
Vienna (Austria) June 12-16, 2017

OpenMP tasking model for Ada:
safety and correctness

Sara Royuela, Xavier Martorell,
Eduardo Quiñones and Luis Miguel Pinho

www.bsc.es www.cister.isep.ipp.pt



Parallel heterogeneous embedded architectures

1. Exploit its performance capabilities

2. Facilitate programmability

3. Ensure portability

2

Parallel Programming Models

NVIDIA Tegra X1:
4-core A57 and A53,
GPU
(automotive)

Kalray MPPA: 
four 4-core K1, 
256-core fabric
(avionics)

TI Keystone II: 
4-core A15,
8-core DSP
(industrial)



Parallel Programming Models

• Provides a level of abstraction to express 
parallelism while hiding processor complexities
– Defines parallel regions and synchronization 

mechanisms

– Couples host processor with accelerators devices 
(e.g., many-cores and DSP fabrics, GPUs, FPGAs)

• Mandatory as the number computing resources 
integrated increases 

3

Accelerator 
device(s)

Host

Generic parallel 
heterogeneous 

architecture



Pros

• Full control of the model
• Incorporate safety issues in the 

model

• Very mature models
• Portability
• Develop “only” the Ada and parallel

run-time connection

Cons
• Develop the complete parallel 

framework
• Less portability

• No safety properties

Ada and Parallel Programming Models

• There is a necessity to support parallelism in Ada capable of 
exploiting parallel heterogeneous embedded architectures

4

Define an Ada’s parallel model1 Adopt an existing parallel model

1 Michell, Moore, Pinho, Tasklets – a fine grained parallelism for Ada on multicores, in Ada-Europe 2013
Pinho, Moore, Michell, Taft, Real-Time Fine-Grained Parallelism in Ada, in ACM SIGAda Ada Letters 2015



Parallel Programming Model Challenges

• Productivity perspective 
(performance, programmability, 
portability)

– Shared and distributed memory

– Fine-grain task- and data-based 
parallelism

– Heterogeneity

– Load balancing

– Efficient synchronization methods

• Safety perspective

– Parallel programming is complex 
and error prone, compromising 
correctness and so safety

– Compiler and run-time techniques
to detect errors must be provided

5



OpenMP
• Mature language constantly reviewed and augmented (last release Nov 2015)

• Performance and efficiency
– Tantamount to other models (e.g. TBB, CUDA, OpenCL and MPI)

– Support for fine-grain data- and task-parallelism

– Features an advanced accelerator model for heterogeneous computing

• Portability
– Supported by many chip and compiler vendors (Intel, IBM, ARM, TI, Kalray, Gaisler)

• Programmability
– Currently available for C, C++ and Fortran (#pragma omp)

– Allows incremental parallelization 

– Can be easily compiled sequentially (easing debugging)

6



• Fork-join parallel model of execution

• Task-centric model

– Oblivious of the physical layout

– Structured and unstructured parallelism

– Representative constructs: task and taskloop

OpenMP execution model

7

#pragma omp parallel

#pragma omp single

#pragma omp task depend(in:A)

#pragma omp task depend(out:A)

fork

join

#pragma omp taskwait

It is important not to confuse OpenMP tasks, Ada 
tasks and Ada tasklets are not the same thing
• Ada tasks are meant to exploit concurrency
• OpenMP tasks and Ada tasklets are meant to exploit 

fine-grain parallelism



OpenMP memory model

8

Relaxed-consistency memory model

Main 
memory

Temporary 
view

Task 0

Task 1

Task 2

Implicit / Explicit (flush)

Variables visibility defined by the programmer: shared, private, firstprivate

int a = 1, b = 1, res;

int foo() {

#pragma omp parallel shared(res) firstprivate(a,b)

#pragma omp single 

{

int x, y;

#pragma omp task shared(x) firstprivate(a)

x = a*a;

#pragma omp task shared(y) firstprivate(b)

y = b*b;

#pragma omp taskwait

res = x + y;

}

return res;

}

a (copy)

b (copy)

a,b (copy)

x (shared)

y (shared)

a=1

b=1

res

x, y



OpenMP and Safety 

• Our vision is that OpenMP enables to guarantee safety
requirements in terms of
– Time predictability

• Reasoning about the timing behaviour of the parallel execution

– Safety and correctness

• Ensuring that the correct operation in response to its inputs

• Support reliability and resiliency mechanisms

9

(www.upscale.com)

Compiler analysis techniques 
for checking correctness

Error handling methodologies 
to be added in the specification



Ada and OpenMP

10

function Fibonacci(N: Integer) return Integer is

begin

if N < 2 then

return N;

pragma OMP (parallel, shared=>X,Y,

firstprivate=>N);

pragma OMP (single, nowait);

begin

pragma OMP (task, shared=>X,

firstprivate=>N);

X:= Fibonacci(N - 2);

pragma OMP (task, shared=>Y,

firstprivate=>N)

Y:= Fibonacci(N - 2);

end

return X + Y;

end Fibonacci;

Example: Fibonacci computation

1. Extend OpenMP to support Ada

2. Extend Ada to support OpenMP (e.g., 
including a new pragma OMP)

3. Add compiler and runtime mechanisms to 
ensure correctness

Our proposal



Fine-grained parallelism in Ada

11

Blocks Loops Reductions Tasks

Tasklet
Model1

parallel

seq_of_stat_1

and

seq_of_stat_2

end parallel;

for i in parallel lb..ub loop

seq_of_stat

end loop;

type t is new array

(parallel <>) of Float

with Reducer => "+", Identity => 0.0;

Par_Sum : t := (others => 0.0);

begin

for I in parallel Arr’Range loop

seq_of_stat

end loop;

Sum := Par_Sum(<>)’Reduced;

-

OpenMP

pragma OMP (parallel);

pragma OMP (single);

begin

pragma OMP (task);

seq_of_stat_1

pragma OMP (task);

seq_of_stat_2

end

pragma OMP (parallel);

pragma OMP (taskloop);

for i in range lb..ub loop

seq_of_stat

end loop;

pragma OMP (parallel);

pragma OMP (taskloop, reduction=>+,TOTAL);

begin

for i in range 0..MAX_I loop

seq_of_stat

end loop;

end

pragma OMP (parallel);

pragma OMP (single);

begin

if cond then

pragma OMP (task);

seq_of_stat_1

else

pragma OMP (task);

seq_of_stat_2

end if;

end

1 Michell, Moore, Pinho, Tasklets – a fine grained parallelism for Ada on multicores, in Ada-Europe 2013
Pinho, Moore, Michell, Taft, Real-Time Fine-Grained Parallelism in Ada, in ACM SIGAda Ada Letters 2015



OpenMP challenges regarding Safety

12

1. Non-determinism

2. Race conditions

3. Deadlocks

4. Fault tolerance

• Actions not defined by the specification, e.g.,

– Directives/Clauses receives arguments out of range

• E.g., num_threads(N)

– Where and how some expressions have to be executed 
is not defined

• E.g., the order in which the values of a reductions are combined

– Compilers and runtimes are not forced to check the 
conformity of a program

• E.g., the storage location specified in task dependencies must be 
identical or disjoint

The specification 
must be restricted1

1 A functional safety OpenMP for critical real-time embedded systems
In the 13th International Workshop on OpenMP (IWOMP), New York (USA), September 18-19, 2017
Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quiñones, Xavier Martorell

✓



OpenMP challenges regarding Safety

13

1. Non-determinism

2. Race conditions

3. Deadlocks

4. Fault tolerance

int a = 1, b = 1, res;

int foo() {

#pragma omp parallel shared(res) firstprivate(a,b)

#pragma omp single

{

int x, y;

#pragma omp task firstprivate(x, a)

x = a*a;

#pragma omp task firstprivate(y, b)

y = b*b;

res = x + y;

}

return res;

}

• Incorrect data scoping definition

• Incorrect usage of synchronization mechanism

x and y are not visible 
outside the tasks

A synchronization 
point is needed

✓



OpenMP challenges regarding Safety

14

1. Non-determinism

2. Race conditions

3. Deadlocks

4. Fault tolerance

int a = 1, b = 1, res;

int foo() {

#pragma omp parallel shared(res) firstprivate(a,b)

#pragma omp single

{

int x, y;

#pragma omp task shared(x) firstprivate(a)

x = a*a;

#pragma omp task shared(y) firstprivate(b)

y = b*b;

#pragma omp taskwait

res = x + y;

}

return res;

}

• Incorrect data scoping definition

• Incorrect usage of synchronization mechanism

There exist compilation 
techniques capable of 

identifying (and solving) 
race conditions1,2

1 Royuela, Duran, Liao, Quinlan, Auto-scoping for OpenMP tasks, in IWOMP 2012 
2 Lin, Static nonconcurrency analysis of openmp programs, in IWOMP 2008

✓

✓



OpenMP challenges regarding Safety

15

1. Non-determinism

2. Race conditions

3. Deadlocks

4. Fault tolerance

• OpenMP synchronization mechanisms might result in 
deadlocks

• Possible solutions to avoid deadlocks

– Check that programs are OpenMP conformant 

– Adapt already existing compiler methods to OpenMP1

– Avoid OpenMP techniques in favor of Ada high-level 
concurrency mechanisms (e.g., protected objects)

1 Kroening et. al. “Sound static deadlock analysis for C/Pthreads”

#pragma omp task

{

#pragma omp barrier

x = a*a;

}

#pragma omp task

y = b*b;

Not all threads 
will execute it✓

✓

✓



1. Non-determinism

2. Race conditions

3. Deadlocks

4. Fault tolerance✓

OpenMP challenges regarding Safety

16

• One major problem of OpenMP in safety 
environments is the lack of resiliency mechanisms

• Attemps to add error-handling mechanisms to the
standard already exist1

– Some proposals have already been adopted (cancellation
constructs)

1 Duran et. al., A proposal for error handling in OpenMP
Wong et. al., Towards an error model for OpenMP
Fan et. al., Exception handling with OpenMP in object oriented languages

✓
✓

✓



Conclusions

17

• There is a necessity to extend Ada with fine-grained 
parallelism to efficiently support parallel heterogeneous 
computing

• Our proposal: To adopt OpenMP as a parallel programming 
model for Ada

– Very mature parallel programming model (20 years)

– Performance, programmability and portability without jeopardizing 
safety

– Parallel programming challenges regarding safety can be addressed



Future Work

• This can be complementary and compatible with the parallel 
Ada model
– OpenMP tasks and Ada tasklets are similar

– The interplay between Ada and OpenMP runtimes must be analyzed 
(e.g. OpenMP could be the runtime common to both)

• The Ada community can influence the OpenMP standard to 
address the challenges that impacts on safety

18OpenMP tasking model for Ada: safety and correctness



A proposal to extend OpenMP

• Comments from reviewers
– “[..] the proposed extensions are a good step toward making the use of OpenMP in safety 

environments practical, and appear to provide real value [..]”

– “[..] Even if OpenMP didn't care about embedded systems this analysis seems useful to help 
elucidate some of the issues inherent in the OpenMP specification [..]”

– “[..] it is an interesting challenge for modification on current OpenMP [..] OpenMP ARB may 
consider this proposal [..]”

19OpenMP tasking model for Ada: safety and correctness

A functional safety OpenMP for critical real-time embedded systems,
To be presented in the 13th International Workshop on OpenMP, celebrated in New 

York in September 18-19, 2017
Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quiñones, Xavier Martorell



OpenMP tasking model for Ada:
safety and correctness

Sara Royuela, Xavier Martorell, Eduardo Quiñones and Luis Miguel Pinho

For further information please contact:

sara.royuela@bsc.es

eduardo.quinones@bsc.es

lmp@isep.ipp.pt

20

www.bsc.es www.cister.isep.ipp.pt



Parallel programming models comparison

Type Language Strengths Weaknesses

Hardware 
Centric

Intel® TBB
- Highly tunable
- High-level (task concept)

- Portability
- Mapping thread/core not part of the model

NVIDIA® 
CUDA

- Highly tunable
- Wrappers for many languages

- Low level (explicit data management)
- Restricted to NVIDIA GPUs

Application 
Centric

OpenCL
- Automatic vectorization
- Executes in host and accelerator

- Low level (explicit data management)
- Full rewriting

Pthreads
- Full execution control (thread concept)
- Dynamic creation/destruction of threads

- Low level (reductions, work distribution, 
synchronization, etc. by hand)

Parallelism
Centric

OpenMP
- High-level (task and data-flow concept)
- Portable
- Exploits parallelism at host and device

- No safety concepts



OpenMP challenges regarding Safety

22

Race conditions: general techniques

Dynamic
Analyze specific executions and possibly deliver false negatives 
There are algorithms capable of detecting at least one race when races
are present

Static

Analyze all possibilities (NP-hard) and possibly deliver false positives
Sound solutions exist for specific subsets of OpenMP
• Fixed number of threads
• Using affine constructs
Also solutions for detecting non-concurrency

Hybrid Combination of static and dynamic tool for more accurate results


