
Coordinating Redundant OPC UA Servers
Ahmed Ismail and Wolfgang Kastner

Institute of Computer Aided Automation - Technische Universität Wien
Vienna, Austria

Email: {aismail, k}@auto.tuwien.ac.at

Abstract—Coordination is an important aspect of large scale
distributed systems. The Open Platform Communications Unified
Architecture (OPC UA) standard series presents an important
challenge for coordination in its specifications for server re-
dundancy. This paper discerns the coordination needs of OPC
UA server redundancy and presents a solution based on the
integration of OPC UA and ZooKeeper. A detailed description
of the architecture, data model, and components of the resulting
system is given. This is accompanied by a discussion of an imple-
mentation based on the open source ZooKeeper and open62541
libraries. The resulting system is shown to be capable of meeting
the coordination needs of OPC UA redundancy.

I. INTRODUCTION

The increasing digitization of the manufacturing ecosystem
is met with calls for the adoption of protocols and applications
from the Information Technology (IT) domain to Operations
Technology (OT). This is in order to leverage the benefits
of IT in various fields and enhance the competitiveness of
manufacturing enterprises. Academia has led such efforts over
the years as is demonstrated by research in applying service
oriented architectures (SOA), web services (WS), message ori-
ented middleware (MOM), and other technologies to enhance
the features of manufacturing systems [1].

These efforts are mirrored in industry by standardisation
bodies and vendors alike. The OPC Foundation bases its new
iteration of the OPC standard for machine to machine (M2M)
communication, OPC UA, on a SOA and includes elements
of the WS specification in its communication stack [2]. Yet,
further enhancements to the OPC UA standard using solutions
from IT are still possible. This is because OPC UA has gaps
that are left open for vendor-specific implementations.

For example, a SCADA system based on OPC UA is
typically a large distributed system. It is “a system com-
prised of multiple software components running independently
and concurrently across multiple physical machines” [3]. As
noted in [4], large distributed systems need several forms
of coordination. This includes requirements for configuration,
replication, synchronisation, group membership, discovery,
leader election, and barrier synchronisation (resource fencing
and locks) [4, 5]. For instance, OPC UA Servers running in
Warm redundancy failover mode need mechanisms for address
space synchronisation and to ensure that only one server in the
redundancy set connects to a downstream device at a time [6].

Since the need for coordination mechanisms is common
across many distributed applications, Yahoo! created and
open-sourced a generalised service for coordination, named

ZooKeeper. This service, with its uncomplicated filesystem-
like API and strong guarantees for consistency, ordering,
and durability has since become the de facto solution for
distributed coordination [3].

This paper concerns itself with demonstrating the coordina-
tion of OPC UA server redundancy sets using the ZooKeeper
service. As such, Section II begins by providing a primer
on ZooKeeper. Section III then provides a brief overview
of OPC UA and an in-depth description of redundancy in
OPC UA. Section IV details the architecture, data model,
and components used for coordinating redundancy sets with
ZooKeeper. Section V addresses the implementation and Sec-
tion VI discusses caveats and other points related to the
system. Finally, Section VII concludes the paper.

II. ZOOKEEPER OVERVIEW

This section presents an overview of ZooKeeper by dis-
cussing its data structure, architecture, sessions, ZooKeeper
Atomic Broadcast (Zab) protocol, local storage, failure reso-
lution, and security [3].

A. Servers

The ZooKeeper service operates using a server-client archi-
tecture. Applications use a client library to interact with the
Zookeeper servers. The servers can run in either standalone or
quorum mode. The former is a single server and no replication
of the ZooKeeper’s state occurs. In quorum mode, a group of
servers, termed the ensemble, work together to replicate the
ZooKeeper state and serve client requests. A quorum is the
smallest number of servers out of the ensemble that is needed
to allow ZooKeeper to work.

Within an ensemble, a ZooKeeper server can be either a
leader, a follower, or an observer. The leader is an elected
position that manages all requests for state changes, including
the ordering of changes. The leader transmits state changes
as proposals that are voted on by the followers to ensure
the replication of state changes across the quorum. Observers
do not vote on state changes and only replicate committed
updates. Observers are typically used to scale the system.

B. Sessions

Clients connect to any single server using a TCP session.
Clients send heartbeats to keep sessions alive. Only a server
can declare a session as expired. If, however, a client does
not hear from its server for a certain amount of time, the
session may move to another server. The server it connects

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.



to is selected at random as a form of simple load balancing.
Within a single session, requests are executed first-in-first-out
(FIFO). However, FIFO guarantees do not apply to concurrent
and consecutive sessions.

C. Data Structure

ZooKeeper uses a hierarchical tree of data units, termed
znodes, for its data structure. Znodes can be persistent or
ephemeral. A persistent znode can only be removed through
a call for deletion while an ephemeral znode is also removed
if the session of the client that created it expires. Because
ephemeral znodes are session-dependent they are not permitted
to have child znodes. Both persistent and ephemeral znodes
can also be sequential. Sequential znodes are assigned unique
sequentially incremented integers. ZooKeeper supports the
implementation of a quota on the number of znodes, called
the count, and the size of data, called the bytes, that can be
stored. Exceeding the set quota only causes a warning to be
logged and does not interrupt the operation of the system.

Every znode is given a version number that is incremented
with every change to its data. This allows for the conditional
execution of certain operations, such as deletion and data
setting operations. However, as a znode’s version number is
reset if it is deleted and re-created, conditional execution is
not a fool-proof measure.

D. Watches and Notifications

Due to the performance penalty incurred by polling mecha-
nisms, ZooKeeper favours a method based on notifications.
Clients register for a notification by setting a watch on
ZooKeeper. A watch is removed if the notification is triggered.
To continue monitoring the znode, the client must therefore
reset the watch. To avoid missing changes between receiving
a notification and resetting the watch, watches are set using
operations that read the znode’s state.

Watches can be set to monitor for changes to a znode’s
data, its children znodes, or its creation or deletion. They are
persistent across servers and can only be removed by being
triggered or if the creating client’s session expires.

Watches should be applied conservatively as they consume
about 250-300 bytes of memory per watch, and the number
of notifications sent for each watch is equal to the number of
watches set for that znode. This rule of proportionality may
result in undesirable traffic spikes on the network.

A final consideration related to watches relates to the
‘Exists’ watch which is set to monitor for the creation of a
znode. As a node’s creation may be missed between the time
that a client disconnects and reconnects, it should only be used
for long-lasting znodes.

E. Requests and the Zab Protocol

Requests can be read requests or state changing requests.
Both are atomic and either succeed or fail; no partial results are
permitted. Reads are executed locally by ZooKeeper servers,
while the writes are forwarded to the leader. The request is
typically initiated by the client. The leader transforms the

request into a transaction that describes the steps to be applied
atomically and results in a state change. These transactions are
committed using the Zab protocol.

The Zab protocol requires that the leader sends the transac-
tion to its followers as a proposal. The followers respond to the
leader with an acknowledgement if they accept the proposal.
Once the leader receives a majority of acknowledgements from
the quorum it transmits a commit message to the followers and
an inform message to the observers. It is important to note that
transactions are both idempotent and permanent. ZooKeeper
does not support rollbacks.

Transactions generated by the leader are assigned a
ZooKeeper transaction ID (zxid). Each zxid is a 64-bit integer
used to ensure that transactions are applied in the order
established by the leader, amongst other things. As mentioned
earlier, the zxid may be used for conditional execution.

F. Local Storage

ZooKeeper uses a pre-allocated transaction log file to persist
ordered transactions on local storage. The transaction log is
appended with proposals before they are accepted. ZooKeeper
also offers snapshots, which are complete copies of the data
tree serialized to file. Processes continue to execute during the
snapshot taking process resulting in fuzzy snapshots that do not
represent the true state of a tree at any specific point in time.
However, this shortcoming may be remedied by replaying
the transaction logs over the snapshot. Together, logfiles and
snapshots may be used to recreate a server’s state for later
review or recovery.

G. Failures

Failures in ZooKeeper may occur in the service, network, or
application and may be recoverable or unrecoverable failures.

Recoverable failures, such as a network hiccup, are normal
events and applications are written to continue running in
spite of them. In the case of the leader, all actions should
be suspended while in a disconnected state as no updates are
received during this time. Clients, on the other hand, lose all
of their submitted requests when they disconnect and need to
resubmit them once they reconnect.

Unrecoverable failures are typically caused by expired ses-
sions or an authenticated session no longer being able to
authenticate itself. Unrecoverable failures, should be handled
by exiting the application. Once the application starts again,
it may resynchronise with ZooKeeper. This avoids the possi-
bility of undesirable manipulations of data in multi-threaded
applications that automate recovery.

H. Security

The security aspects of ZooKeeper include:
1) access control lists (ACL): access rights are normally

handled by the developer as they are set each time a
znode is created. Access rights are not inherited by child
znodes from their parent.

2) encrypted communication: client-server communication
may be encrypted if the server has Netty and SSL



support while quorum communication does not currently
support SSL [7].

III. OPC UA

This section provides an overview of the OPC UA standard
in general and of redundancy in specific [2, 6, 8, 9, 10].

A. Overview

In its simplest terms, the OPC UA standard is composed of a
set of specifications for the definition of data transfer software
interfaces in a client-server architecture. Its two main technical
properties are its service oriented architecture and information
model.

The former provides a fixed set of services to establish com-
munications between servers and clients and allows clients to
interact with the application and information model. As such,
the defined service groups are Discovery, SecureChannel,
Session, NodeManagement, View, Query, Attribute, Method,
Subscription, and MonitoredItem.

The latter, the information model, provides a flexible ad-
dress space for modelling, exposing, and consuming networks
of data and metadata of varying degrees of complexity. To do
so, the OPC UA standard bases its model on two elementary
units, Nodes and References.

Nodes are the simplest units of information and can be
of various NodeClasses (types) that are predefined by the
standard with specific Attributes (properties). The available
NodeClasses are “Object, ObjectType, Variable, VariableType,
DataType, ReferenceType, Method, and View” [9]. An Object
node represents an abstract or physical component in the
modelled system. A Variable node is used to store a value.
A Method node is used to expose a function so that it may be
called remotely. A View node is used to specify a subset of
an address space. Last of all, the ObjectType, VariableType,
DataType, and ReferenceType nodes, as their names imply,
are used for the specification of Object, Variable, data, and
Reference types, respectively.

Every node in the address space is identified and addressed
using a unique NodeId. In addition to the canonical NodeId,
a node may also have alternative NodeIds. Each NodeId is
composed of an identifier and a Namespace. The namespace
is used to allow naming authorities, such as vendors and
organizations, to define unique NodeIds.

References, on the other hand, are used to connect nodes for
organizational or filtration purposes. Each reference therefore
has a source and destination node, a direction, and a Refer-
enceType used to indicate the properties and meaning of a
reference.

B. OPC UA Server Redundancy

OPC UA supports the redundancy of both clients and servers
to allow for availability, fault tolerance, and load balancing
in different deployments. In OPC UA, this is achieved by
allowing for duplicate instances of clients and servers. Special
services, mechanisms, nodes, and client/server profiles are
included in the specifications to support the various possible

redundancy scenarios. These scenarios translate to a variety
of failover modes that are available for OPC UA Server
redundancy. A specific node is included in the address space,
the ServerRedundancy node, to advertise the failover mode
supported by an OPC UA Server. The different types and their
requirements are detailed in the rest of this subsection.

1) Transparent Redundancy: Redundant servers operating
in transparent redundancy (TR) mode all run using an iden-
tical server Uniform Resource Identifier (URI) and endpoint
Uniform Resource Locator (URL). The servers therefore all
appear as one server to connected clients. To allow a connected
client to pinpoint the exact source of its data in a redundant
server set, each server offers a unique ServerId. Information
synchronisation between servers is the responsibility of the
servers such that no actions are required by the client when a
failover occurs.

2) Non-Transparent Redundancy: In non-transparent re-
dundancy (NTR) mode, clients are expected to participate
in the failover. This typically involves selecting a server to
failover to and moving session-relevant information to the new
server. For it to be able to do so, a server in NTR provides
its clients with information on its failover mode and the other
servers in its redundancy set. The different modes available in
NTR are Cold, Warm, Hot and HotPlusMirrored.

a) Cold: In Cold NTR, only a single server is active at
any given point in time.

b) Warm: In Warm NTR, redundant servers may be
active but only a single server can connect to the downstream
device(s). This is useful in situations where the device(s) can
only support a single connection at a time.

c) Hot: In Hot NTR, all of the redundant servers are
active and more than one server may be connected to the
downstream device(s). The servers participating in a Hot NTR
redundancy server set operate independently and are expected
to have “minimal knowledge” on each other.

d) HotPlusMirrored: In HotPlusMirrored, also referred
to as Hot+ and hot and mirrored, all of the servers in a group
mirror their internal states across each other. More than one
server may be active and connected to a downstream device.
The mirroring must at least include “Sessions, Subscriptions,
registered Nodes, ContinuationPoints, sequence numbers, and
sent Notifications”.

IV. COORDINATION IN OPC UA SERVER REDUNDANCY

Based on the description given in Section III several aspects
of server redundancy in OPC UA are in need of reliable coordi-
nation measures. This section presents these needs and details
an integrated solution based on OPC UA and ZooKeeper to
meet them.

A. Demands

To start by discerning the demands for coordination in OPC
UA Server Redundancy, these include:

1) the requirement for a synchronised address space such
that an identical hierarchy of nodes is exposed to con-
nected clients. This includes identical Nodes, NodeIds,



browse paths, and address space structure. The only
exempt nodes are ones in the local Server namespace
that, for example, expose server diagnostics information.
This need is universal across all failover modes. Further
requirements exist for specific failover modes, such as
the replication of unique identifiers for events across
servers in TR or Hot+ configurations [6].

2) the second requirement is for a reliable mechanism for
the detection of server failures. In the case of a TR
server set, this would ensure the timely transfer of a
session and its subscriptions to a functional server [6]. In
NTR, this would allow for the automated start up of an
application and/or connection to a downstream device. A
service is therefore required to ensure failure detection
and, if appropriate, contention resolution measures for
the position of active server or to determine which server
may connect to the downstream device.

The aforementioned requirements may be resolved by using
ZooKeeper as a reliable configuration store for address space
replication and as a central point for failure detection, leader
election, and contention resolution. Using ZooKeeper for these
services delivers several benefits to the system. The first is that
any newly added OPC UA server only needs to be told how to
connect to the ZooKeeper service and it may then download
any other configuration information necessary, including its
address space, and discern its role in the redundancy set [11].
The second benefit is derived from ZooKeeper’s support for
watches and notifications which allow OPC UA servers to
subscribe to changes and undergo run-time reconfiguration
[11]. Third, ZooKeeper’s snapshots and logs may be used to
recreate the state of the information model at any point in
time for diagnostic purposes. Last of all, amongst ZooKeeper’s
obvious benefits are its guarantees for consistency, ordering,
reliability, and its scalability born of its use of the Zab protocol
and Observer servers, respectively.

In order to realise the above applications, certain require-
ments need to be imposed on the system:

• The entire address space of a redundancy server set must
be stored on the distributed coordination service.

• Any modifications to the address space must be atomic
and reflected on the coordination service.

• Any running server in a redundancy set must register its
type and state on the distributed coordinator.

• For all of the above points, the distributed coordination
service must be the only source of truth in the system.

To demonstrate this integration of OPC UA and ZooKeeper
for distributed coordination, subsections IV-B to IV-D present
the overall architecture of the resulting system, the data model
used for ZooKeeper, the different architectural components,
and their implementation details.

B. The zkUA Architecture
The ZooKeeper-OPC UA (zkUA) system architecture is

composed of four software components shown in Fig. 1:
1) ZooKeeper Ensemble: Necessarily, the distributed coor-

dination service in our scenario. Out of an ensemble

of n servers, it is best practice for n to be an odd
number and that a majority be used to form the quorum.
Doing so would tolerate f servers crashing, where f<n/2,
without it resulting in undesirable behaviour, e.g., split-
brain scenarios [3].

2) zkUA Server: Every server participating in a redundancy
set in the system must be integrated with ZooKeeper
for several reasons. It ensures that any modifications to
the address space locally or on ZooKeeper are reflected
in the other. This allows redundant servers to provide
connected OPC UA Clients with a homogeneous view
of their address space. The integration is also needed for
the correct operation of failure detection, leader election,
and contention resolution for reasons that will be clear
in section IV-D.

3) zkUA Proxy: For the migration of existing OPC UA
servers to the zkUA system, a zkUA Proxy is required.
This proxy is both an OPC UA and a ZooKeeper client.
Its purpose is to replicate the address space present on an
OPC UA Server to ZooKeeper. Replication of changes
from an address space on ZooKeeper to legacy OPC UA
Servers should not be supported as the legacy servers
may include functions that would disrupt the overall
behaviour of the zkUA system.

4) zkUA Failover Controller: This component, as the name
implies, is the main management component in the
architecture. It is responsible for detecting and reporting
zkUA Server failures, initiating a failover, and partic-
ipating in contention resolution and resource fencing.
The details of this component is discussed in Subsection
IV-D.

C. The ZooKeeper Data Model

A fifth component essential to the zkUA system is the data
model deployed on ZooKeeper and shown in Table I. The first
znode under the root node is the /Servers znode. This denotes
the parent znode under which all OPC UA Server redundancy
sets operate. Each redundancy set requires a neutral identifier
under the /Servers znode where the set’s address space may be
stored and its activities organised. A globally unique identifier
(GUID) is currently used to represent each redundancy set. In
order to advertise the GUID via the OPC UA address space, a
new Variable node, the GroupGUID, is created under the OPC
UA-specified ServerRedundancy object. The GroupGUID’s
value is set to the GUID of the redundancy set. Both the path
and the value are shown in Fig. 2.

Every Node is uniquely identified on ZooKeeper under the
/AddressSpace path using its NodeId. The NodeId is converted
into a string that holds the Node’s namespace and identifier,
e.g., a node belonging to namespace index 1 NodeId 3000
would be represented as “ns=1;i=3000” under the AddressS-
pace path. The znode’s data is set with the encoded attributes
of the Node it represents.

Naturally, this data model may be extended based on the
failover mode to accommodate any additional information
requiring synchronisation across the redundancy set. While



Fig. 1. The zkUA System Architecture
TABLE I

THE ZOOKEEPER DATA MODEL FOR OPC UA SERVERS REDUNDANCY

ZooKeeper Path Type of zNode Explanation

/Servers Persistent The root path for zkUA Server redundancy sets.

/Servers/{GroupGUID} Persistent Every redundancy set is assigned a unique GUID to differentiate it
from the others.

/Servers/{GroupGUID}/AddressSpace Persistent This path stores all of the OPC UA Nodes with their respective
attributes and references for storage, synchronisation, and replication.

/Servers/{GroupGUID}/Active Persistent If a zkUA Server is in a functional state, connected to a downstream
device, and ready to serve clients, then it is in an active state and is
represented by an ephemeral znode under this path.

/Servers/{GroupGUID}/{Failover
Mode}

Persistent All zkUA Servers that support a specific failover mode and are part of
the same redundancy server set are each represented by an ephemeral
znode under the correct Failover Mode path. Paths are available for
Transparent, Cold, Warm, Hot, and Hot+ redundancy.

Fig. 2. The “GroupGUID” Variable Node and “Activate/Deactivate Server” Method Node

in its current state, however, it is apparent that an indirect
result of having all zkUA Servers register on ZooKeeper is
that ZooKeeper unwittingly doubles as a discovery service.
The remainder of the data model will be clarified in the coming
subsection as the operations of the zkUA components are
discussed.

D. The zkUA Components

a) zkUA Proxy: To start with the zkUA Proxy, as previ-
ously mentioned, this component is developed as a migration
path for non-ZooKeeper integrated OPC UA Servers. The

component is composed of a ZooKeeper client and an OPC UA
Client. The proxy is initialized with a configuration file that
specifies several parameters listed in Table II. The proxy must
be told which OPC UA Server’s address space to replicate to
ZooKeeper. It must also be told how to connect to it and the
redundancy server set’s GUID so that it may push the encoded
address space to the correct path on ZooKeeper.

b) zkUA Server: The zkUA Server, similar to the zkUA
Proxy, is initialized using a configuration file providing it with
start up parameters such as its URI, port, redundancy group
GUID, failover mode and role, as shown in Table II.



TABLE II
THE ZKUA START UP CONFIGURATION FILE PARAMETERS

Parameter Component Explanation

Hostname Proxy/Server The hostname belonging to the OPC UA server.

PortNumber Proxy/Server The port number the OPC UA Server is bound to.

GroupGUID Proxy/Server The GroupGUID representing the UA redundancy group on ZooKeeper.

Username Proxy/Server The Username used to login to the UA Server.

Password Proxy/Server The Password used to login to the UA Server.

ZkServer Proxy/Server The hostnames and port numbers of ZooKeeper servers participating in the ensemble.

RedundancyType Server The zkUA Server needs to be informed of its redundancyType. Options are: standalone,
transparent, cold, warm, hot, and hot+.

State Server Instructs the zkUA Server if it is to start in an active or inactive state.

ServerId Server Required if the server is running in transparent redundancy mode, otherwise it is not.

AvailabilityPriority Server If set to true, the locally cached address space is used as a fallback for reads in case the
server’s connection to ZooKeeper is interrupted.

An additional parameter, AvailabilityPriority, is included in
the configuration file to allow reads to continue from the zkUA
server’s local cache even if the communication between it and
the ZooKeeper ensemble fails. Although this stops ZooKeeper
from being the only source of truth, this may be required
in cases where the continued uninterrupted availability of
the zkUA Server is necessary. In such cases, it is advisable
that modifications to the local cache be kept at a minimum,
e.g., only permitting the continued polling and storage of
values from downstream devices in the address space while
disallowing any add/delete operations or the modification of
Node types until the connection to ZooKeeper is restored.

A new Method Node, the “Activate/Deactivate Server”, is
also needed by every zkUA Server. Shown in Fig. 2, the
Method and its associated internal function are used to modify
the state of a zkUA Server when a failover is initiated.

c) zkUA Failover Controller: Finally, the zkUA Failover
Controller is one of the most critical components in the system
as it manages the behaviour and role of the zkUA Servers. The
controller, similar to the proxy, is both an OPC UA Client and
a ZooKeeper client. The controller is initialized with all of the
parameters found in a zkUA Server configuration file except
for the “AvailabilityPriority” parameter. These configurations
are used by the controller to know which zkUA Server to
monitor, how to connect to it, and what the correct failover
mode and behaviour should be.

The controller is modelled on Hadoop’s HDFS ZKFailover-
Controller [12] and, therefore, performs:

• zkUA Server status monitoring: the controller of a spe-
cific zkUA Server periodically polls the server’s state to
determine its health. If the server responds in a timely
manner with an acceptable state then it is considered to
be healthy. Otherwise, it is not. The acceptable responses
for the server’s state differ with the failover mode.

• zkUA Server registration: Once initialized with a spe-
cific failover mode, the controller opens a session with
ZooKeeper and creates an ephemeral znode under the
redundancy group’s path for that mode.

• zkUA contention resolution: If a zkUA Server is initial-

ized in an active state and the failover mode supports
more than one active server at a time, the controller
creates an ephemeral znode under the redundancy set’s
Active path. If the failover mode or scenario only supports
one active server at a time then only one controller and
server combination is capable of creating an ephemeral
znode under the Active path at a time, effectively ac-
quiring a lock for the downstream device. The con-
troller/server combo that is first to create the znode
acquires the lock. All other controllers then monitor the
lock for deletion. This typically occurs if the controller
with the lock determines that its zkUA Server is in an
unhealthy state. In such a case, the controller terminates
its session with ZooKeeper. As the session expires, the
ephemeral znodes are deleted, and all other controllers
monitoring the znode are notified of the deletion event.
The respective active controllers then try again to be the
first to create a lock.

V. IMPLEMENTATION

A prototypical implementation1 is made using the open
source ZooKeeper2 and open62541 [13] libraries. The result-
ing code achieves the requirements in Section IV by inter-
cepting calls in the open62541 library to OPC UA Node ad-
dition, deletion, and modification (attribute writing) functions.
Specifically, the functions are re-defined in the amalgamated
open62541 library header file such that calls to the following
functions are redirected to zkUA interception functions:

• Service Write: This function is called once when an OPC
UA Client modifies the attribute of a Node on an OPC
UA Server over the network.

• UA Server Write: This function is called once when an
OPC UA Server edits a Node’s attribute.

• Service AddNodes single: This function is called once
when an OPC UA Client or Server adds a new Node to
the address space of the OPC UA Server.

1https://github.com/AGIsmail/zkUACoordination.git
2https://zookeeper.apache.org/



• Service DeleteNodes single: This function is called once
when an OPC UA Client or Server deletes a Node from
the OPC UA Server’s address space.

For attribute changing operations, the intercepting function
should save a copy of the current state of the Node to
be modified before calling the original open62541 function.
Once the original function finishes updating the local cache,
the intercepting function then encodes the Node’s NodeId,
attributes, and its parent’s NodeId and reference and pushes the
encoded information to ZooKeeper. The parent’s NodeId and
reference are required to preserve the structure of the address
space when replicating to another OPC UA Server. If the push
fails, then the entire process should be reversed. The same
process applies for the addition of a new Node, except for
saving a copy of the original state of the Node as it should
not yet exist in the local cache.

When a Node is modified and pushed to ZooKeeper, the
remaining servers in the redundancy set receive a notification
for the change in the znode’s data. Since the Node may already
exist on the zkUA Server, the node must be deleted and
re-added. This is because the Node’s type may have been
modified in the process thereby invalidating the option of using
attribute writing functions during replication. For these cases,
Node deletion must not be replicated back to ZooKeeper and
must only be enacted upon the local cache to prevent unwanted
behaviour in the system.

Every Node that is added or modified in a zkUA Server
is accompanied by its transaction zxid. The Node’s znode
path and zxid form key-value pairs that are stored in a
hashtable local to each zkUA Server. The hashtable is then
used to guarantee that the local zkUA Server is in sync
with ZooKeeper and to prevent unnecessary operations to the
address spaces stored on the zkUA Servers.

Read operations do not need to be redirected to ZooKeeper.
By setting watches on the entire address space on ZooKeeper,
the zkUA Server ensures that the local cache is always up
to date. The only case in which this does not apply is when
the zkUA Server’s cache is being read while it suffers from
an interrupted session. In such situations, reads from the local
cache are forbidden unless the “AvailabilityPriority” parameter
is set to true in the server configuration file for the special case
where the availability of the zkUA Server is more important
than the reliability of the served data.

As may be expected, further details related to the failover
modes and other implementation specifics exist. However, the
above suffices for the purposes of the discussion in the coming
section. For further information, it is encouraged that the
codebase be visited.

VI. DISCUSSION

As may be apparent from the previous sections, the pre-
sented architecture and accompanying implementation ensure
that the entire address space of a redundancy server set
is stored on ZooKeeper. Any modifications to the address
space are atomic in nature. All servers are registered on
ZooKeeper and participate in failure detection, leader election,

and contention resolution. The system is designed to treat
ZooKeeper as the only source of truth, thereby avoiding split-
brain scenarios.

One should note, however, the caveats involved in using
such a system. First of all, while the scalability of reads are
possible using ZooKeeper Observers, due to the per-watch-set
memory penalty, the ZooKeeper service may require memory-
abundant systems. Yet, since watches are stored locally on
the ZooKeeper server that the zkUA Server connects to, this
should not be a problem if the overall system is designed with
enough ZooKeeper servers and hardware resources. The design
should therefore reflect the expected overall number of server
redundancy sets and their respective address space sizes.

A second point to mention in brief is that of security. While
not addressed in this paper, ZooKeeper provides support for
ACLs, as mentioned in Subsection II-H. In principle, this
should prevent any unwanted manipulation of zkUA redun-
dancy set behaviour. The system may be hardened further if
communication between the ZooKeeper servers and the zkUA
Servers, Proxies, and Failover Controllers are encrypted with
SSL. Yet, since communication between the quorum is not
encrypted, tunnelling may also be necessary.

Another point to mention in this section is related to an unin-
tended, yet positive, consequence of the presented architecture.
Since the ZooKeeper service is effectively storing the address
spaces of all of the participating zkUA servers, ZooKeeper
may be considered an active OPC UA Chaining Server.
However, to exploit this situation a specially designed zkUA
Client capable of reading directly from ZooKeeper would
be required. Otherwise, a proxy that is both a ZooKeeper
Client and a shell OPC UA Server may act as an interface
to ZooKeeper for other OPC UA Clients.

One other detail to discuss is that of Method Node repli-
cation. While not present in our prototypical implementation,
possible solutions to achieve this may require:

1) the functions associated with the Method Nodes to be
available on all of the zkUA Servers in the entire system.
This allows for a single generic zkUA Server to be used
throughout the system. This may, however, result in a
larger sized implementation which has a number of costs
associated with it, e.g., a larger attack surface. Alterna-
tively, each redundancy set may have its own flavour
of zkUA Servers with the appropriate functions built.
While potentially resulting in smaller implementations,
this would increase the complexity involved in managing
and developing for the system.

2) the use of function stubs. A possible implementation
in this case may follow a service-oriented approach
whereby a sub-system of services are created to rep-
resent the different methods to be called.

As may already be apparent from the architecture of IV-B,
the zkUA Failover Controller, while critical to the system,
is a single point of failure. A controller may crash while
its zkUA Server remains functional. This vulnerability is
mirrored in Hadoop’s HDFS as well [12]. For mitigation, the
controller should be monitored for unexpected failures and



restarted appropriately [12]. To ensure the orderly operation of
zkUA Servers, a possible solution may include having active
zkUA Servers watch for the disappearance of their ephemeral
znodes on ZooKeeper and forfeiting their active roles when
appropriate.

With respect to related work, while several other papers
have addressed implementations for OPC UA Aggregation
Servers [14, 15] or Historical Servers [16], there appears to be
only one other publication addressing OPC UA Redundancy
[10]. In [10], a different goal is pursued as the paper carries
out a performance evaluation for OPC UA redundancy using
the Java Client-Server SDK by Prosys. While this makes the
presented system unique, it also deprives it of a basis for
comparison.

VII. CONCLUSION

In this paper, the coordination requirements of OPC UA
Server redundancy are quantified and shown to be realisable
using the ZooKeeper service. An explanation of the overall
architecture, data model, and components of the integrated
OPC UA and ZooKeeper system is given. This includes the
appropriate consideration of a solution for the migration of
existing OPC UA systems. An example implementation based
on the open source ZooKeeper and open62541 libraries is
described in order to elaborate on implementation specifics.

While real-world deployments would still require careful
design to ensure that sufficient resources are present for safe
operation, the resulting system should be capable of providing
a reliable framework for OPC UA Server redundancy. Through
this system, redundant servers may achieve the required goals
of synchronisation and replication, failure detection, failover
initiation, and resource fencing. The extensibility of the data
model given should present opportunities to accommodate
further synchronisation requirements than those shown in this
paper. It is expected that future iterations of this system address
more complex features of OPC UA, such as Method Node
replication, and to include more technologies from the IT
domain to address other open questions in the standard, where
identified and appropriate.

ACKNOWLEDGMENT

This paper is supported by TU Wien research funds as part
of the Doctoral College Cyber-Physical Production Systems.

REFERENCES

[1] Ahmed Ismail and Wolfgang Kastner. “Surveying the
Features of Industrial SOAs”. In: 2017 Annual IEEE
Industrial Electronics Society’s 18th International Con-
ference on Industrial Technology (ICIT). Mar. 2017.

[2] W. Mahnke, Stefan-Helmut Leitner, et al. OPC Unified
Architecture. Springer Berlin Heidelberg, 2009.

[3] Flavio Junqueira and Benjamin Reed. ZooKeeper. En-
glish. Sebastopol, CA: O’Reilly Media, 2013.

[4] Patrick Hunt, Mahadev Konar, et al. “ZooKeeper:
Wait-free Coordination for Internet-scale Systems.” In:
USENIX Annual Technical Conference. Vol. 8. 2010.

[5] Ailidani Ailijiang, Aleksey Charapko, et al. “Consensus
in the Cloud: Paxos Systems Demystified”. In: 2016
25th International Conference on Computer Communi-
cation and Networks (ICCCN). 2016.

[6] Part 4: Services. R1.03. OPC Foundation. July 2015.
[7] Hongchao Deng and Flavio Junqueira. ZooKeeper SSL

User Guide. Atlassian Confluence. July 24, 2015. URL:
https : / / cwiki . apache . org / confluence / display /
ZOOKEEPER/ZooKeeper+SSL+User+Guide (visited
on 04/06/2017).

[8] Ahmed Ismail and Wolfgang Kastner. “Vertical Inte-
gration in Industrial Enterprises and Distributed Mid-
dleware”. In: International Journal of Internet Protocol
Technology 9.2/3 (2016), pp. 79–89.

[9] Ahmed Ismail and Wolfgang Kastner. “A middleware
architecture for vertical integration”. In: 2016 1st In-
ternational Workshop on Cyber-Physical Production
Systems (CPPS). Apr. 2016.

[10] R. Cupek, K. Folkert, et al. “Performance evaluation of
redundant OPC UA architecture for process control”.
In: Transactions of the Institute of Measurement and
Control (Sept. 2015).

[11] Sean Mackrory. How-to: Use Apache ZooKeeper to
Build Distributed Apps (and Why). Cloudera Inc.
Feb. 14, 2013. URL: http : / /blog .cloudera . com/blog /
2013 / 02 / how - to - use - apache - zookeeper - to - build -
distributed-apps-and-why/ (visited on 04/04/2017).

[12] HDFS High Availability Using the Quorum Jour-
nal Manager. URL: https : / / hadoop . apache . org /
docs / r2 . 7 . 1 / hadoop - project - dist / hadoop -
hdfs/HDFSHighAvailabilityWithQJM.html (visited on
11/17/2016).

[13] F. Palm, S. Grüner, et al. “Open source as enabler
for OPC UA in industrial automation”. In: 2015 IEEE
ETFA. Sept. 2015.

[14] Daniel Großmann, Markus Bregulla, et al. “OPC UA
server aggregation—The foundation for an internet of
portals”. In: 2014 IEEE Emerging Technology and Fac-
tory Automation (ETFA). 2014.

[15] Ilkka Seilonen, Tomi Tuovinen, et al. “Aggregating OPC
UA servers for monitoring manufacturing systems and
mobile work machines”. In: 2016 IEEE ETFA. 2016.

[16] Jukka Asikainen. “OPC UA Java History Gateway with
Inherent Database Integration”. MA thesis. Aalto Uni-
versity, 2014.


