
BG

22nd International Conference on
RELIABLE SOFTWARE TECHNOLOGIES

ADA-EUROPE 2017

12-16 June 2017, Vienna, Austria

ABSTRACTS

INDUSTRIAL PRESENTATIONS
http://www.ada-europe.org/conference2017

In cooperation with

Astronomical Ada.
Using Ada to control Telescopes.
White Elephant GmbH – software@white-elephant.ch

A very basic introductory level astronomical telescope either has no motor or a single motor to compensate
for the rotation of the earth.

However a keen astronomer will quickly want an automatic means of locating a galaxy, star or planet,
typically using his or her PC to direct the telescope to the specified location. For this to be possible the
telescope needs a second motor.

Freeware virtual planetariums such as the well-known Stellarium can be used to instruct the telescope to
position and then track a specific object.

However, very keen astronomers will want to do more. At the time of writing, the only way to position and
track "Near Earth Objects" (NEOs), is to write your own telescope control system.

So that is what White Elephant GmbH did!

SkyTrack is a PC program that is able to control the movement of a telescope to find and follow stars,
planets, deep sky objects or near earth objects such as satellites and asteroids.

The program is written entirely in Ada 2012 and can be complied to execute under any environment that is
supported by GNAT and Gtk3. For example: Microsoft Windows, Linux and Apple OSX.

It supports telescopes that have simple stepper motors (without decoders) as well as both Equatorial and
Azimuthal mountings.

The telescope can be controlled using the program's graphical user interface (GUI), a numeric keypad or via
Stellarium. In the latter case the program sends feedback to Stellarium so that it can keep its display up to
date. The use of Stellarium or other third party products is not a requirement.

Other features that are often missing from contemporary products include:

· Favourites : a list of frequently observed objects.
· Horizon : For fixed telescopes and those at their "home" location, the actual horizon can be

defined. The actual horizon differs from the true horizon when buildings obscure the true horizon.
This feature allows the program to improve the accuracy of its filtering of visible objects.

· Only list objects that can currently be seen or, in the case of NEOs, are soon to be seen.
· Catalogues : Objects can be named according to a variety of catalogues. The same astronomical

object is called different things according to the catalogue used.
· On Earth Objects : For demonstration purposes, when the weather is overcast, it is sometimes

useful to be able to position the telescope onto a nearby terrestrial object (eg a road sign). In this
case the rotation of the earth must be ignored.

· Park position : For fixed telescopes or those at their "home" location, it is useful to park the
telescope to a known position before powering off. This saves the need to realign the telescope
next time it is used.

mailto:software@white-elephant.ch

· Normal and Expert modes : Useful to prevent shared or public telescopes from being accidently
misconfigured.

Originally we attempted to control the telescope using a dedicated microprocessor. However the
requirement of a graphical interface as well as the phenomenal amount of calculations that needs to be
performed persuaded us that a standard PC was the best suited platform.

However PCs equipped with their standard operating systems are not real time. The control of stepping
motors, without decoders to ascertain their actual position, requires hard real time. Steps must be precisely
calculated and steps may not be lost.

Consequently a small microprocessor is used to actually control the stepper motors. The PC program sends
a stream of future actions to the microprocessor using standard Ethernet UDP/IP. In this arrangement the
PC does all the processing work whilst the microprocessor maintains the real time control of the motors.

Ada was an ideal choice of implementation language mainly because of the large amount of concurrency
involved. Input commands may come from the GUI, Stellarium or the keypad. In addition communication
with the microprocessor must be maintained and new actions generated. Dynamically displays must be
updated as objects appear and disappear from the visible sky.

For performance reasons, a part of the large SIMBAD astronomical database, which currently contains over
nine million objects, was converted into an Ada constant table and then compiled into a static library. The
Universe, from our perspective, is relatively stable and therefore a large structured constant is much better
suited for fast real time access than a conventional database.

Challenges:

· For portable telescopes – a fast yet easy method to align the telescope. For equatorial mounts this
means bringing the telescope polar axis parallel with the Earth's axis, even without visibility of the
Polar star (Polaris).

· Time. NEOs are typically moving so fast that they traverse the viewed area within a fraction of a
second. A small inaccuracy in time can therefore make the difference between seeing the object or
not.

· NEOs, although travelling at a constant speed, appear from the earth to be accelerating and
decelerating according to their position and the angle at which there are observed. This requires
that the telescope continually vary its tracking speed.

· When the tracked object is changed to another visible object, it is highly desirable that the
telescope repositions using the optimum route. Large heavy telescopes move relatively slowly so it
is important not to waste time making unnecessary movements.

· The motors have finite limits depending on the load and their angle. The software needs to take
this into account in order to prevent losing steps when the tracked object moves too fast to be
accurately tracked. In this case the telescope will be trying to catch up with the object. This rare
situation occurs with Equatorial mounts when the object passes close to the Polar star or with
Azimuthal mounts when the object passes close to the zenith.

The software executing on the microprocessor used to control the stepper motors is currently written in
Modula-2, a poor man's Ada. A future project will be to port this to Ada.

IP Network Stack in Ada 2012 and the Ravenscar profile

Stephane Carrez

Proposed industrial presentation at Ada-Europe 2017

Abstract

Ada Embedded Network is a small network stack intended to be used by small embedded
Ada applications running on ARM. It implements the standard ARP, IPv4, UDP, DNS
and DHCP protocols on top of an Ethernet driver. It runs on the STM32F746 board.

The talk presents the components from the Ada implementation point of view. It will
highlight the Ada features that have been used and show some of the benefits of the
Ravenscar profile that have helped the project.

First, the Ethernet driver uses interrupts to receive and transmit packets. It implements
the transmit side by using a dedicated protected object that controls the transmit ring. On
its side the receive ring is controlled by a second protected object. This design increases
the concurrency between the network transmission and reception.

On top of the Ethernet driver, the ARP module maintains the ARP table that maps
the IPv4 address to the Ethernet address. The ARP module uses a protected object to
maintain that map. It handles the ARP resolution with retransmission of ARP requests
and the detection of stale entries.

The IPv4 layer also sits on top of the Ethernet driver but it also relies on the ARP module
for the Ethernet address resolution. The IPv4 layer is only responsible for setting the IPv4
packet header. It dispatches received packets to upper protocol layers.

The UDP layer defines a simple socket-like interface by providing a Socket abstract tagged
type that represents the UDP server port. Applications have to override a Receive proce-
dure to receive packets. The simple design allows to easily send and receive UDP packets.

The DHCP module uses the socket framework to implement the DHCP client state machine,
allowing applications to get their network configuration. The DHCP state is controlled by
a protected type because the transmission and reception of DHCP packets are handled by
different tasks.

Like the DHCP module, the DNS module uses the UDP socket as a client to make DNS
requests to the DNS server whose address was received by the DHCP configuration.

Finally the presentation will also describe how EtherScope and its two tasks design uses the
stack to make the real-time analysis of network packets, display the result on the 480x272
display, and interact with the user through the touch panel.

The conclusion will explain how Ada helped the project and what were the difficulties
found during the design and implementation.

Hardware-Based Data Protection/Isolation at Runtime in Ada Code for

Microcontrollers

This industrial presentation will describe an approach for using the hardware-based memory protection

capabilities from modern low-end microcontrollers, to control access to data structures and peripherals

in bare-metal embedded software, written in Ada 2002.

Software for low-end microcontrollers is typically written bare-metal or using an RTOS. In the case of

Ada, the role of the RTOS is typically played by an Ada runtime library, such as one of the Ravenscar

profiles. This type of software consists of one of more Ada tasks and interrupt handlers running in a

single address space. Traditionally, there has been no data protection mechanism within a single

address space. An errand pointer can corrupt any location in the address space, including variables in

RAM and memory-mapped I/O registers. Although this is less likely in code written in Ada than in code

written in C/C++, it is still possible and for safety-critical/high-integrity software, this possibility must be

reduced to the minimum. Besides, Ada programs that call libraries written in C need to protect

themselves from buggy or malicious C code that can corrupt the Ada data structures.

Many modern low-end microcontrollers come with a memory protection unit (MPU) as an alternative to

the memory management unit (MMU) from high-end microcontrollers. A memory protection unit (MPU)

is a hardware module that enables software to control access to areas of physical memory known as

regions. These regions can vary in size and typically can be as small as 32 bytes, in modern MPUs. The

set of memory areas (regions) that a given Ada task is supposed to access may be different at different

points in the execution of the task, and it depends on the software components (Ada packages) that the

task invokes. A given component's invoked subprogram can access variables in RAM or memory-mapped

I/O registers of a given peripheral, or both.

This presentation will show an approach for using a microcontroller's MPU to provide component-level

data protection within a single address space, for bare-metal microcontroller software, written in Ada

2012. First, an MPU-independent API to support this approach will be presented. Then, an

implementation example of this API for a specific microcontroller will be described. Next, Ada code

design techniques to structure an application's code components to enforce component-level data

protection will be illustrated. Finally, the required changes to the task creation and context switch in the

Ada runtime library (GNAT Ravenscar Small Footprint profile) will be described.

Automated Testing of SPARK Ada Contracts:

Progress & Case Study Report

Industrial Presentation for Ada-Europe 2017

Background & Introduction

More than fifty percent of avionic software development cost is spent on software verification. The

design, maintenance, and execution of unit tests based on software requirements, takes up a

significant proportion of this. The Federal Aviation Administration (FAA) and European Aviation

Safety Agency (EASA) outline that all avionic software must meet certification standards and the

DO-178 certification guidance is the most widely recognised means of compliance. This guidance

places a significant amount of burden on the cost of avionic software. The AUTOSAC research

project, funded by the National Aerospace Technology Exploitation Programme (NATEP), has

developed a tool chain that automates the generation of unit tests, whilst still maintaining their

credibility as functional tests within the eyes of the DO-178 guidance. This is achieved through the

use of Ada contracts (a feature of the SPARK language) and a process developed in collaboration

with Rolls-Royce Control Systems.

In this presentation we will describe recent progress on the project – including results from

industrial case studies. We will discuss key results including certification arguments regarding

conformance to DO-178 guidance, and present one of the key innovations: a post-condition

coverage criterion designed to generate high-value test cases similar to those that would be written

by an experienced test engineer.

Case Studies & Results

The primary industrial case studies to which the prototype tools have been applied are samples of

existing industrial code written by Rolls-Royce for their FADEC (Full Authority Digital Engine

Controller). The first study was drawn from the Operating Software (OS) – lower level platform

code. The second was drawn from the FADEC Application Software (AS) which runs on top of the

OS layer. Both are examples of DO-178 DAL-A (safety critical) software that has previously been

subjected to manually-written unit tests. The code was written in the SPARK ’95 subset of Ada, but

had not previously been contractualised. For the purpose of the case study we added a functional

specification using SPARK 2014 pre- and post-conditions. The AUTOSAC tools were then used to

generate unit test cases from the SPARK specifications and executed with the post-conditions

enabled to provide an oracle for the test results.

By applying the AUTOSAC tools to existing, certified code, we are able to make a comparison in

three important dimensions: the quality of the automatically-generated tests vs. those that a test

engineer would write; the extent of structural coverage that is achieved automatically; and a

comparison of time, costs and process complexity.

Introducing static analysis to a mature project

Jacob Sparre Andersen

JSA Research & Innovation, Jægerparken 5, 2. th., 2970 Hørsholm, Danmark

Static analysis tools (eg. AdaControl, CodePeer) are accepted as a useful way of identifying poten-
tial problems in source text before they turn into system failures or make a project prohibitively
expensive to maintain.

I have previously been presented with anecdotal evidence that � as good as such tools may be �
if they aren't used on a project from day one, it is very hard to get any bene�t from them, since
they have a tendency to need the developers to stay within a limited set of patterns, which the
tools can recognise as correct.

Since January 2016 I have been working with a client, maintaining an application initially de-
veloped in 1987, which includes of more than one million lines of Ada source text. This application
has traditionally been developed without the use of static analysis tools (besides a small selection
of enabled compiler warnings).

As the customer decided to focus on increasing quality (to reduce support costs), we experimented
with using AdaControl to identify problems in the source text. The good news was that AdaControl
had a single rule matching a signi�cant part of the registered incidents. The bad news was that
AdaControl reported many more (potential) issues than we had resources to do something about1.

We are handling this in several ways:

� My client funded an extension of AdaControl, such that the rule recognises the most common,
correct implementation pattern in the application.

� For a start, we decided only to run AdaControl on units which are touched anyway; either due
to a change request or due to an incident.

� We track individual rule violations on a per-�le basis in our continuous-integration system, to
ensure that the number of violations of each rule is not increasing.

Extending the tool reduces the number of false positives on checks of our most critical problem.

Only checking units, which are touched by a developer anyway, limits the e�ort spent �xing sources
to where we are likely to introduce new problems.

Tracking rule violations will allow us to increase quality, even with an explicit non-zero-warnings
policy. If we have zero-warnings, we are probably not checking our sources for enough kinds of
problems.

As an indication that the focus on increasing quality already has paid o�, the frequency of incidents
has been reduced signi�cantly since the beginning of 20162.

The presentation will:

� Report the e�ect of each of the three attacks on the problem listed above.
� Contrast zero-warnings and non-zero-warnings policies.

Throughout the presentation both business needs and software engineering �needs� will be dis-
cussed.

I hope to close with a lively discussion including the experiences of the audience on the subject.

1 Matching the above-mentioned anecdotal evidence.
2 This change is not only due to the work presented here.

Challenges and Opportunities for Improvements of the Testing Process for

Ada based Safety Critical Systems

Dr. Guillem Bernat, CEO

Rapita Systems Ltd. (UK)

Atlas house, Osbaldwick Link Road

YO10 3JB York, UK

Abstract

The Ada language continues to be used widely for safety critical systems. This success is underpinned

by features of the language that support safety critical software development. However, some of

these features are difficult to test and, as a result, additional manual effort during the testing

process is required making it less attractive.

The new revision of DO-178, DO-178C, has also impacted the testing process by shifting the

emphasis to integration testing and testing on target. This introduces additional challenges during

testing that without proper automation and tool support increase the burden, cost and effort to

satisfy the DO-178 objectives.

In this talk we outline the language features of safety critical systems written in Ada that are

challenging to test to satisfy DO-178C objectives and show strategies on how to address them. These

include: private types, subtypes, suprograms, generics, nested generics, local scope variables,

pragma import/export and complex package dependencies. We also present strategies to address

other challenges, including reusing legacy code and legacy tests, as well as merging structural code

coverage evidence from multiple sources of tests.

The tool RapiTest Framework, from Rapita Systems, has been designed from the ground up to

provide substantial improvements to the challenges of testing safety critical Ada programs. The tool

focuses on process automation and provides support for the challenges listed above. In this talk we

will present the main features of the tool that address those challenges and provide evidence from a

real life industrial case study of process improvements and quality metrics to satisfy DO-178B and C

objectives.

Industrial presentation proposal for Ada-Europe 2017

Experiences with Ada in the Safety-Critical Communication
and Ground Control Systems of the nEUROn UCAV

Luis Pabón, Artemio Jiménez, and José M. Martínez

Airbus Defence & Space, paseo John Lennon s/n, 28906 Getafe, Spain
{luis.pabon,artemio.jimenez,jose.d.martinez}@airbus.com

Extended Abstract

The nEUROn is an experimental unmanned combat
aerial vehicle (UCAV) developed with international
cooperation, led by the French company Dassault
Aviation and with the collaboration of several European

aerospace industry partners (Airbus, Saab, Alenia,
Thales, RUAG and HAI). Countries involved in this
project include France, Greece, Italy, Spain, Sweden and
Switzerland.

The main objective of the program launched in 2003 was to acquire the necessary knowledge
and experience for future UAS programs by developing a Pan-European large size stealth UCAV
platform to demonstrate the maturity and the effectiveness of technical solutions. The aircraft
made its maiden flight in December 1st 2012, and numerous flights have been performed
since then to test the capabilities of the system.

Ada is a key part of the embedded, real-time and
safety-critical systems contributed by Airbus Defence
& Space to the nEUROn program: the Data Link
Management System (DLMS) and the Global System

Monitoring & Control (GSMC), whose software has
been developed to be certifiable according to DO-
178B up to levels D and C respectively.

This industrial presentation focuses on the advantages and challenges found after the choice
of Ada for the development of these two software systems, putting the focus on real problems
and issues such as the fulfillment of safety requirements and constraints, the integration on
ARINC 653 partitioned environments, the generation of graphical human-machine interfaces
(HMI), the design of computationally intensive algorithms or the application of different
verification and validation techniques.

The presentation summarizes the main lessons learnt during this successful industrial case
study, and gives an insight on how the gathered experience has helped Airbus Defence &
Space to improve other Ada-based technical solutions in subsequent projects.

Experience with Use of Model Driven Code

Generation on the ASIM Project

Steen Palm

Terma A/S, Vasekær 12, 2730 Herlev, Denmark; Tel: +45 4594 9665; email: sup@terma.com

On the Ada-Europe 2012 conference, I presented the paper

“Use of Model Driven Code Generation on the ASIM

Project”. The paper described the approach used for the

development of the Ada software to control the two ASIM

instruments, MMIA (studying the high-altitude electrical

discharges in the stratosphere and mesosphere above severe

thunderstorms, the so-called red sprites, blue jets, and

elves) and MXGS (observing terrestrial gamma flashes

associated with severe thunderstorms), that will be placed

on the International Space Station. The development

approach is based on the principles of SAVOIR and

ASSERT. For each of the two instruments, a UML

component design is constructed where interfaces are

decorated with stereotypes like ‹‹cyclic›› and ‹‹sporadic››

defining their concurrency behaviour. From the design of

an instrument application (the Interface View) and Ada

packages implementing the sequential behaviour of the

interfaces (the Functional View), a final Ravenscar

compliant implementation of the instrument software (the

Concurrency View) is automatically generated.

At this point, all functional, electrical, and mechanical tests

of the ASIM payload are completed. Currently, the flight

model is undergoing an environmental test and later this

year ASIM will be launched with a Falcon-9 rocket and

placed on the Columbus module of the International Space

Station (ISS).

The presentation on this year conference will elaborate on

the experiences gained during the development of the

software (boot and application software) for MMIA and

MXGS.

The presentation will have two parts. The first part will

summarize the development approach, which is based on

SAVOIR/ASSERT principles. To support these principles,

Terma has developed a modelling tool chain, which will

secure a Ravenscar compliant implementation:

 The design will be expressed as a component

model in UML. Components may be composite or

simple (leaf components). Enterprise Architect

from Sparx Systems has been selected as UML

tool.

 The Interface View is supported by specific UML

stereotypes (like ‹‹protected›› and ‹‹cyclic››) that

can be used to decorate interfaces provided by

model components. The stereotypes are

complemented with real-time attributes like worst-

case execution time and period, which are

supplied as UML tagged values associated with

the provided interfaces.

 The Functional View is implemented as passive

Ada packages. For each leaf component in the

design, there will be a corresponding Ada package

that defines the sequential behaviour of the

operations provided by the component.

 The Deployment View is not supported. As the

instrument software is running on a single node, a

Deployment View was considered superfluous.

 The Concurrency View (obtained by vertical

transformation) is automatically generated from

the UML design (more precisely, from an

exported XMI file). The Concurrency View

consists of Ada tasks and protected objects, which

will call the passive Ada subprograms defined in

the Functional View. The Concurrency View

constitutes the final implementation.

The second part of the presentation will describe the

experience gained.

Overall, the use of the model driven approach based on the

ASSERT/SAVOIR principles was very successful. The

concurrency aspects were in a very natural way defined as

part of the design of the behaviour and interaction between

components in the UML design (the Interface View). Also,

all issues related to concurrency could easily be discussed

and resolved at design level without any concern about the

source code.

Of course, minor updates to the tool chain have been done

in order to accommodate various needs. The most

important updates are related to schedulability analysis and

the approach used to obtain worst-case execution times for

tasks and protected operations.

The software can be built such that it will automatically

measure the genuine execution time (as opposed to elapsed

time) of tasks and protected operations each time they are

executed and keep track of the largest execution time for

each. By defining performance tests running worst-case

scenarios, it was possible to easily get the worst-case

execution times for the tasks and protected operations.

The presentation will go into much more depth of the

approach and the gained experience than described here.

A Time-Triggered Middleware for Safety-Critical
Automotive Applications

Ayhan Mehmed, Wilfried Steiner, and Maximilian Rosenblattl

TTTech Computertechnik AG, Vienna, Austria
{ayhan.mehmed,wilfried.steiner,maximilian.rosenblattl}@tttech.com

Advanced driver assistance systems (ADAS) are one of the fastest growing
sectors in the automotive industry. Initially developed as add-on comfort fea-
tures, ADAS now target highly intelligent, fully autonomous, vehicle control
systems. Towards this goal various technical challenges have to be addressed to
guarantee dependable and deterministic vehicle behavior.

A clear challenge is the growing number of ECUs, which drives complexity,
weight, power, space consumption and ultimately the cost. For this a higher
degree of integration of function per ECU is needed. At the same time, the inte-
gration of functions from different domains and with differing requirements, will
require interference-free coexistence of mixed-criticality functions. The demand
for further ECU consolidation, requires virtualization like techniques, which al-
low the coexistence of multiple operating systems on the same ECU. Last but
not least, the vehicle systems of today have to execute their functions with re-
spect to real-time, meet the highest safety requirements (up to ASIL-D) and
must accelerate their development cycles.

To address these challenges we outline a novel time-triggered middleware for
vehicle cyber-physical systems (CPS), namely TTIntegration. Complementary
to the TTIntegration middleware, the AUTOSAR software architecture and con-
cepts have been followed as a reference. Starting from top, on application level
the software components communicate according to the AUTOSAR standard-
ised application interfaces. One level down, the TTIntegration middleware is
placed for a clear separation between the integrated applications and the basic
software and hardware. Apart from serving as abstraction layer the middleware
enables the execution of tasks according to a time-triggered paradigm - a set of
concepts and principles, which provide (i) a predictable timing behavior of each
application, by ensuring sufficient CPU-time and memory, and (ii) a guaranteed
freedom of interference between the applications. Furthermore, for high degree of
function integration, the middleware enables multi-core system-on-chips (SoCs)
to run in parallel with different operating systems (e.g. AUTOSAR, VxWorks)
and collaborate with each other. By extending the AUTOSAR environment for
all possible operating systems, all applications can then be moved between differ-
ent SoCs with ease. Finally, to facilitate the process of software integration, the
middleware provides parallel, multi-vendor development and integration paths
for individual software components.

