
Throttled Service Calls in OPC UA
Ahmed Ismail and Wolfgang Kastner

Institute of Computer Aided Automation - Technische Universität Wien
Vienna, Austria

Email: {aismail, k}@auto.tuwien.ac.at

Abstract—The Open Platform Communications Unified Ar-
chitecture (OPC UA) standard specifies the use of a push-
based communication model for service calls in its client-server
architecture. This paper clarifies how this model leaves OPC
UA Servers vulnerable to request overload. A solution based on
rate throttling is demonstrated to counter this vulnerability.
The requirements of the resulting service are quantified and
an open-source prototypical implementation is built using the
Apache ZooKeeper and open62541 libraries.

I. Introduction
A widely accepted standard for machine-to-machine

(M2M) communication in the manufacturing industry
is the Open Platform Communication (OPC) Unified
Architecture (UA). OPC UA is a set of specifications for
client-server data exchange. It primarily defines a Service
Oriented Architecture (SOA) and an information model.
Thus, it provides a standardised set of pre-defined services,
interfaces, protocols, and formats for data representation
and structuring [1].
Communication between clients and servers in OPC

UA is in the form of service calls. Effectively, these
are remote procedure calls (RPC). This implies that
OPC UA predominantly operates using a client-side push-
based communication model. The problem with this model
is that it is possible for a single OPC UA Server to
receive too many concurrent requests. In trying to process
these requests, the server may exhaust or over-extend its
available resources. Thus, the server may enter a failed or
degraded state causing clients to experience high laten-
cies, request time-outs, or service unavailability [2]. The
degraded operation or unavailability of a component in an
online manufacturing system is highly undesirable. The
National Institute of Standards and Technology (NIST),
for example, recorded an incident where a hanged control
system in a wafer fabrication plant caused a financial loss
worth US $ 50 000 [3].
It can be argued that the use of OPC UA Server

Redundancy Groups and ServiceLevel indicators may
alleviate the symptoms of server overload or prevent
them from occurring. The former, as the name implies,
involves having sets of redundant servers with access
to the same underlying resources and a synchronised
information model. The latter, on the other hand, is a byte
variable included in every OPC UA Server address space.
It can have a value of 0, 1, 2-199, or 200-255 signalling
that the Server is in a Maintenance, NoData (failed),

Degraded, or Healthy state, respectively. According to
the specifications, clients connected to a Degraded Server
should not expect reliable services. Consequently, the
client is permitted to switch to another healthy Server, if
one is available. The client may also connect to multiple
degraded servers to maximize its access to the underlying
devices and their data. If connecting to a healthy server, a
client is expected to select the one with the highest value.
The sum of these tools therefore amounts to capacity
planning and a simple load balancing strategy [4].
However, since capacity planning and load balancing do

not alter the client-side push-based communication model
of OPC UA, servers continue to be vulnerable to overload.
In fact, as clients are permitted to switch from degraded
to healthy servers, the situation may worsen as failures
cascade across an impacted redundancy set and possibly
cause the entire service to fail.
Other possible solutions limit the number of requests

that are received and/or processed by an OPC UA Server,
thus implying rate throttling and load shedding, respec-
tively. Both of these strategies involve the use of queues.
Rate throttling would use a resourceful mediator to shield
an OPC UA Server from traffic bursts. In contrast, load
shedding operates on the premise that rejecting a service
call uses significantly less resources than processing it.
By limiting the number of requests being concurrently
processed and rejecting the rest, servers are believed to
reduce their chances of failing [5]. While both may be
viable solutions to the problem, neither approach appears
to have been investigated within this context. Thus, this
paper takes the first step by examining the use of a rate
throttling mediator to combat server overload in OPC UA.
Section II begins by discerning the requirements for

the queuing service. Section III then demonstrates how
features of the coordination tool, Apache ZooKeeper, can
be used to meet these requirements. Section IV proceeds to
describe an open-source prototype developed to evaluate
a suitable architecture, data model, and communication
flow for rate throttling based on ZooKeeper. Section V
discusses concerns surrounding the presented system and
future work. Finally, Section VI concludes the paper.

II. Requirements
This section discerns the requirements necessary of a

mediator for the queuing of OPC UA service calls. These
requirements are summarized in Table I.

© © 2018 IEEE. Personal use of this material is permi�ed. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprin�ng/republishing this material for adver�sing or promo�onal purposes, crea�ng new collec�ve works, for resale or redistribu�on to servers or lists, or reuse of
any copyrighted component of this work in other works.

TABLE I
Criteria for a task queuing service.

Parameter Requirement

Scalability The system should be able to scale to support 1000’s to 100 000’s of connected OPC UA
Clients and Servers.

Consistency Guarantees The service must reflect a consistent state.

Recoverability The service should be able to recover from system and network problems.

Security The system must, at least, provide the same security features as OPC UA.

Client-Push/Server-Pull
Communication

OPC UA Clients must push to the queueing service, while Servers must pull tasks off their
respective queues when they wish to receive the data.

At Least Once Semantics Every service call should be delivered to a server at least once.

Supportability The service must be well-documented, actively developed, and have a healthy support
community.

To begin, the queueing service is expected to be highly
scalable. It should be able to support thousands to
hundreds of thousands of concurrent connections from
both OPC UA servers and clients. Scalability should, in
this case, be horizontal due to the associated benefits [6].
This means that the tool should be able to operate as a
distributed system.
As for the service calls, submissions should be com-

mitted in a transactional and strongly consistent manner.
According to [7], this implies four properties:

• Atomicity: An operation either succeeds or fails;
inconsistent states are not permitted.

• Consistency: “Committed transactions are visible to
all future transactions” [7]. This means that all
redundant participants in the queueing service apply
transactions in the same order, thereby preserving the
uniformity of the service state [8].

• Isolation: Uncommitted transactions are not visible
to future transactions.

• Durability: Transaction commits are permanent.
These are important properties for task queuing in safety-
critical environments. Partial or non-permanent commits,
fuzzy reads, and dirty reads and/or writes imply that an
online system may operate out of specification. Given the
tight and complex coupling between software and physical
processes in cyber-physical production systems (CPPS),
the outcome may manifest as undesirable physical events.
A third point to address is that of availability and fault-

tolerance. In an ideal system, every submitted service
call should be successfully queued and subsequently made
accessible to their respective OPC UA Servers. However,
system and network problems are to be expected. Mea-
sures should therefore be included to tolerate crashed node
faults. These would allow connected OPC UA Clients and
Servers to continue using the queueing service in cases
of partial system failures. The service should also have
protections in place against network partitioning. If the
system does not protect against network partitions, split-
brain behaviour may manifest. This is when fractions of
the service may progress the state of the system indepen-
dently and in an inconsistent manner which may have an
undesirable effect on the manufacturing environment.

Naturally, clients must be able to submit tasks for ex-
ecution with associated metadata. Likewise, servers must
be able to retrieve them. At-least-once message delivery
semantics is necessary to guarantee that each service call is
consumed by a server. Messages should also be delivered
to servers using pull-based mechanisms to mitigate the
previously discussed server overload scenarios.
Moreover, the system should match, if not improve

upon, the security features inherent to OPC UA. The sys-
tem should therefore incorporate measures to ensure that
the submission, retrieval, and modification of queued tasks
are only done by authorized clients. This amounts to the
inclusion of authentication and encrypted communication
features.
The last point to discuss is that of supportability. The

tool should have strong community and developer support
available. It should be well-documented and actively
developed to ensure a long and stable lifetime for the
service.
With these requirements in place, the coming section

will discuss a suitable tool for the implementation of the
queueing service.

III. Queuing Service
Several of the features identified in the previous sec-

tion, such as scalability, high availability, and security,
are generic enough to allow for the applicability of a
broad selection of tools for the queuing service. One
of the more difficult features required of the queuing
service is that of strong crash fault tolerant consistency
guarantees. Algorithms for fault tolerant consensus and
high availability in asynchronous environments include
Paxos, raft, and the Viewstamped Replication protocol
[9, 10]. In [11], however, it is shown that the most
widely adopted tool for consensus-dependent applications
is ZooKeeper. This is an application which operates using
a Paxos-inspired variant known as the ZooKeeper Atomic
Broadcast (Zab) protocol. In this section, we describe
the relevant features and strengths of ZooKeeper that
demonstrate its viability as a queuing service for OPC
UA. A summary of these features may be found in Table
II. Supportability is considered a met requirement due

to ZooKeeper’s wide adoption, detailed documentation1,
and frequent updates2. For a more complete description
of ZooKeeper, please refer to [12], [13], and [14].

TABLE II
Features of ZooKeeper and the criteria for a task queueing service.

Parameter Features

Scalability Quorum mode, observers, dynamic scal-
ing.

Consistency Guarantees Zab protocol, majority quorum in an odd
numbered ensemble.

Recoverability Zab protocol, transaction logs, snapshots.

Security Client-server and server-server mutual
authentication, client-server SSL, znode-
level access control.

Client-Push/Server-Pull
Communication

Write/read operations and watches.

At Least Once Semantics Watches, persistent znodes, and read op-
erations.

Supportability Mature, widely adopted product [11].

A. Servers, Quorums, and the Zab Protocol
ZooKeeper is a client-server application for distributed

consensus. Clients can interact with the service using
a client library. The service can run in standalone or
quorum mode. The former requires only one server. Thus,
no replication of ZooKeeper’s state occurs. The latter,
on the other hand, uses a group of servers, termed the
ensemble, which replicate ZooKeeper’s state and serve
client requests.
In quorum mode, a server can be a leader, follower, or

observer. Clients can establish a mutually-authenticated
and SSL-encrypted TCP session with any of the available
servers (unauthenticated and unencrypted sessions are
also possible). Clients can submit read or state-changing
requests that are executed first-in-first-out (FIFO). Re-
quests are atomic and do not permit partial results. Read
requests are executed locally by the connected server
while state-changing requests are forwarded to the leader.
The leader is an elected server that is responsible for
executing and ordering requested state changes using the
Zab protocol. This is a two-phase commit protocol that
operates as follows:
1) A requested state change is transformed by the

leader into a transaction that includes the steps
needed to atomically apply the state change.

2) The transaction is transmitted by the leader to its
followers as a proposal.

3) Each follower checks that the proposal is from its
current active leader and that it conforms with
the current order of acknowledged and committed
transactions.

4) If the proposal is found to be compliant, the followers
accept the proposal and respond to the leader with
an acknowledgement.

1https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
2https://zookeeper.apache.org/releases.html

5) The minimum number of servers that need to re-
spond to a proposal with an acknowledgement is
referred to as the quorum. Once the leader receives
enough acknowledgements, it sends out a commit
message to the followers.

By following these steps, the protocol ensures that a
state change is properly stored before it is committed. It
also guarantees that transactions are ordered, consistent,
and durable, despite possible crash faults. It’s also worth
mentioning that changes are also permanent as ZooKeeper
does not support rollbacks.
To protect against split-brain behaviour in a ZooKeeper

system, the total number of servers in the ensemble should
be odd and the quorum should be a majority of the
available servers. Therefore, if a network partition does
occur, only one partition may have the number of servers
needed to progress ZooKeeper’s state.
As for scalability, ZooKeeper achieves this through the

use of observer servers and dynamic scaling. Observers
are servers that replicate the state of ZooKeeper. They
are used to scale the system without impacting the
performance of state-changing requests as they do not
participate in the voting process. Dynamic scaling, on the
other hand, allows a ZooKeeper service to add new servers
while the system is online.
So far, this subsection has addressed the scalability,

consistency guarantees, security, and client-push/server-
pull communication requirements in Table I. The next
subsection will discuss ZooKeeper’s data structure to show
how at-least-once message delivery may be achieved.

B. Data Structure
ZooKeeper stores data in units called znodes that

are organized into a hierarchical tree. Znodes can be
ephemeral or persistent. Ephemeral znodes only exist as
long as the client that created it has a valid session with
ZooKeeper. Ephemeral znodes are therefore not permitted
to have children. Persistent znodes, on the other hand, are
only removed if an authorized client calls for their deletion.
Persistent znodes are therefore used to grow the data
tree. Both types of znodes can be sequential. This implies
the assignment of a unique and sequentially incremented
integer to a znode’s name by ZooKeeper. To secure the
data tree, access rights are assigned to znodes each time
a znode is created.
Clients can register for notifications on state changes

in any znode by setting a watch. A watch can be set for
the creation or deletion of a znode, or for changes in a
znode’s data or its children. If a watch is triggered, a single
notification is sent to the client and the watch is removed.
The watch must reset to continue monitoring the znode.
Watches are set using read operations to avoid missing
state changes in the time between when the notification
is triggered and the watch is reset. Watches persist across
servers, but, similar to ephemeral znodes, are removed if
the client’s session expires.

Thus, as long as permanent znodes with proper access
rights are used for the submission of service calls, OPC
UA Servers should always be able to retrieve submitted
tasks at least once. Therefore, this achieves the required
at-least-once message delivery semantics in Table I. For
recoverability, the next subsection presents the data per-
sistence features of ZooKeeper.

C. Data Persistence
ZooKeeper uses transaction logs and snapshots for

data persistence on local storage. These are both files
on the local filesystem. Proposals are appended to a
transaction log before they are accepted to persist ordered
transactions to disk. A snapshot, on the other hand, is a
copy of ZooKeeper’s data tree serialized to file. ZooKeeper
snapshots are fuzzy as requests continue to be processed
while a snapshot is being taken. The transaction log must
be replayed when loading a snapshot to retrieve the true
state of a tree at a specific point in time. Thus, snapshots
and transaction logs may be used for recovery purposes
in case of node crashes.
With all of the requirements of Table I met, the next

section details the design and implementation of a queuing
service using ZooKeeper.

IV. Service Call Throttling
This section is concerned with using the mechanisms

available to ZooKeeper to implement a queuing service.
As such, it specifies the requirements and implementation
details of an integrated OPC UA and ZooKeeper solution
for mediating OPC UA service calls.

A. Demands
There are several requirements for the operation of the

queue. First, the system should allow OPC UA Servers
to register and initialize a queue. Furthermore, OPC UA
Clients and Servers must be able to assign and retrieve
tasks to and from their respective queues. Also, the order
in which tasks are processed may be important. As such,
the system should give sufficient support for ordered
execution. The system should also have mechanisms that
allow OPC UA Clients to detect if a Server has crashed or
disconnected. This may be useful, for example, when an
OPC UA Client can communicate directly with an OPC
UA Server, but the Server is unable to communicate with
and retrieve assigned tasks from ZooKeeper.
OPC UA Clients may also need to be able to circumvent

the queue if necessary. For example, in a safety-critical
environment, certain tasks may need to be processed by a
server immediately, regardless of the length of the queue.
Thus, it may be necessary to keep an OPC UA-native
back-channel open to allow Clients to invoke service calls
on Servers directly.
Lastly, a typical pattern for message oriented middle-

ware (MOM) based message queuing involves publishing
the response message on the same platform [2]. This is

Fig. 1. The integrated system architecture.

Fig. 2. Changes to the client-server service call communication flow.

not necessary for the queueing service. This is because
the service’s purpose is to shield OPC UA Servers from
excessive concurrent service calls by Clients, and not vice
versa. Hence, there is no immediate need to queue Server
responses as well.
With these demands in place, the next subsection will

describe the implementation of a ZooKeeper queuing
service. This includes the data structure employed and
the expected communication flow between an OPC UA
Client, ZooKeeper server, and OPC UA Server.

B. Implementation
A prototypical implementation of the queueing service

is built using an open source C99 implementation of
OPC UA, open62541 [15], and the ZooKeeper library
[14]. This subsection presents the data structure and the
communication flow used for the the implementation,
which itself is also open source3.
The data structure used by the queueing service builds

upon previous work employed in [13]. In [13], ZooKeeper is
used for the coordination of redundant OPC UA Servers.
The main feature adopted is the use of a Global Unique
Identifier (GUID) for each set of redundant OPC UA
Servers. In the queueing service, this allows clients to
set watches in a more specific manner that is expected
to reduce the overall frequency of notifications received.
The resulting data structure for service registration, queue
management, and crash detection would therefore be as
shown in Table III.

3https://github.com/AGIsmail/UaRateThrottling

TABLE III
The ZooKeeper Data Model for OPC UA Service Call Queuing

ZooKeeper Path Type of zNode Explanation

/Servers Persistent The root folder for Zookeeper integrated OPC UA (zkUA)
Servers.

/Servers/{GroupGUID} Persistent A GUID unique to each OPC UA Server redundancy set.

/Servers/{GroupGUID}/Active Persistent Path to registered zkUA Servers that are in a functional
state and connected to a downstream device.

/Servers/{GroupGUID}/Active/{ServerUri} Ephemeral Each active server registers itself using an ephemeral
znode.

/Servers/{GroupGUID}/Queue/ Persistent Path to the queues of registered zkUA Servers that are in
a functional state and connected to a downstream device.

/Servers/{GroupGUID}/Queue/{ServerUri} Persistent Every OPC UA Server creates a persistent znode named
after its server URI under the Queue path to accept task
assignments.

/Servers/{GroupGUID}/Queue/{ServerUri}/Tasks-

Persistent-
Sequential

Clients assign tasks to a Server by creating a znode with
the service call and the needed arguments under the
correct Server’s Tasks path. Each task is a sequential
znode for the synchronous execution of calls.

First, the root path for the queuing service on
ZooKeeper is the /Servers znode. Each set of redundant
OPC UA Servers is assigned its own unique path un-
der the /Servers znode using its GUID. The resulting
path is therefore /Servers/GroupGUID. Any active server
in the redundancy set then registers itself under the
/Servers/GroupGUID/Active znode using its ServerUri
or ServerId. A ServerUri or ServerId is used to identify
a specific server out of a redundancy set in the case
of non-transparent or transparent server redundancy,
respectively.
Once an OPC UA Server registers itself as an active

server, it initializes a queue using its ServerUri/ServerId
under the Servers/{GroupGUID}/Queue/ znode. OPC
UA Clients can submit tasks to a Server’s queue as
permanent and sequential znodes. Thus, after the queue
has been initialised, the Server sets a watch on its tasks
queue using a read operation to monitor for new tasks. If
tasks have already been queued between the time that
the queue is initialized and read, they are retrieved,
processed, and deleted from ZooKeeper. As a watch is
set on the queue by the Server, any future tasks added
by Clients trigger a single notification with the creation
of a task znode. No further notifications are sent until
the Server retrieves the tasks list and re-sets the watch.
The full communication flow between an OPC UA Client,
ZooKeeper Server, and OPC UA Server is demonstrated
in Fig. 1-2.

V. Discussion
The previous section presented the data structure and

process flow for the queuing and processing of OPC UA
service calls. An immediate concern revolves around the
possibility of service calls being processed more than once
or not at all. The former may occur if the queue is
retrieved more than once before the OPC UA Server
has had a chance to process and delete all of the tasks
retrieved in a previous run from ZooKeeper. The prototype

currently prevents this from occurring Once a notification
is triggered, the watcher function synchronously retrieves
the tasks list, re-sets the watch, and processes each task
before returning. The watcher function is not triggered
again until it has completed, and therefore deleted the
tasks on ZooKeeper and returned. This is the desired order
of events as it is a demand of section IV-A that tasks be
executed in order.
If, however, the ordered execution of service calls is not

important, then the watcher function may asynchronously
execute its tasks and return early. This may allow tasks
to be executed more than once. Recall, however, that
tasks are submitted to ZooKeeper as sequential znodes.
Preventing the multiple executions of a service call could
therefore be as simple as having each thread processing
a task list only execute znodes with an ID higher than
the last ID of its predecessor and lower than its own last
task’s ID. Alternatively, an internal queue, e.g., using a
hashtable, could be used to store the retrieved tasks and
their status. Multiple threads can then contend over the
available tasks and use locks to relieve the possibility of
duplicate executions.
Another issue to be addressed is the possibility that

service calls time out while in the queue. However, the
OPC UA specifications do not currently specify a value
for message time-outs. This value is purposely left open
for developers to set. Needless time-outs can therefore be
avoided through the selection of a reasonable value that
reflects the context of execution.
Concerning Clients’ ability to circumvent the queue,

this should be done with the utmost care. The use of
OPC UA’s native communication flow for service calls
effectively pushes requests to the front of the queue. This
may overload a server and cause it to enter a degraded or
failed state. It may also alter the states previously used to
submit the currently queued requests and may result in
their unsafe execution. Out-of-queue service calls should
therefore be done with caution.

Finally, in [11], it is indicated that distributed queues
is one of the least used applications for ZooKeeper. The
explanation offered is that consensus may have a detri-
mental effect on the performance of large queues. Apache
Curator’s documentation4 recommends against the use of
ZooKeeper for queues because of an anecdotal report.
The report mentions ZooKeeper’s transport limitations,
slow start up times and other complexities introduced
by having large queues, and other factors. However,
the points listed are all self-admittedly born of casual
observation in a global and multi-tenant architecture.
Thus, these remarks are not based on rigorous scientific
analysis, are not quantified, and are put forth by a single
source. It is also stated as being the result of “[developers
abusing] the queues”5. Given the difference in context,
results may differ. This paper does not currently pursue
an evaluation to discern these limits which may include the
size of the ZooKeeper ensemble, number of active OPC
UA clients and servers, znode size and distribution per
size, queue lengths, ZooKeeper settings (e.g., forceSync),
and hardware performance (e.g., storage I/O) [16]. This, in
fact, is a problem that may garner different results between
deployments. Instead, the prototype developed for this
paper is open-sourced and it should be possible for future
work to design appropriate architectures, quantify normal
limits of operation, and address contingencies for the
scalable execution of the service and dependent systems
once feedback is available from early adopters.
Further future work may also investigate the use of

load shedding for server overloads as was mentioned in
Section I. A comparison of server-side load-shedding and
task queueing on ZooKeeper would be immensely useful.
A possible outcome of this analysis, for example, may shed
light on the engineering cost involved in determining which
service calls can be dropped versus the cost of ensuring
safe out-of-queue service calls.

VI. Conclusion
This paper describes the possible vulnerability of OPC

UA Servers to resource exhaustion due to high rates of
concurrent service calls by OPC UA Clients. A queuing
service for service call rate throttling is identified as
a possible solution for mitigating server overload. The
requirements for this service are determined and shown to
be achievable using Apache ZooKeeper. A data structure
and queuing protocol is designed and demonstrated using
a prototypical implementation based on the open62541
and ZooKeeper libraries.
While certain facets of the design necessitate care in use

and administration, the system meets all of the demands
determined for the reliable queuing and execution of ser-
vice calls. Future work is expected to focus on comparisons
with alternative solutions, as well as the determination of

4https://curator.apache.org/curator-recipes/distributed-
queue.html

5https://cwiki.apache.org/confluence/display/CURATOR/TN4

appropriate deployment architectures and best-practices
that account for identified contingencies.

Acknowledgment
This paper is supported by TU Wien research funds as

part of the Doctoral College CPPS.

References
[1] W. Mahnke, Stefan-Helmut Leitner, et al. OPC

Unified Architecture. Springer Berlin Heidelberg,
2009.

[2] Gregor Hohpe and Bobby Woolf. Enterprise inte-
gration patterns: designing, building, and deploying
messaging solutions. Addison-Wesley, 2004.

[3] Keith Stouffer, Victoria Pillitteri, et al. NIST Special
Publication 800-82 Revision 2: Guide to Industrial
Control Systems (ICS) Security. Tech. rep. May
2015.

[4] Part 4: Services. R1.03. OPC Foundation. July 2015.
[5] Evan Jones. Preventing server overload: limit re-

quests being processed. url: http://www.evanjones.
ca/prevent-server-overload.html.

[6] Dilpreet Singh and Chandan K. Reddy. “A survey
on platforms for big data analytics”. In: Journal of
Big Data 2.1 (2015).

[7] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture
and the feasibility of consistent, available, partition-
tolerant web services”. In: Acm Sigact News 33.2
(2002).

[8] Michael J. Fischer, Nancy A. Lynch, et al. “Im-
possibility of distributed consensus with one faulty
process”. In: ACM Press, 1983.

[9] Lewis Tseng. “Recent Results on Fault-Tolerant
Consensus in Message-Passing Networks”. In: 2016
SIROCCO. Ed. by Jukka Suomela.

[10] Robbert van Renesse, Nicolas Schiper, et al. “Vive
La Différence: Paxos vs. Viewstamped Replication
vs. Zab”. In: IEEE Transactions on Dependable and
Secure Computing 12.4 (July 2015).

[11] A. Ailijiang, A. Charapko, et al. “Consensus in
the Cloud: Paxos Systems Demystified”. In: 2016
ICCCN. Aug. 2016.

[12] Flavio Junqueira and Benjamin Reed. ZooKeeper.
O’Reilly Media, 2013.

[13] Ahmed Ismail and Wolfgang Kastner. “Coordinating
Redundant OPC UA Servers”. In: 2017 IEEE ETFA.

[14] Patrick Hunt, Mahadev Konar, et al. “ZooKeeper:
Wait-free Coordination for Internet-scale Systems.”
In: USENIX Annual Technical Conference. Vol. 8.
2010.

[15] F. Palm, S. Grüner, et al. “Open source as enabler
for OPC UA in industrial automation”. In: 2015
IEEE ETFA.

[16] Sanket Chintapalli, Derek Dagit, et al. “PaceMaker:
When ZooKeeper Arteries Get Clogged in Storm
Clusters”. In: 2016 IEEE CLOUD. 2016.

