

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Software Time Reliability in the Presence of Cache Memories

Suzana Milutinovic, Jaume Abella, Irune Agirre, Mikel Azkarate-Askasua, Earico Mezzetti, Tullio Vardanega and Francisco Cazorla

Real-Time Embedded Systems

Functional correctness	Timing correctness
Software performs its task	Software fits its assigned time budget

II Timing verification

- Estimating the Worst-Case Execution Time (WCET) of tasks
- Finding the valid schedule of tasks

Measurement-Based Timing Analysis (MBTA)

(I Quality of WCET estimates depends on analysis measurements representativeness

- User needs to capture worst conditions that can arise at operation
- The worst-case behaviour of each resource with variable timing behaviour
- Combined impact for all such resources

MBTA representativeness challenge

(I Complex systems challenge achieving the required level of control to trigger worst conditions

- Bus occupancy, data/code mapping in cache, etc.
- Lower the confidence on WCET estimates
(I Example of memory mapping \rightarrow cache mapping

Cache placement @
Barcolen Analysis Supercomputing
Center
Center
Centro Nacional de Supercomputación

Measurement-Based Probabilistic Timing Analysis (MBPTA)

(I Applies Extreme Value Theory (EVT) to the timing analysis

- The worst-case behaviour of each resource with variable timing behaviour
- Gombined impaet for all ouph reoourees \square Handled by EVT

MBPTA and Representativeness

(I Identify all resources with variable timing behaviour

- Variable-latency FPU operation, cache behaviour, contention effects in multicores, ...
(I Bound their analysis-time behaviour

(I Deterministic Upper-bounding
- Force the resource to work in its worst latency
- Relevant events captured in single run
(I Probabilistic Upper-bounding
- Time-randomization
- Each event occurs with a probability Peoi
- More runs -> more representativeness (not had with MBTA)
- system operation
- - - system analysis

Representativeness: Cache memories

(I Time-randomized (TR) caches

- random placement and random replacement
- user is not required to control memory layouts
- favor incremental software integration

set 0
set 1

set S-1

Analysis (1 run -> 1 cache placement)

Supercomputing
Center

Cache-related representativeness issue

(I Problem:

- Certain address placements cause an abrupt change in miss counts (i.e. certain addresses if mapped to the same set cause an increase in miss count)
- Occur with a probability
- Low enough so that they are unlikely to be observed at analysis
- High enough to be relevant
\rightarrow conflictive cache placements (ccp)

Identifying conflictive cache placements $1 / 2$

(I J. Abella et al. "Heart of Gold: Making the Improbable Happen to Increase Confidence in MBPTA" In ECRTS, 2014

- The number of addresses mapped in a same set is the critical parameter affecting significantly execution time
- Conflictive cache placements are those in which more than number of ways (W) addresses are mapped in the same set

[^0]
Identifying conflictive cache placements $2 / 2$

Number of possible placements explodes with increase of number of addresses in a program
\rightarrow Non-scalable solution

Our goal: Representativeness in presence of TR caches

(I Time-aware Address Conflict (TAC) approach

- Identifies conflictive cache placements and assesses whether they are captured at analysis time
- If not, derives the needed number of measurements R'
- Valid for arbitrary cache access patterns
- Highly scalable solution

TAC method: Overview

- <miss count, probability> pairs : describe the combined impact of multiple combinations

Seeking conflictive address combinations: Mutual impact of addresses

II Memory access trace:

(I Probability of access miss:

$$
\text { Pmiss }=1-\left(\frac{W-1}{W}\right)^{\sum P m i s s\left(X_{i}\right)}
$$

ABC?
W: number of cache ways X_{i} : number of mem. accesses between two accesses to A
(I P̃guilty estimator:

$$
\tilde{P} \text { guilty }=1-\left(\frac{W-1}{W}\right)^{\exp } \quad \exp =\left\{\begin{array}{l}
0: \quad q<W \\
\frac{q: W \leq q \leq K}{K-1: \text { otherwise }}
\end{array}\right.
$$

II guilt estimator:

$$
\text { guilt }=\left\{\begin{array}{cc}
\frac{\tilde{\text { Pguilty }}}{}: & \exp >0 \\
\exp & \text { : }
\end{array}\right.
$$

Seeking conflictive address combinations: Address combination impact

II Address guilt matrix (adgm)

- Different for each K value (e.g. 3 to 13, depending on Prel)

	A	B	C	D	E	ABC?			
A	0.0	12.5	16.2	3.4	1.2		A	B	C
				Total guilt		A	0.0	(12.5	16.2
B	12.1	0.0	9.8			B	12.1	0.0	(9.8
C	16.0	9.8	0.0		0.75	C	16.0	9.8	0.0
D	3.3	5.1	8.2	0.0	9.1				
E	1.0	0.75	0.75	8.9	0.0				

Seeking conflictive address combinations： Smart search over adgm

	Prguilty	Total guilt	A	C	D	B	E
A	135.75	152.0	0.0	55.5	55.5	41.0	亿
C	124.2	132.0	55.3	0.0	46.2	30.5	亿
D	124.2	132.0	55.3	46.2	0.0	30.5	亿
B	56.5	71.2	10.2	30.5	30.5	0.0	Q
C	1.0	0.0	0.0	0.0	0.0	0.0	0.0

Bucket1 Bucket2

	C，D	B
A	55.5	41.0

> Is Pguilty < 1\% of the highest?
> Is guilt $\rightarrow X<1 \%$ of the total guilt?

Do addresses share guilt value？

TAC method: Putting everything together

$$
\begin{gathered}
K=3: A B C, B C D, D E F, . . \\
i 1, i 2, i 3, \ldots \\
1,3,3 \ldots \\
K=4: B C D E, G F H B, \ldots \\
K=5: B F G H M, \ldots
\end{gathered}
$$

Evaluation

(I Benchmarks

- EEMBC Autobench benchmark suite
- Railway Case Study
(I EEMBC Autobench experimental conditions
- Cache setup
- 4KB 64-set 2-way-associative (separated) data and instruction L1 caches
- Cache line size 32B
- Random placement and random replacement policies
- Latencies
- IL1/DL1 access latency: 1 cycle for hits, 4 cycles for misses
- Main memory latency: 16 cycles
- Fixed latency for non-memory operations
(I Railway Case Study experimental conditions
- LEON3-based FPGA board
- Cache setup
- 16KB 128-set 4-way-associative, 32B-line instruction L1 cache
- 16KB 256-set 4-way-associative, 16B-line data L1 cache
- Random placement and random replacement policies
(I Default number of R used by MBPTA is 300

Controlled scenario: Evaluating TAC precision

(I ReVS exhaustively explores all cache placements

- Guarantees exact results
- Only possible to apply to simple benchmarks
- U = 15 most accessed addresses from EEMBC Automotive Bench

	ReVS IL1	TAC IL1
	58,360	58,360
a2time	6,840	6,840
aifftr	21,390	21,390
aifirf	8,920	8,920
aiifft	82,080	82,080
basefp	4,640	4,640
bitmnp	18,610	18,610
cacheb	65,770	65,770
idctrn	18,310	18,310
iirflt		

BSC Supercomputing

TAC evaluation on full EEMBC Autobench benchmarks

TAC

	\mathbf{R}^{\prime} (IL1)	\mathbf{R}^{\prime} (DL1)	\mathbf{R}^{\prime}	likelihood(R')
a2time	67,150	300	67,150	10^{-9}
aifftr	300	4,760	4,760	10^{-9}
aifirf	20,080	8,090	20,080	10^{-9}
aiifft	300	10,630	10,630	10^{-9}
basefp	78,220	300	78,220	10^{-9}
bitmnp	330	1,800	1,800	10^{-9}
cacheb	19,840	1,500	19,840	10^{-9}
idctrn	67,460	43,040	67,460	10^{-9}
iirflt	29,920	2,430	29.920	10^{-9}

Railway Case Study

- Travelling speı
- The highest in

$\begin{array}{rr} & \text { Probability } \\ 1 e-17 & 1 \mathrm{e}-09\end{array}$ $|\mathrm{aCi}|=5$
$a \mathrm{Ci} \mid=6$

TESTO	
TEST1	
TEST2	
TEST3	©

Conclusions

(I Assuring measurements observations representativeness

MBTA

Qualitative assessment of coverage of relevant platform events impacting WCET
(dependant on user expertise)

MBPTA + ReVS

Quantitative assessment of coverage of relevant events

User instructed to collect needed number of measurements R'

Only for very simple benchmarks

MBPTA + TAC

Quantitative assessment of coverage of relevant events

User instructed to collect needed number of measurements R'

Scalable to real program sizes

(I Future work

- Provide solution when user lacks the control over input vectors
- Generalize TAC for more complex cache hierarchies

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Software Time Reliability in the Presence of Cache Memories

Suzana Milutinovic, Jaume Abella, Irune Agirre, Mikel Azkarate-Askasua, Earico Mezzetti, Tullio Vardanega and Francisco Cazorla

TAC execution time cost

(I Numbers reported on average per benchmark, running 100 jobs in parallel (cache simulations are highly parallelizable)
(I Controlled scenario ($\mathrm{U}=15$ for IL1/DL1)

- ReVS: 27 hours for simulations
- TAC: 2 s to derive combs +11 minutes for simulations (148x faster)
(I Full EEMBC Autobench ($\mathrm{U}=2,500$ for IL1, $\mathrm{U}=5,600$ for DL1)
- ReVS: unable to finish
- TAC: 1 min to derive combs + 38 minutes for simulations
(I Railway case study ($\mathrm{U}=2,994$ for IL1, $\mathrm{U}=597$ for DL1)
- ReVS: unable to finish
- TAC: 1.3 min to derive combs +0.35 minutes for simulations

Correlating Execution Time and Miss Counts

(I We compare normalized execution times and miss counts over 1000 runs

$$
\text { NormMiss }_{i}=\frac{\text { Miss }_{i}-\left(\text { MIN }_{j=0}^{R} \text { Miss }_{j}\right)}{\left(\text { MAX }_{j=0}^{R} \text { Miss }_{j}\right)-\left(\text { MIN }_{j=0}^{R} \text { Miss }_{j}\right)}
$$

II Pearson product-moment correlation coefficient and Spearman's rank correlation coefficient

	a2time	aifftr	aifirf	aiifft	basefp	bitmnp	canrdr	idctrn
Pearson	0.997	0.918	0.960	0.923	0.999	0.998	0.974	0.950
Spearman	0.933	0.911	0.956	0.913	0.998	0.998	0.973	0.951

Seeking conflictive address combinations:
Mutual impact of addresses [Corner case]
II Memory access trace:

$$
A, B, A, C, A, B, A, C
$$

m h m h
(I) Probability of access miss:

$$
\text { Pmiss }=1-\left(\frac{W-1}{W}\right)^{\sum \text { Pmiss }\left(X_{i}\right)} \begin{aligned}
& \text { ABC? } \\
& \text { ACD? } \\
& \\
& \text { ADE? } \\
& \text { ABCD? }
\end{aligned}
$$

(I P̃guilty estimator:

$$
\text { Pguilty }=1-\left(\frac{W-1}{W}\right)^{\exp } \quad \exp =\left\{\begin{array}{c}
0: \quad q<W \\
\hline q: W \leq q \leq K \\
K-1: \text { otherwise }
\end{array}\right.
$$

II guilt estimator:

$$
\text { guilt }=\left\{\begin{array}{cc}
\frac{\tilde{P} \text { guilty }}{\exp }: & \exp >0 \\
0 & \text { : }
\end{array}\right.
$$

Seeking conflictive address combinations: Address combination impact [Harmonic mean]

(I Address guilt matrix (adgm)

- Different for each K value (e.g. 3 to 13, depending on Pre)

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}	0.0	12.5	16.2	3.4	1.2
B	12.1	0.0	9.8	5^{3}	0.75
C	16.0	9.8	0.0	8.2	0.75
D	3.3	5.1	8.2	0.0	9.1
E	1.0	0.75	0.75	8.9	0.0

ABC?
ABC: 12.5, 9.8, 9.8
F: 1 cold miss

Arithmetic mean $=10.70$
Harmonic mean $=9.82$

ABC?

	A	B	C
A	0.0	12.5	16.2
B	12.1	0.0	9.8
C	16.0	9.8	0.0

Harmonic mean

ABCF?
Arithmetic mean $=8.02$ Harmonic mean $=0.00$

Seeking conflictive address combinations: Smart search over adgm [Address buckets]

	Pguilty	Total guilt	A	C	D	B	E
A	135.75	152.0	0.0	55.5	55.5	41.0	0.0
C	124.2	132.0	55.3	0.0	46.2	30.5	0.0
D	124.2	132.0	55.3	46.2	0.0	30.5	0.0
B	56.5	71.2	10.2	30.5	30.5	0.0	0.0
E	1.0	0.0	0.0	0.0	0.0	0.0	0.0

Bucket1 Bucket2

	C,D	B
A	55.5	41.0

2	$0:$	1
1	$1:$	2
0	$2:$	0

> Is P्Puilty < 1\% of the highest?
> Is guilt $\rightarrow X<1 \%$ of the total guilt?

Do addresses share guilt value?

[^0]: AB ccp \square Peoi $=\left(\frac{1}{S}\right) \approx 0.016 \longleftrightarrow$ Pnobs $(1$ run $)=1-$ Peoi $\approx 98 \%$

 $$
 \begin{aligned}
 & \operatorname{Pnobs}(R \text { runs })=(1-\text { Peoi })^{R} \\
 & R^{\prime}=?: \operatorname{Pnobs}\left(R^{\prime} \text { runs }\right) \leq 10^{-9}
 \end{aligned}
 $$

