

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Software Time Reliability in the Presence of Cache Memories

Suzana Milutinovic, Jaume Abella, Irune Agirre, Mikel Azkarate-Askasua, Enrico Mezzetti, Tullio Vardanega and Francisco Cazorla

ADA-EUROPE 2017, Vienna, Austria

Real-Time Embedded Systems

Functional correctness	Timing correctness				
Software performs its task	Software fits its assigned time budget				

(Timing verification

- Estimating the Worst-Case Execution Time (WCET) of tasks
- Finding the valid schedule of tasks

Measurement-Based Timing Analysis (MBTA)

(Quality of WCET estimates depends on analysis measurements **representativeness**

- User needs to capture worst conditions that can arise at operation
 - The worst-case behaviour of each resource with variable timing behaviour
 - Combined impact for all such resources

MBTA representativeness challenge

- (Complex systems challenge achieving the required level of control to trigger worst conditions
 - Bus occupancy, data/code mapping in cache, etc.
 - Lower the confidence on WCET estimates

(Example of memory mapping \rightarrow cache mapping

WCET estimates are not valid anymore!

Cache placement @ Barcelona Analysis Supercomputing Centro Nacional de Supercomputación

Cache placement @ Operation

Measurement-Based Probabilistic Timing Analysis (MBPTA)

(Applies Extreme Value Theory (EVT) to the timing analysis

Center

Centro Nacional de Supercomputación

MBPTA and Representativeness

- (Identify all resources with variable timing behaviour
 - Variable-latency FPU operation, cache behaviour, contention effects in multicores, …
- (Bound their analysis-time behaviour

system analysis

- Deterministic Upper-bounding

 Force the resource to work in its worst latency
 - Relevant events captured in single run
- (Probabilistic Upper-bounding
 - Time-randomization
 - Each event occurs with a probability Peoi
 - More runs -> more representativeness (not had with MBTA)

6

Representativeness: Cache memories

(Time-randomized (TR) caches

- random placement and random replacement

А

B

С

- user is not required to control memory layouts
- favor incremental software integration

Analysis (1 run -> 1 cache placement)

Operation

Cache-related representativeness issue

(Problem:

- Certain address placements cause an abrupt change in miss counts (i.e. certain addresses if mapped to the same set cause an increase in miss count)
- Occur with a probability
 - Low enough so that they are unlikely to be observed at analysis
 - High enough to be relevant
 - \rightarrow conflictive cache placements (ccp)

Identifying conflictive cache placements 1/2

- (J. Abella et al. "Heart of Gold: Making the Improbable Happen to Increase Confidence in MBPTA" In ECRTS, 2014
 - The number of addresses mapped in a same set is the critical parameter affecting significantly execution time
 - Conflictive cache placements are those in which more than number of ways (W) addresses are mapped in the same set

Identifying conflictive cache placements 2/2

Number of possible placements explodes with increase of number of addresses in a program \rightarrow Non-scalable solution

Our goal: Representativeness in presence of TR caches

- (Time-aware Address Conflict (TAC) approach
 - Identifies conflictive cache placements and assesses whether they are captured at analysis time
 - If not, derives the needed number of measurements R'
 - Valid for arbitrary cache access patterns
 - Highly scalable solution

TAC method: Overview

Seeking conflictive address combinations: Mutual impact of addresses

(Memory access trace:

A, B, B, B, A, B, A, B, A, B, A

(Probability of access miss:

$$Pmiss = 1 - \left(\frac{W - 1}{W}\right)^{\sum Pmiss(X_i)}$$

<u>Notation</u>: W: number of cache ways X_i: number of mem. accesses between two accesses to A

(*P̃guilty* estimator:

$$\widetilde{P}guilty = 1 - \left(\frac{W-1}{W}\right)^{exp}$$

 $\exp = \begin{cases} 0 : q < W \\ \hline q : W \le q \le K \\ \hline K - 1: otherwise \end{cases}$

ABC?

ACD?

ADE?

(guilt estimator:

$$guilt = \begin{cases} \frac{\widetilde{P}guilty}{\exp}: & \exp > 0\\ 0 & : & otherwise \end{cases}$$

Seeking conflictive address combinations: Address combination impact

(Address guilt matrix (adgm)

- Different for each K value (e.g. 3 to 13, depending on Prel)

Seeking conflictive address combinations: Smart search over adgm

	<i>Pguilty</i>	Total guilt	Α	С	D	В	E
Α	135.75	152.0	0.0	55.5	55.5	41.0	
С	124.2	132.0	55.3	0.0	46.2	30.5	
D	124.2	132.0	55.3	46.2	0.0	30.5	
В	56.5	71.2	10.2	30.5	30.5	0.0	
E	1.0	0.0	0.0	0.0	0.0	0.0	0.0

Bucket1 Bucket2

	C,D	В		
Α	55.5	41.0		

Is *P̃guilty* < 1% of the highest?

Is $guilt \rightarrow X < 1\%$ of the total guilt?

Do addresses share guilt value?

TAC method: Putting everything together Memory Cache access K = 3: ABC, BCD, DEF,... configuration trace i1, i2, i3, ... 1, 3, 3 ... K = 4: BCDE, GFHB, ... Relevant K values? \rightarrow Creates adgm for each K K=5: BFGHM, For each K returns selected (limited) number of combinations, with the number of combs sharing the impact Impact calculation: Probabilities calculation: cache simulations formulas Reduces the cost <miss count. probability> pairs : probability pWCMC(R') orobability describe the combined pWCET(R') impact of multiple combinations Strong correlation between miss counts and execution times miss count execution time Barcelona Supercomputing Center

Centro Nacional de Supercomputación

Evaluation

- (Benchmarks
 - EEMBC Autobench benchmark suite
 - Railway Case Study
- (EEMBC Autobench experimental conditions
 - Cache setup
 - 4KB 64-set 2-way-associative (separated) data and instruction L1 caches
 - Cache line size 32B
 - Random placement and random replacement policies
 - Latencies
 - IL1/DL1 access latency: 1 cycle for hits, 4 cycles for misses
 - Main memory latency: 16 cycles
 - Fixed latency for non-memory operations
- (Railway Case Study experimental conditions
 - LEON3-based FPGA board
 - Cache setup
 - 16KB 128-set 4-way-associative, 32B-line instruction L1 cache
 - 16KB 256-set 4-way-associative, 16B-line data L1 cache
 - Random placement and random replacement policies
- (Default number of R used by MBPTA is 300

Controlled scenario: Evaluating TAC precision

- (ReVS exhaustively explores all cache placements
 - Guarantees exact results
 - Only possible to apply to simple benchmarks
 - U = 15 most accessed addresses from EEMBC Automotive Bench

TAC evaluation on full EEMBC Autobench benchmarks

TAC

	R' (IL1)	R'(DL1)	R'	likelihood(R')
a2time	67,150	300	67,150	10 ⁻⁹
aifftr	300	4,760	4,760	10 ⁻⁹
aifirf	20,080	8,090	20,080	10 ⁻⁹
aiifft	300	10,630	10,630	10 ⁻⁹
basefp	78,220	300	78,220	10 ⁻⁹
bitmnp	330	1,800	1,800	10 ⁻⁹
cacheb	19,840	1,500	19,840	10 ⁻⁹
idctrn	67,460	43,040	67,460	10 ⁻⁹
iirflt	29,920	2,430	29.920	10 ⁻⁹

Railway Case Study

(A safety function nort of the European V/itel Computer (EV/C)

Conclusions

(Assuring measurements observations representativeness

Qualitative assessment of coverage of relevant platform events impacting WCET (dependant on user expertise)

MBPTA + ReVS

Quantitative assessment of coverage of relevant events

User instructed to collect needed number of measurements R'

Only for very simple benchmarks

MBPTA + TAC

Quantitative assessment of coverage of relevant events

User instructed to collect needed number of measurements R'

Scalable to real program sizes

(Future work

- Provide solution when user lacks the control over input vectors
- Generalize TAC for more complex cache hierarchies

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Software Time Reliability in the Presence of Cache Memories

Suzana Milutinovic, Jaume Abella, Irune Agirre, Mikel Azkarate-Askasua, Enrico Mezzetti, Tullio Vardanega and Francisco Cazorla

ADA-EUROPE 2017, Vienna, Austria

TAC execution time cost

- (Numbers reported on average per benchmark, running 100 jobs in parallel (cache simulations are highly parallelizable)
- (Controlled scenario (U = 15 for IL1/DL1)
 - ReVS: 27 hours for simulations
 - TAC: 2s to derive combs + 11 minutes for simulations (148x faster)
- (Full EEMBC Autobench (U = 2,500 for IL1, U = 5,600 for DL1)
 - ReVS: unable to finish
 - TAC: 1min to derive combs + 38 minutes for simulations
- (Railway case study (U = 2,994 for IL1, U = 597 for DL1)
 - ReVS: unable to finish
 - TAC: 1.3min to derive combs + 0.35 minutes for simulations

Correlating Execution Time and Miss Counts

(We compare normalized execution times and miss counts over 1000 runs

$$NormMiss_{i} = \frac{Miss_{i} - (MIN_{j=0}^{R}Miss_{j})}{(MAX_{j=0}^{R}Miss_{j}) - (MIN_{j=0}^{R}Miss_{j})}$$

(Pearson product-moment correlation coefficient and Spearman's rank correlation coefficient

	a2time	aifftr	aifirf	aiifft	basefp	bitmnp	canrdr	idctrn
Pearson	0.997	0.918	0.960	0.923	0.999	0.998	0.974	0.950
Spearman	0.933	0.911	0.956	0.913	0.998	0.998	0.973	0.951

Seeking conflictive address combinations: Mutual impact of addresses [Corner case]

(Memory access trace:

(Probability of access miss:

$$Pmiss = 1 - \left(\frac{W - 1}{W}\right)^{\sum Pmiss(X_i)} \begin{array}{c} ABC? \\ ACD? \\ ADE? \\ ABCD? \end{array}$$

(*P̃guilty* estimator:

$$\widetilde{P}guilty = 1 - \left(\frac{W-1}{W}\right)^{exp} \qquad \exp = \begin{cases} \frac{0 : q < W}{q : W \le q \le K} \\ K-1: & otherwise \end{cases}$$

0.17.10

(*guilt* estimator:

$$guilt = \begin{cases} \frac{\widetilde{P}guilty}{\exp} : & \exp > 0\\ 0 & : & otherwise \end{cases}$$

Seeking conflictive address combinations: Address combination impact [Harmonic mean]

(Address guilt matrix (adgm)

Centro Nacional de Supercomputación

- Different for each K value (e.g. 3 to 13, depending on Prel)

Seeking conflictive address combinations: Smart search over adgm [Address buckets]

	Pguilty	Total guilt	Α	С	D	В	E
Α	135.75	152.0	0.0	55.5	55.5	41.0	0.0
С	124.2	132.0	55.3	0.0	46.2	30.5	0.0
D	124.2	132.0	55.3	46.2	0.0	30.5	0.0
В	56.5	71.2	10.2	30.5	30.5	0.0	0.0
E	1.0	0.0	0.0	0.0	0.0	0.0	0.0

Is *P̃guilty* < 1% of the highest?

Is $guilt \rightarrow X < 1\%$ of the total guilt?

Do addresses share guilt value?

