
Directed Acyclic Graph Scheduling for
Mixed-Criticality Systems

Roberto MEDINA
Laurent PAUTET
Etienne BORDE

June 15th 2017



Industrial Context

Current industrial needs in Real-Time and Safety-Critical systems

Integrate more functionalities thanks to multi-core architectures.

Tasks with different criticalities share an architecture.

Designers objectives differ from Certification requirements.
Designers: optimize performance on resource usage.

→ Estimated timing budgets.

Certification: strict guarantees on critical services.

→ Worst Case Execution Timing budget (WCET).

Safety and Availability needs to be ensured.

Critical services always delivered (safety).

2 / 23



Execution Model: various timing budgets

Mixed-Criticality (MC) systems

Modes of execution (high and low modes): different timing budgets
for each mode.1

Low mode: estimated timing budgets.
High mode: WCET.

Low criticality mode: high (HI) and low (LO) tasks.

High criticality mode: only high (HI) tasks.
1Steve Vestal. “Preemptive Scheduling of Multi-criticality Systems with Varying

Degrees of Execution Time Assurance”. In: RTSS (2007).
3 / 23



Execution Model: Mixed-criticality dataflow graphs
(MC-DFG)

Data Driven Applications

Dataflow graphs of tasks: data dependencies and parallel execution.

Global deadline for the graph.

Tasks have two timing budgets and use it all (Time Triggered
approach2).

2Hermann Kopetz. “The time-triggered model of computation”. In: 1998.
4 / 23



Research question

Find a safe and efficient schedule for MC-DFG on multi-core
architectures.

MC scheduling: task models rarely consider data dependencies3.

DFG: model is static, graph properties do not change4.

Scheduling is complex: precedence constraints, constrained platforms.

3Alan Burns and Robert Davis. “Mixed Criticality Systems - A Review”. In: 2017.
4Adnan Bouakaz, Jean-Pierre Talpin, and Jan Vitek. “Affine data-flow graphs for the

synthesis of hard real-time applications”. In: 2012.
5 / 23



Safe schedule for MC systems

Safe mode transitions in MC systems?

6 / 23



Safe schedule for MC systems

Safe mode transitions in MC systems?

7 / 23



Safe schedule for MC systems

Safe mode transitions in MC systems?

8 / 23



Safe schedule for MC systems

Safe mode transitions in MC systems?

HI tasks WCET extended in HI mode → deadline miss may occur.

Existing solution: run the HI tasks ASAP (even in LO mode).5

5Sanjoy Baruah. “Implementing mixed-criticality synchronous reactive systems upon
multiprocessor platforms”. In: 2013.

9 / 23



Running HI tasks ASAP: poor performance in multi-cores

Illustrative example:

HI tasks ASAP: unschedulable. Ignoring mode transitions:

10 / 23



Proposed Scheduling Approach

Overview of our Scheduling algorithm

Step 1: HI scheduling table (similar to Least Laxity).

Step 2: Deduction of latest safe activation instants for HI tasks.

Step 3: LO scheduling table (considering activation instants of HI
tasks).

We use List Scheduling (LS) to schedule DAGs.6

LS creates a priority ordering of tasks to allocate them.

Migrations and preemptions of tasks in LO mode.

6Yu-Kwong Kwok and Ishfaq Ahmad. “Benchmarking and Comparison of the Task
Graph Scheduling Algorithms”. In: (1999).

11 / 23



HI scheduling table computation

Obtain the priority ordering using LS (considering HI mode budgets).

Reverse schedule the DAG in HI mode (from deadline to instant 0).

Latest instants at which HI tasks are able to be executed in HI mode.

These instants are called Latest Safe Activation Instant (LSAI).

12 / 23



HI scheduling example (step 1)

Priority ordering (longest path to an exit node):
〈(A, 180), (D, 160), (C , 140), (F , 100), (G , 80), (I , 40), (J, 20)〉

13 / 23



HI scheduling with LSAI (step 1 & 2)

Priority ordering (longest path to an exit node):
〈(A, 180), (D, 160), (C , 140), (F , 100), (G , 80), (I , 40), (J, 20)〉

14 / 23



LO scheduling table computation

Obtain the priority ordering using LS (considering LO mode
budgets).

Construct the table slot by slot (from 0 to deadline).

If a slot corresponds to a LSAI, corresponding HI task is promoted.
Preemption of LO tasks can occur.
Promoted HI tasks are executed until they finish.

If the deadline is reached and there are still tasks to be executed, the
DAG is non schedulable.

15 / 23



LO scheduling table example (step 3)

Priority ordering (longest path to an exit node):
〈(A, 120), (B, 110), (D, 110), (C , 90), (F , 60), (G , 40), (E , 40), (H, 30),
(I , 30), (J, 10), (K , 10)〉

16 / 23



LO scheduling table example (step 3)

At TU = 40, LSAI for C→ C promoted with highest priority.
Priority ordering (longest path to an exit node):
〈(C ,max), (D,max), (B, 110), (F , 60), (G , 40), (E , 40), (H, 30),
(I , 30), (J, 10), (K , 10)〉

17 / 23



LO scheduling table example

Priority ordering (longest path to an exit node):
〈(A, 120), (B, 110), (D, 110), (C , 90), (F , 60), (G , 40), (E , 40), (H, 30),
(I , 30), (J, 10), (K , 10)〉

18 / 23



Evaluation of the Scheduling Approach

Unbiased DAG generation for MC:

Parallelism degree + edge probability.7

Utilization of tasks in HI and LO mode8.

Utilization of HI tasks in LO mode.

7Abusayeed Saifullah et al. “Parallel real-time scheduling of DAGs”. In: 2014.
8Paul Emberson, Roger Stafford, and Robert I Davis. “Techniques for the synthesis

of multiprocessor tasksets”. In: 2010.
19 / 23



MC DAG generation

Overview:

1 Create nodes in HI mode until UHI is reached.

2 Reduction of the DAG until UHIinLO is reached.

3 Complete ULO with LO nodes.

20 / 23



Benchmarking Results

Full lines: our approach.
Dotted lines: existing approach of the literature.9

Tested DAGs are schedulable
ignoring mode transitions.

Progressively increment ULO

and UHI until reaching the max
utilization.

Test the same DAGs with the
two approaches.

20% edge probability, 8 cores.

9Sanjoy Baruah. “Implementing mixed-criticality synchronous reactive systems upon
multiprocessor platforms”. In: 2013.

21 / 23



Benchmarking Results

Far better acceptance rate
(utilization above 7, 8 cores).

Good acceptance rate even with
high utilization (LO and HI
mode and dense graphs).

Efficient scheduling
computation: 200 DAGs in 70s.

60% edge probability, 8 cores.

22 / 23



Future work perspectives

Current research perspectives include the following points:

Availability analysis for our multi-core scheduling approach.10

Can we interrupt only certain LO services to avoid a complete mode
switch?

Schedule multiple DAGs with different deadlines on a single
architecture.

10Roberto Medina, Etienne Borde, and Laurent Pautet. “Availability analysis for
synchronous data-flow graphs in mixed-criticality systems”. In: Proceedings - SIES
(2016).

23 / 23


	Industrial Context
	Research problems
	Safe scheduler
	Multi-core scheduling algorithm
	Evaluation

