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1 Introduction 

As noted in the Reference Architecture Model Industrie 4.0 
(RAMI 4.0), a principle element in the design of modern 
industrial systems for enhanced enterprise competitiveness 
is vertical integration (Adolphs et al., 2015). The 
importance of vertical integration is derived from the 
inherent complexities typical of distributed automation 
systems. That is, industrial automation systems currently 
utilise a large number of protocols and are present in many 
various architectural forms. This heterogeneity proves to be 
a major hindrance to the adoption of modern technologies 
that are increasingly dependent on the easy accessibility of 
data and devices. Vertical integration is primarily  
concerned with addressing this heterogeneity by enhancing 
interlayer data exchange capabilities, thereby allowing for 
the deployment of contemporary business-enhancing 
applications. A typical solution employed in the pursuit of 

vertical integration is the use of gateways capable of 
protocol transformation. Although a viable strategy for use 
in the industrial IoT (IIoT), transformation may result in 
information loss and is a costly engineering effort to 
develop and integrate with existing systems. 

Nevertheless, extensions to the basic concept of 
gateways warrant their complex and costly engineering 
effort. By increasing the level of integration between 
automation layers and full enterprises you allow for the 
integration of meaningful services. That is, the gateway may 
be elevated through the pervasive deployment of the 
gateway hardware and the introduction of enhancements 
such as web portals and data-enriching information models. 
In doing so, the gateway achieves an additional layer of 
intelligence. This intelligence, afforded the property of 
omnipresence by the middleware, may host a myriad of 
services appropriate for any industrial layer. The closest of 
analogies to such an envisioned system would be the natural 
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evolution of the enterprise service bus (ESB) towards an 
industrial gateway service bus (GSB). Such a middleware 
system may thereby add a level of robustness, versatility 
and extensibility to the industrial enterprise, providing it 
with the ability to integrate a wide array of modern 
algorithms and technologies in a safe and secure manner. 
The importance of such technologies lies in the fact that 
they may then be used to enrich the process. It could, for 
example, allow for an increase in a plant’s efficiency and be 
used to facilitate a plant’s compliance with legal and 
regulatory standards, or even assist in enhancing its energy 
efficiency or infrastructural security. 

We concern ourselves in this paper with a specific type 
of middleware; that being an autonomous middleware 
capable of being deployed on dedicated or regular industrial 
hardware, such as field level elements, for the purposes of 
vertical integration in existing or new enterprises. 
Consequently, the coming sections address several topics 
that need to be considered when designing such a 
middleware. Sections 2 and 3 present overviews on the 
concepts of enterprise reference architectures (ERA) and 
ERA-derived network designs, respectively, along with 
discussions on methods of middleware integration with such 
ERAs and networks. Section 4 summarises the various 
factory connectivity standards that the middleware may use 
to interface with an industrial system. Section 5 provides a 
description of two prominent projects that use connectivity 
standards to generate holistic SOA middleware solutions. 
Section 6 presents a description of several solutions  
from the information technology (IT) and operations 
technology (OT) domains that may be used to extend the 
capabilities of middleware systems. Section 7 provides an 
information-centric viewpoint of middleware and process 
security. Finally, the paper concludes in Section 8. 

2 Industrial ERAs 

A reference architecture is a structured meta-model 
representing the various functional elements and 
interactions of an enterprise system. Industrial enterprises 
use a reference architecture in order to allow for the rapid 
generation of a useful system architecture that adopts all of 
the relevant insights and best practices gained from years of 
previous deployments. Developing middleware without 
taking into account the restrictions imposed by existing 
architectures risks the breaking of application dependencies 
vital to the middleware once it is deployed. In this section, 
we will focus predominantly on the Purdue enterprise 
reference architecture (PERA) framework as it is widely 
accepted by industry and is compatible with multiple 

standards, such as ISA 95, ISA 88, and IEC 62443 
(Giachetti, 2011; Williams, 1993; He et al., 2012). 

Using the ISA 95 and ISA 88 models, PERA essentially 
segregates the elements comprising an industrial enterprise 
system into separate zones and conduits. The system is 
essentially divided into five functional layers. The lowest 
layer, level 0, is the actual physical process. Level 1 consists 
of the device communication networks directly in control of 
the physical processes. The second layer comprises the 
control and automation network. This level can directly 
access the process and discrete devices of level 1 to set or 
reconfigure them as needed. Level 3 consists of operations 
management systems, such as the MES. Level 3 
components may only read from layers 1 and 2. Level 4 is 
where the enterprise system is located and is where the bulk 
of the business process network exists. The application of 
the PERA model has been extended with time and currently 
includes a sixth layer and a DMZ. The sixth layer, level 5, is 
where centralised IT systems and their associated functions 
are situated. The DMZ, on the other hand, is in place to 
manage access from levels 4 and 5 to the data and network 
of levels 0–3. The recommended practice is to have no 
traffic cross the DMZ, instead all traffic should either 
originate or terminate within the DMZ. Therefore, data 
sharing and application servers are normally found in the 
DMZ (Williams, 1993; He et al., 2012; Didier et al., 2011). 

Beyond segregation based on function, an enterprise’s 
architecture is also influenced by a number of other aspects. 
Discussed in Zerbst et al. (2013), and reproduced in Table 1, 
these include elements such as security assessments and 
operations and maintenance work. Such factors imply that 
the enterprise infrastructure and architecture is dynamic in 
nature as it must adapt opportunistically in line with their 
results over time. In order to allow for a truly autonomous 
middleware, the middleware system must therefore have 
methods through which it is able to continuously and 
accurately infer the existing infrastructure within which it is 
operating. 

As noted in Hauder et al. (2012) and Farwick et al. 
(2013), literature exploring automated methods of acquiring 
such information is quite limited. The work of Hauder et al. 
(2012) lists the challenges facing automated EA modelling. 
These include having to deal with large volumes of data, 
generating the appropriate models to transform data into 
useful representations, and using the tools to do so in an 
appropriate and secure manner. The GSB domain typically 
deals with the secure acquisition, processing, transformation 
and extraction of meaningful information from data 
(Colombo et al., 2014). Consequently, this places the GSB 
at an ideal starting point for tackling problems of integration 
with dynamic environments. 
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Table 1 Governing factors in zonal population 

Factor  Explanation  

Regulations and 
legislation  

Systems must observe the imposed local, regional, national or international regulations, legislation and standards.  

Impacts  The impact of system malfunctions on the business must reflect on the system design.  
Safety  The system must comply with safety best practices. Standards such as IEC 61508 and IEC 61511, provide the 

necessary guidance.  
Security  The system must be designed in accordance with the requirements of security risk assessments.  
Locality  The physical location of systems must be taken into consideration when defining both the zones and the digital 

system in itself.  
Architecture  The system must integrate within the overall technical and landscape architecture.  
Operations and 
maintenance  

Operational and maintenance considerations impacting the system, the technical architecture, or the physical 
infrastructure, should be taken into account.  

Organisation  The organisational structure and culture introduces a set of requirements that ought to be reflected unto the system 
under design.  

Source: Zerbst et al. (2013) 

Figure 1 A typical ethernet-based industrial enterprise network 

 
Source: Didier et al. (2011) 
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The main concern for integration is therefore in the 
selection of the appropriate tools for the acquisition  
of the necessary information. This is addressed in  
Farwick et al. (2013) where a survey shows that IT-oriented 
tools, such as network monitors and scanners (NMS), 
configuration management databases (CMDB), and ESBs 
are fully-automated solutions that provide the most actual 
data. Since, the GSB is based on the concept of ESBs, 
furthering the reach of the GSB would require either the 
provision of appropriate interfaces for these tools, or having 
said tools directly integrated as components of the GSB. 

3 Network designs and considerations 

Abstracting the reference architecture on the network 
design, Figure 1 shows a typical implementation of an 
industrial enterprise network. The way that such a network 
would be organised is as follows. Any traffic entering the 
enterprise from the internet is intercepted by a fifth layer 
DMZ. Alternatively, a firewall may be used to isolate or 
inspect and filter packets entering the enterprise. To access 
the lower layers from the enterprise a second DMZ must be 
crossed. Figure 1 shows two firewalls and two routers 
controlling access to the DMZ, this is only to highlight the 
manner in which redundancy requirements may reflect on 
the network design. This element of redundancy is 
continued throughout the layers with the left and right 
portions of Figure 1 representing redundant versions of the 
same enterprise components. Traffic into the DMZ, whether 
from the enterprise or from a lower layer, traverses a 
firewall before accessing the required servers. This is to 
filter and prevent the direct communication of levels 4–5 
and levels 0-3. Level 3 and below consists of process and 
control servers which would be accessed using a myriad of 
switches or routers. These switches and routers separate the 
various areas of concern into VLANs or subnets, as 
required. These lower layers may contain industrial ethernet 
solutions or wireless technologies such as the ISA 100.11a, 
Wireless HART, or OCARI standards, which, in turn, 
would require gateway solutions. Finally, technologies such 
as NAT may also be present at the lower layers to simplify 
address management during the reconfiguration of 
manufacturing cells (Didier et al., 2011). 

Integrating the middleware with the network brings 
forth two concerns; firstly, the extraction of data without 
impacting communication links, and secondly, allowing for 
middleware components to communicate across layers 
without requiring extensive changes to the infrastructure. 

The former of these two points has to do with the 
heterogeneous nature of the enterprise layers. Due to the 
varying application needs and constraints of each of these 
layers, the protocols that operate within each respective 
layer differ from one another. For the lower layers, for 
example, real time connectivity is a necessity, while for the 
upper layers, it is normally not a requirement. In order to 
allow for effective protocol convergence and cross-domain 
communication, the middleware needs to be able to 

intercept all possible communication paths to and from 
levels 0-DMZ. This needs to be done without impacting the 
constraints or design factors binding said paths. Fortunately, 
a number of methods exist that may allow the middleware 
to do so. These include port mirroring, and more intrusive 
methods such as network TAPs and bridging (Didier et al., 
2011; NSA, 2010). 

However, in regards to cross-layer communication by 
the middleware in the face of NAT, the inclusion of NAT 
traversal may be required. NAT traversal techniques depend 
on the mode of communication and either involve UDP hole 
punching or TCP hole punching. UDP hole punching may 
use STUN or TURN. TCP hole punching operates similarly 
to its UDP counterpart and includes mechanisms such as 
ATUNT, NUTSS and NATBlaster (Phuoc et al., 2008). 

4 Factory connectivity standards 

The factory connectivity standards to be discussed here are 
a collection of technologies used to define standardised 
interfaces and methods for information presentation and 
description. This standardisation allows for vendor-neutral 
interoperability and efficient information exchange between 
the various functional elements of an industrial enterprise. 
In addition to allowing the middleware to integrate with the 
enterprise, they may also be used in intra-middleware 
communication. The section addresses a subset of both 
information-centric and message-oriented middleware 
concepts. The information-centric standards will provide a 
description of holistic solutions, information modelling and 
schema specifications, a solution for web services 
integration, and a standard for compact XML data exchange 
for constrained devices. On the other hand, the message-
oriented middleware subsection will focus on real-time 
communication standards that lack information models and 
schema. 

4.1 Information-centric standards 

Object linking and embedding (OLE) for process control 
(OPC) classic is a client-server-based set of standards for 
the definition of data transfer software interfaces. This 
grouping of complementary standards consists of the data 
access (OPC DA), historical data access (OPC HDA), 
alarms and events (OPC A&E), data exchange (OPC DX), 
security, XML-data access (OPC XML-DA), complex data, 
commands, batch, and OPC .NET specifications. By 
standardising these interfaces, a common method is 
available for the exchange of data between diverse control 
systems and products. This greatly simplifies the driver-
development process for the vendors and manufacturers of 
industrial systems. The data exchange process itself uses 
Microsoft’s distributed component object model (DCOM) 
(Byres et al., 2007). 

The OPC unified architecture (UA) standard is the 
successor of OPC classic. It addresses some of the shortfalls 
of OPC classic, extending it appropriately in order to allow 
for platform independence, object orientation and a service 



 Vertical integration in industrial enterprises and distributed middleware 83 

oriented architecture (SOA), all while maintaining 
backwards compatibility with OPC Classic. Functionally, 
the OPC UA information model is a combination of OPC 
DA, A&E, HDA, Commands, and Complex Data, and is 
built on OPC DA’s data model. The services defined by 
OPC UA consist of a fixed set of groups; namely, they are 
the Discovery, SecureChannel, Session, NodeManagement, 
View, Query, Attribute, Method, Subscription, and 
MonitoredItem services. To ensure interoperability,  
these sets are fixed in behaviour and parameters. For 
security, the features included are able to provide for  
authentication, authorisation, confidentiality, integrity, 
freshness, auditability, and availability. Reference 
implementations are available in a variety of languages, 
including ANSI C, Java, and .NET, and as such, may be 
deployed on systems from the embedded to the enterprise 
level. As of yet, OPC UA is not able to operate under  
real-time constraints; however, the OPC Foundation is 
currently exploring the use of IEEE 802.1 TSN to allow for 
such real-time capabilities (Mahnke et al., 2009; B&R, 
2015). 

Automation Markup Language (AutomationML) is an 
XML-based neutral data format designed specifically for the 
storage and transfer of plant engineering information. 
AutomationML is aimed at connecting together the tools of 
the various engineering disciplines and phases of the plant 
life cycle. It does so by having all of the modelled and 
stored information follow a neutralised hierarchical  
object-oriented model. That is, the various engineering tools 
being incorporated in the information model have their 
object identification schemes homogenised by a single 
model. This model is governed by a set of three existing 
standards, along with a defined set of rules on how these 
standards may be used and interlinked. Together, these 
standards form the AutomationML specification. In detail, 
AutomationML uses the CAEX standard (IEC 62424) for 
plant topology information, COLLADA for geometry and 
kinematics information, and PLCopenXML for the 
modelling of control, behaviour, sequencing and logics 
information (AutomationML, 2014; Henßen and Schleipen, 
2014). 

The MTConnect standard is a four part XML-based 
standard for data integration. It provides a read only, 
RESTful data retrieval mechanism over HTTP, thereby 
uniformly supplementing existing systems’ transport 
mechanisms regardless of their heterogeneity. The XML 
schema defined by MTConnect defines information models 
for devices, streams, and assets. MTConnect defines devices 
as functional machines or parts of machines. Streams are 
mostly concerned with organising devices, events and 
samples. Finally, assets are physical objects that are not 
detrimental for the functionality of machinery. Extensions 
to the standard exist that define models for device interfaces 
and for cutting tools as assets (Sobel, 2015). 

The device profile for web services (DPWS) OASIS 
standard is an architecture used to provide an enterprise 
with a host of web services (WS) technologies. It also uses 
WS-protocols in order to allow for seamless peer-to-peer 

(P2P) device interactions. Architecturally, DPWS is 
composed of hosted and hosting services. The hosted 
services provide functionality to a device, while the hosting 
services provide the hosted services with discovery 
capabilities. In all, the DPWS built-in services include 
discovery, metadata exchange, and publish/subscribe 
services. However, DPWS may be extended using the 
appropriate WS-specifications to allow for security, 
resource and device management, eventing, addressing, 
policy management features, as well as a number of other 
functionalities (Hock et al., 2009; Driscoll and Mensch, 
2009; Sucic et al., 2012). 

4.2 Message-oriented middleware 

Several existing implementations of MOMs include, but are 
not limited to, DDS, CORBA, MQTT, AMQT, STOMP, 
and ZeroMQ. However, the focus of this section will  
be on industrially-proven real-time (RT) communications 
standards. Consequently, this section only covers the DDS 
and CORBA standards. 

DDS is a data-centric OMG middleware standard 
capable of both dynamic discovery and of implementing 
QoS parameters in order to provide its publish/subscribe 
mechanisms with real-time (RT) communications. Its ability 
to support RT performance has allowed for its deployment 
in mission critical systems (Schmidt and Hag, 2008).  
The DDS interoperability protocol is defined by the  
real-time publish subscribe (RTPS) DDS specification 
(IEC-PAS-62030). The RTPS wire protocol allows devices 
from multiple vendors to communicate by multicasting  
IP-based connectionless best-effort transport protocols such 
as UDP (OMG, 2014). Implementations of the DDS 
standard exist in both open source form, such as is the case 
with OpenDDS and OpenSplice, and in commercial forms, 
such as RTI-DDS. The OMG’s middleware and related 
services (MARS) platform task force (PTF) has, as of 
recently, set itself a target for defining a gateway in order to 
bridge together the DDS and OPC UA standards (Ungurean 
et al., 2014; Wales, 2015; RTI, 2009). 

As opposed to DDS, the common object request broker 
architecture (CORBA) is a client/server OMG middleware 
standard used for the transfer of information between 
heterogeneous applications and systems. For real-time 
guarantees the RT-CORBA specification may be used.  
RT-CORBA allows for deterministic access to shared 
resources and has several scheduling policies in place for 
multithreading applications. Like DDS, CORBA is platform 
independent and type safe. However, unlike DDS, CORBA 
is a point-to-point standard that is not capable of dynamic 
discovery; rather, nodes must know each other directly or 
use a naming service for discovery. Furthermore, CORBA 
lacks the QoS abilities of DDS that allow for the tailoring of 
communications. Lastly, the interoperability wire protocol 
specified by CORBA is part of the CORBA standard  
itself, compared to DDS which is independent of a wire 
protocol and only has one defined as a non-mandatory 
accompanying specification. Currently, as pointed out in 
Ungurean et al. (2014), several open-source and commercial 
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implementations of CORBA exist, with the most prominent 
open-source implementation being The Ace ORB (TAO) 
project (Ungurean et al., 2014; OMG, 2005). 

As is apparent from the descriptions of the standards in 
the previous two subsections, a number of these standards 
take on many of the different aspects required to enrich the 
factory process. These include functions related to 
integrating web services, RESTful data retrieval, and the 
integration of information exchange models that guarantee 
access to enriched field level data. However, since 
constraints and requirements vary from one level of the 
enterprise to the other, none of the standards above are 
capable of providing these features for the entire enterprise. 
In order to address such shortcomings, middleware 
architectures have been presented in recent years merging 
together some of the aforementioned standards, and 
extending them appropriately in order to create complete 
architectures and communication stacks. The coming 
section will discuss two of these architectures that are 
designed specifically for vertical and horisontal integration. 

5 Middleware architectures 

The architecture and communication stack governing the 
middleware may take on several forms in order to ensure 
interoperability and efficiency of communication amongst 
the middleware components. Within this section, a review 
of two large EU FP7 project outcomes is presented in order 
to give an overview of the different considerations and 
strategies put to use in the development of such an 
architecture and stack. These are the architecture for 
service-oriented process – monitoring and control  
(IMC-AESOP) and IoTSys projects. The former is a 
middleware solution that presents a SOA for industrial 
plants. IoTSys, on the other hand, is a project that uses a 
communication stack and a middleware solution to provide 
smart IoT objects with interoperability and plug-and-play 
connectivity in the building automation domain (Colombo 
et al., 2014; Jung, 2014). 

5.1 IMC-AESOP 

The architecture for service-oriented process-monitoring 
and control (IMC-AESOP) project investigates the use of a 
SOA to achieve monitoring and control in extensively large 
process control systems. The goals addressed by this project 
include, amongst many others, the management of 
interoperability, plug-and-play characteristics, and self-x 
properties. In order to achieve such goals, the project 
presents a large set of clearly defined interdependent service 
groups. These service groups are generated based on a 
number of well-defined use cases. These use cases  
include design considerations such as asset monitoring, 
backward/forward compatibility, cross-layer integration, 
and others that are considered to be of key importance to 
industrial enterprises. Based on these considerations, a large 
set of clearly defined interdependent service groups are 
proposed. Access to these services and their data is 

governed by access controls outlined for clearly set user 
roles. Technically, the design of the SOA-compliant 
prototype considers the use of a number of technologies that 
would allow for a web service compliant SOA to span 
across the entirety of the ISA-95 enterprise architecture 
(Colombo et al., 2014). 

Technologically, the system presents a wide array of 
contributions. One of these is the bridging of OPC UA and 
an extended form of DPWS that incorporates the EXI 
specification and semantic data models. In doing so it 
creates a hybridised web services profile enriched with a 
data model that can provide for all of the layers of the 
enterprise while having extensively resilient and scalable 
abilities for plug-and-play discovery. The system follows 
the distributed paradigm and is deployable on resource 
constrained components, such as embedded systems, and on 
resourceful ones, where more extensive features would be 
present. Furthermore, the system presents and implements a 
mediating gateway which, using legacy interfaces and 
semantic data models, supports plant migrations from 
legacy to SOA architectures by allowing the two systems to 
communicate throughout the migration process. One of the 
main features of the system is the complex event processing 
toolset which uses alarm load-shedding and state-based 
alarming to resolve the issue of alarm flooding. The 
architecture developed was successfully deployed in a 
number of settings, including plant lubrication monitoring, 
plant energy management, and district heating and energy 
management. These use cases demonstrate the viability of 
the developed system (Colombo et al., 2014). 

5.2 IoTSys 

As part of the IoT6 project, IoTSys presents a middleware 
for the integration of heterogeneous and legacy devices for 
the internet of things. Although the system is focused on the 
IT domain of building automation (BA) systems, its 
relevance is in its design. This design demonstrates an 
architecture that provides a holistic and concise solution to 
managing heterogeneity in a similarly complex field (Jung, 
2014). 

The IoTSys design proposes a complete communication 
stack for IoT-devices centred around the use of the IPv6 
protocol. Therefore, the networking layer of the stack uses 
the IPv6 protocol and is secured using the IPsec protocol 
suite. This allows the lowest layers to integrate smart 
objects using any IPv6-compatible protocol. This includes 
protocols such as 6LoWPAN, the IEEE 802.15.4-based 
standards, Bluetooth low energy (BLE), IEEE 802.11, and 
IEEE 802.3 ethernet (Jung, 2014). 

For message exchange, the stack also proposes the use 
of HTTP, CoAP or SOAP for reliable TCP-based, 
unreliable UDP-based, RESTful or other forms of 
communication. This allows the stack to interact with both 
constrained and resourceful devices. Based on these 
protocols, the exchange may be secured using DTLS/SSL or 
WS-Security, appropriately. The payloads themselves may 
be encoded using XML, JSON, EXI or oBIX’s binary 
encoding, and secured using XML Encryption and XML 
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Signature. This, again, allows the system a degree of 
flexibility come time of integration with the various 
building automation applications that may be presented to it 
(Jung, 2014; Kastner et al., 2014). 

As for the services themselves, the stack addresses 
device and service discovery, service description, DA, 
eventing, HDA, group communication, and authorisation. 
Device discovery is done using multicast DNS (mDNS). 
The services, on the other hand, use DNS service discovery 
(DNS-SD) for service exposure and IoT-oBIX contracts for 
service description. For authorisation purposes, the stack 
uses the XACML architecture to define and process access 
requests to devices and resources. Finally, all of the 
remaining services are defined using the oBIX specification 
(Jung, 2014; Kastner et al., 2014). 

6 Integrating IT and OT domain solutions 

The existing requirements for designing a system for 
vertical integration have, as has been shown in the previous 
section, been tackled with a heavy focus on the use of 
factory or building automation connectivity standards. That 
is, there has been an almost exclusive focus on protocol 
convergence techniques. In contrast, this section proposes 
that, in addition to the typical approach of utilising 
connectivity standards, further solutions from the IT sector 
should be integrated with OT in order to enhance 
middleware solutions. Consequently, this section discusses 
the integration of two IT domain solutions, virtualisation 
and P2P networking, and one OT solution, IEC 61499, to 
address the abstract set of requirements summarised in 
Table 2. 

The first of these technologies, virtualisation, is to 
introduce language-neutral OSGi-like functionality and 
security features through compartmentalisation. P2P 
networking, on the other hand, is to introduce aspects of 
data and service idempotence to the system in order to allow 
for survivable data and infrastructure. Finally, IEC 61499  
 

will be discussed as a form of standardising the structure 
and interface of middleware components to ensure 
portability, interoperability, and a number of other features 
that are necessary for distributed systems. It is important to 
note that due to the many facets involved in designing a 
secure system, aside from virtualisation, the solutions for 
the security requirement will be addressed separately in 
Section 7. 

6.1 Virtualisation 

One of the advantages of virtualisation is its inherent ability 
to allow for a higher level of security by isolating separate 
workloads from each other (Christodorescu et al., 2009). If 
the executing service components of a SOA are designed in 
a modular fashion, then they may be deployed as stand-
alone applications dispersed across a number of virtual 
machines. To communicate, these applications may interact 
with each other using a predefined communication stack. 
Architected properly, the system will stand a better chance 
of containing the damage caused by a single compromised 
service. 

The modular and isolated fashion of the services also 
simplifies the testing and commissioning of new versions of 
binaries. This is since the use of virtualisation allows for the 
inheritance of OSGi-like capabilities of being able to 
dynamically apply start, stop, pause, and other operations on 
the VM, and, consequently, on the running service 
(Redondo et al., 2008). Therefore, separated through 
virtualisation, two versions of the same service may be 
deployed at the same point in time and on the same device 
in the industrial plant. If the new version of the service is 
found to be unstable, it may be paused or halted while the 
stable binary continues to offer the service uninterrupted. 
Alternatively, once the newer version is determined safe for 
consumption, then, again, the older version may be halted 
without any interruption to the availability of the service 
being offered. This allows for a tolerant form of version 
commissioning in a safety-critical environment. 

Table 2 Requirements for vertical integration and proposed solutions 

Requirement  Components Solutions 

Fidelity to ERA  Information extraction  NMS, CMDB, GSB, port mirroring, IGMP snooping, 
network TAPs, and bridging  

 Distributed partial deployments of the SOA  Connectivity standards, virtualisation, P2P networking, 
and IEC 61499 

Cross-layer 
communication Accommodation of firewalls, VLANs, and NAT  NAT traversal techniques and P2P networking  

Interoperability  Interfacing and module standardisation  Connectivity standards and IEC 61499  
Scalability  Plug-and-play and self-organisation  Connectivity standards and P2P networking  
Fault tolerance  Reliability, availability, and serviceability Virtualisation and P2P networking  
Functional safety  Timing and determinism in mixed criticality systems Connectivity standards and virtualisation  

Security  
Access controls, authorisation, identification and 
authentication, incident response, communication 
protection, information integrity 

Virtualisation, encryption, tunnelling, and data 
lifecycle mechanisms 

Source: Wilamowski and Irwin (2011) and Radvanovsky (2013) 
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Currently, embedded virtualisation solutions exist atop 
which containers, full VMs, or unikernels may be 
virtualised. VM and container virtualisation technologies 
are both mature solutions that have many solutionspecific 
performance comparisons in existence to guide decisions. 
An interesting new virtualisation technology is that of 
unikernels, such as Rump Kernels, MirageOS, and ClickOS. 
These are single-purpose machine images compiled from 
application code, configuration files, and libraries into 
stand-alone kernels (Madhavapeddy et al., 2013). As such, 
in comparison to containers and VMs, they tend to have 
very small image sizes, tiny memory footprints, small attack 
surfaces for exploitation, and are very quick to boot 
(Madhavapeddy et al., 2013). Such features give them an 
obvious advantage over containers and VMs for a variety of 
applications, including industrial middleware. However, at 
this point in time, unikernels are still at an early stage of 
development and, as such, have been targeted specifically at 
web development and network function virtualisation 
(NFV) applications. The developments required to allow for 
their deployment in industrial settings is still far from 
realisation. This limits the current viable options to 
containers and VMs. 

Due to current advances in the virtualisation sector, we 
expect to see solutions emerge from this domain for time-
critical industrial control applications as well. This is since 
there exists no technical reason that would prevent 
embedded systems from hosting RTOS guest VMs. Such a 
merger between these two technologies has already been 
proposed and explored for time-critical applications in the 
automotive, mobile communications, industrial, and other 
domains (Gu and Zhao, 2012; Bregenzer and Adämmer, 
2010). Consequently, several solutions for the para-
virtualisation and full virtualisation of RTOS systems, such 
as Seehwan Yoo and Yoo (2014) and Avanzini et al. (2015), 
respectively, have already been proposed and validated 
experimentally. The opportunity therefore exists to build 
upon the same technologies in order to allow for any single 
element of a distributed middleware system to dynamically 
provide for the very nature of mixed criticality that is 
typical of industrial enterprises. 

Finally, with respect to fault tolerance, virtualisation 
brings forth aspects that are applicable to the concepts of 
redundancy for availability within the context of industrial 
domains. Simply, if a fault manifests itself as an error on a 
device, threatening the functionality of operational services, 
the concepts of VM migration ensure that a replica of the 
running VM may be transferred to a functional device. 
Normal migrations requires the VM to be suspended for the 
entire time that the memory is recorded before transfer. 
Alternatively, live migration transfers differential snapshots 
causing the VM to be suspended for substantially shorter 
periods of time while the transfer occurs. This allows the 
system to appear as though it has suffered no interruptions. 
Such a mechanism is not only useful for fault tolerance, but 
also in the case of ensuring continued availability during 
any process that requires the device to be taken offline, such 
as invasive maintenance procedures (Ando et al., 2009). 

6.2 P2P networking 

Infrastructure idempotence may be enhanced by merging 
virtualisation with P2P networking technologies. P2P 
solutions may allow for a cohesive, fault-tolerant network of 
middleware components for the non-real-time management, 
replication, storage and sharing of plant data and service 
components. 

Currently, P2P technologies may be classified as 
centralised and decentralised networks, structured and 
unstructured networks, hybridised (partially decentralised) 
networks, horizontal hierarchical (HoHA), vertical 
hierarchical (VeHA), and hybrid hierarchical (HyHA) 
networks. Of these, VeHA architectures appear to be the 
most versatile implementation. This is since VeHA 
networks divide their member nodes into layers, creating a 
DHT for each layer, and then requiring the use of gateways, 
such as co-located nodes, for inter-layer communication. 
This means that VeHA systems are capable of tolerating and 
operating in the presence of NAT and firewalls. An added 
advantage of VeHA networks is their ability to properly 
interact with a heterogeneous middleware infrastructure 
made up of components with varying resources (Ou, 2010). 

Using VeHA networks, the topic of P2P networks as 
systems may find an application domain within the 
industrial environment. The definition of P2P networks as 
systems is a method for enhancing cross-layer functionality 
by bridging or merging together heterogeneous and 
homogeneous P2P networks. This allows for expanded 
systems, inter-system content-sharing, and inter-system 
traffic engineering. As systems the various components of 
the middleware may therefore be able to perform cross-
layer resource-sharing tasks, to execute a single operation 
cooperatively, or simply to engineer more efficient paths for 
communication using the existing network infrastructure. 
This increases the survivability of the middleware 
infrastructure and enhances the middleware’s capabilities at 
networking and at performing resource-intensive tasks 
(Ngo, 2013). 

6.3 IEC 61499 function blocks 

To standardise the system components and interfaces, and to 
push the same principles of design of modularity in the 
middleware down to the shop floor, the IEC 61499 standard 
may be useful. The IEC 61499 standard defines a 
distributed architecture for software development in the 
industrial control and automation domain. It is designed to 
allow for software portability, interoperability, 
reconfigurability, and encapsulation. This standard requires 
that software be implemented as a series of function blocks 
(FB), of which there are three classes; namely, the basic, 
composite and service interface FBs. Each FB encapsulates 
a processing algorithm and has explicit definitions of its 
required event and data inputs and outputs. For networking 
purposes, the standard also defines a communication 
interface FB (CIFB) that allows for both UDP 
publish/subscribe and TCP client/server modes of 
communication; however, it does not directly interfere with 
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the mechanisms of the networking layer. Using these 
function blocks, it is therefore possible to generate complex 
networks of interconnected FBs thereby creating an 
organised and well-coordinated distributed control system. 
As has been pointed out in Basile et al. (2013) and Dai et al. 
(2015), such mechanisms make IEC 61499 perfectly 
compatible with SOA. This is as the event-based IEC 61499 
standard requires the FBs to have well-defined interfaces, 
thereby allowing separate FBs to be viewed as independent 
services ready to be consumed by external requesters whom 
only need to know the structure of the interface. This 
concept is built upon even further in Dai et al. (2015), where 
the SOA is used to allow for the dynamic reconfiguration of 
FBs. All in all, the principles of the IEC 61499 standard 
may be used to design and standardise all of the services 
offered by a middleware system, providing a SOA with 
extensive features that simplify its deployment on  
variably-resourced devices in a heterogeneous environment 
(Thramboulidis, 2013; Basile et al., 2013; Wilamowski and 
Irwin, 2011). 

7 Security 

The final topic of discussion in this paper is that of security. 
Security in the industrial domain has traditionally followed 
the approach of isolated islands (Wilamowski and Irwin, 
2011). However, the increasing connectivity brought about 
through vertical integration necessitates the use of different 
strategies. The deployment of a pervasive middleware 
infrastructure presents a unique opportunity to introduce the 
required novel strategies through re-design and the 
elimination of fragility from the system, albeit, at the cost of 
requiring protection measures to secure the middleware 
devices themselves, and their data. The topic of discussion 
of this section will be limited to an information-centric 
viewpoint of securing the industrial process. This translates 
to protecting information from the point of creation to the 
point of destruction. 

At creation, whether coming from or proceeding  
to a field level device, data transmission normally occurs 
using a fieldbus technology. Unadulterated, these protocols 
mostly implement either no or limited security measures; 
for example, Foundation Fieldbus, WorldFIP, Interbus  
and ControlNet all use unencrypted passwords for 
authentication. Therefore, to secure fieldbus protocols, the 
tunnelling of encrypted packets using fieldbus technology 
becomes a necessity. Unfortunately, fieldbus packets are 
very limited in size. This in turn severely limits the security 
enhancements that may be introduced. Furthermore, a 
tunnelling-based method requires that all end-devices  
be modified with the appropriate interfaces and  
application-level components. Since the replacement of all 
manufacturing equipment is not always a feasible option, 
this necessitates the implementation of varying security 
profiles which are able to provide different levels of 
guarantees based on context (Wilamowski and Irwin, 2011). 

In addition to influencing the confidentiality of data, 
context also influences the management of data. That is, 

factors of context must also be taken into consideration 
when assigning proper access rights to data before storage. 
This is in order to ensure that any future use of the data is 
only possible by the correct machine or user and only under 
the proper circumstances. Such rights may be assigned at 
the point of creation by capable field devices, or, as would 
be the case for legacy devices, by GSB devices that would 
intercept and augment non-compliant data. At the point of 
storage, XACML, enterprise digital rights management 
(EDRM), and structured data tagging are suitable access 
management solutions that may be applied to structured or 
unstructured data. In addition to being a form of use  
control, tagging may also be extended to allow for  
network information flow tracking for auditability purposes 
(Demchenko et al., 2014; Bernard, 2007; Hauser, 2013). 

A further method for the protection of controlled data 
during storage is through the use of encryption. However, 
the encryption of data requires further consideration. For 
example, the metadata of encrypted information should still 
remain exposed in order to allow for functions such as data 
discovery and retrieval. Other methods of securing data 
storage involve the fragmentation and dispersal of coherent 
pieces of data across several nodes. If a single device is 
compromised in this situation, then only non-coherent 
fragments of data are equally compromised. Finally, for 
idempotence during storage, the P2P networking 
technologies of Subsection 6.2 may assist in the replication 
of data pieces across nodes. Said technologies are also 
useful in organising, searching, retrieving, and reassembling 
fragmented data (Demchenko et al., 2014). 

The final phase of data control to be discussed is related 
to the destruction of data. Due to data retention policies 
associated with infrastructure-specific regulatory 
commissions, legal frameworks, or the needs of the 
enterprise itself, extensive amounts of sensitive information 
related to the system topology, execution orders, and 
integrity audit logs, for example, may need to be collected 
and stored meticulously. Once the properties of the data 
exceed the policies in place, the nature of such information 
requires that a clear data destruction policy be in place in 
order to ensure its irreparable deletion. In certain industries, 
premature, incomplete or insufficient data destruction may 
lead to hefty fines for the enterprise upon discovery 
(Smallwood, 2014). 

Strategies for destruction include software techniques, 
such as cryptographic erase (CE), as well as physical ones, 
such as degaussing magnetic devices. However, as per the 
US National Institute of Standards and Technology (NIST), 
the official position of the US Government is that a single 
pass over the data using a fixed pattern is sufficient to 
hinder the retrieval of data, even in the face of state-of-the 
art forensics technology (Kissel et al., 2014). This stance 
has been validated by Wright et al.’s research in (Wright 
and Kleiman, 2008). However, as was the case with the 
previous phases, context here also plays an important role. 
To exemplify, bad sectors are normally inaccessible by 
software. In order to destroy data located in these sectors, 
different methods are necessary. For a device compliant 
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with the ANSI ATA and SCSI disk drive interface 
specifications, one could issue an ATA secure erase (SE) 
firmware command. This however comes at the cost of 
having to trust the firmware since the specification does not 
necessitate reporting or verification. For non-compliant 
devices, as would be the case for PLCs or embedded 
devices with on-board memory, other methods would be 
necessary. Sanitisation techniques engrained in the system 
and formalised data destruction policies should therefore be 
carefully designed to match the hardware typically found in 
the system (Reardon et al., 2014). 

8 Conclusions 

This paper has focused on discussing the main requirements 
involved in the design of middleware solutions for vertical 
integration in industrial enterprise systems. These factors 
were considered in light of contemporary technological 
advancements, and solutions selected and examined in order 
to introduce such aspects as plug-and-play autonomy, 
portability, interoperability, and dynamic reconfiguration to 
middleware systems. 

The concepts presented show that the design of an  
ERA-conscious system capable of autonomous integration 
with existing architectures, or of forming the central core of 
new architectures, is currently possible with the 
technologies at hand. Furthermore, as a result of completed 
and ongoing efforts in protocol standardisation and pursued 
interests in converging IT and OT technologies, middleware 
systems may now expand beyond their typical duty of 
integrating and communicating with legacy devices. Such 
systems currently have the opportunity to provide the entire 
enterprise with compartmentalised, idempotent, recoverable, 
secure, and SOA governance-ready infrastructure. 
Effectively, the opportunity exists that would allow the 
ushering forth of a next generation of GSBs; a generation of 
systems capable of providing the mixed critical processes 
found in industrial firms with seamlessly omnipresent, 
business-enhancing, and dynamic services. 
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