
Migrating Mixed Criticality 
Tasks within a Cyclic 
Executive Framework

Sanjoy Baruah

Department of Computer 
Science

University of North Carolina, 
US

Alan Burns

Department of Computer 
Science

University Of York, UK

alan.burns@york.ac.uk

1



Introduction

• Two challenges face current developers

• The move to multi- and many-core platforms
• The integration of multiple applications on to the 

same platform
• And those applications being of different 

criticality levels

• In this talk we address these challenges 
within the context of the use of cyclic 
executives for implementation

2



The System Model: 
Cyclic Executives

• A well known deterministic scheduling policy

• Pre-computed static schedules

• Structured around a Major Cycle TM, 
composed of a number of Minor Cycles TF:

3

TM

TF TF TF TF



Cyclic Executives

• CEs have a number of drawbacks:
• Only really supports time-triggered code

• Only supports a limited set of periods

• Requires large computation time to be split 
between minor cycles

• But
• Is very deterministic

4



Multi-core
Cyclic Executives

5



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

• Two criticality levels, HI and LO

6

S

Core 
1:

HI LO



Mixed Criticality 
Cyclic Executive

• S is the maximum point across all cores during any 
given minor cycle

7

S

Core 
1:

Core 
2:

HI

HI

LO

LO



Barriers

• The synchronised relationship between minor 
cycles and mode changes within frames can be 
implemented by either:
• Timing events, or
• Barriers

• When each core has completed its HI-crit work it 
signals the barrier

• When all cores have signalled the barrier, all cores 
move on to LO-crit work

8



Allocating code to frames

• For a partitioned system it is NP_hard to optimally 
allocate tasks to frames
• We have demonstrated elsewhere the effective use of 

ILP

• For a non-partitioned system a task can be slit 
between frames
• The scheme is optimal

• The scheme is polynomial

• Known as McNaugton algorithm (1959)

9



Deriving the value of S

𝑆 = max(
 𝑖=1
𝑛 𝐶𝑖
𝑚

, max 𝐶𝑖 )

Where m is the number of nodes and 𝐶𝑖
is the worst-case execution time of the 
ith task

10



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

11

S



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

12

S



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

13

S



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

14

S



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

15

S



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

16

S



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

29/11/2016 17

S



Utilising Mixed Criticality

• The estimates of worst-case execution time (WCET) 
for High criticality code is often pessimistic (but 
certifiable)

• Lower estimates are safe but not certifiable

• So introduce two estimates of WCET:
• C(LO) and C(HI), with C(LO) < C(H)

• Constraints are now
• All HI-crit tasks to complete before S if C(LO) estimates 

are valid
• All HI-crit tasks to complete before Tf if C(HI) estimates 

are valid

18



Impact for LO-crit tasks

• If a HI-crit task executes for more than 𝐶 𝐿𝑂 then 
LO-crit tasks may not execute, or at least may not 
complete; but

• If all HI-crit task executes for no more than 𝐶 𝐿𝑂
then LO-crit tasks must fit into the second half of 
the frame, i.e. within 𝑇𝐹 − 𝑆

• Let 𝐶 𝐸𝑋 = 𝐶 𝐻𝐼 − 𝐶(𝐿𝑂)

19



Checking for Schedulability

𝑆 = max(
 𝑖=1
𝑛𝐻 𝐶𝑖(𝐿𝑂)

𝑚
, max 𝐶𝑖(LO) )

𝑋 = max(
 𝑖=1
𝑛𝐻 𝐶𝑖(𝐸𝑋)

𝑚
,max 𝐶𝑖(EX) )

20



Checking for Schedulability

𝑌 = max(
 𝑖=1
𝑛𝐿 𝐶𝑖(𝐿𝑂)

𝑚
, max 𝐶𝑖(LO) )

𝑆 + 𝑋 ≤ 𝑇𝐹

𝑆 + 𝑌 ≤ 𝑇𝐹

21



Mixed Criticality 
Cyclic Executive

• Overrun in HI-crit mode

22

S



Mixed Criticality 
Cyclic Executive

• Bring code forward from C(EX) to C(LO)

23

S



Optimal S values

• In the paper we show how an LP formulation can 
be used to find the optimal S values in polynomial 
time

• The paper also shows how task with larger 
computation times but longer periods can be split
• The splitting of HI_crit tasks is not as straightforward as 

splitting LO-crit tasks

29/11/2016 24



Implementing in Ada

• We will now look briefly how the proposed scheme 
could be supported in Ada

• First tasks can be defined to embody the code and 
to be allocated to specific cores

29/11/2016 25



Mixed Criticality 
Cyclic Executive

• S is the point of mode change

26

S



Implementing in Ada

• So the task that must migrate needs to use a timer 
that will signal when the movement must occur

• A barrier is used to coordinate the movement 
between modes

• Timing Events are used to switch between minor 
cycles

29/11/2016 27



Conclusions

• Cyclic Executives are a common means of 
implementing high-integrity systems

• In this paper we show how to extend this 
approach to
• Multi-core

• Mixed-criticality

• We believe that the approach can be realised 
with Ada
• But not Ravenscar, as task migration is required

29/11/2016 28


