www.bsc.es Barchlbn www.cister.isep.ipp.pt

@ @ Supercomputing -2
Center =
Centro Nacional de Supercomputacion

OpenMP tasking model for Ada:
safety and correctness

Sara Royuela, Xavier Martorell,
Eduardo Quinones and Luis Miguel Pinho

Vienna (Austria) June 12-16, 2017

o —

e T t—
PR

eterogeneous embedded architéctufes

ParaIIeI !\

1.
2.
3.

Exploit its performance capabilities
Facilitate programmability
Ensure portability

o

Parallel Programming Models

Maxwell

,-;-II-JE
|s
[E

TN N

i
2

20
| B

)

Caslee P)

llle|§__
]

LOLIEIC]

deswe s

st ©

18
i

i
=

NVIDIA Tegra X1:
4-core A57 and A53,
GPU

(automotive)

Kalray MPPA:
four 4-core K1,
256-core fabric
(avionics)

Tl Keystone Il:
4-core A15,
8-core DSP
(industrial)

rcelona
Sp rcompuﬂy
Ceniro Ecﬂmﬁd& Upercomputacid

—
— —

-
— T ———
A

Parallél Programming Modelst r

* Provides a level of abstraction to express
parallelism while hiding processor complexities @[%%%%]
— Defines parallel regions and synchronization Host DACEPEE
mechanisms device(s)
— Couples host processor with ac.celerators devices iz::r’;; Z:::Lil
(e.g., many-cores and DSP fabrics, GPUs, FPGASs) architecture

 Mandatory as the number computing resources
integrated increases

Barcelona
3 Supercomputing
Center
Centro Nacional de Supercomputacion

e -

— e

Aa‘ad Paralle "Programmin MW

* There is a necessity to support parallelism in Ada capable of

exploiting parallel heterogeneous embedded architectures
]

“—-1_—_ =7 i

v

v v
Define an Ada’s parallel model* 4 Adopt an existing parallel model h
* Full control of the model * Very mature models
* Incorporate safety issues in the * Portability
Pros “ ”
model * Develop “only” the Ada and parallel

run-time connection

* Develop the complete parallel * No safety properties
Cons framework
* Less portability

—

rcelona
3 p rr:ompuﬂ g 4

1 Michell, Moore, Pinho, Tasklets — a fine grained parallelism for Ada on multicores, in Ada-Europe 2013
Pinho, Moore, Michell, Taft, Real-Time Fine-Grained Parallelism in Ada, in ACM SIGAda Ada Letters 2015 ((

Centro Ecﬂmﬁd& upercomputacior

-,._'._-_—]-—1;—-' —

ParaiIeProgr;n—r—mng I\/IodeIEhaIIen

e Productivity perspective * Safety perspective
(performance, programmability, — Parallel programming is complex
portability) and error prone, compromising

correctness and so safety

— Shared and distributed memory — Compiler and run-time techniques

— Fine-grain task- and data-based to detect errors must be provided
parallelism

- Heterogenei.ty -QpenMP

— Load balancing —
Enabling HPC since 1997

— Efficient synchronization methods

OpenMP

Enabling HPC since 1997 ((":":’.i';.mpu ing 5

Centro Naciona! de Supercomputacicn

Mature language constantly reviewed and augmented (last release Nov 2015)

Performance and efficiency

— Tantamount to other models (e.g. TBB, CUDA, OpenCL and MPI)

— Support for fine-grain data- and task-parallelism

— Features an advanced accelerator model for heterogeneous computing
Portability

— Supported by many chip and compiler vendors (Intel, IBM, ARM, TI, Kalray, Gaisler)
Programmability

— Currently available for C, C++ and Fortran (#pragma omp)

— Allows incremental parallelization

— Can be easily compiled sequentially (easing debugging)

rcelona
Sp rcompuﬂy 6
Ceniro Ecﬂmﬁd& Upercomputacid

‘ ‘_-

OFeTMP executlon modél l

* Fork-join parallel model of execution

 Task-centric model

It is important not to confuse OpenMP tasks, Ada

tasks and Ada tasklets are not the same thing

e Ada tasks are meant to exploit concurrency

* OpenMP tasks and Ada tasklets are meant to exploit
flne graln parallellsm

: -
i— Barcelona
HP. Supercomputing
J oin Center
Centro Nacional de Supercomputacion

4

—_— . —

OpenNIP memory model

Relaxed-consistency memory model

Variables visibility defined by the programmer: shared, private, firstprivate

e . ~ [int a =1, b =1, res;
, Main \ TemPorary int foo() {
memory view N #pragma omp parallel
. X Y Tt #fpragma omp single
u a,b (copy) \\ Task O {
5 5 < int x, y;
- X (shared) [R #pragma omp task
u Jask1 4 = a%a:
a(copy) | / x = a*a;
ra S - #fpragma omp task
y (shared)-= | 4+ y = b*b;
Task2 4 :
\ / b (copy) #pragma omp taskwait
N T e ‘ g res = x t+ y;
&) }
= return res;
Implicit / Explicit (f1ush) }

Barcelona

Supercomputing 8
Center

Centro Nacional de Supercomputacion

enP and Safety

e Qurvision is that OpenMP enables to guarantee safety

requirements in terms of <2,
— Time predictability \’j}’? (www.upscale.com)
* Reasoning about the timing behaviour of the parallel execution
— Safety and correctness
e Ensuring that the correct operation in response to its inputs
» Support reliability and resiliency mechanisms

\ T~

Compiler analysis techniques Error handling methodologies
for checking correctness to be added in the specification

Barcelona
9 l'.[arcompuﬂny
Centro Naciona! de Supercomputacicn

._.'__~—-]——1_

Ada and penI\/IP

Our proposal Example: Fibonacci computation

function Fibonacci(N: Integer) return Integer is

begin
1. Extend OpenMP to support Ada LN < 2 then
return N;

2. Extend Ada to support OpenMP (e.g., B O e e ooy s

including a new pragma OMP) pragna OMP (single, nowait);

. . . pragma OMP (task, shared=>X,
3. Add compiler and runtime mechanisms to firstprivate=>N) ;
X:= Fibonacci (N - 2);
ensure correctness pragma OMP (task, shared=>Y,

firstprivate=>N)
Y:= Fibonacci (N - 2);
end
return X + Y;
end Fibonacci;

Barcelona

Supercomputing

Center 1 O
Centro Naciona! de Supercomputacicn

Blocks Loops Reductions
parallel for i in parallel lb..ub loop type t is new array
seq of stat 1 seq_of stat (parallel <>) of Float
and end loop; with Reducer => "+", Identity => 0.0;
Tasklet seq of stat 2 Par Sum : t := (others => 0.0);
end parallel; begin =
MOdEF' for I in parallel Arr’Range loop
seq_of stat
end loop;
Sum := Par Sum(<>)’Reduced;
pragma OMP (parallel) ; pragma OMP (parallel) ; pragma OMP (parallel) ; pragma OMP (parallel) ;
pragma OMP (single) ; pragma OMP (taskloop) ; pragma OMP (taskloop, reduction=>+,TOTAL) ; pragma OMP (single) ;
begin for i in range 1lb..ub loop begin begin
pragma OMP (task); seq of stat for i in range 0..MAX I loop if cond then
seq of stat 1 end 1;°p7 seq of stat pragma OMP (task) ;
OpenMP pragma OMP (task) ; end loop; seq of stat 1
seq of stat 2 end else

end

pragma OMP (task) ;
seq_of stat 2
end if;
end

1Michell, Moore, Pinho, Tasklets — a fine grained parallelism for Ada on multicores, in Ada-Europe 2013

Pinho, Moore, Michell, Taft, Real-Time Fine-Grained Parallelism in Ada, in ACM SIGAda Ada Letters 2015

11

Ob—enI\/I'PchaIIenges r—e—garding"S—afety

v/ Non-determinism * Actions not defined by the specification, e.g.,

2. Race conditions — Directives/Clauses receives arguments out of range
3. Deadlocks * E.g., num threads (N)
— Where and how some expressions have to be executed
4. Fault tolerance i< not defined
* E.g., the order in which the values of a reductions are combined
— Compilers and runtimes are not forced to check the
conformity of a program
The specification * E.g., the storage location specified in task dependencies must be
must be restricted? identical or disjoint

1 A functional safety OpenMP for critical real-time embedded systems
In the 13th International Workshop on OpenMP (IWOMP), New York (USA), September 18-19, 2017 EBorcslona
Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quifiones, Xavier Martorell (g?'&??::immp.m 12

7 e By > — — R
— ‘-_l —— — e

ObenI\/I'P challenges regarding Safety

v/ Non-determinism ¢ Incorrect data scoping definition

2. Race conditions * Incorrect usage of synchronization mechanism
3. Deadlocks int a = 1, b = 1, res;

int foo() {
4 Fault tolerance #pragma omp parallel shared(res) firstprivate(a,b)

#pragma omp single
{

. . i t ’ ;
x and y are not visible PRI

] — #fpragma omp task firstprivate(x, a)
outside the tasks x = a*a;

B #pragma omp task firstprivate(y, b)
. . y = b*b;

A synchronization .

point is needed res = x + y;

}

return res;

}

Barcelona

Supercomputing

Center 1 3
Centro Naciona! de Supercomputacicn

A = = e B e— '
— = — mm—p e e

ObenI\/I'P challenges regarding Safety

v/ Non-determinism ¢ Incorrect data scoping definition

/ Race conditions * Incorrect usage of synchronization mechanism
3. Deadlocks int a = 1, b = 1, res;
int foo () {
#pragma omp parallel shared(res) firstprivate(a,b)
4. Fault tolerance borooms omp imele
{
int x, y;
There exist compilation > #pragma omp task shared(x) firstprivate (a)
. X = a*aj
. techn!ques Capabl'e Of = H#pragma omp task shared(y) firstprivate (b)
identifying (and solving) v = b*b;
race conditions!2 > #pragna omp taskwait

res = x + y;
}

return res;

}

!Royuela, Duran, Liao, Quinlan, Auto-scoping for OpenMP tasks, in IWOMP 2012 ((Borcelona ing 14
2 Lin, Static nonconcurrency analysis of openmp programs, in IWOMP 2008 G ecioral g Supercampuaci

— - — —_— . —

Ob—enI\/I'PchaIIenges r—e—garding"S—afety

v/ Non-determinism ° OpenMP synchronization mechanisms might result in

/ Race conditions deadlocks bpragma omp task
) Not all threads
#fpragma omp barrier
\/ Deadlocks xp: ?fa,- g) will execute it
}
4. Fault tolerance #p;agmz*?p task

* Possible solutions to avoid deadlocks
— Check that programs are OpenMP conformant
— Adapt already existing compiler methods to OpenMP*

— Avoid OpenMP techniques in favor of Ada high-level
concurrency mechanisms (e.g., protected objects)

1Kroening et. al. “Sound static deadlock analysis for C/Pthreads” ((Barcelona vting 15

Cente
Centro Naciona! de Supercomputacicn

__'__4—-1-1_____‘

— — - — —_— . —

Ob-enI\/I'Pcha‘IIenges ragarding'.s_afety

v
v
v
v

Non-determinism ¢ One major problem of OpenMP in safety

Race conditions environments is the lack of resiliency mechanisms

e Attemps to add error-handling mechanisms to the

Deadlocks ,
standard already exist!

Fault toleran
ault tolerance — Some proposals have already been adopted (cancellation

constructs)

1Duran et. al., A proposal for error handling in OpenMP
Wong et. al., Towards an error model for OpenMP
Fan et. al., Exception handling with OpenMP in object oriented languages ((

Barcelona
Supercomputing
enter 1 6

Cente
Centro Naciona! de Supercomputacicn

Conclu5|ns

* There is a necessity to extend Ada with fine-grained
parallelism to efficiently support parallel heterogeneous
computing

* Our proposal: To adopt OpenMP as a parallel programming
model for Ada

— Very mature parallel programming model (20 years)

— Performance, programmability and portability without jeopardizing
safety

— Parallel programming challenges regarding safety can be addressed

Barcelona
l'.[arr:ompu ing 17
Centro Nacional de Supercomputacid

——..—

Futur Work -

* This can be complementary and compatible with the parallel
Ada model
— OpenMP tasks and Ada tasklets are similar
— The interplay between Ada and OpenMP runtimes must be analyzed
(e.g. OpenMP could be the runtime common to both)
 The Ada community can influence the OpenMP standard to
address the challenges that impacts on safety

Bareekma
OpenMP tasking model for Ada: safety and correctness ((e 18

Centro Ecﬂmﬁd& upercomputacior

____:~—-—--——~_._‘__.

A proosal to extend Openl\/lrm |

A functional safety OpenMP for critical real-time embedded systems,

To be presented in the 13th International Workshop on OpenMP, celebrated in New
York in September 18-19, 2017
Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quifiones, Xavier Martorell

« Comments from reviewers

“[..] the proposed extensions are a good step toward making the use of OpenMP in safety
environments practical, and appear to provide real value [..]”

— “[..] Even if OpenMP didn't care about embedded systems this analysis seems useful to help
elucidate some of the issues inherent in the OpenMP specification [..]”

— “[.]itis an interesting challenge for modification on current OpenMP [..] OpenMP ARB may
consider this proposal [..]”

rcelona
OpenMP tasking model for Ada: safety and correctness ((s"’ o 19

Cmm lacional de Supercomputacion

www.bsc.es

www.cister.isep.ipp.pt
Barcelona
@ | Supercomputing /::?
center bing v
Centro Nacional de Supercomputacion

OpenMP tasking model for Ada:
safety and correctness

Sara Royuela, Xavier Martorell, Eduardo Quifiones and Luis Miguel Pinho

For further information please contact:

sara.royuela@bsc.es
eduardo.quinones@bsc.es

Imp@isep.ipp.pt

— T el

+

' j_—,-f—_.———-l . : _ ._._.._.._..._._:—_ » ———— ‘_(__._
Parallel ogramming models comparison l

Type Language ‘/ Strengths 2 Weaknesses
® - Highly tunable - Portability
Intel® TBB - High-level (task concept) - Mapping thread/core not part of the model
Hardware g P ppINg P
Centric NVIDIA® | - Highly tunable - Low level (explicit data management)
CUDA - Wrappers for many languages - Restricted to NVIDIA GPUs
- Automatic vectorization - Low level (explicit data management)
OpenCL . o
Application - Executes in host and accelerator - Full rewriting
Centric Pthreads |- Full execution control (thread concept) - Low level (reductions, work distribution,
- Dynamic creation/destruction of threads | synchronization, etc. by hand)
parallelism - High-level (task and data-flow concept) - No safety concepts
Centric OpenMP | - Portable
- Exploits parallelism at host and device

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

'_'——l__:h S T R ast —‘:‘_T'—T—‘—' =,

OpenI\/IPchaIIenges regardmg Safety

Race conditions: general techniques

Analyze specific executions and possibly deliver false negatives
Dynamic | There are algorithms capable of detecting at least one race when races
are present

Analyze all possibilities (NP-hard) and possibly deliver false positives
Sound solutions exist for specific subsets of OpenMP

Static * Fixed number of threads

e Using affine constructs

Also solutions for detecting non-concurrency

Hybrid Combination of static and dynamic tool for more accurate results

Barcelona
3u arcompu ing
c

Centro Nacional de S

