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Abstract—Over the previous years, many service-oriented (SO)
solutions have been proposed by European research projects
for the technological advancement of industrial systems. These
projects typically include a software reference architecture (RA)
based on the concepts of service-oriented architectures (SOA)
and, often-times, an accompanying technology stack to guarantee
system-wide interoperability. In this paper, we survey and outline
the specific approaches, standards, and specifications applied by
five such projects in their pursuit of SO solutions to specific
manufacturing and production problems.

I. INTRODUCTION

Industrial enterprises are well-known for the heterogeneity
of their technological landscapes. Integration in such envi-
ronments typically carries large engineering costs. The SO
paradigm attempts to reduce the needed efforts by employing
design features and patterns specifically geared towards the
development of flexible, agile, and manageable systems of
interoperable and reusable components. For example, service-
orientation grounds itself in the concepts of functional de-
composition, where a large problem is broken down into a
number of smaller ones. These units may then be addressed
using equally small solutions instead of a single monolithic
application. The encapsulated modules of logic are designed in
a functionally agnostic manner with clearly defined interfaces
and boundaries. This ensures that the resulting modules may
be reused and/or composed into new services without the
need for complex binding measures. The same features also
afford the technological independence of modules, whereby
the internal implementations of each module are not the
concern of the system. As such, the design of integration
solutions in a SO manner may reduce the future costs involved
in the integration of new technologies and in system evolution
[1, 2, 3].

According to [4], projects have been researching the appli-
cation of SO architecture (SOA) based solutions to industrial
problems since 2003. However, we limit our discourse to the
more recent and completed projects, limiting our timeline to
the period of 2010 to 2017. The purpose of this review is
to provide an overview of recent trends in the characteristics
and technology choices of research-based SO reference archi-
tectures for the industrial domain. Although we refrain from
including ongoing research projects, as published information
is subject to change, we make a single exception for the
Arrowhead framework as it has 77 partners and a budget
of 69 million Euros, making it one of the largest European
research projects in the field of automation [4]. In total,
five projects are surveyed, the Internet of Things at Work

(IoT@Work), Production Logistics and Sustainability Cockpit
(PLANTCockpit), ArchitecturE for Service-Oriented Process
- Monitoring and Control (IMC-AESOP), Embedded systems
Service-based Control for Open manufacturing and Process
automation (eScop), and Arrowhead framework projects.

Our analysis of said five projects is done from two opposing
perspectives to determine the ease with which they may be
translated into concrete architectures and the technologies that
may be used in such realisations. Section II embarks on estab-
lishing the first of these perspectives by applying a software
reference architectures analysis framework developed in [5].
Section III then proceeds to provide the second, more technical
and detailed perspective, by extracting the specific protocols,
standards and specifications used to define the various parts of
the architectures’ communication stacks. Together, a succinct
overview should be able to provide a baseline understanding
of the features of the respective architectures.

II. COMPARISON OF SERVICE-BASED PROJECTS

We begin by summarising the analysis framework developed
in [5]. This framework is made up of two components. The
first defines a classification method for categorising architec-
tures based on context, goals, and design. These factors are
addressed using a set of interrogatives for which there are
a select number of possible values, some of which are mu-
tually exclusive. The factors, interrogatives, and architectural
attributes are summarized in Table I [5].

The second element of the framework is in fact a set of five
architectural templates and two sub-types that define preset
compositions of values from the elements of Table I. An
architecture that shares the same attributes as a category is said
to belong to its type. The type most relevant to our forthcoming
analysis is type 5. This is due to it being the only one for
the development of RAs for facilitation based on preliminary
technologies through collaborations between research centres
and industrial partners, thereby making it the most applicable
to the reference architectures reviewed in the coming pages.
The combination of values for the type 5 category and the
degree to which the five reference architectures match is shown
in Table II.

As may be noted from Table II, all of the architectures re-
viewed are facilitation RAs, include preliminary technologies,
and are designed by partnerships between research, industrial
software design, and user organisations for application in
multiple organisations. In all of the remaining sub-dimensions,
however, nearly all of the RAs have divergent properties.



To begin with, we note certain RAs defining more than nec-
essary or missing one or more of the required elements in the
D1 dimension. The IoT @Work, eScop, and Arrowhead fit the
former description, while IMC-AESOP! and PLANTCockpit
are of the latter type.

As for the D2 dimension, this is notably one of the more
difficult dimensions for classification, with the framework’s
authors themselves noting that the classification technique
applied being subjective and therefore inherently imprecise.
However, the deviations noted for IMC-AESOP and PLANT-
Cockpit are irrefutable as certain elements needed by the D2
dimension are not defined at all by the respective RAs. As
for the remainder of the RAs, all have detailed specifications
for their components, and all but eScop detail their algorithms
and protocols as well.

For the D3 dimension, IMC-AESOP defines its architecture
in a completely abstract manner, while the remaining four all
specify concrete elements in their architectures [6].

Finally, in terms of representation, IMC-AESOP, eScop and
Arrowhead all use semi-formal techniques; the first uses the
Fundamental Modelling Concepts (FMC) graphical notation,
the second the Unified Modelling Language (UML), and the
last the Systems Modelling Language (SysML) [7, 8]. As for
IoT@Work and PLANTCockpit, neither architecture explicitly
declares its use of any specification for representation.

III. COMMUNICATION STACKS FOR INTEROPERABILITY

To ensure the interoperability of the architectural com-
ponents, the specification of the communication stack is a
necessity. This includes the exact definition of the service
discovery, service description, data representation, information
and message encoding, message exchange, network, media and
data link layer, and security layers of the communication stack.
These aspects are addressed separately within the remainder
of this paper, with the specifications and approaches used by
the various architectures stated for each layer. Since not all
of the projects specified a stack as part of their architectures,
we supplement the information provided with data extracted
from the prototypical implementations, pilot demonstrators,
and publications. Note that, to conserve space, the network,
media and data link layer are presented predominantly in
tabular form as Table III.

A. Service Discovery

In three of the five architectures, the web service dynamic
discovery (WS-Discovery) is used, excepting eScop and Ar-
rowhead. However, eScop appears to base its design of a
discovery protocol on WS-Discovery, while the Arrowhead
framework follows a completely different approach by pre-
dominantly using the Domain Name System (DNS).

The implementation of the WS-Discovery protocol in IMC-
AESOP appears in three different forms. The first involves its
use for the discovery of Service Bus instances. The remaining
two use WS-Discovery to augment the discovery mechanisms

IPlease note that we consider the IMC-AESOP RA to be limited to Chapter
3 of [6].

of the OPC Unified Architecture (OPC UA). One approach
uses WS-Discovery to allow OPC UA clients and servers
to dynamically resolve the address of the OPC UA discov-
ery server. The second has the OPC UA discovery service
completely replaced by the WS-Discovery protocol, allowing
OPC UA clients and servers to directly discover each other.
For resource discovery in constrained environments, however,
IMC-AESOP relies on the mechanisms of the Constrained
Application Protocol (CoAP), CoAP multicast, and the Con-
strained RESTful Environments (CoRE) Resource Directory
(RD) [9, 10, 11, 12].

In the case of PLANTCockpit, the architecture uses adapters
to interface with systems. The discovery protocols in use are
therefore dependent on the implemented adapters. An example
provides a DPWS adapter, which should include the WS-
Discovery protocol, to interface with DPWS devices. As for
discovery between the internal components of the PLANT-
Cockpit system, since the system is said to be implemented
using the OSGi framework, it may be based on the OSGi
service registry; however, this is not explicitly stated, and no
other alternative is presented in publicly available materials
[13, 14].

The IoT@Work project, like IMC-AESOP, also used the
discovery mechanisms of OPC UA and WS-Discovery; how-
ever, it did so within the context of auto-configuration. For
service discovery, IoT @Work relied on a RESTful Directory
Service with interactions taking place using HTTP requests
[15].

As for eScop, the project appears to base its discovery
mechanisms on WS-Discovery as it uses multicast Hello,
Bye and Probe messages [16]. However, closer inspection of
published code! shows divergences from the WS-Discovery
specification, including the use of multicast IP addresses and
ports different than those for WS-Discovery.

Finally, the Arrowhead project uses DNS and DNS Ser-
vice Discovery (DNS SD) for the implementation of service
registry functions. For constrained devices, this system is
extended to include multicast DNS (mDNS). However, Ar-
rowhead also supports the use of XML-over-HTTP and JSON-
over-HTTP for the discovery of RESTful services. The XML-
over-HTTP implementation uses an ARROWHEAD-specific
DNS protocol. Details on the JSON-over-HTTP protocol are
not yet present as an implementation is still to be made public
[17, 18, 19, 20].

B. Service Description

Here, a number of projects again use web services specifica-
tions, applying them for the definition of service descriptions
and service contracts. The Web Services Description Language
(WSDL) is used by both IMC-AESOP and PLANTCockpit.
eScop, having RESTful interfaces, opts to use the Swagger
specification for the creation of human and machine-readable
service descriptions. IoT@Work, as previously mentioned,
explored the use of WS-Discovery and OPC UA for auto-
configuration. It is therefore able to use WS-Discovery and

Thttp://www.escop-project.eu/tools/



TABLE I

SUMMARY OF THE APPLIED ANALYSIS FRAMEWORK [5]

Factor Dimension Value Explanation
Standardisation Interoperability-focused concrete architectures.
Goal Gl1: Why 2 P Y
Facilitation Guidelines for the design of concrete architectures.

Single Organisation

Cl1: Where 2

The architecture is developed to standardise or facilitate the development
of software for a single enterprise.

Context Multiple Organisations

The architecture is to be used by several organisations that have a
common property (industrial domain, technological constraints etc.)

Software organisations
C2: Who

Apply the reference architecture; requirements providers that may also be
involved in the design of the reference architecture.

User organisations

Users of the resulting software; requirements providers.

Independent organisations

Refers to research, standardisation, non-governmental and other
organisations that do not implement or use the resulting software
solutions.

C3: When 2 Preliminary

The technologies required for the application of the reference architecture
exist only as research experiments, proof-of-concepts, or are partially or
completely absent at the time that the architecture is defined.

Classical

The technologies required for the application of the reference architecture
are mature at the time that the architecture is designed.

DI1: What (See explanation)

The element types defined. Possible options are “components and
connectors, interfaces, protocols, algorithms, and policies and guidelines”

(5]

Design D2: Detail

How

Detailed: Many elements belonging to three or more aggregation levels

Aggregated: A single aggregation level containing a small number of
elements.

Semi-detailed: Between detailed and aggregated.

D3: Concreteness

Abstract: General definitions of architectural elements.

Semi-concrete: Specific definition of a selection of options for every
component of the architecture.

Concrete: Defines the option to be used from the selection for every
element in the architecture.

D4: Representation

Informal: The architecture is defined using ambiguous graphical notation
and/or through natural language.

Semi-formal: Uses a non-ambiguous graphical notation that is not based
on a mathematical foundation.

Formal: Uses clearly-defined formal specifications based on mathematical
techniques.

Footnotes: ' Possible values for these dimensions are mutually exclusive.

TABLE I

ATTRIBUTES OF A TYPE 5 REFERENCE ARCHITECTURE [5]
AND DEGREE OF MATCH OF THE ANALYSED REFERENCE ARCHITECTURES

Category Type 5 IoT@Work  PLANTCockpit ~IMC-AESOP  eScop Arrowhead

Gl: Facilitation X X X X X

Cl: Multiple organisations X X X X X
Research Centers (D)

C2: Software design organizations (D, R) X X X X X
User Organisations (R)

C3: Preliminary X X

D1: Components, algorithms, protocols ~ ~ ~ ~ =]

D2: Detailed/Semi-detailed: components, algorithms. - ~ ~ ~ ~

Aggregated/semi-detailed: protocols. ~ ~ ~ ~ ~
D3: Abstract - - X - -
D4: Formal/Semi-formal - - X X X

Notation: X is a match, &~ means deviations exist, and - means it does not match [5].



WS-MetadataExchange to communicate addressing informa-
tion, policies, WSDL definitions and other details using WS-
Transfer. For OPC UA, IoT@Work relies on the standard’s
GetEndpoints service to acquire information relevant to the
creation of secure communication channels between nodes.
Finally, in the case of Arrowhead, the DNS system struc-
tures information using the DNS-SD specification, while the
XML system uses the Web Application Description Language
(WADL) [21, 7, 22, 23, 24, 18, 19]

C. Data Representation and Access

For information representation, only the IMC-AESOP and
Arrowhead projects use mature standards for their models. The
former uses OPC UA for the representation of data in the upper
layers of the enterprise and an augmented form of SenML,
modified for increased granularity, for the lower layers [7].

Like IMC-AESOP, Arrowhead highlights the OPC UA and
SenML standards as possible solutions for data representation.
However, Arrowhead also discusses the use of the Home
Performance XML standard and the Constrained RESTful
Environments (CoRE) Link Format. The divergence of pilot
implementations from the frameworks’ specification are noted
in the energy production demonstrator pilot where the Thing
Markup Language (ThingML) is used instead of the above
specifications [25, 26].

The eScop and IoT@Work projects favour an ontology-
driven approach. eScop uses the proprietary Manufacturing
System Ontology (MSO); an evolved form of the Politec-
nico di Milano Production Systems Ontology (P-PSO) taxon-
omy that was originally designed for discrete manufacturing
systems [27]. The latter, IoT @Work, develops an ontology
inspired by the uCode Relation Model for information rep-
resentation in its Directory Service. It is important to note,
however, that IToT@Work also supports the OPC UA address
space and information model and the SNMP MIB data model.
The former is used for IoT @Work-compliant devices while
the latter allows the system to interface with SNMP devices
[15, 28].

Finally, PLANTCockpit creates a meta-model for a database
schema for the storage of various data types. It also has an
XML schema for the persistence of configurations needed for
the visualisation of system data [29].

D. Information Encoding

For message encoding, all architectures support the XML
format and all but PLANTCockpit support the JSON spec-
ification. For compactness, the Efficient XML Interchange
(EXI) specification is used by the IMC-AESOP and ARROW-
HEAD projects, XML-binary Optimized Packaging and Mes-
sage Transmission Optimization Mechanism (XOP/MTOM)
by IMC-AESOP, and OPC UA Binary by IMC-AESOP,
IoT@Work, and, possibly, PLANTCockpit as well as part of
its OPC UA adapter. However, none of the projects employ a
binary format for JSON, with Arrowhead’s historian being the
only project describing the inclusion of CBOR as a long-term
goal [30, 25, 7, 31, 15, 32, 33, 34, 35, 36].

Other encodings employed include HTML, Security Asser-
tion Markup Language (SAML), eXtensible Access Control
Markup Language (XACML), and YAML. The first, HTML,
is for the structuring of web content and is explicitly stated
as parts of the JToT@Work and PLANTCockpit implementa-
tions. SAML and XACML, on the other hand, are used by
IoT @Work for authentication, authorisation, and the definition
of security policies. YAML, finally, is used by eScop for the
definition of Swagger files [15, 33, 37].

E. Message Exchange

Message exchange in the various architectures is done
using web-based specifications, message-oriented middleware
(MOM), and portions of the OPC UA communication stacks.
Aside from DPWS, which has already been covered in the
previous chapters, another Internet specification, HTTP is used
by IoT@Work for its directory service, and HTTP/HTTPS is
used in IMC-AESOP and ARROWHEAD for the transport of
SOAP messages. For constrained systems, IMC-AESOP and
ARROWHEAD use the CoAP protocol. As for the employed
MOMs, we note the use of the Java Message Service (JMS) by
PLANTCockpit, AMQP by IoT @Work, and, depending on the
demonstrator, XMPP and/or MQTT in Arrowhead. Finally, to
address the OPC UA portions of the stack, both IMC-AESOP
and [oT@Work implement the native UA Binary profile, which
is a combination of UA Binary, UA-SecureConversation, and
UA-TCP. IMC-AESOP also implements the UA web services
profile which uses UA XML, SOAP and HTTPS. The Arrow-
head project also applies OPC UA, as it uses the OPC UA SDK
from Unified Automation in a condition monitoring proof of
concept. In the case of PLANTCockpit, although it describes
OPC UA as a core technology, unfortunately, implementation
details are not present in the public deliverables [25, 15, 7,
21, 36, 30, 28, 38, 39, 24, 10, 40, 41].

F. Networking, Data Link and Media

As previously mentioned, the majority of the networking,
media, and data link standards and supporting application layer
services are listed in Table III. It may be noted that the eScop
and PLANTCockpit projects are not included in this table.
This is because neither one explicitly defines these layers in
available materials. We refrain from making inferences as the
underlying assumptions may prove to be inaccurate.

G. Security

For security, the IoT @Work project introduces a capability-
based access control mechanism. In this context, capabilities
are XML documents composed of elements from the SAML,
XACML, Digital Signature and XML encryption specifica-
tions. These capabilities can be created and revoked to allow
or disallow a process from interacting with a specific element.
IoT@Work also uses IEEE 802.1AR secure identifiers and
follows the IEEE 802.1X standard for network access control
[47, 15, 48].

In the case of PLANTCockpit, an LDAP service is used
as a single-sign on (SSO) solution both for access control



TABLE III
THE NETWORKING, MEDIA & DATA LINK STANDARDS AND SUPPORTING APPLICATION SERVICES [25, 42,43, 44, 45,7, 15, 46, 28]

Layer IMC-AESOP TIoT@Work Arrowhead Framework
Application Services NTP, IEEE 1588 PTP NTP, IEEE 1588 PTP, IEEE = NTP

802.1Q, SNMP, DHCP, DNS,

LLDP, STP
Networking IPv4, IPv6 IPv4, IPV6 IPv4, IPv6

Media & Data Link 6LoWPAN, IEEE 802.15.4,
IEEE 802.11, RS-485 Mod-

bus, Profibus

NFC, QR, Profinet 6LoWPAN, IEEE 802.15.4,
IEEE 802.11p, NFC, UWB,
GSM, GPRS, UMTS, RS-485

CAN

and user rights management. As for message encryption in
PLANTCockpit’s JMS, this is claimed to be carried out by
a central component. PLANTCockpit also states that JMS
security, in general, is handled by what it terms ‘interceptors’.
Unfortunately, more information is not available as the major-
ity of its security aspects are described in a private deliverable
(D3.2) [49, 50, 30].

The Arrowhead framework, on the other hand, details its
features for security in discovery, authorisation control, legacy
systems mediation, and communication. In discovery, DNS
updates and queries are secured using DNS TSIG keys and
DNS Security Extensions (DNSSEC). Authorisation Control
and secure communication is carried out using X.509 cer-
tificates, TLS/DTLS for TCP/UDP respectively, and a Public
Key Infrastructure (PKI). For mediation in legacy systems,
the project pursues the development of a secure NFC system.
This may be the ‘ESTADO’ system; a modular device used
to supplement legacy devices with a contemporary and secure
platform. Further security features are noted in an implemen-
tation of 3D swarming systems, where communications use
Message Passing Interface (MPI) with Secure Shell (SSH) [18,
51, 25, 52, 53, 54, 55].

As for IMC-AESOP and eScop, security is largely ne-
glected. IMC-AESOP limits its security capabilities to HTTP
basic authentication and Role-Based Access Control (RBAC)
for service calls. eScop on the other hand, only appears to
include input sanitisation measures and to require testing to
ensure data persistence and system misuse avoidance [8, 56].

IV. CONCLUSION

In this paper, we address several current research projects
for SOAs in the industrial domain. These projects are sur-
veyed from two perspectives to provide the reader with an
understanding of the features of the various RAs and the
technology stacks that were envisioned by the creators as
feasible candidates for their implementation. What is apparent
from the first perspective is that the reviewed projects either
over or under-specify their RAs, and at times miss critical
features required for the creation of concrete implementations.
The authors of [5] note that a lack of congruence between a RA
and its category makes the RA vulnerable to low adoption rates
and criticisms by stakeholders. Due to the lack of reporting on
adoption rates we refrain from making the same conclusion.
However, the authors of [5] also note that the presence of
ambiguities in RAs, such as the informal representation of

components, leads to a need for additional documents to
clarify the architecture. We provide those interested with
the second perspective, the technology stacks, extracted from
numerous publications, deliverables, and other materials in
the hopes that it may assist in achieving such clarity. In
certain cases, where the implementations did not address or
make available certain layers of their technology stacks, extra
effort may still be necessary in the carrying out of concrete
implementations. With these points in mind, we hope that this
paper may serve as a guide in the design of future SO RAs
in industrial applications.
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