
ADA-EUROPE 2017, Vienna, Austria

Software Time Reliability

in the Presence of Cache Memories

Suzana Milutinovic, Jaume Abella, Irune Agirre, Mikel Azkarate-Askasua,

Enrico Mezzetti, Tullio Vardanega and Francisco Cazorla

2

Real-Time Embedded Systems

Timing verification

– Estimating the Worst-Case Execution Time (WCET) of tasks

– Finding the valid schedule of tasks

Functional correctness Timing correctness

Software performs its task Software fits its assigned time budget

3

Measurement-Based Timing Analysis (MBTA)

Quality of WCET estimates depends on analysis

measurements representativeness

– User needs to capture worst conditions that can arise at operation

• The worst-case behaviour of each resource with variable timing behaviour

• Combined impact for all such resources

obs1
obs2

obsN

… Prediction WCET estimate

Reliable and Tight

ANALYSIS OPERATION

4

MBTA representativeness challenge

Complex systems challenge achieving the required level of

control to trigger worst conditions

– Bus occupancy, data/code mapping in cache, etc.

– Lower the confidence on WCET estimates

Example of memory mapping  cache mapping

Se
ts

A

B

C

Ways

Cache placement @

Analysis

Se
ts

A

B

C

Ways

Cache placement @

Operation

WCET estimates are

not valid anymore!

5

Measurement-Based Probabilistic Timing Analysis (MBPTA)

Applies Extreme Value Theory (EVT) to the timing analysis

obs1
obs2

obsN

…

Samples

tail

values

Fits

probability

distribution

EVT

Quantitative

confidence to pWCET

estimates
Assuring measurements observations representativeness

– User needs to capture worst conditions that can arise at operation

• The worst-case behaviour of each resource with variable timing behaviour

• Combined impact for all such resources Handled by EVT

6

MBPTA and Representativeness

Identify all resources with variable timing behaviour

– Variable-latency FPU operation, cache behaviour, contention effects in

multicores, …

Bound their analysis-time behaviour

Exhibits low

latency variation

Exhibits high

latency variation

time

fr
e

q
u
e
n
c
y

time

fr
e
q
u
e
n
c
y

system operation

system analysis

Deterministic Upper-bounding
– Force the resource to work in its worst

latency

– Relevant events captured in single run

Probabilistic Upper-bounding
– Time-randomization

– Each event occurs with a probability
Peoi

– More runs -> more representativeness

(not had with MBTA)

7

Representativeness: Cache memories

Time-randomized (TR) caches

– random placement and random replacement

– user is not required to control

memory layouts

– favor incremental software

integration

Analysis

Se
ts

A

B

C

Ways

Se
ts

A

B

C

Ways

Se
ts

A

B

C

Ways

Operation

Se
ts

A

B

C

Ways

(1 run -> 1 cache placement)

…

8

Cache-related representativeness issue

Problem:
– Certain address placements cause an abrupt change in miss counts (i.e. certain

addresses if mapped to the same set cause an increase in miss count)

– Occur with a probability

• Low enough so that they are unlikely to be observed at analysis

• High enough to be relevant

 conflictive cache placements (ccp)

execution time

p
ro

b
a
b
ili

ty

rp1
rp2

rp3
Pobs=0.021 for R=1000

Prel=10-9

(dictated by safety standard)

R R’

R: Pobs 

R’ = ? ccp = ?

9

Identifying conflictive cache placements 1/2

J. Abella et al. "Heart of Gold: Making the Improbable Happen to Increase
Confidence in MBPTA" In ECRTS, 2014

– The number of addresses mapped in a same set is the critical parameter affecting
significantly execution time

– Conflictive cache placements are those in which more than number of ways (W)
addresses are mapped in the same set

Sequence:

ABABABABAB set 0

set 3

set 2

set 1

way 0

A

B

nmisses

1

1

set 0

set 3

set 2

set 1

way 0

A, B

nmisses

10

AB ccp

…

set 63

…

set 63

𝑃𝑒𝑜𝑖 =
1

𝑆
≈ 0.016 𝑃𝑛𝑜𝑏𝑠 1 𝑟𝑢𝑛 = 1 − 𝑃𝑒𝑜𝑖 ≈ 98%

𝑃𝑛𝑜𝑏𝑠 𝑅 𝑟𝑢𝑛𝑠 = 1 − 𝑃𝑒𝑜𝑖 𝑅

𝑅′ =? : 𝑃𝑛𝑜𝑏𝑠 𝑅′ 𝑟𝑢𝑛𝑠 ≤ 10−9

𝑅′ = 1316

10

Identifying conflictive cache placements 2/2

S. Milutinovic et al. "Modelling Probabilistic Cache Representativeness in the
Presence of Arbitrary Access Patterns" In ISORC, 2016

– Not all combinations of W+1 addresses yield the same impact

– Representativeness Validation by Simulation (ReVS) method
• Explores all possible placement with ≥ W in the same set

• Impact derived by cache simulations, probabilities computed analytically

Sequence:

ABABABABABCD

set 0

set 3

set 2

set 1

way 0

A, C

B

nmisses

2

1

set 0

set 3

set 2

set 1

way 0

A, B

nmisses

10

D 1

C 1

D 1

AC, AD, BC, BD, CD AB

Cache placement of interest

…

set 63

…

set 63

AB

AC

AD

BC

BD

CD

ABC

ABD

ACD

BCD

ABCD

Cache simulations

&

Probability calculation

ccp

Number of possible placements explodes

with increase of number of addresses in a program

 Non-scalable solution

All combs

11

Our goal: Representativeness in presence of TR caches

Time-aware Address Conflict (TAC) approach

– Identifies conflictive cache placements and assesses whether they are

captured at analysis time

– If not, derives the needed number of measurements R’

– Valid for arbitrary cache access patterns

– Highly scalable solution

12

TAC method: Overview

Identifies conflicting address combinations analytically

Memory

access

trace

Cache

configuration

Relevant address

combinations

Impact calculation:

cache simulations

Probabilities calculation:

formulas

miss count

p
ro

b
a
b
ili

ty

<miss count,

probability> pairs :

describe the combined

impact of multiple

combinations

pWCMC(R’)

execution time
p

ro
b
a
b
ili

ty pWCET(R’)

Strong correlation

between miss counts

and execution times

13

Seeking conflictive address combinations:
Mutual impact of addresses

Memory access trace:

Probability of access miss:

Pguilty estimator:

guilt estimator:

A, B, B, C, D, C, E, F, A










 


)(
1

1
iXPmiss

W

W
Pmiss



exp

1
1 







 


W

W
Pguilty

















otherwise

KqW

Wq

K

q

:

:

:

1

0

exp






 


otherwise

Pguilty

guilt
0exp

:

:

0
exp





A, B, B, C, D, C, E, F, A
Xi

ABC?

ACD?

ADE?

A, B, A, B, A, B, A, BA, B, C, A, B, C, AA, B, C, D, A, B, C, D, A

Notation:

q: number of distinct addresses

between two accesses to A

K: number of addresses in a

combination

We assume W = 2 cache ways

Notation:

W: number of cache ways

Xi: number of mem. accesses

between two accesses to A

14

Seeking conflictive address combinations:
Address combination impact

Address guilt matrix (adgm)

– Different for each K value (e.g. 3 to 13, depending on Prel)

A B C D E

A 0.0 12.5 16.2 3.4 1.2

B 12.1 0.0 9.8 5.3 0.75

C 16.0 9.8 0.0 8.2 0.75

D 3.3 5.1 8.2 0.0 9.1

E 1.0 0.75 0.75 8.9 0.0

Total guilt

CB

A B C

A 0.0 12.5 16.2

B 12.1 0.0 9.8

C 16.0 9.8 0.0

ABC?

Harmonic

mean

9.82

15

Seeking conflictive address combinations:
Smart search over adgm

Pguilty Total

guilt

A C D B E

A 135.75 152.0 0.0 55.5 55.5 41.0 0.0

C 124.2 132.0 55.3 0.0 46.2 30.5 0.0

D 124.2 132.0 55.3 46.2 0.0 30.5 0.0

B 56.5 71.2 10.2 30.5 30.5 0.0 0.0

E 1.0 0.0 0.0 0.0 0.0 0.0 0.0



Is Pguilty < 1% of

the highest?


Is guiltX < 1%

of the total guilt?

C,D B

A 55.5 41.0

Bucket1 Bucket2

Do addresses

share guilt value?

16

TAC method: Putting everything together

Identifies conflicting address combinations analytically

Memory

access

trace

Cache

configuration

Relevant address

combinations

Impact calculation:

cache simulations

Probabilities calculation:

formulas

miss count

p
ro

b
a
b
ili

ty

<miss count,

probability> pairs :

describe the combined

impact of multiple

combinations

pWCMC(R’)

execution time
p

ro
b
a
b
ili

ty pWCET(R’)

Strong correlation

between miss counts

and execution times

Relevant K values?  Creates adgm for each K  Applies smart search over adgms

For each K returns selected (limited) number of combinations,

with the number of combs sharing the impact

Reduces the cost

K = 3: ABC, BCD, DEF,..

i1, i2, i3, …

1, 3, 3 …

K = 4: BCDE, GFHB, …

K=5: BFGHM, ….

17

Evaluation

Benchmarks
– EEMBC Autobench benchmark suite

– Railway Case Study

EEMBC Autobench experimental conditions
– Cache setup

• 4KB 64-set 2-way-associative (separated) data and instruction L1 caches

• Cache line size 32B

• Random placement and random replacement policies

– Latencies
• IL1/DL1 access latency: 1 cycle for hits, 4 cycles for misses

• Main memory latency: 16 cycles

• Fixed latency for non-memory operations

Railway Case Study experimental conditions
– LEON3-based FPGA board

– Cache setup
• 16KB 128-set 4-way-associative, 32B-line instruction L1 cache

• 16KB 256-set 4-way-associative, 16B-line data L1 cache

• Random placement and random replacement policies

Default number of R used by MBPTA is 300

18

Controlled scenario: Evaluating TAC precision

ReVS exhaustively explores all cache placements
– Guarantees exact results

– Only possible to apply to simple benchmarks

– U = 15 most accessed addresses from EEMBC Automotive Bench

ReVS

IL1

TAC

IL1

ReVS

DL1

TAC

DL1

ReVS

R’

TAC

R’

a2time 58,360 58,360 540 540 58,360 58,360

aifftr 6,840 6,840 5,500 5,500 6,840 6,840

aifirf 21,390 21,390 11,530 11,530 21,390 21,390

aiifft 8,920 8,920 8,770 8,770 8,920 8,920

basefp 82,080 82,080 20,010 20,010 82,080 82,080

bitmnp 4,640 4,640 3,510 3,510 4,640 4,640

cacheb 18,610 18,610 7,950 7,950 18,610 18,610

idctrn 65,770 65,770 47,700 47,700 65,770 65,770

iirflt 18,310 18,310 49,760 49,760 49,760 49,760

19

TAC evaluation on full EEMBC Autobench benchmarks

R’ (IL1) R’(DL1) R’ likelihood(R’) R likelihood (R)

a2time 67,150 300 67,150 10-9 300 0.911

aifftr 300 4,760 4,760 10-9 300 0.271

aifirf 20,080 8,090 20,080 10-9 14,260 10-7

aiifft 300 10,630 10,630 10-9 300 0.557

basefp 78,220 300 78,220 10-9 1,250 0.718

bitmnp 330 1,800 1,800 10-9 300 0.032

cacheb 19,840 1,500 19,840 10-9 9,360 10-5

idctrn 67,460 43,040 67,460 10-9 300 0.912

iirflt 29,920 2,430 29.920 10-9 300 0.812

TAC MBPTA

20

Railway Case Study

A safety function part of the European Vital Computer (EVC)

– Travelling speed and distance supervision

– The highest integrity level in the railway safety standards, SIL-4

R (IL1) R (DL1) R’ (IL1) R’ (DL1)

TEST0 300 370 300 1,300

TEST1 300 3,800 600 3,800

TEST2 300 300 600 1,000

TEST3 300 300 1,600 850

TEST4 300 750 1,200 1,100

TEST5 300 480 2,100 900

TEST6 300 890 500 890

TEST7 300 300 500 4,400

TEST8 300 300 700 2,300

TEST9 300 1,740 4,800 1,740

MBPTA TAC

Different

input

sets

R (IL1) R (DL1) R’ (IL1) R’ (DL1)

TEST0 300 370 300 1,300

TEST1 300 3,800 600 3,800

TEST2 300 300 600 1,000

TEST3 300 300 1,600 850

TEST4 300 750 1,200 1,100

TEST5 300 480 2,100 900

TEST6 300 890 500 890

TEST7 300 300 500 4,400

TEST8 300 300 700 2,300

TEST9 300 1,740 4,800 1,740

21

Conclusions

Assuring measurements observations representativeness

Future work

– Provide solution when user lacks the control over input vectors

– Generalize TAC for more complex cache hierarchies

MBTA MBPTA + TAC

Qualitative assessment

of coverage of relevant

platform events impacting

WCET

(dependant on user

expertise)

Quantitative assessment

of coverage of relevant events

User instructed to collect needed

number of measurements R’

Only for very simple benchmarks

MBPTA + ReVS

Quantitative assessment

of coverage of relevant events

User instructed to collect needed

number of measurements R’

Scalable to real program sizes

ADA-EUROPE 2017, Vienna, Austria

Software Time Reliability

in the Presence of Cache Memories

Suzana Milutinovic, Jaume Abella, Irune Agirre, Mikel Azkarate-Askasua,

Enrico Mezzetti, Tullio Vardanega and Francisco Cazorla

23

TAC execution time cost

Numbers reported on average per benchmark, running 100

jobs in parallel (cache simulations are highly parallelizable)

Controlled scenario (U = 15 for IL1/DL1)

– ReVS: 27 hours for simulations

– TAC: 2s to derive combs + 11 minutes for simulations (148x faster)

Full EEMBC Autobench (U = 2,500 for IL1, U = 5,600 for DL1)

– ReVS: unable to finish

– TAC: 1min to derive combs + 38 minutes for simulations

Railway case study (U = 2,994 for IL1, U = 597 for DL1)

– ReVS: unable to finish

– TAC: 1.3min to derive combs + 0.35 minutes for simulations

24

Correlating Execution Time and Miss Counts

We compare normalized execution times and miss counts

over 1000 runs

𝑁𝑜𝑟𝑚𝑀𝑖𝑠𝑠𝑖 =
𝑀𝑖𝑠𝑠𝑖 − 𝑀𝐼𝑁𝑗=0

𝑅 𝑀𝑖𝑠𝑠𝑗

𝑀𝐴𝑋𝑗=0
𝑅 𝑀𝑖𝑠𝑠𝑗 − 𝑀𝐼𝑁𝑗=0

𝑅 𝑀𝑖𝑠𝑠𝑗

Pearson product-moment correlation coefficient and

Spearman’s rank correlation coefficient

a2time aifftr aifirf aiifft basefp bitmnp canrdr idctrn

Pearson 0.997 0.918 0.960 0.923 0.999 0.998 0.974 0.950

Spearman 0.933 0.911 0.956 0.913 0.998 0.998 0.973 0.951

25

Seeking conflictive address combinations:
Mutual impact of addresses [Corner case]

Memory access trace:

Probability of access miss:

Pguilty estimator:

guilt estimator:










 


)(
1

1
iXPmiss

W

W
Pmiss



exp

1
1 







 


W

W
Pguilty

















otherwise

KqW

Wq

K

q

:

:

:

1

0

exp






 


otherwise

Pguilty

guilt
0exp

:

:

0
exp





ABC?

ACD?

ADE?

ABCD?

A, B, A, C, A, B, A, C
hm hm

26

Seeking conflictive address combinations:
Address combination impact [Harmonic mean]

Address guilt matrix (adgm)

– Different for each K value (e.g. 3 to 13, depending on Prel)

A B C D E

A 0.0 12.5 16.2 3.4 1.2

B 12.1 0.0 9.8 5.3 0.75

C 16.0 9.8 0.0 8.2 0.75

D 3.3 5.1 8.2 0.0 9.1

E 1.0 0.75 0.75 8.9 0.0

A B C

A 0.0 12.5 16.2

B 12.1 0.0 9.8

C 16.0 9.8 0.0

ABC?

Harmonic

mean

9.82

F: 1 cold miss

Arithmetic mean = 10.70

Harmonic mean = 9.82

ABC: 12.5, 9.8, 9.8 Arithmetic mean = 8.02

Harmonic mean = 0.00

ABC? ABCF?

27

Seeking conflictive address combinations:
Smart search over adgm [Address buckets]

Pguilty Total

guilt

A C D B E

A 135.75 152.0 0.0 55.5 55.5 41.0 0.0

C 124.2 132.0 55.3 0.0 46.2 30.5 0.0

D 124.2 132.0 55.3 46.2 0.0 30.5 0.0

B 56.5 71.2 10.2 30.5 30.5 0.0 0.0

E 1.0 0.0 0.0 0.0 0.0 0.0 0.0



Is Pguilty < 1% of

the highest?


Is guiltX < 1%

of the total guilt?

C,D B

A 55.5 41.0

Bucket1 Bucket2

2 0

1 1

0 2

Do addresses

share guilt value?

: 1

: 2

: 0

