
Int. J. Internet Protocol Technology, Vol. 9, Nos. 2/3, 2016 79

Copyright © 2016 Inderscience Enterprises Ltd.

Vertical integration in industrial enterprises and
distributed middleware

Ahmed Ismail* and Wolfgang Kastner
Institute of Computer Aided Automation,
Vienna University of Technology,
Vienna, Austria
Email: aismail@auto.tuwien.ac.at
Email: k@auto.tuwien.ac.at
*Corresponding author

Abstract: Recent advances in information, operations and networking technologies have brought
forth many economical and organisational opportunities for industrial enterprises. One of the
enabling pillars for the exploitation of these opportunities hinges predominantly on the design
and introduction of frictionless vertical integration in enterprises. The paper presented concerns
itself with the generation of autonomous middleware for vertical integration in existing or new
industrial enterprises. Consequently, the paper discusses the main concerns of designing such
middleware systems for typical enterprise infrastructure. Solutions from both the information and
operations technology sectors are examined in light of said requirements with the aim of
enhancing the current state of middleware solutions and industrial enterprises alike.

Keywords: middleware; vertical integration; industrial internet of things; industrial enterprise;
enterprise reference architecture; ERA; industrial network design; factory connectivity standards;
peer-to-peer; P2P; virtualisation; IEC 61499; middleware architectures.

Reference to this paper should be made as follows: Ismail, A. and Kastner, W. (2016) ‘Vertical
integration in industrial enterprises and distributed middleware’, Int. J. Internet Protocol
Technology, Vol. 9, Nos. 2/3, pp.79–89.

Biographical notes: Ahmed Ismail is a PhD candidate at the Automation Systems Group of TU
Vienna. Since joining TU Vienna, he has been responsible for researching scalable and secure
solutions related to the future of factory communication infrastructures. His work pertains to
various system integration techniques for industrial automation systems.

Wolfgang Kastner is an Associate Professor at TU Viennas Faculty of Informatics. His research
interests concern networked control systems and distributed automation systems with a special
focus on system integration (enterprise integration; field level integration) taking into account
safety and security issues. His areas of interest include cyber-physical production systems, smart
buildings and smart grids, and their seamless integration into the internet of things.

1 Introduction

As noted in the Reference Architecture Model Industrie 4.0
(RAMI 4.0), a principle element in the design of modern
industrial systems for enhanced enterprise competitiveness
is vertical integration (Adolphs et al., 2015). The
importance of vertical integration is derived from the
inherent complexities typical of distributed automation
systems. That is, industrial automation systems currently
utilise a large number of protocols and are present in many
various architectural forms. This heterogeneity proves to be
a major hindrance to the adoption of modern technologies
that are increasingly dependent on the easy accessibility of
data and devices. Vertical integration is primarily
concerned with addressing this heterogeneity by enhancing
interlayer data exchange capabilities, thereby allowing for
the deployment of contemporary business-enhancing
applications. A typical solution employed in the pursuit of

vertical integration is the use of gateways capable of
protocol transformation. Although a viable strategy for use
in the industrial IoT (IIoT), transformation may result in
information loss and is a costly engineering effort to
develop and integrate with existing systems.

Nevertheless, extensions to the basic concept of
gateways warrant their complex and costly engineering
effort. By increasing the level of integration between
automation layers and full enterprises you allow for the
integration of meaningful services. That is, the gateway may
be elevated through the pervasive deployment of the
gateway hardware and the introduction of enhancements
such as web portals and data-enriching information models.
In doing so, the gateway achieves an additional layer of
intelligence. This intelligence, afforded the property of
omnipresence by the middleware, may host a myriad of
services appropriate for any industrial layer. The closest of
analogies to such an envisioned system would be the natural

80 A. Ismail and W. Kastner

evolution of the enterprise service bus (ESB) towards an
industrial gateway service bus (GSB). Such a middleware
system may thereby add a level of robustness, versatility
and extensibility to the industrial enterprise, providing it
with the ability to integrate a wide array of modern
algorithms and technologies in a safe and secure manner.
The importance of such technologies lies in the fact that
they may then be used to enrich the process. It could, for
example, allow for an increase in a plant’s efficiency and be
used to facilitate a plant’s compliance with legal and
regulatory standards, or even assist in enhancing its energy
efficiency or infrastructural security.

We concern ourselves in this paper with a specific type
of middleware; that being an autonomous middleware
capable of being deployed on dedicated or regular industrial
hardware, such as field level elements, for the purposes of
vertical integration in existing or new enterprises.
Consequently, the coming sections address several topics
that need to be considered when designing such a
middleware. Sections 2 and 3 present overviews on the
concepts of enterprise reference architectures (ERA) and
ERA-derived network designs, respectively, along with
discussions on methods of middleware integration with such
ERAs and networks. Section 4 summarises the various
factory connectivity standards that the middleware may use
to interface with an industrial system. Section 5 provides a
description of two prominent projects that use connectivity
standards to generate holistic SOA middleware solutions.
Section 6 presents a description of several solutions
from the information technology (IT) and operations
technology (OT) domains that may be used to extend the
capabilities of middleware systems. Section 7 provides an
information-centric viewpoint of middleware and process
security. Finally, the paper concludes in Section 8.

2 Industrial ERAs

A reference architecture is a structured meta-model
representing the various functional elements and
interactions of an enterprise system. Industrial enterprises
use a reference architecture in order to allow for the rapid
generation of a useful system architecture that adopts all of
the relevant insights and best practices gained from years of
previous deployments. Developing middleware without
taking into account the restrictions imposed by existing
architectures risks the breaking of application dependencies
vital to the middleware once it is deployed. In this section,
we will focus predominantly on the Purdue enterprise
reference architecture (PERA) framework as it is widely
accepted by industry and is compatible with multiple

standards, such as ISA 95, ISA 88, and IEC 62443
(Giachetti, 2011; Williams, 1993; He et al., 2012).

Using the ISA 95 and ISA 88 models, PERA essentially
segregates the elements comprising an industrial enterprise
system into separate zones and conduits. The system is
essentially divided into five functional layers. The lowest
layer, level 0, is the actual physical process. Level 1 consists
of the device communication networks directly in control of
the physical processes. The second layer comprises the
control and automation network. This level can directly
access the process and discrete devices of level 1 to set or
reconfigure them as needed. Level 3 consists of operations
management systems, such as the MES. Level 3
components may only read from layers 1 and 2. Level 4 is
where the enterprise system is located and is where the bulk
of the business process network exists. The application of
the PERA model has been extended with time and currently
includes a sixth layer and a DMZ. The sixth layer, level 5, is
where centralised IT systems and their associated functions
are situated. The DMZ, on the other hand, is in place to
manage access from levels 4 and 5 to the data and network
of levels 0–3. The recommended practice is to have no
traffic cross the DMZ, instead all traffic should either
originate or terminate within the DMZ. Therefore, data
sharing and application servers are normally found in the
DMZ (Williams, 1993; He et al., 2012; Didier et al., 2011).

Beyond segregation based on function, an enterprise’s
architecture is also influenced by a number of other aspects.
Discussed in Zerbst et al. (2013), and reproduced in Table 1,
these include elements such as security assessments and
operations and maintenance work. Such factors imply that
the enterprise infrastructure and architecture is dynamic in
nature as it must adapt opportunistically in line with their
results over time. In order to allow for a truly autonomous
middleware, the middleware system must therefore have
methods through which it is able to continuously and
accurately infer the existing infrastructure within which it is
operating.

As noted in Hauder et al. (2012) and Farwick et al.
(2013), literature exploring automated methods of acquiring
such information is quite limited. The work of Hauder et al.
(2012) lists the challenges facing automated EA modelling.
These include having to deal with large volumes of data,
generating the appropriate models to transform data into
useful representations, and using the tools to do so in an
appropriate and secure manner. The GSB domain typically
deals with the secure acquisition, processing, transformation
and extraction of meaningful information from data
(Colombo et al., 2014). Consequently, this places the GSB
at an ideal starting point for tackling problems of integration
with dynamic environments.

 Vertical integration in industrial enterprises and distributed middleware 81

Table 1 Governing factors in zonal population

Factor Explanation

Regulations and
legislation

Systems must observe the imposed local, regional, national or international regulations, legislation and standards.

Impacts The impact of system malfunctions on the business must reflect on the system design.
Safety The system must comply with safety best practices. Standards such as IEC 61508 and IEC 61511, provide the

necessary guidance.
Security The system must be designed in accordance with the requirements of security risk assessments.
Locality The physical location of systems must be taken into consideration when defining both the zones and the digital

system in itself.
Architecture The system must integrate within the overall technical and landscape architecture.
Operations and
maintenance

Operational and maintenance considerations impacting the system, the technical architecture, or the physical
infrastructure, should be taken into account.

Organisation The organisational structure and culture introduces a set of requirements that ought to be reflected unto the system
under design.

Source: Zerbst et al. (2013)

Figure 1 A typical ethernet-based industrial enterprise network

Source: Didier et al. (2011)

82 A. Ismail and W. Kastner

The main concern for integration is therefore in the
selection of the appropriate tools for the acquisition
of the necessary information. This is addressed in
Farwick et al. (2013) where a survey shows that IT-oriented
tools, such as network monitors and scanners (NMS),
configuration management databases (CMDB), and ESBs
are fully-automated solutions that provide the most actual
data. Since, the GSB is based on the concept of ESBs,
furthering the reach of the GSB would require either the
provision of appropriate interfaces for these tools, or having
said tools directly integrated as components of the GSB.

3 Network designs and considerations

Abstracting the reference architecture on the network
design, Figure 1 shows a typical implementation of an
industrial enterprise network. The way that such a network
would be organised is as follows. Any traffic entering the
enterprise from the internet is intercepted by a fifth layer
DMZ. Alternatively, a firewall may be used to isolate or
inspect and filter packets entering the enterprise. To access
the lower layers from the enterprise a second DMZ must be
crossed. Figure 1 shows two firewalls and two routers
controlling access to the DMZ, this is only to highlight the
manner in which redundancy requirements may reflect on
the network design. This element of redundancy is
continued throughout the layers with the left and right
portions of Figure 1 representing redundant versions of the
same enterprise components. Traffic into the DMZ, whether
from the enterprise or from a lower layer, traverses a
firewall before accessing the required servers. This is to
filter and prevent the direct communication of levels 4–5
and levels 0-3. Level 3 and below consists of process and
control servers which would be accessed using a myriad of
switches or routers. These switches and routers separate the
various areas of concern into VLANs or subnets, as
required. These lower layers may contain industrial ethernet
solutions or wireless technologies such as the ISA 100.11a,
Wireless HART, or OCARI standards, which, in turn,
would require gateway solutions. Finally, technologies such
as NAT may also be present at the lower layers to simplify
address management during the reconfiguration of
manufacturing cells (Didier et al., 2011).

Integrating the middleware with the network brings
forth two concerns; firstly, the extraction of data without
impacting communication links, and secondly, allowing for
middleware components to communicate across layers
without requiring extensive changes to the infrastructure.

The former of these two points has to do with the
heterogeneous nature of the enterprise layers. Due to the
varying application needs and constraints of each of these
layers, the protocols that operate within each respective
layer differ from one another. For the lower layers, for
example, real time connectivity is a necessity, while for the
upper layers, it is normally not a requirement. In order to
allow for effective protocol convergence and cross-domain
communication, the middleware needs to be able to

intercept all possible communication paths to and from
levels 0-DMZ. This needs to be done without impacting the
constraints or design factors binding said paths. Fortunately,
a number of methods exist that may allow the middleware
to do so. These include port mirroring, and more intrusive
methods such as network TAPs and bridging (Didier et al.,
2011; NSA, 2010).

However, in regards to cross-layer communication by
the middleware in the face of NAT, the inclusion of NAT
traversal may be required. NAT traversal techniques depend
on the mode of communication and either involve UDP hole
punching or TCP hole punching. UDP hole punching may
use STUN or TURN. TCP hole punching operates similarly
to its UDP counterpart and includes mechanisms such as
ATUNT, NUTSS and NATBlaster (Phuoc et al., 2008).

4 Factory connectivity standards

The factory connectivity standards to be discussed here are
a collection of technologies used to define standardised
interfaces and methods for information presentation and
description. This standardisation allows for vendor-neutral
interoperability and efficient information exchange between
the various functional elements of an industrial enterprise.
In addition to allowing the middleware to integrate with the
enterprise, they may also be used in intra-middleware
communication. The section addresses a subset of both
information-centric and message-oriented middleware
concepts. The information-centric standards will provide a
description of holistic solutions, information modelling and
schema specifications, a solution for web services
integration, and a standard for compact XML data exchange
for constrained devices. On the other hand, the message-
oriented middleware subsection will focus on real-time
communication standards that lack information models and
schema.

4.1 Information-centric standards

Object linking and embedding (OLE) for process control
(OPC) classic is a client-server-based set of standards for
the definition of data transfer software interfaces. This
grouping of complementary standards consists of the data
access (OPC DA), historical data access (OPC HDA),
alarms and events (OPC A&E), data exchange (OPC DX),
security, XML-data access (OPC XML-DA), complex data,
commands, batch, and OPC .NET specifications. By
standardising these interfaces, a common method is
available for the exchange of data between diverse control
systems and products. This greatly simplifies the driver-
development process for the vendors and manufacturers of
industrial systems. The data exchange process itself uses
Microsoft’s distributed component object model (DCOM)
(Byres et al., 2007).

The OPC unified architecture (UA) standard is the
successor of OPC classic. It addresses some of the shortfalls
of OPC classic, extending it appropriately in order to allow
for platform independence, object orientation and a service

 Vertical integration in industrial enterprises and distributed middleware 83

oriented architecture (SOA), all while maintaining
backwards compatibility with OPC Classic. Functionally,
the OPC UA information model is a combination of OPC
DA, A&E, HDA, Commands, and Complex Data, and is
built on OPC DA’s data model. The services defined by
OPC UA consist of a fixed set of groups; namely, they are
the Discovery, SecureChannel, Session, NodeManagement,
View, Query, Attribute, Method, Subscription, and
MonitoredItem services. To ensure interoperability,
these sets are fixed in behaviour and parameters. For
security, the features included are able to provide for
authentication, authorisation, confidentiality, integrity,
freshness, auditability, and availability. Reference
implementations are available in a variety of languages,
including ANSI C, Java, and .NET, and as such, may be
deployed on systems from the embedded to the enterprise
level. As of yet, OPC UA is not able to operate under
real-time constraints; however, the OPC Foundation is
currently exploring the use of IEEE 802.1 TSN to allow for
such real-time capabilities (Mahnke et al., 2009; B&R,
2015).

Automation Markup Language (AutomationML) is an
XML-based neutral data format designed specifically for the
storage and transfer of plant engineering information.
AutomationML is aimed at connecting together the tools of
the various engineering disciplines and phases of the plant
life cycle. It does so by having all of the modelled and
stored information follow a neutralised hierarchical
object-oriented model. That is, the various engineering tools
being incorporated in the information model have their
object identification schemes homogenised by a single
model. This model is governed by a set of three existing
standards, along with a defined set of rules on how these
standards may be used and interlinked. Together, these
standards form the AutomationML specification. In detail,
AutomationML uses the CAEX standard (IEC 62424) for
plant topology information, COLLADA for geometry and
kinematics information, and PLCopenXML for the
modelling of control, behaviour, sequencing and logics
information (AutomationML, 2014; Henßen and Schleipen,
2014).

The MTConnect standard is a four part XML-based
standard for data integration. It provides a read only,
RESTful data retrieval mechanism over HTTP, thereby
uniformly supplementing existing systems’ transport
mechanisms regardless of their heterogeneity. The XML
schema defined by MTConnect defines information models
for devices, streams, and assets. MTConnect defines devices
as functional machines or parts of machines. Streams are
mostly concerned with organising devices, events and
samples. Finally, assets are physical objects that are not
detrimental for the functionality of machinery. Extensions
to the standard exist that define models for device interfaces
and for cutting tools as assets (Sobel, 2015).

The device profile for web services (DPWS) OASIS
standard is an architecture used to provide an enterprise
with a host of web services (WS) technologies. It also uses
WS-protocols in order to allow for seamless peer-to-peer

(P2P) device interactions. Architecturally, DPWS is
composed of hosted and hosting services. The hosted
services provide functionality to a device, while the hosting
services provide the hosted services with discovery
capabilities. In all, the DPWS built-in services include
discovery, metadata exchange, and publish/subscribe
services. However, DPWS may be extended using the
appropriate WS-specifications to allow for security,
resource and device management, eventing, addressing,
policy management features, as well as a number of other
functionalities (Hock et al., 2009; Driscoll and Mensch,
2009; Sucic et al., 2012).

4.2 Message-oriented middleware

Several existing implementations of MOMs include, but are
not limited to, DDS, CORBA, MQTT, AMQT, STOMP,
and ZeroMQ. However, the focus of this section will
be on industrially-proven real-time (RT) communications
standards. Consequently, this section only covers the DDS
and CORBA standards.

DDS is a data-centric OMG middleware standard
capable of both dynamic discovery and of implementing
QoS parameters in order to provide its publish/subscribe
mechanisms with real-time (RT) communications. Its ability
to support RT performance has allowed for its deployment
in mission critical systems (Schmidt and Hag, 2008).
The DDS interoperability protocol is defined by the
real-time publish subscribe (RTPS) DDS specification
(IEC-PAS-62030). The RTPS wire protocol allows devices
from multiple vendors to communicate by multicasting
IP-based connectionless best-effort transport protocols such
as UDP (OMG, 2014). Implementations of the DDS
standard exist in both open source form, such as is the case
with OpenDDS and OpenSplice, and in commercial forms,
such as RTI-DDS. The OMG’s middleware and related
services (MARS) platform task force (PTF) has, as of
recently, set itself a target for defining a gateway in order to
bridge together the DDS and OPC UA standards (Ungurean
et al., 2014; Wales, 2015; RTI, 2009).

As opposed to DDS, the common object request broker
architecture (CORBA) is a client/server OMG middleware
standard used for the transfer of information between
heterogeneous applications and systems. For real-time
guarantees the RT-CORBA specification may be used.
RT-CORBA allows for deterministic access to shared
resources and has several scheduling policies in place for
multithreading applications. Like DDS, CORBA is platform
independent and type safe. However, unlike DDS, CORBA
is a point-to-point standard that is not capable of dynamic
discovery; rather, nodes must know each other directly or
use a naming service for discovery. Furthermore, CORBA
lacks the QoS abilities of DDS that allow for the tailoring of
communications. Lastly, the interoperability wire protocol
specified by CORBA is part of the CORBA standard
itself, compared to DDS which is independent of a wire
protocol and only has one defined as a non-mandatory
accompanying specification. Currently, as pointed out in
Ungurean et al. (2014), several open-source and commercial

84 A. Ismail and W. Kastner

implementations of CORBA exist, with the most prominent
open-source implementation being The Ace ORB (TAO)
project (Ungurean et al., 2014; OMG, 2005).

As is apparent from the descriptions of the standards in
the previous two subsections, a number of these standards
take on many of the different aspects required to enrich the
factory process. These include functions related to
integrating web services, RESTful data retrieval, and the
integration of information exchange models that guarantee
access to enriched field level data. However, since
constraints and requirements vary from one level of the
enterprise to the other, none of the standards above are
capable of providing these features for the entire enterprise.
In order to address such shortcomings, middleware
architectures have been presented in recent years merging
together some of the aforementioned standards, and
extending them appropriately in order to create complete
architectures and communication stacks. The coming
section will discuss two of these architectures that are
designed specifically for vertical and horisontal integration.

5 Middleware architectures

The architecture and communication stack governing the
middleware may take on several forms in order to ensure
interoperability and efficiency of communication amongst
the middleware components. Within this section, a review
of two large EU FP7 project outcomes is presented in order
to give an overview of the different considerations and
strategies put to use in the development of such an
architecture and stack. These are the architecture for
service-oriented process – monitoring and control
(IMC-AESOP) and IoTSys projects. The former is a
middleware solution that presents a SOA for industrial
plants. IoTSys, on the other hand, is a project that uses a
communication stack and a middleware solution to provide
smart IoT objects with interoperability and plug-and-play
connectivity in the building automation domain (Colombo
et al., 2014; Jung, 2014).

5.1 IMC-AESOP

The architecture for service-oriented process-monitoring
and control (IMC-AESOP) project investigates the use of a
SOA to achieve monitoring and control in extensively large
process control systems. The goals addressed by this project
include, amongst many others, the management of
interoperability, plug-and-play characteristics, and self-x
properties. In order to achieve such goals, the project
presents a large set of clearly defined interdependent service
groups. These service groups are generated based on a
number of well-defined use cases. These use cases
include design considerations such as asset monitoring,
backward/forward compatibility, cross-layer integration,
and others that are considered to be of key importance to
industrial enterprises. Based on these considerations, a large
set of clearly defined interdependent service groups are
proposed. Access to these services and their data is

governed by access controls outlined for clearly set user
roles. Technically, the design of the SOA-compliant
prototype considers the use of a number of technologies that
would allow for a web service compliant SOA to span
across the entirety of the ISA-95 enterprise architecture
(Colombo et al., 2014).

Technologically, the system presents a wide array of
contributions. One of these is the bridging of OPC UA and
an extended form of DPWS that incorporates the EXI
specification and semantic data models. In doing so it
creates a hybridised web services profile enriched with a
data model that can provide for all of the layers of the
enterprise while having extensively resilient and scalable
abilities for plug-and-play discovery. The system follows
the distributed paradigm and is deployable on resource
constrained components, such as embedded systems, and on
resourceful ones, where more extensive features would be
present. Furthermore, the system presents and implements a
mediating gateway which, using legacy interfaces and
semantic data models, supports plant migrations from
legacy to SOA architectures by allowing the two systems to
communicate throughout the migration process. One of the
main features of the system is the complex event processing
toolset which uses alarm load-shedding and state-based
alarming to resolve the issue of alarm flooding. The
architecture developed was successfully deployed in a
number of settings, including plant lubrication monitoring,
plant energy management, and district heating and energy
management. These use cases demonstrate the viability of
the developed system (Colombo et al., 2014).

5.2 IoTSys

As part of the IoT6 project, IoTSys presents a middleware
for the integration of heterogeneous and legacy devices for
the internet of things. Although the system is focused on the
IT domain of building automation (BA) systems, its
relevance is in its design. This design demonstrates an
architecture that provides a holistic and concise solution to
managing heterogeneity in a similarly complex field (Jung,
2014).

The IoTSys design proposes a complete communication
stack for IoT-devices centred around the use of the IPv6
protocol. Therefore, the networking layer of the stack uses
the IPv6 protocol and is secured using the IPsec protocol
suite. This allows the lowest layers to integrate smart
objects using any IPv6-compatible protocol. This includes
protocols such as 6LoWPAN, the IEEE 802.15.4-based
standards, Bluetooth low energy (BLE), IEEE 802.11, and
IEEE 802.3 ethernet (Jung, 2014).

For message exchange, the stack also proposes the use
of HTTP, CoAP or SOAP for reliable TCP-based,
unreliable UDP-based, RESTful or other forms of
communication. This allows the stack to interact with both
constrained and resourceful devices. Based on these
protocols, the exchange may be secured using DTLS/SSL or
WS-Security, appropriately. The payloads themselves may
be encoded using XML, JSON, EXI or oBIX’s binary
encoding, and secured using XML Encryption and XML

 Vertical integration in industrial enterprises and distributed middleware 85

Signature. This, again, allows the system a degree of
flexibility come time of integration with the various
building automation applications that may be presented to it
(Jung, 2014; Kastner et al., 2014).

As for the services themselves, the stack addresses
device and service discovery, service description, DA,
eventing, HDA, group communication, and authorisation.
Device discovery is done using multicast DNS (mDNS).
The services, on the other hand, use DNS service discovery
(DNS-SD) for service exposure and IoT-oBIX contracts for
service description. For authorisation purposes, the stack
uses the XACML architecture to define and process access
requests to devices and resources. Finally, all of the
remaining services are defined using the oBIX specification
(Jung, 2014; Kastner et al., 2014).

6 Integrating IT and OT domain solutions

The existing requirements for designing a system for
vertical integration have, as has been shown in the previous
section, been tackled with a heavy focus on the use of
factory or building automation connectivity standards. That
is, there has been an almost exclusive focus on protocol
convergence techniques. In contrast, this section proposes
that, in addition to the typical approach of utilising
connectivity standards, further solutions from the IT sector
should be integrated with OT in order to enhance
middleware solutions. Consequently, this section discusses
the integration of two IT domain solutions, virtualisation
and P2P networking, and one OT solution, IEC 61499, to
address the abstract set of requirements summarised in
Table 2.

The first of these technologies, virtualisation, is to
introduce language-neutral OSGi-like functionality and
security features through compartmentalisation. P2P
networking, on the other hand, is to introduce aspects of
data and service idempotence to the system in order to allow
for survivable data and infrastructure. Finally, IEC 61499

will be discussed as a form of standardising the structure
and interface of middleware components to ensure
portability, interoperability, and a number of other features
that are necessary for distributed systems. It is important to
note that due to the many facets involved in designing a
secure system, aside from virtualisation, the solutions for
the security requirement will be addressed separately in
Section 7.

6.1 Virtualisation

One of the advantages of virtualisation is its inherent ability
to allow for a higher level of security by isolating separate
workloads from each other (Christodorescu et al., 2009). If
the executing service components of a SOA are designed in
a modular fashion, then they may be deployed as stand-
alone applications dispersed across a number of virtual
machines. To communicate, these applications may interact
with each other using a predefined communication stack.
Architected properly, the system will stand a better chance
of containing the damage caused by a single compromised
service.

The modular and isolated fashion of the services also
simplifies the testing and commissioning of new versions of
binaries. This is since the use of virtualisation allows for the
inheritance of OSGi-like capabilities of being able to
dynamically apply start, stop, pause, and other operations on
the VM, and, consequently, on the running service
(Redondo et al., 2008). Therefore, separated through
virtualisation, two versions of the same service may be
deployed at the same point in time and on the same device
in the industrial plant. If the new version of the service is
found to be unstable, it may be paused or halted while the
stable binary continues to offer the service uninterrupted.
Alternatively, once the newer version is determined safe for
consumption, then, again, the older version may be halted
without any interruption to the availability of the service
being offered. This allows for a tolerant form of version
commissioning in a safety-critical environment.

Table 2 Requirements for vertical integration and proposed solutions

Requirement Components Solutions

Fidelity to ERA Information extraction NMS, CMDB, GSB, port mirroring, IGMP snooping,
network TAPs, and bridging

 Distributed partial deployments of the SOA Connectivity standards, virtualisation, P2P networking,
and IEC 61499

Cross-layer
communication Accommodation of firewalls, VLANs, and NAT NAT traversal techniques and P2P networking

Interoperability Interfacing and module standardisation Connectivity standards and IEC 61499
Scalability Plug-and-play and self-organisation Connectivity standards and P2P networking
Fault tolerance Reliability, availability, and serviceability Virtualisation and P2P networking
Functional safety Timing and determinism in mixed criticality systems Connectivity standards and virtualisation

Security
Access controls, authorisation, identification and
authentication, incident response, communication
protection, information integrity

Virtualisation, encryption, tunnelling, and data
lifecycle mechanisms

Source: Wilamowski and Irwin (2011) and Radvanovsky (2013)

86 A. Ismail and W. Kastner

Currently, embedded virtualisation solutions exist atop
which containers, full VMs, or unikernels may be
virtualised. VM and container virtualisation technologies
are both mature solutions that have many solutionspecific
performance comparisons in existence to guide decisions.
An interesting new virtualisation technology is that of
unikernels, such as Rump Kernels, MirageOS, and ClickOS.
These are single-purpose machine images compiled from
application code, configuration files, and libraries into
stand-alone kernels (Madhavapeddy et al., 2013). As such,
in comparison to containers and VMs, they tend to have
very small image sizes, tiny memory footprints, small attack
surfaces for exploitation, and are very quick to boot
(Madhavapeddy et al., 2013). Such features give them an
obvious advantage over containers and VMs for a variety of
applications, including industrial middleware. However, at
this point in time, unikernels are still at an early stage of
development and, as such, have been targeted specifically at
web development and network function virtualisation
(NFV) applications. The developments required to allow for
their deployment in industrial settings is still far from
realisation. This limits the current viable options to
containers and VMs.

Due to current advances in the virtualisation sector, we
expect to see solutions emerge from this domain for time-
critical industrial control applications as well. This is since
there exists no technical reason that would prevent
embedded systems from hosting RTOS guest VMs. Such a
merger between these two technologies has already been
proposed and explored for time-critical applications in the
automotive, mobile communications, industrial, and other
domains (Gu and Zhao, 2012; Bregenzer and Adämmer,
2010). Consequently, several solutions for the para-
virtualisation and full virtualisation of RTOS systems, such
as Seehwan Yoo and Yoo (2014) and Avanzini et al. (2015),
respectively, have already been proposed and validated
experimentally. The opportunity therefore exists to build
upon the same technologies in order to allow for any single
element of a distributed middleware system to dynamically
provide for the very nature of mixed criticality that is
typical of industrial enterprises.

Finally, with respect to fault tolerance, virtualisation
brings forth aspects that are applicable to the concepts of
redundancy for availability within the context of industrial
domains. Simply, if a fault manifests itself as an error on a
device, threatening the functionality of operational services,
the concepts of VM migration ensure that a replica of the
running VM may be transferred to a functional device.
Normal migrations requires the VM to be suspended for the
entire time that the memory is recorded before transfer.
Alternatively, live migration transfers differential snapshots
causing the VM to be suspended for substantially shorter
periods of time while the transfer occurs. This allows the
system to appear as though it has suffered no interruptions.
Such a mechanism is not only useful for fault tolerance, but
also in the case of ensuring continued availability during
any process that requires the device to be taken offline, such
as invasive maintenance procedures (Ando et al., 2009).

6.2 P2P networking

Infrastructure idempotence may be enhanced by merging
virtualisation with P2P networking technologies. P2P
solutions may allow for a cohesive, fault-tolerant network of
middleware components for the non-real-time management,
replication, storage and sharing of plant data and service
components.

Currently, P2P technologies may be classified as
centralised and decentralised networks, structured and
unstructured networks, hybridised (partially decentralised)
networks, horizontal hierarchical (HoHA), vertical
hierarchical (VeHA), and hybrid hierarchical (HyHA)
networks. Of these, VeHA architectures appear to be the
most versatile implementation. This is since VeHA
networks divide their member nodes into layers, creating a
DHT for each layer, and then requiring the use of gateways,
such as co-located nodes, for inter-layer communication.
This means that VeHA systems are capable of tolerating and
operating in the presence of NAT and firewalls. An added
advantage of VeHA networks is their ability to properly
interact with a heterogeneous middleware infrastructure
made up of components with varying resources (Ou, 2010).

Using VeHA networks, the topic of P2P networks as
systems may find an application domain within the
industrial environment. The definition of P2P networks as
systems is a method for enhancing cross-layer functionality
by bridging or merging together heterogeneous and
homogeneous P2P networks. This allows for expanded
systems, inter-system content-sharing, and inter-system
traffic engineering. As systems the various components of
the middleware may therefore be able to perform cross-
layer resource-sharing tasks, to execute a single operation
cooperatively, or simply to engineer more efficient paths for
communication using the existing network infrastructure.
This increases the survivability of the middleware
infrastructure and enhances the middleware’s capabilities at
networking and at performing resource-intensive tasks
(Ngo, 2013).

6.3 IEC 61499 function blocks

To standardise the system components and interfaces, and to
push the same principles of design of modularity in the
middleware down to the shop floor, the IEC 61499 standard
may be useful. The IEC 61499 standard defines a
distributed architecture for software development in the
industrial control and automation domain. It is designed to
allow for software portability, interoperability,
reconfigurability, and encapsulation. This standard requires
that software be implemented as a series of function blocks
(FB), of which there are three classes; namely, the basic,
composite and service interface FBs. Each FB encapsulates
a processing algorithm and has explicit definitions of its
required event and data inputs and outputs. For networking
purposes, the standard also defines a communication
interface FB (CIFB) that allows for both UDP
publish/subscribe and TCP client/server modes of
communication; however, it does not directly interfere with

 Vertical integration in industrial enterprises and distributed middleware 87

the mechanisms of the networking layer. Using these
function blocks, it is therefore possible to generate complex
networks of interconnected FBs thereby creating an
organised and well-coordinated distributed control system.
As has been pointed out in Basile et al. (2013) and Dai et al.
(2015), such mechanisms make IEC 61499 perfectly
compatible with SOA. This is as the event-based IEC 61499
standard requires the FBs to have well-defined interfaces,
thereby allowing separate FBs to be viewed as independent
services ready to be consumed by external requesters whom
only need to know the structure of the interface. This
concept is built upon even further in Dai et al. (2015), where
the SOA is used to allow for the dynamic reconfiguration of
FBs. All in all, the principles of the IEC 61499 standard
may be used to design and standardise all of the services
offered by a middleware system, providing a SOA with
extensive features that simplify its deployment on
variably-resourced devices in a heterogeneous environment
(Thramboulidis, 2013; Basile et al., 2013; Wilamowski and
Irwin, 2011).

7 Security

The final topic of discussion in this paper is that of security.
Security in the industrial domain has traditionally followed
the approach of isolated islands (Wilamowski and Irwin,
2011). However, the increasing connectivity brought about
through vertical integration necessitates the use of different
strategies. The deployment of a pervasive middleware
infrastructure presents a unique opportunity to introduce the
required novel strategies through re-design and the
elimination of fragility from the system, albeit, at the cost of
requiring protection measures to secure the middleware
devices themselves, and their data. The topic of discussion
of this section will be limited to an information-centric
viewpoint of securing the industrial process. This translates
to protecting information from the point of creation to the
point of destruction.

At creation, whether coming from or proceeding
to a field level device, data transmission normally occurs
using a fieldbus technology. Unadulterated, these protocols
mostly implement either no or limited security measures;
for example, Foundation Fieldbus, WorldFIP, Interbus
and ControlNet all use unencrypted passwords for
authentication. Therefore, to secure fieldbus protocols, the
tunnelling of encrypted packets using fieldbus technology
becomes a necessity. Unfortunately, fieldbus packets are
very limited in size. This in turn severely limits the security
enhancements that may be introduced. Furthermore, a
tunnelling-based method requires that all end-devices
be modified with the appropriate interfaces and
application-level components. Since the replacement of all
manufacturing equipment is not always a feasible option,
this necessitates the implementation of varying security
profiles which are able to provide different levels of
guarantees based on context (Wilamowski and Irwin, 2011).

In addition to influencing the confidentiality of data,
context also influences the management of data. That is,

factors of context must also be taken into consideration
when assigning proper access rights to data before storage.
This is in order to ensure that any future use of the data is
only possible by the correct machine or user and only under
the proper circumstances. Such rights may be assigned at
the point of creation by capable field devices, or, as would
be the case for legacy devices, by GSB devices that would
intercept and augment non-compliant data. At the point of
storage, XACML, enterprise digital rights management
(EDRM), and structured data tagging are suitable access
management solutions that may be applied to structured or
unstructured data. In addition to being a form of use
control, tagging may also be extended to allow for
network information flow tracking for auditability purposes
(Demchenko et al., 2014; Bernard, 2007; Hauser, 2013).

A further method for the protection of controlled data
during storage is through the use of encryption. However,
the encryption of data requires further consideration. For
example, the metadata of encrypted information should still
remain exposed in order to allow for functions such as data
discovery and retrieval. Other methods of securing data
storage involve the fragmentation and dispersal of coherent
pieces of data across several nodes. If a single device is
compromised in this situation, then only non-coherent
fragments of data are equally compromised. Finally, for
idempotence during storage, the P2P networking
technologies of Subsection 6.2 may assist in the replication
of data pieces across nodes. Said technologies are also
useful in organising, searching, retrieving, and reassembling
fragmented data (Demchenko et al., 2014).

The final phase of data control to be discussed is related
to the destruction of data. Due to data retention policies
associated with infrastructure-specific regulatory
commissions, legal frameworks, or the needs of the
enterprise itself, extensive amounts of sensitive information
related to the system topology, execution orders, and
integrity audit logs, for example, may need to be collected
and stored meticulously. Once the properties of the data
exceed the policies in place, the nature of such information
requires that a clear data destruction policy be in place in
order to ensure its irreparable deletion. In certain industries,
premature, incomplete or insufficient data destruction may
lead to hefty fines for the enterprise upon discovery
(Smallwood, 2014).

Strategies for destruction include software techniques,
such as cryptographic erase (CE), as well as physical ones,
such as degaussing magnetic devices. However, as per the
US National Institute of Standards and Technology (NIST),
the official position of the US Government is that a single
pass over the data using a fixed pattern is sufficient to
hinder the retrieval of data, even in the face of state-of-the
art forensics technology (Kissel et al., 2014). This stance
has been validated by Wright et al.’s research in (Wright
and Kleiman, 2008). However, as was the case with the
previous phases, context here also plays an important role.
To exemplify, bad sectors are normally inaccessible by
software. In order to destroy data located in these sectors,
different methods are necessary. For a device compliant

88 A. Ismail and W. Kastner

with the ANSI ATA and SCSI disk drive interface
specifications, one could issue an ATA secure erase (SE)
firmware command. This however comes at the cost of
having to trust the firmware since the specification does not
necessitate reporting or verification. For non-compliant
devices, as would be the case for PLCs or embedded
devices with on-board memory, other methods would be
necessary. Sanitisation techniques engrained in the system
and formalised data destruction policies should therefore be
carefully designed to match the hardware typically found in
the system (Reardon et al., 2014).

8 Conclusions

This paper has focused on discussing the main requirements
involved in the design of middleware solutions for vertical
integration in industrial enterprise systems. These factors
were considered in light of contemporary technological
advancements, and solutions selected and examined in order
to introduce such aspects as plug-and-play autonomy,
portability, interoperability, and dynamic reconfiguration to
middleware systems.

The concepts presented show that the design of an
ERA-conscious system capable of autonomous integration
with existing architectures, or of forming the central core of
new architectures, is currently possible with the
technologies at hand. Furthermore, as a result of completed
and ongoing efforts in protocol standardisation and pursued
interests in converging IT and OT technologies, middleware
systems may now expand beyond their typical duty of
integrating and communicating with legacy devices. Such
systems currently have the opportunity to provide the entire
enterprise with compartmentalised, idempotent, recoverable,
secure, and SOA governance-ready infrastructure.
Effectively, the opportunity exists that would allow the
ushering forth of a next generation of GSBs; a generation of
systems capable of providing the mixed critical processes
found in industrial firms with seamlessly omnipresent,
business-enhancing, and dynamic services.

Acknowledgements

This paper is supported by TU Wien research funds.

References
Adolphs, P., Bedenbender, H., Dirzus, D., Ehlich, M., Epple, U.,

Hankel, M., Heidel, R., Hoffmeister, M., Huhle, H.,
Karcher, B., Koziolek, H., Pichler, R., Pollmeier, S.,
Schewe, F., Walter, A., Waser, B. and Wollschlaeger, M.
(2015) Reference Architecture Model Industrie 4.0
(RAMI4.0), VDI/VDE Society Measurement and Automatic
Control (GMA), Düsseldorf, Germany.

Ando, R., Zhang, Z-H., Kadobayashi, Y. and Shinoda, Y. (2009)
‘A dynamic protection system of web server in virtual cluster
using live migration’, Proceedings of the 8th IEEE
International Conference on Dependable, Autonomic and
Secure Computing, pp.95–102.

AutomationML (2014) Whitepaper AutomationML
Part 1 – Architecture and General Requirements,
AutomationML consortium.

Avanzini, A., Valente, P., Faggioli, D. and Gai, P. (2015)
‘Integrating Linux and the real-time ERIKA OS through the
Xen hypervisor’, Industrial Embedded Systems (SIES), 10th
IEEE International Symposium on, IEEE, pp.1–7.

B&R (2015) B&R Supports OPC Foundation’s Real-Time
Working Groups [online] http://www.br-automation.com/
en/company/press-room/br-supports-opcfoundations-real-
time-working-groups/ (accessed 18 June 2015).

Basile, F., Chiacchio, P. and Gerbasio, D. (2013) ‘On the
implementation of industrial automation systems based on
PLC’, IEEE Transactions on Automation Science and
Engineering, Vol. 10, No. 4, pp.990–1003.

Bernard, R. (2007) ‘Information lifecycle security risk assessment:
a tool for closing security gaps’, Computers & Security, Vol.
26, No. 1, pp.26–30.

Bregenzer, J. and Adämmer, F. (2010) ‘Evaluation of integration
approaches in common COTS hypervisors for use in
industrial automation controllers’, Workshop on Isolation and
Integration for Dependable Systems (IIDS), ACM.

Byres, E., Carter, J., Franz, M., Henning, W., Karsch, J. and
Pederson, D. (2007) OPC Security White Paper #1
Understanding OPC and How it is Deployed, Digital Bond,
British Columbia Institute of Technology, Byres Research.

Christodorescu, M., Sailer, R., Schales, D.L., Sgandurra, D. and
Zamboni, D. (2009) ‘Cloud security is not (just) virtualization
security: a short paper’, Proceedings of the ACM Workshop
on Cloud Computing Security, CCSW, ACM, Chicago,
Illinois, USA, pp.97–102.

Colombo, A.W., Karnouskos, S. and Bangemann, T. (2014)
‘IMC-AESOP outcomes: paving the way to collaborative
manufacturing systems’, Proceeding of the 12th IEEE
International Conference on Industrial Informatics (INDIN),
pp.255–260.

Dai, W., Vyatkin, V., Christensen, J.H. and Dubinin, V.N. (2015)
‘Bridging service-oriented architecture and IEC 61499 for
flexibility and interoperability’, IEEE Transactions on
Industrial Informatics, Vol. 11, No. 3, pp.771–781.

Demchenko, Y., Ngo, C., de Laat, C., Membrey, P. and
Gordijenko, D. (2014) ‘Big security for big data: addressing
security challenges for the big data infrastructure’, in
Jonker, W. and Petkovic, M. (Eds.): Secure Data
Management, Vol. 8425, pp.76–94, Springer International
Publishing, Cham.

Didier, P., Macias, F., Harstad, J., Antholine, R., Johnston, S.A.,
Piyevsky, S., Schillace, M., Wilcox, G., Zaniewski, D. and
Zuponcic, S. (2011) Converged Plantwide Ethernet (CPwE)
Design and Implementation Guide, Cisco Systems, San Jose,
California and Rockwell Automation, Milwaukee, Wisconsin.

Driscoll, D. and Mensch, A. (2009) Devices Profile for Web
Services (DPWS) Version 1.1, OASIS Standard.

Farwick, M., Breu, R., Hauder, M., Roth, S. and Matthes, F.
(2013) ‘Enterprise architecture documentation: empirical
analysis of information sources for automation’, Proceedings
of the 46th IEEE Hawaii International Conference on System
Sciences (HICSS).

Giachetti, R.E. (2011) Design of Enterprise Systems: Theory,
Architecture, and Methods, CRC Press, Florida, USA.

 Vertical integration in industrial enterprises and distributed middleware 89

Gu, Z. and Zhao, Q. (2012) ‘A state-of-the-art survey on real-time
issues in embedded systems virtualization’, Journal of
Software Engineering and Applications, Vol. 5, No. 4,
pp.277–290.

Hauder, M., Matthes, F. and Roth, S. (2012) ‘Challenges for
automated enterprise architecture documentation’, Trends in
Enterprise Architecture Research and Practice-Driven
Research on Enterprise Transformation, Springer, pp.21–39.

Hauser, C. (2013) A Basis for Intrusion Detection in Distributed
Systems using Kernel-level Data Tainting, PhD thesis.
Queensland University of Technology.

He, D., Lobov, A., Moctezumas, L.E.G. and Lastra, J.L.M. (2012)
‘An approach to use PERA in enterprise modeling for
industrial systems’, IECON – 38th Annual Conference on
IEEE Industrial Electronics Society, IEEE, pp.4196–4203.

Henßen, R. and Schleipen, M. (2014) ‘Interoperability between
OPC UA and AutomationML’, Procedia CIRP, Vol. 25,
pp.297–304.

Hock, C., Makuth, J., Klostermeyer, A., Jammes, F., Mensch, A.
and Colombo, A. (2009) Deliverable D3.3: Mapping of
DPWS/OPC UA/ DPUA into Wireless Nodes and/or Wireless
Network Mapping of DPUA into Wired and/or Wireless
Network, SOCRADES [online] http://www.socrades.net/
Private/objects/file1237193294.pdf (accessed 5 May 2015).

Jung, M. (2014) An Integration Middleware for the Internet of
Things, PhD thesis, Vienna University of Technology.

Kastner, W., Kofler, M., Jung, M., Gridling, G. and Weidinger, J.
(2014) ‘Building automation systems integration into the
internet of things the IoT6 approach, its realization and
validation’, Emerging Technology and Factory Automation
(ETFA), IEEE, pp.1–9.

Kissel, R., Regenscheid, A., Scholl, M. and Stine, K. (2014) NIST
Special Publication 800-88 Revision 1: Guidelines for Media
Sanitization, Tech. rep., US Department of Commerce,
National Institute of Standards and Technology.

Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B.,
Gazagnaire, T., Smith, S., Hand, S. and Crowcroft, J. (2013)
‘Unikernels: library operating systems for the cloud’, ACM
SIGPLAN Notices, ACM, Vol. 48, pp.461–472.

Mahnke, W., Leitner, S-H. and Damm, M. (2009) OPC Unified
Architecture, Springer Berlin Heidelberg.

Ngo, H.G. (2013) From Inter-connecting P2P Overlays to
Co-operating P2P Systems, PhD thesis, Universite Nice
Sophia Antipolis; Hanoi University of Sciences.

NSA (2010) A Framework for Assessing and Improving the
Security Posture of Industrial Control Systems (ICS), Tech.
rep. National Security Agency.

OMG (2005) Realtime CORBA Specification, 1.2. Object
Management Group, Massachusetts, USA.

OMG (2014) The Real-time Publish-Subscribe Protocol (RTPS)
DDS Interoperability Wire Protocol Specification Version
2.2, Object Management Group Standard.

Ou, Z. (2010) Structured Peer-to-peer Networks: Hierarchical
Architecture and Performance Evaluation, PhD Thesis,
University of Oulu, Finland.

Phuoc, H.C., Hunt, R. and McKenzie, A. (2008) ‘NAT traversal
techniques in peer-to-peer networks’, Proceedings of the
New Zealand Computer Science Research Student Conference
(NZCSRSC).

Radvanovsky, R. (2013) Handbook of SCADA/Control Systems
Security, CRC Press, Hoboken, NJ.

Reardon, J., Basin, D. and Capkun, S. (2014) ‘On secure data
deletion’, Security Privacy, IEEE, Vol. 12, No. 3, pp.37–44.

Redondo, R., Vilas, A., Cabrer, M., Arias, J., Duque, J. and
Solla, A. (2008) ‘Enhancing residential gateways: a semantic
OSGi platform’, IEEE Intelligent Systems, Vol. 23, No. 1,
pp.32–40.

RTI (2009) Comparison of OPC and RTI Data Distribution
Service (DDS), Real-Time Innovations (RTI) [online]
http://www.rti.com/docs/RTI_DDS_ and_OPC.pdf (accessed
16 March 2015).

Schmidt, D.C. and Hag, H.v. (2008) ‘Addressing the challenges of
mission-critical information management in next-generation
net-centric pub/sub systems with OpenSplice DDS’, IEEE
International Symposium on Parallel and Distributed
Processing, IPDPS, pp.1–8.

Smallwood, R.F. (2014). Information Governance: Concepts,
Strategies, and Best Practices, Wiley CIO Series, Wiley,
Hoboken, New Jersey.

Sobel, W. (2015) MTConnect Standard, The Association for
Manufacturing Technology [online] http://www.mtconnect.
org/standard-documents (accessed 7 August 2015).

Sucic, S., Bony, B. and Guise, L. (2012) ‘Standards compliant
event-driven SOA for semantic-enabled smart grid
automation: evaluating IEC 61850 and DPWS integration’,
IEEE International Conference on Industrial Technology
(ICIT), pp.403–408.

Thramboulidis, K. (2013) IEC 61499 vs. 61131: A Comparison
Based on Misperceptions, in arXiv preprint arXiv:1303.4761.

Ungurean, I., Gaitan, N.C. and Gaitan, V.G. (2014) ‘Transparent
interaction of SCADA systems developed over different
technologies’, 18th International Conference on System
Theory, Control and Computing (ICSTCC), pp.476–481.

Wales, C. (2015) Middleware and Related Services
(MARS) Platform Task Force (PTF) [online]
http://www.omgwiki.org/mars/doku.php?id= start
(accessed 30 June 2015).

Wilamowski, B.M. and Irwin, J.D. (2011) Industrial
Communication Systems, The Industrial Electronics
Handbook, CRC Press, Floriday, USA.

Williams, T.J. (1993) ‘The Purdue enterprise reference
architecture’, Proceedings of the JSPE/IFIP TC5/WG5.3
Workshop on the Design of Information Infrastructure
Systems for Manufacturing, DIISM, North-Holland
Publishing Co., Amsterdam, The Netherlands, pp.43–64.

Wright, C. and Kleiman, D. (2008) ‘Overwriting hard drive data:
the great wiping controversy’, Information Systems Security,
pp.243–257, Springer, Berlin, Heidelberg.

Yoo, S. and Yoo, C. (2014) ‘Real-time scheduling for Xen-ARM
virtual machines’, IEEE Transactions on Mobile Computing,
Vol. 13, No. 8, pp.1857–1867.

Zerbst, J., Zimmermann, S., Holstein, D.K. and Poirier, C. (2013)
‘Towards an adapted classification methodology for graded
security approaches in EPU architectures’, Proceedings of the
International Council on Large Electric Systems (CIGRE).

