
Co-Operative Peer-to-Peer Systems
for Industrial Middleware

Ahmed Ismail, Wolfgang Kastner
Institute of Computer Aided Automation - Vienna University of Technology

Vienna, Austria
Email: {aismail, k}@auto.tuwien.ac.at

Telephone: +43 1 58801-18311

Abstract—With the ever-increasing emphasis on the impor-
tance of vertical integration for the fourth industrial revolution
(Industrie 4.0), we contend that the largest potential lies in
the replacement of single-purpose gateway-ing solutions with
distributed gateway service bus (GSB) technologies. Within this
paper, we primarily focus on the aspect of routing between
variously grouped GSB components. We base our study on
the premise that the most applicable technologies for such a
scenario would be those of inter-system routing protocols from
the domain of peer-to-peer (P2P) cooperative systems networking.
We therefore summarize the basic principles governing such
protocols and, using them, present a study that observes the
conversion of a single system P2P networking protocol into an
inter-system routing protocol. The final protocol is evaluated
extensively using 50 Xen-based virtual machines deployed on
32-bit embedded devices and a 64-bit server.

I. INTRODUCTION

Since their conception, Internet of Things (IoT) research
tracks have become well-established academic fields in the
particular branches of home automation, transportation, and
energy sectors. As of recently, the IoT movement has set
its sights on production systems as well, springing forth a
vast array of collaborative efforts that aim to convert physical
production systems into Cyber-Physical Production Systems
(CPPS). The CPPS domain, also dubbed the Industrial Inter-
net of Things (IIoT), envisions systems of computationally
controlled physical elements, which is to usher forth the latest
wave of disruptive technologies presenting new economic and
technological opportunities for entire nations and markets.

However, at this point in time, enabling technologies are as
of yet not fully present to allow for the complete integration of
physical systems with the Internet. To tackle these limitations,
the VDI/VDE Society Measurement and Automatic Control
has put forth a Reference Architecture Model Industrie 4.0
(RAMI 4.0) describing the use of vertical, horizontal and
lifecycle integration for the strategic advancement of industrial
sectors towards the IIoT [1].

Focusing specifically on vertical integration, this corner-
stone aims to facilitate the conversion of physical production
systems into CPPS by providing solutions that overcome the
connectivity limitations associated with currently deployed
and future industrial automation systems. That is, due to the
long life cycles of industrial systems, it is typical of control
environments to operate using a mixture of legacy and non-
interoperable protocols and devices. Ultimately, therefore, it is

the objective of vertical integration schemes and technologies
to manage such heterogeneity in favour of connectivity [2].

An established method for the management of system
heterogeneity is through the use of gateways. Within the
context of vertical integration, such gateways would per-
form the protocol translations or mappings necessary for
the cross-layer communication of data required by modern
IT techniques. However, we contend that gateways may be
enhanced beyond being stand-alone single-purpose translation
and mapping devices by having them actively participate in
said IT techniques. A method for achieving this enhancement
would be to have the gateways operate as components of a
cooperative distributed system that is governed by a service
oriented architecture (SOA). In such a system each gateway
may be capable of hosting a myriad of intelligent services;
for example, offering processing power, storage space or
even high-powered autonomous self-X capabilities. In such
a manner, the system would collectively be far more powerful
than any one of its components and, as a distributed GSB, it
would effectively be the industrial counterpart of the enterprise
service bus (ESB) [3].

To exemplify the potential of the GSB, consider the setting
depicted in Fig. 1. In this scenario, GSB components are
used for distributed execution in a typical Ethernet-based
plant composed of multiple manufacturing cells. Assume that
each manufacturing cell zone operates using different Ethernet
protocols and that all of the cells’ respective mechatronic
components are configurable using the IEC 61499 standard.
As IEC 61499 typically dictates the use of clearly defined
interfaces, each GSB node responsible for a set of mechatronic
devices may create virtual device representations of all of the
foreign objects that the local cell depends on. For example, the
GSB node at manufacturing cell 1 would create representations
of the devices of cell 3 that cell 1 requires for execution, and
vice versa. Any services required to do so could be acquired
from a distributed service repository that operates as a thin
layer over all of the GSBs. For example, In Fig. 1, Layer
0’s GSB ‘A’ may negotiate the replication of the required
‘Configuration’ service from layer 3’s GSB ‘C’. Once all of
the appropriate services are acquired and executed, each GSB
node may then perform wire-speed translations to the various
device protocols involved in the executing process. Finally,
the resulting data is transferred to the foreign GSB node

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Fig. 1. The deployment of a distributed GSB over a typical Ethernet-based
industrial enterprise network [4]

and subsequently to the destination device. In so doing, the
distributed GSB has allowed for distributed execution and for
the simplified reconfiguration of heterogeneous manufacturing
cells.

The scenario does not end here, however, as more benefits
may be extracted from the distributed GSB. To elaborate, as
the GSB nodes are immediately intercepting traffic between
the devices, the acquired data may be transferred to other GSB
nodes with enhanced processing capabilities. Such nodes may
then cooperatively analyse the data, for example, to detect
anomalies in production. The processed data can then be
served in real-time to engineering workstations, or, from the
DMZ layer, to further functions running at the enterprise layer.

In total, the aforementioned scenario prominently demon-
strates how multiple business-enhancing services are possible
once gateways are elevated from being single-purpose, stand-
alone devices, to operating as parts of a distributed, SOA-
governed GSB.

However, achieving the aforementioned distributed GSB
first requires the establishment of reliable coordination mech-
anisms between the various gateway devices. These mecha-
nisms need to be designed with special consideration to the
infrastructure of industrial enterprises. This is as industrial
networking infrastructure is typically engineered based on
numerous standards and binding legal constraints that may

not be violated for the sake of connectivity [5]. Generally,
these constraints translate to a network design that follows a
hierarchical and layered architecture, as is shown in Fig. 1,
with strict controls applied to communication flows between
said layers, while intra-layer communication is permitted to
flow freely [4]. Superimposed upon the inter-GSB communi-
cation protocol, this means that the protocol should be able
to mirror and maintain fidelity to such an architecture, while
also having the flexibility to autonomously adapt to changing
system requirements. The resulting network would therefore
effectively be an ‘overlay network’; a network that constructs
itself upon existing physical infrastructure [6].

It is the concern of this paper to tackle this first stage of
designing an industrial SOA by defining reliable coordination
mechanisms for an overlay network of GSB devices. To
achieve this, the paper is structured as follows. Section II dis-
cusses the potential and the shortcomings of various possible
networking solutions from the domain of overlay networks and
justifies the selection of P2P networks as cooperative systems
as a suitable solution for the task at hand. Using the principles
of the selected subdomain, Section III exemplifies the design
of a GSB routing protocol by detailing the process of creating a
cooperative systems P2P protocol. Section IV tests the derived
protocol; here, both the experimental procedure applied and
the test results attained are detailed and discussed. Finally,
Section V draws the necessary conclusions from the study
and ends by presenting recommendations for future work.

II. RELATED WORK

A. An Appropriate Networking Domain

Of the various subclasses of overlay networking that exist,
one of the most well-developed and popular is that of P2P
networks. Briefly, P2P networks are ones in which a number
of devices are connected together and share resources using
direct exchange in a manner that is resilient against failures
and transient population sizes, all without the use of a central
manager [7]. In order to do so, P2P networks extend on
the definition of overlay networks using a number of well-
defined features. Such attributes, listed in Table I are elements
that match perfectly with the requirements of a SOA-based
GSB for industrial systems. For example, features such as
services management and scheduling would be necessary for
an efficient SOA, while others such as resiliency and fault
tolerance enhance the finalized distributed GSB’s suitability
for industrial networks [8].

Of the various types of P2P networks possible, the one
that is decidedly the most suitable for the task at hand is
that of P2P networks as cooperative systems. This is as this
class of networks concerns itself with the bridging or merging
together of existing P2P networks to allow for expanded
systems of networks, inter-system content-sharing, and inter-
system traffic engineering [9]. Using the concepts of this
domain, GSB devices may therefore be capable of organizing
themselves into systems of cooperative and distributed GSBs.
Each layer of the enterprise, for example, may comprise of
one or more complete and self-contained overlay networks.

TABLE I
THE TYPICAL ARCHITECTURE OF P2P NETWORKS [10]

Layer Properties

Application-level
Applications

Tools
Services

Services-specific

Meta-data
Services management
Services scheduling
Services messaging

Features management
Security management
Resource management

Reliability and fault resiliency

Overlay nodes management
Routing and location lookup

Resources discovery

Network communications Network

Using the concepts of cooperative systems, new systems may
be dynamically formed, as necessary, to bridge together GSB
nodes from the different overlays of the enterprise to offer
new services, or to execute new functions and processes.
Consequently, by allowing for the dynamic reconfiguration of
systems, this subdomain may therefore be used to facilitate
or restrict message and content transfer between overlays and
enterprise layers dynamically, and possible autonomously, in
accordance with the enterprise’s changing requirements. Such
a subdomain therefore allows the proposed distributed GSB
to establish pervasive enterprise-wide communication channels
without violating or compromising the binding constraints of
the industrial architecture.

B. The Principles of Cooperative Systems

Establishing reliable routing mechanisms for a distributed
GSB operating using the principles of P2P networks as co-
operative systems directly translates to the need for a reliable
inter-system routing policy. Unfortunately, work in this domain
is scant; it is however possible to derive the fact that, for
enhanced reliability, solutions have converged towards the
use of either co-located nodes or gateways. The difference
between the two strategies, as defined in [11], lies in the fact
that co-located nodes participate in the routing process, while
gateways only maintain pointers towards specific nodes in
different overlays. Works that representatively exemplify these
principles are [12] for the gateway-ing concepts and [13] for
the co-located nodes method.

In the case of [12], inter-system routing between fundamen-
tally different classes of P2P networks is achieved by having
a subset of nodes in an overlay network act as gateways,
and then having a second group of nodes, known as the
gateway pointers, keep track of these gateways. Nodes are
designated gateways if they exist in two networks, physically
or otherwise. To traverse across these differing networks,
queries go from the origin node to a gateway pointer, then the
gateway, and finally to the external network. Unfortunately, the
system reported in [12] was not evaluated using simulations
or experimentation.

As for [13], a protocol based on co-located nodes named
Babelchord is presented. Here, Babelchord is defined as a
protocol for bridging together different Chord networks; a type
of P2P networks that assign and uses m-bit length identifiers
to map peers on to a circle modulo 2m, known as a chord ring,
for routing and other purposes. The mechanisms of Babelchord
rely on the use of Synapse nodes, which are peers that belong
to multiple rings, or floors, at once. Any query that passes
through a Synapse node is forwarded to all of the floors that
the node is a part of thereby achieving inter-system behaviour.
However, as queries are not guaranteed to reach a Synapse
node, this form of routing is defined as “opportunistic routing”
[11].

Although Babelchord was extended further through multiple
studies, the most relevant study to our current needs is [11].
This is as [11] shows that Babelchord’s opportunistic routing
benefits greatly once gateway pointers are included and used.
Specifically, [11] extends the Synapse protocol with such
pointers, creating the Synapse 2.0 Framework, and shows that
in so doing so they have allowed for the definition of routing
policies that ultimately result in a more flexible system.

Based on the results of the aforementioned studies, it
appears that regardless of whether an exclusively gateway-
based or co-located-nodes-based method is used, the basic
components of an optimal inter-system routing protocol is that
of nodes, gateways and gateway pointers. The first step in
developing an inter-system routing protocol should therefore
be instilling the modifications necessary to allow for the
inclusion of these three elements.

To exemplify these principles, Section III will detail their
usage in developing a functional cooperative systems P2P
protocol. However, due to the limited scope of the study
and the large number of existing and mature P2P solutions
based on proven methods, an existing single-system solutions,
Chimera, is used as a starting point for the development
process. The selection of Chimera as the illustrative protocol
to undergo the conversion process is mainly due to it being a
hybrid implementation of two well established P2P protocols;
these being the Pastry and Tapestry protocols. Its hybrid nature
means that it has inherited a favourable number of properties
and constituent elements that it directly shares with several
other largely popular P2P protocols. This lends credibility
to the applicability of the methods of Section III for the
conversion of other existing P2P protocols into cooperative
systems ones as well.

III. SYSTEM DESIGN

This section details the design process in two parts. The
first subsection describes the Chimera protocol in its original
form, while the second delves into the conversion process that
transforms Chimera into an inter-system routing protocol.

A. Base Protocol & Modifications

This subsection will explain the primary elements of
Chimera in order to establish its baseline behaviour. These

Fig. 2. The operational mechanisms of the vanilla Chimera P2P protocol

elements may be summed up as being bootstrap nodes, prefix-
based routing, fault detection through the use of heartbeat
messages, neighbour sets and leaf sets. Due to a lack of
publications on Chimera, the descriptions provided are inferred
from a library implementation in C that was developed at the
University of California, Santa Barbara1.

To begin with, the definition of each of the aforementioned
elements of Chimera is as follows. Firstly, a bootstrap node is
a member of a P2P network that supplies newly joining nodes
with the initial configurations required for them to successfully
join the network. Next, prefix-based routing is a form of mes-
sage routing that uses the unique identifiers, or keys, of nodes
in routing. In prefix-based routing, the next hop selected for a
message is the one that matches the prefix of the destination
with a digit extra than the current hop. As for fault detection
through pings, or heartbeat messages, this mechanism relies
on the successful acknowledgement of pings between nodes
to surmise that other peers are functional. A node’s neighbour
set, on the other hand, consists of information on a number
of peers that are closest to it in terms of proximity. This set
is not typically used for routing, but is meant to be used as a
source of locality information. Finally, the leaf set of a peer,
L, is composed of the nodes that are |L/2| numerically closest
larger, and |L/2| numerically smaller keys, as compared to the
peer’s own key. Unlike the neighbour set, the leaf set is in fact
used for message routing [10, 14].

Together, the aforementioned mechanisms operate as fol-
lows. Initially, Chimera must be supplied with the details of
a bootstrap node or be initiated as the bootstrap node. If it is
initiated as the bootstrap node, then it simply waits for join
requests. If it is supplied with the host name, port and key
(a unique bit string identifier) of a bootstrap node, then, as
shown in Fig. 2, the joining node, A, transmits a join request
containing its host name, port, and key to the bootstrap node,
B, and waits indefinitely for a response. If node B accepts
the join request, node B sends node A its leaf set, which is

1Available: http://current.cs.ucsb.edu/projects/chimera/

processed by Node A and subsequently used to send an update
message to each of the members of the leaf set announcing
its arrival.

Once the join process is complete, the network is then
maintained through the use of heartbeat messages and what
is termed as piggyback messages. To elaborate, every pre-set
length of time a node is expected to ping every other node in its
leaf set. If the pinged node responds with an acknowledgement
within a pre-assigned grace period, the node is acknowledged
as a functional one. If, however, the node does not respond in
time and its success average is found to be below an acceptable
threshold, the node is pruned out of the routing table. As for
the piggyback messages, these are communicated after every
third ping. This message type contains the entire leaf set of
the node, and is communicated to every member of its leaf
set in order to disseminate routing table updates.

Further details of the Chimera implementation relate to its
external and internal host lookup algorithms. For external host
lookups Chimera is wholly dependent on DNS lookups for
host resolution. The resolved IPs of hosts are not stored,
and lookups are performed before every transmission. The
remaining information related to peers, such as host names,
keys, and ports, to name but a few, are stored using the Red-
Black binary tree library. As such, these binary trees are used
for subsequent lookups of information on hosts, as well as for
other implementation-specific behaviour relevant to the proper
functioning of the program itself.

All of the aforementioned communication occurs solely
through the use of UDP packets. The structure given to said
UDP packets is shown in Fig. 3. Of the header elements listed,
the seqNum and source key fields are not put to use by the
original authors of Chimera. That is, the message header struct
includes these fields, however, they are not included or used
in any transmitted or received packets.

Some of the limitations of Chimera include the fact that
support was not extended for TCP communication at all.
Furthermore, aside from the provision of UDP-based mes-
sage transferring mechanisms, no functions were defined for
resource lookups, file transfers, or any other cooperative
behaviour typical of P2P networks.

B. Modifications

As the purpose of modifying Chimera is to instil the
necessary measures to allow for inter-system routing, the first
requirement is therefore a method by which overlays may
be differentiated from one another. To do so, we mirror the
same identification method used to differentiate nodes from
each other. That is, as each node is given a unique key, each
overlay is also assigned a key. Although a simple change, this
modification echoes throughout the routing, messaging, and
higher level functions and layers.

Starting with the messages themselves; a message must now
be clearly labelled with its destination overlay. Consequently
the message header is modified to include this key as well.
Furthermore, we also enable the source key and sequence
number header fields and add a source overlay key field as

Fig. 3. The structure of a UDP Packet in the original Chimera implementation (above), and post-modifications (below).

Fig. 4. The operational mechanisms of Chimera after modifications.

well. These three fields are included for reasons that will
be clear further on in this subsection. The resulting message
header is shown in Fig. 3.

As for the routing process, naturally, the first step is to define
a third node type aside from the peer and bootstrap roles that
allows a node to operate as a gateway. This role is denoted
as the ‘co-located’ node type and is typically considered to
be fixed. This is as, in an industrial setting, nodes that would
be responsible for cross-layer communication will need to be
granted the proper access rights to do so. This may mean
that such gateways may need several of various types of
communication interfaces, additional wiring, multi-homing, or
the configuration of firewalls and other devices to allow for the
traversal of gateway-specific traffic. Since only a number of
GSB devices may be afforded the configurations or hardware
necessary to operate under these constraints, the P2P protocol
must therefore be able to accommodate the use of these nodes
as fixed gateways.

Currently, the role of a co-located node is designed to be
occupied exclusively by bootstrap nodes. That is, a co-located
node is always a bootstrap node, but a bootstrap node does not
always have to be a co-located node. As all nodes must know
the bootstrap node to join an overlay, and Chimera operates by
using fixed bootstrap nodes, by doubling the role of a bootstrap
node as a gateway node, all of the members of each overlay
become de facto gateway pointers. This reduces the complexity
of the protocol by eliminating the need for gateway pointers
selection and gateway discovery processes.

With all of the aforementioned modifications in mind, the
message routing process is, naturally, modified as well. The
first thing to note is that, due to the geographic proximity of
peers, prefix-based routing is abandoned. Instead, if a message
is destined to a node in the same overlay as the sender, then
the message is sent directly towards the destination. However,
if the message is sent to a node in a different overlay, then, as

shown in Fig. 4, the message is routed via the co-located node
with the destination key and destination overlay key clearly
labelled. If the bootstrap node contains a listing of a co-located
node in the destination overlay, which in this case would be a
node that has joined its overlay from the destination overlay or
vice versa, then the bootstrap node forwards the message to the
co-located node. In turn, the co-located node then forwards the
messages towards its final destination. If no co-located node
in the destination overlay is available, then the bootstrap node
transmits the message to a co-located node from a randomly
selected overlay in the hopes that it may have a path to the
destination overlay. If the bootstrap node is not aware of any
active co-located nodes, then the message is dropped.

As previously mentioned, the message header is modified
to actively use the message layer sequence number, source
key and source overlay key. The source key and overlay key
are used for two purposes. The first is to instil a loop-breaking
mechanism which was not originally present in Chimera. That
is, we prevent the next hop of a message from being the
previous hop to avoid routing loops. The second purpose is to
simplify the experimental analysis process. This is as, by using
the source key, overlay key, and sequence number, we are able
to trace back messages from the destination to the original
source allowing us to calculate metrics such as the number of
hops travelled per message. Beyond the experimental value of
including these three fields, they may also serve to enhance the
security of the protocol. This was their intended purpose in the
original implementation of Chimera, but, like vanilla Chimera,
they are currently still not used for security purposes.

Further routing-related changes involve the modification of
the purpose of leaf sets and neighbour sets. As prefix-based
routing is not used, leaf sets are therefore instead used as
overlay sets. That is, each leaf set maintained by a node in fact
corresponds to an overlay. Consequently, as shown in Fig. 4,
the pinging and piggyback messages have also been modified

to accommodate for this change. The pinging function now
operates by having a node select a leaf set at random before
pinging all of the nodes in that overlay. As for the piggyback
messages, like the pinging function, the destination leaf set
of the piggyback message is chosen at random. However, the
contents of the piggyback message is always information on
the nodes in the transmitting node’s own overlay. Lastly, the
second type of sets, neighbour sets, are at present, not put to
use; however, as they may later on prove to be useful for the
execution of other functions, such as load distribution and data
replication, for example, they are kept as vestiges within the
current implementation.

The final modifications done to Chimera are related to
increasing its efficiency and flexibility. For the former, we
eliminate Chimera’s dependence on DNS-based host name
resolution and instead directly store and share information
on host IPs through piggyback messages. As for the latter,
further flexibility, this is achieved through two measures. The
first measure of these is the modification of all the functions
responsible for network communication to allow both 32 bit
and 64 bit platforms to execute Chimera. This is to allow
the GSB to use computing resources from both ends of the
spectrum of available devices. The second modification is
the removal of Chimera’s dependence on the Red-Black Tree
library. Instead, a generic hash table is instilled that may be
easily extended to use a Red-Black Tree, a NedTrie or any
other digital searching mechanism that developers may desire,
based on their respective requirements.

With the behaviour of the protocol outlined, the next section
delves into the experimental procedure implemented and the
results collected in order to evaluate the designed inter-system
routing mechanisms.

IV. EXPERIMENTAL RESULTS

To reiterate on previous points discussed, the protocol
presented is designed to allow for the reliable inter-system
routing of messages between clusters of GSB nodes. This
section is therefore concerned with testing the protocol’s
abilities and limitations at inter-system routing. These tests
are performed while observing the degree of variation in the
protocol’s behaviour as the number of clusters and nodes per
cluster are modified to establish a relationship between the
two.

A. Results

The experiment itself is carried out on a Xen Project (TM)
server hosting 48 Debian virtual machines (VMs). Two further
VMs running Ubuntu are deployed separately on two 32-bit
CubieTruck ARM boards that were also extended using the
Xen platform. The physical network configuration therefore
consists of two CubieTrucks connected to a single network
port on the server using an unmanaged switch. The port is then
bridged to 48 virtual interfaces, with each interface belonging
to one of the 48 VMs.

As for the topologies deployed, the number of clusters and
nodes per cluster are varied to establish a relationship between

the two variables. As such, a fixed number of nodes, 50 in all,
are divided into 1, 2, 5, 10 and 25 clusters with each cluster
consisting of 50, 25, 10, 5, and 2 nodes, respectively. Clusters
are connected linearly via their bootstrap nodes as shown in
Fig. 5.

The configuration and execution of these topologies is
carried out by A BASH script running on the server’s dom0.
The script transfers the Chimera application with the necessary
bootstrapping configuration files to all 50 nodes before each
experiment. Once the transfers are complete, the same script
executes all of the instances sequentially, with a gap of 2
seconds between each execution. This gap is in place to
give each instance enough time to start up before it may
begin receiving pre-configured messages, such as join requests,
from any subsequently executed nodes. It is important to
note as well that, as a precaution, the Chimera instances are
always run under the GNU debugger (GDB). Finally, each
experiment is run for an hour; during this time, each node
collects and records information related to the behaviour of its
network, routing, messaging and application layers. Once the
experiment timer expires, the same BASH script terminates
Chimera on all 50 nodes, retrieves and archives all of the
relevant logs, and prepares the node for the next experimental
run.

The acquired logs are analysed in Matlab to evaluate the
performance of the protocol. For each node, the total number
of messages sent, acknowledged, received, and rerouted are
calculated. Messages are also traced backwards, from desti-
nation to origin, to compute the number of hops travelled by
every unique message transmitted during the experiment. The
results are aggregated by cluster and summarized in the forms
of means, medians, and 95th percentiles. Since each of these
forms of descriptive statistics may extensively vary from one
node to the next, the maximum, minimum, and median values
of each is also computed to provide an objective representation
of the results. All of the aforementioned results are shown in
Tables II, III, IV, and V. It is important to note at this point
that the case of having 1 cluster serves the purpose of orienting
the reader with the baseline behaviour of the protocol as no
inter-system routing is possible in this scenario.

What is immediately apparent from Tables II-V is that
the number of messages transmitted and received follows a
crude bell-curve shape. It appears that the maximum number
is achieved at the mid range, where the number of clusters
is half the number of nodes per cluster; although the case
of having 10 clusters, i.e. the nodes per cluster is half the
number of clusters, trails closely behind. It appears that these
higher recorded numbers of messages is due to two properties
related to these clusters’ configurations. The first is that there
are enough nodes per cluster to allow for a healthy number
of intra-routed messages. Second, the number of clusters is
manageable enough to allow for inter-cluster discovery within
the period of one hour. This is apparent from Table V, where
the 5 cluster and 10 cluster cases are the only ones with
means, medians and 95th percentiles reflecting the dominance
of multi-hopped messages in their experiment runs.

Fig. 5. The structure of a 5 cluster network.

TABLE II
THE NUMBER OF MESSAGES SENT PER NODE

Messages Sent

Mean Median 95th Percentile

of
Clusters Min Med Max Min Med Max Min Med Max

1 2180 2180 2208 2166 2185 2174 2295 2312 2833

2 1848 1859 1876 1669 1683 1820 2349 2465 3033

5 1438 1642 2226 1222 1424 1844 3241 4243 5440

10 1368 1396 1777 1304 1368 1466 2047 2557 5294

25 621 698 750 502 724 812 1018 1109 1153

TABLE III
THE NUMBER OF ACKNOWLEDGEMENTS RECEIVED PER NODE

Acknowledgements Received

Mean Median 95th Percentile

of
Clusters Min Med Max Min Med Max Min Med Max

1 2080 2121 2126 2079 2097 2129 2202 2207 2688

2 1669 1701 1737 1477 1556 1642 2068 2367 2643

5 1378 1583 2182 1165 1384 1802 3108 4201 5313

10 1344 1372 1740 1274 1345 1433 2039 2488 5213

25 611 692 740 493 723 809 1005 1092 1133

TABLE IV
THE NUMBER OF ACKNOWLEDGEMENTS SENT PER NODE

Acknowledgements Sent

Mean Median 95th Percentile

of
Clusters Min Med Max Min Med Max Min Med Max

1 2093 2126 2132 2100 2137 2138 2276 2290 2349

2 1673 1707 1741 755 995 1042 853 1105 1162

5 1384 1588 2186 392 436 462 9897 11757 16699

10 1348 1374 1433 274 286 341 5775 6386 7186

25 613 692 741 370 378 474 1292 1462 1515

TABLE V
THE NUMBER OF HOPS PER MESSAGE

Number of Hops

Mean Median 95th Percentile

of
Clusters Min Med Max Min Med Max Min Med Max

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

5 1 1 2 1 1 2 2 2 2

10 1 2 2 1 2 2 2 2 3

25 2 2 2 2 2 2 2 2 2

Contrasting with these results is the highly granular case
of having 25 clusters of 2 nodes each. Here, the number of
transmissions are markedly lower than has been observed in
the other experiments. This is because each leaf set is so small
in size that a ping run on a leaf set results in only a few
message transmissions before the source node rests and waits
for the initiation of the next ping run. Although this means that
the overhead of pings on the network is lower, it also means
that in a fixed set of nodes, the discovery of faulty peers,
and the subsequent pruning of their information, is also slow.
Furthermore, as is apparent from the mean, median and 95th

percentile of the number of hops travelled by the messages of
this experiment, the inter-cluster discovery process also suffers
with this large number of small clusters. As shown in Table V,
the value at 25 clusters is consistently 2 hops, meaning that,
within the time span of an hour, it was rare for a cluster to
be able to discover clusters beyond its immediate neighbours.
This is also a reason for the lower total transmissions observed
for this configuration as messages did not have to travel far to
reach their final destinations.

A last observation is to do with the discrepancies seen
between the number of messages sent and the numbers ac-
knowledged. Although the protocol performed formidably,
none of the experiments achieved a perfect record. This is due
to two possible explanations. The first is that once the hour-
long experiment is complete, the termination of all instances
is not, unfortunately, instantaneous. This leads to the loss of
acknowledgements, as they are either not sent or not received
by a terminated application. Furthermore, at certain points
multiple nodes try to communicate with the same one, for
example, a co-located node. This led to collisions and the loss
of messages, or acknowledgements. This is especially true for

the cases of 2, 5, and 10 clusters, where co-located nodes were
consistently under exceptionally heavy loads.

B. Discussion

Based on the results of the previous subsection, it is safe
to conclude that having the number of nodes be double the
number of clusters, or vice versa, is the best configuration
to have for the processes in place. Unfortunately, even with
this configuration, the discovery process is considerably slow.
The procedure of having to send hefty piggyback messages
containing the information of all of the nodes of a leaf set,
in every sense, requires replacement with a quicker and more
robust solution.

The inter-system pings, although unnecessary for the main-
tenance of whole networks, was introduced to simulate the
inter-system routing of messages. The protocol and imple-
mentation is agile and stable enough to predominantly allow
their messages to reach their destinations without fail, and
consistently using the shortest path possible. Although this
would allow designers to set conservative TTLs to messages, it
comes at the cost of bootstrap nodes being considerably loaded
with the task of re-routing messages throughout its operational
lifetime. This brings to question the matter of whether such
nodes would be able to participate in any other tasks required
of a GSB node beyond routing. A further observation is
that, naturally, due to these high loads, having star-shaped
clusters is completely out of the question and should not be
pursued. What ought to be considered, however, are questions
of redundancy and load balancing, both to deal with and to
offset the inevitable failures that would result from the heavy
routing loads that co-located nodes must deal with. Finally,
another desirable consideration is that of having mechanisms
in place to allow for a mesh configuration between the co-

located nodes themselves. This is in favour to the linear routing
currently in place in the hopes of reducing their routing loads
as well as message latencies.

Finally, it would not be fair to conclude without discussing
the fact that this experiment did not run without its own
number of limitations. The gaps between initiation and termi-
nation naturally mean that all experiments did not run for an
exact hour to the second; however, the effect of this limitation
has been noted in the previous subsection. Other limitations
include the fact that the experiment was only run for an hour
each time, and it would be interesting to observe, for example
the steady state behaviour of the bootstrap node in the 2 or 25
cluster network after several hours, once wider knowledge of
further clusters is established, and inter-cluster routing plays
a much more dominant role.

V. CONCLUSION

An inter-system routing protocol is built based on the
constraints of developing for an industrial, SOA-governed,
distributed GSB. The system was subsequently deployed on
50 VMs on 64-bit and 32-bit platforms. Extensive testing
was performed in order to determine the performance of the
protocol and the optimal configurations for the organization
of Chimera peers. The number of clusters and their respective
sizes were varied and a number of metrics were collected,
analysed and compared.

Based on the results attained, it is reasonable to conclude
that the protocol is stable and meets its constraints. As such,
the protocol may, in its current form, be integrated into a
distributed GSB to participate in the coordination of advanced
IIoT services. Such services would typically be expected to
tackle age-old problems associated with production and in-
dustrial systems. Two formidable examples given in Section I
include the use of data analytics for the detection of anomalies
during production, and the use of virtual device representations
for managing system heterogeneity.

However, it is apparent from the constituencies of this
P2P approach that provisioned services may go beyond the
resolution of existing problems. For example, there is no
limitation that would prevent the evolution of this approach
towards further integration with the Internet. Effectively, this
would allow the GSB to incorporate advanced services that
rely heavily on the Internet. Such services may include the
offshoring of functions to cloud-based systems for reduced
operational costs, or the enhancement of plant safety through
the employment of the event web; a form of event modelling
which combines information from the Web with additional
sources to infer states and events. Such potential makes it
prudent to claim that, although the protocol is quite capable
as it is, further research could result in core mechanisms that
extend it beyond its current practical limitations.

ACKNOWLEDGEMENT

This paper is supported by TU Wien research funds.

REFERENCES

[1] Peter Adolphs, Heinz Bedenbender, et al. Reference
Architecture Model Industrie 4.0 (RAMI4.0). VDI/VDE
Society Measurement and Automatic Control (GMA).
July 2015.

[2] B.M. Wilamowski and J.D. Irwin. Industrial Commu-
nication Systems. The Industrial Electronics Handbook.
Taylor & Francis, 2011.

[3] P. Gaj, A. Malinowski, et al. “Guest editorial: Dis-
tributed data processing in industrial applications”. In:
IEEE Transactions on Industrial Informatics 11.3 (June
2015), pp. 737–740.

[4] Paul Didier, Fernando Macias, et al. Converged
Plantwide Ethernet (CPwE) Design and Implementation
Guide. Cisco Systems and Rockwell Automation. 2011.

[5] J. Zerbst, S. Zimmermann, et al. “Towards an Adapted
Classification Methodology for Graded Security Ap-
proaches in EPU Architectures”. In: Proceedings of
the International Council on Large Electric Systems
(CIGRE). Apr. 2013.

[6] Z. Ou. “Structured peer-to-peer networks: Hierarchical
architecture and performance evaluation.” PhD thesis.
University, 2010.

[7] Stephanos Androutsellis-Theotokis and Diomidis
Spinellis. “A survey of peer-to-peer content distribution
technologies”. In: ACM Computing Surveys (CSUR)
36.4 (2004), pp. 335–371.

[8] V. Altmann, J. Skodzik, et al. “A DHT-Based Scalable
Approach for Device and Service Discovery”. In: 12th
IEEE International Conference on Embedded and Ubiq-
uitous Computing (EUC). Aug. 2014, pp. 97–103.

[9] Hoang Giang Ngo. “From inter-connecting P2P over-
lays to co-operating P2P systems”. PhD thesis. Uni-
versité Nice Sophia Antipolis; Hanoi University of
sciences, 2013.

[10] Eng Keong Lua, Jon Crowcroft, et al. “A survey and
comparison of peer-to-peer overlay network schemes”.
In: Communications Surveys & Tutorials, IEEE 7.2
(2005), pp. 72–93.

[11] Vincenzo Ciancaglini. “From key-based to content-
based routing: system interconnection and video stream-
ing applications”. PhD thesis. Université de Nice -
Sophia Antipolis, 2013.

[12] Lawrence Cheng. “Bridging distributed hash tables in
wireless ad-hoc networks”. In: IEEE, 2007, pp. 5159–
5163.

[13] L. Liquori, C. Tedeschi, et al. “Babelchord: a social
tower of DHT-based overlay networks”. In: IEEE Sym-
posium on Computers and Communications (ISCC).
July 2009, pp. 307–312.

[14] Antony Rowstron and Peter Druschel. “Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems”. In: Middleware 2001. Springer,
2001, pp. 329–350.

