementioned
mDNS and DNS-SD based discovery service into the SOA,
this is the topic of discussion in the coming section.

IV. THE MANAGEMENT SERVICE

As is typical of SOA-governed designs, the orchestration
of the various services on a single device is a requirement.
In this architecture, this feature is handled by the manage-
ment service, which is both responsible for the transfer of
information between services and occupying the role of the
GSB node’s decision engine. The former, communication



Fig. 4. Interactions in the basic service set

between services, is done using UNIX domain sockets. The
management service is a necessary intermediary between these
services to allow it to decode received information, and employ
it in its decision making process. Currently, the algorithms
that would be involved in such a process are outside of the
scope of this paper. Instead, the entire system operates in the
manner shown in Fig. 4. After the management service is
initialised, bi-directional sockets are created and the mDNS
and P2P services are executed. After execution, the mDNS
service initialises an mDNS discovery thread and collects all
advertisements published by other GSB nodes on its connected
subnets, packages them in a string that is preceded by the
message type and size, as shown in Fig. 4, and forwards the
string to the management service via the socket. The man-
agement service decodes this information, makes a decision
as to what services the mDNS should advertise, and what
information to initialise the P2P service with, creates messages
identical in format to that shown in Fig. 4 for each service,
and forwards them accordingly. Once the information to be
published is received by the mDNS service, the message is
decoded and the services published. If services are already
being advertised by the mDNS service, these are removed and
the new ones are published in their stead. As for the P2P
service, this, similarly, also decodes the message to receive
its key, overlay key, and the port it should run on, which
overlays it should join, and which nodes the P2P service
should add to or remove from its routing tables. This process
repeats indefinitely allowing published services and the status
of the P2P service to be updated when required. It is worth
mentioning that the management service also executes an
mDNS reflector during the initialisation process if it recognises
that it is operating on a multi-homed device. With the entire
framework detailed, the coming section will proceed with its
evaluation.

V. EXPERIMENT

The designed framework and the newly adopted discovery
mechanism are tested using 11 Debian VMs hosted on a Xen

Project (TM) server. These are distributed equally across two
different network interfaces, with 5 nodes per interface, and
one multi-homed with access to both interfaces. The topology
used is shown in Fig. 3. The experiment is executed on
all 11 nodes sequentially using a BASH script running in
Domain-0 of the server. After execution, the script pauses for
60 seconds during which the behaviour of the networking,
routing, messaging, discovery and other application layers and
services are logged. Once the timer expires, the script resumes
and terminates the framework on all nodes in sequential
order before collecting all logs and restarting the experiment.
It is important to note that the evaluation of the routing
protocol itself is available in [5], the evaluation done here
is to determine the speed of discovery within the context
of the newly instantiated mechanism and architecture. The
experiments were run a total of 33 times to ensure consistency
in results.

For all 33 experiments, the discovery times for all nodes
is summarised as a percentage distribution in Table II and
the mean plotted in Fig. 5. The time taken to discover a
service is calculated from the point that the discovering node
is initialized or the discovered node’s services are published,
depending on whichever occurs at a later point on the timeline,
till the time that the discovering node receives a copy of the
advertisement. As may be seen from Table II, the discovery
service implemented allows all nodes to consistently discover
any advertised services within 3 seconds from the time of
publishing. Having therefore achieved its set goal of timely
discovery, the coming section will discuss further opportunities
for future work.

VI. DISCUSSION

This section is concerned with discussing possible enhance-
ments for the discovery service as well as its relationship with
previous work done in large industrial SOA research projects.

A. Potential Enhancements

Although the system in total achieves its purpose of pro-
viding the underlying infrastructure required of a distributed



Fig. 5. Mean discovery times with the standard deviation (blue) and standard error of the mean (red) for each experiment

GSB improvements are, as always, possible. We discuss in
this section two main concepts that may be applied to enhance
the discovery service. Primarily, this involves the application
of modifications to the service advertisement change-tracking
methods and the reflector implementation.

The first of these, the detection of changes to advertised
services, interestingly, also includes the tracking of service
advertisement removal. As was previously stated in Section III,
in our implementation, a node typically removes its published
services before it advertises a new set received from its
management service. This removal is done via a multicast
message that may be integrated into the GSB as a method
for the detection of failures in the network. Effectively, this
mechanism may be used to replace the unicast heartbeat-based
failure detection methods of Chimera with a multicast system
that, again, would provide more timely detections of failure.
Such a modification would allow for the integration of more
enhanced fault tolerance mechanisms in the distributed GSB.

For example, in this implementation only one reflector may
bridge the same set of networks. If more than one is active
in the same subnets, a routing loop may occur that would
allow for the amplification of multicast messages, and which
would effectively amount to a denial of service (DoS) attack on
the bridged networks. Backups to the reflector node, however,
are necessary, as the failure of a reflector node would be
detrimental to the discovery process of the distributed GSB.
Naturally, the heartbeat messages mechanism of Chimera
may discover the failure of the reflector node; however, its
opportunistic nature provides no guarantees in terms of timely
detection. The implementation may be modified to incorporate
a pinging mechanism exclusive to the reflector nodes, albeit at
the cost of increased complexity. Instead, the service removal

multicast messaging system that is already available may be
used as an indicator for the detection of failed nodes and the
timely execution of appropriate measures by backup nodes in
order to guarantee a responsive and survivable infrastructure.

A service removal mechanism in the manner described may
only be useful, however, in cases where failing nodes have
ample time to publish service removal messages. This may not
be the case, for example, if a node suffers immediate and total
power loss. In this situation, techniques, like the use of non-
maskable interrupts and large capacitors in a topology such as
in Fig. 6 may be used to give the node enough time to notify
the network of its impending failure. In the case of high load
nodes, such as servers, UPS systems may be required instead
of capacitors. To keep costs down, modules similar to server
Intelligent Platform Management Interface (IPMI) subsystems,
which would not have high power requirements, may be
given the responsibility of monitoring for power outages,
and the publishing of service removal messages on behalf
of high load nodes. To enact such a comprehensive system,
however, requires a complete study of the methods available,
costs involved, and mechanisms needed to guarantee timely
transmissions of service removal messages in the various node
and system failure scenarios possible.

A second possible method for improving the discovery
service involves altering the reflector service to impart further
reductions in network traffic. In this case, the reflector node,
instead of forwarding all received mDNS messages to all
other interfaces, may aggregate all of the resources in the
received advertisements of one interface and publish them as
resources local to the reflector node on all other interfaces.
Mappings to the actual locations of these resources may
then be kept by the reflector node allowing it to route any



TABLE II
PERCENTAGE DISTRIBUTION OF TIME TO DISCOVERY IN THE

EXPERIMENTAL ASSESSMENT

% of services discovered by time T
Experiment # T=1s T=2s T=3s Total

1 49.59 50.41 0.00 100.00
2 59.50 39.67 0.83 100.00
3 52.89 47.11 0.00 100.00
4 42.15 51.24 6.61 100.00
5 64.46 35.54 0.00 100.00
6 53.72 38.02 8.26 100.00
7 38.02 59.50 2.48 100.00
8 37.19 55.37 7.44 100.00
9 53.72 43.80 2.48 100.00
10 53.72 46.28 0.00 100.00
11 30.58 61.98 7.44 100.00
12 33.06 61.98 4.96 100.00
13 36.36 58.68 4.96 100.00
14 36.36 56.20 7.44 100.00
15 43.80 54.55 1.65 100.00
16 34.71 55.37 9.92 100.00
17 42.98 55.37 1.65 100.00
18 61.16 38.02 0.83 100.00
19 38.02 59.50 2.48 100.00
20 53.72 40.50 5.79 100.00
21 54.55 44.63 0.83 100.00
22 56.20 43.80 0.00 100.00
23 57.02 42.15 0.83 100.00
24 55.37 44.63 0.00 100.00
25 43.80 54.55 1.65 100.00
26 55.37 43.80 0.83 100.00
27 53.72 44.63 1.65 100.00
28 39.67 57.02 3.31 100.00
29 48.76 47.93 3.31 100.00
30 47.93 47.93 4.13 100.00
31 41.32 55.37 3.31 100.00
32 38.02 57.85 4.13 100.00
33 57.85 41.32 0.83 100.00

Fig. 6. Mechanism for detecting and delaying the loss of input power

subsequent attempts to access the advertised resources to their
respective locations. Effectively, this would reduce the amount
of messages being relayed between networks. However, in
order to avoid a scenario where the reflector node, being the
only reflector, and hence, aggregator, would suffer the fate of

also being the only traffic relaying node between subnets, a
method for the distribution of the services to be aggregated
across multiple reflector nodes may be required. Alternatively,
the reflector service may simply cache responses from one
subnet and respond on behalf of those nodes to any polls it
receives from its other interfaces thereby reducing the impact
of polling on large scale, multi-subnet deployments using a
low-effort solution. A feasibility study would be needed at
this point in order to determine the overhead cost of such
approaches, or modifications thereof, in comparison to that of
the currently implemented technique of reflection.

B. On Contemporary Projects

Observing the approaches implemented in large contempo-
rary projects for SO industrial automation, we find that discov-
ery is almost exclusively handled using the Web Services Dy-
namic Discovery (WS-Discovery) specification. Such projects
include the EU FP 7 IMC-AESOP [17], PLANTcockpit [18],
and eSONIA [19] research efforts. This specification uses
multicast SOAP-over-UDP messages for advertising, searching
for, and locating services on a local network. Similar to
mDNS, the caching of multicast advertisements to reduce
the number of subsequent in-network probes is encouraged.
However, a difference lies in the number of possible situations
that support caching. For example, while mDNS stipulates that
query responses be multicast, WS-Discovery requires unicast
responses. This means that in mDNS, if several nodes have
the same query, only one node needs to probe for the service
and all nodes may benefit from the response. In contrast, with
WS-Discovery’s unicast responses, this is not possible and
indicates that the two specifications may have different impacts
on the network performance rates.

Another feature of WS-Discovery that may possibly impact
performance lies in its message structuring technologies. The
WS-Discovery specification requires the use of XML, while
mDNS typically uses DNS-SD. In [20], the authors show
that a ‘Hello’ multicast message predominantly containing
addressing information is sized at 1088 bytes, while with
mDNS, packet captures from our Xen server showed mDNS
query responses with frame sizes in the range of 300 bytes.
Remedies are however possible, as [21] and [22] show that
extensive savings in message sizes may be incurred if the EXI
specification is applied to reduce the XML overhead of WS
messages and possibly result in message sizes comparable with
mDNS.

Without continuing with a granular comparison of the
two specifications, it is already apparent that WS-Discovery,
mDNS, and their companion technologies all target the same
issues and, at times, using very similar techniques. However,
differences do exist that also make it equally true that there is
a clear need for a detailed evaluation and comparison of the
two systems to create a distinct differentiation between them
in terms of their delivered benefits and expected performance.
This is to determine the appropriateness of each as a solution
for discovery in industrial environments.



VII. CONCLUSION

A basic service set for the non-RT coordination of an
industrial, SOA-governed and survivable distributed GSB is
presented. Composed of network, discovery and management
services, the resulting SOA uses sockets for inter-service com-
munication, P2P technologies for inter-node communication,
and mDNS and DNS-SD for discovery. The implemented
framework is tested using 33 consecutive runs on 11 VMs
across two subnets. Results showed that the presented services
and their associated mechanisms consistently allowed for the
network-wide discovery of published services within a span
of 3 seconds.

Further enhancements for the existing services are dis-
cussed, and include the use of service removal mechanisms,
service aggregation and caching to reduce the impact of the
proposed system on channel performance rates. However,
based on the acquired results, the architecture is in its current
state both stable and suitable for the coordination of the
distributed GSB. The presented system may therefore, at this
point, progress beyond the basic service set and incorporate
advanced services for the acquisition, tunnelling, translation,
storage, processing, and distribution of data. In the immediate
sense this would involve the application of the distributed GSB
using embedded devices to a didactic distributed PLC-based
system and the development of modelling services, such as
information, and information exchange modelling services, as
well as the extension of the SOA with capabilities to support
hard real-time tasks, as done in [23], to allow for the complete
assimilation of industrial components. The totality of this sys-
tem would be a comprehensive solution capable of resolving
age-old and complex challenges to vertical integration, system
reconfiguration, and distributed execution in heterogeneous
industrial environments.

ACKNOWLEDGEMENT

This paper is supported by TU Wien research funds.

REFERENCES

[1] P. Adolphs, H. Bedenbender, et al. Reference Architec-
ture Model Industrie 4.0 (RAMI4.0). VDI/VDE Soci-
ety Measurement and Automatic Control (GMA). July
2015.

[2] T. Sauter. “Linking Factory Floor and the Internet”.
In: Industrial Communication Technology Handbook,
Second Edition. Ed. by Richard Zurawski. London:
CRC Press, 2014. Chap. 22, pp. 1–24.

[3] H. Derhamy, J. Eliasson, et al. “Translation error han-
dling for multi-protocol SOA systems”. In: IEEE ETFA.
Sept. 2015.

[4] T. Sauter, S. Soucek, et al. “Vertical Integration”. In:
Industrial Communication Systems, Second Edition. Ed.
by B. Wilamowski and J. Irwin. London: CRC Press,
2011. Chap. 13, pp. 1–12.

[5] A. Ismail and W. Kastner. “Co-Operative Peer-to-Peer
Systems for Industrial Middleware”. In: IEEE WFCS.
May 2016.

[6] A. Ismail and W. Kastner. “A Middleware Architecture
for Vertical Integration”. In: IEEE CPPS. Apr. 2016.

[7] M. Garcı́a-Valls, I. Rodrı́guez-López, et al. “Towards a
middleware architecture for deterministic reconfigura-
tion of service-based networked applications”. In: IEEE
ETFA. Sept. 2010.

[8] S. Cheshire and M. Krochmal. RFC 6762: Multicast
DNS. Internet Engineering Task Force (IETF). Feb.
2013.

[9] J. Konishi, N. Wakamiya, et al. “Proposal and Evalu-
ation of a Cooperative Mechanism for Pure P2P File
Sharing Networks”. In: BioADIT. Jan. 2006.

[10] V. Ciancaglini. From key-based to content-based rout-
ing: system interconnection and video streaming appli-
cations. PhD Thesis, Université Nice-Sophia Antipolis,
Oct. 2013.

[11] I. Stoica, D. Adkins, et al. “Internet indirection infras-
tructure”. In: IEEE/ACM Transactions on Networking
12.2 (Apr. 2004), pp. 205–218.

[12] L. Cheng. “Bridging distributed hash tables in wireless
ad-hoc networks”. In: IEEE GLOBECOM. 2007.

[13] G. Hoang, L. Liquori, et al. “A backward-compatible
protocol for inter-routing over heterogeneous overlay
networks”. In: ACM SAC. 2013.

[14] G. Hoang, L. Liquori, et al. “Backward-Compatible
Cooperation of Heterogeneous P2P Systems”. In: Dis-
tributed Computing and Networking. Springer, 2014.

[15] A. Datta and K. Aberer. “The challenges of merging two
similar structured overlays: A tale of two networks”. In:
Lecture notes in computer science Vol.4124 (2006), p. 7.

[16] M. Kwon and S. Fahmy. “Synergy: an overlay internet-
working architecture”. In: IEEE ICCN. 2005.

[17] A. Colombo, T. Bangemann, et al. Industrial Cloud-
Based Cyber-Physical Systems. Springer International
Publishing, 2014.

[18] S. Iarovyi, J. Garcia, et al. “An approach for OSGi and
DPWS interoperability: Bridging enterprise application
with shop-floor”. In: IEEE ETFA. 2013.

[19] B. Zhang, C. Postelnicu, et al. “An open energy
consumption-relevant factory automation dataset in the
cloud”. In: IEEE INDIN. July 2012.

[20] L. Durkop, J. Imtiaz, et al. “Service-oriented archi-
tecture for the autoconfiguration of real-time Ethernet
systems”. In: KommA’12. Nov. 2012.

[21] F. Johnsen and T. Hafsøe. “Adapting WS-Discovery for
use in tactical networks”. In: 16th ICCRTS. June 2011.

[22] R. Kyusakov, J. Eliasson, et al. “Efficient structured data
processing for web service enabled shop floor devices”.
In: IEEE ISIE. June 2011.

[23] T. Kothmayr, A. Kemper, et al. “Machine ballets
don’t need conductors: Towards scheduling-based ser-
vice choreographies in a real-time SOA for industrial
automation”. In: IEEE ETFA. Sept. 2014.


