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Critical Real-Time Embedded Systems (CRTES) 

CRTES steadily requiring increasing levels of computing power

 

Delivering high levels of computing power requires using high-
performance hardware

● Caches

● Multicores

However, those features challenge timing analysis
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[1] Siewiorek, D., & Narasimhan, P. (2006). Fault tolerant architectures for space and 
avionics. In Workshop on Dependability in Robotics and Autonomous Systems.
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Critical Real-Time Embedded Systems (CRTES) 

CRTES require providing evidence about timing correctness of the 
system against safety standards

● Time budget must be preserved

● Need to bound the WCET

Obtaining a reliable and tight WCET estimate is complex

● Several methods

● Rely on assumptions/inputs of the HW/SW

Measurement Based Timing Analysis (MBTA)

● Dominant (i.e. most used) technique in most real-time domains
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Measurement Based Timing Analysis (MBTA)

Analysis Time - Operation Time
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Measurement Based Timing Analysis (MBTA)

Analysis Time - Operation Time

Quality of WCET estimates builds on  representativeness

● User's ability to relate analysis time and operation time

● The end user has to:

– Capture worst conditions that can arise at operation 

– That is, capture worst-case behaviors of each jittery resource
– Cache → worst cache layout
– Shared resources → worst contention
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Agenda

Measurement Based Probabilistic Timing Analysis (MBPTA)
● Statistical Analysis

● Jtitter control: Deterministic - Probabilistic upperbounding

Dealing with Cache Jitter

Dealing with Contention Jitter
● Fully time composable (fTC)

● Partially time composable (pTC)

Evaluation

Conclusions



6

Measurement-Based Probabilistic Timing Analysis (MBPTA)

MBPTA applies Extreme Value Theory (EVT) on execution time 
observations to derive probabilistic WCET (pWCET)

● Analyses the tail of the distribution

● Predicts the probability of observed events to appear 
simultaneously (does not capture unobserved events) 

– Assurance of all relevant events observed → 
representativeness is assumed to come from hardware
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Measurement-Based Probabilistic Timing Analysis (MBPTA)

MBPTA applies Extreme Value Theory (EVT) on execution time 
observations to derive probabilistic WCET (pWCET)

● Analyses the tail of the distribution

● Predicts the probability of observed events to appear 
simultaneously (does not capture unobserved events) 

– Assurance of all relevant events observed → 
representativeness is assumed to come from hardware

Hardware ensures that variability that can arise at operation 
emerges naturally from observations taken at analysis

● Relieves the user from controlling hardware sources of jitter

● Increase confidence on WCET estimates
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Measurement-Based Probabilistic Timing Analysis (MBPTA)

Summary of MBPTA
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Reference platform

4 LEON3 cores
● 1 executing a time-critical task (Task Under Analysis, TUA)

● 3 executing non-critical tasks

AMBA AHB without split requests

Set of performance monitoring counters (PMCs)
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Reference platform

4 LEON3 cores
● 1 executing a time-critical task (Task Under Analysis, TUA)

● 3 executing non-critical tasks

AMBA AHB without split requests

Set of performance monitoring counters (PMCs)

● Hardware ensures that 
variability that can arise 
at operation emerges 
naturally from 
observations taken at 
analysis

● In our platform:

● Cache

● Bus
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Agenda

Measurement Based Probabilistic Timing Analysis
● Statistical Analysis

● Deterministic and probabilistic upperbounding
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Evaluation
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Dealing with cache jitter

Problem

Incremental SW integration

WCET estimates
not valid at operation
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Dealing with cache jitter

Problem

Randomization is used to provide MBPTA probabilistic behavior
● Random address to set mapping (random cache layout)

– The more the runs made, the higher the number of cache 
layouts explored

● This allows cache jitter to be properly modeled by MBPTA

Incremental SW integration

WCET estimates
not valid at operation
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Dealing with cache jitter

TASA (Toolchain Agnostic Software rAndomization) + COTS
● Static variant of software randomization at source-code level

● Randomizes position in memory of functions, stack frames and 
global data

● When loaded into memory the random binary will translate in a 
random memory mapping, hence, random cache layout
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Dealing with cache jitter

Summary
● Cache jitter is captured with observations
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Cache jitter  already 
factored in

Multicore jitter 
to be factored in
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Dealing with contention jitter

Approach: 
● Enlarge observed execution times with a bound of the maximum 

contention the task can suffer
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Dealing with contention jitter

Approach: 
● Enlarge observed execution times with a bound of the maximum 

contention the task can suffer

How? 
● From PMCs collect bus/cache access information of each task 

when run in isolation

● Combines the PMC information and access latencies to derive 
the bound

– No need to run with contender tasks to derive 
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Contention model - fTC

Derives a WCET estimate that upperbounds slowdown suffered 
regardless of the load of conteders

Assumes worst alignment and type of access
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Contention model - fTC

Derives a WCET estimate that upperbounds slowdown suffered 
regardless of the load of conteders

Assumes worst alignment and type of access

Nc = Number of cores (4)
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Contention model - pTC

Trade time-composability to tighten 
WCET estimates

● Incremental integration with small 
efforts

pTC tracks contender's information

● Number of contenders

● Number of requests of each type

WB

WT
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Contention model - pTC

Ideal PMC support scenario (contention impact of τ
b
 on τ

a
)
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Contention model - pTC

Ideal PMC support scenario (contention impact of τ
b
 on τ

a
)

Reality:
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Contention model - pTC

Bounding load hits

Bounding dirty misses
Access
latency
of each

type

+

-
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Contention model - pTC

We have
● Contenders' accesses classified by type

● TUA accesses

Pairing with TUA accesses
● From longest latency, to shortest

Slowdown task τ
b
 causes on τ

a
 due to contention
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Contention model - pTC

Overall contention τ
a
 suffers from its three contenders τ

b
, τ

c
, τ

d
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Contention model - pTC

Overall contention τ
a
 suffers from its three contenders τ

b
, τ

c
, τ

d

        Cache jitter Multicore jitter 
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Evaluation

FPGA implementation
● 4 LEON3 cores

– 16KB 4-way L1 (I&D) WT, no WA

– 128KB 4-way L2 (32KB partitioned) WB

MBPTA setup

● 10-12 probability threshold

● 3000 runs

● Statistical tests, IID
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Evaluation

Assessing fTC accuracy

TUA:
● Synthetic application performing uniform accesses to the shared 

bus (30% of its ET) 

Contender tasks:
● 3 contenders performing dirty/clean misses
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Evaluation

Assessing pTC accuracy

TUA:
● Synthetic application performing uniform accesses to the shared 

bus (30% of its ET) as TUA

Contender tasks:
● 3 contenders performing a percentage of clean misses (w.r.t. 

TUA's accesses)

60% of total TUA's accesses
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Evaluation

EEMBC as TUA
● Against 3 copies of themselves



27
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Conclusions

We have proposed a technique for COTS multilevel-cache 
multicores

● It relies on MBPTA to derive pWCET estimates

Our results show how MC2 effectively captures contention and safely 
upperbounds observed values

Future work
● Extend the technique to other platforms

● Promote specific PMCs to reduce overhead
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