
Enforcing 
Timeliness and Safety in
Mission-Critical Systems

22nd International Conference on Reliable 
Software Technologies (Ada-Europe 2017)

António Casimiro, Inês Gouveia, José Rufino
casim@ciencias.ulisboa.pt

http://www.di.fc.ul.pt/~casim

LaSIGE, Faculdade de Ciências, 

Universidade de Lisboa, Portugal



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Motivation
 Cyber-physical systems involve complex interactions with 

the environment and dealing with uncertainty
 E.g., autonomous vehicles will be increasingly connected to other 

vehicles and dependent on information received form external 
sources

 Ensuring safety in spite of these uncertainties is a hard 
problem
 Often addressed by designing the system for the worst possible 

scenario (but with implications on performance or cost)

 The KARYON project proposed a hybrid system model and 
architecture to address this problem
 Separating the system into a complex part and a Safety Kernel that is

implemented separately and must execute timely and reliably

2



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Motivation
 For safety reasons, it is fundamental that the properties of 

the critical parts of the system (namely the Safety Kernel) 
are satisfied with a very high probability

 Is there something that might be done if some critical 
property is violated in runtime? (despite all measures that 
might have been taken to enforce them)

3

We propose a hardware-based non-intrusive 
runtime verification approach to detect possible 

violations of critical properties



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Safety Kernel

4



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Safety Kernel operation
 The safety kernel continuously collects information on the 

integrity and timeliness of validity of data in the nominal 
system, which varies over time

 And adjusts the Level of Service (LoS) of the functions 
executed by the nominal system (e.g., preventing the use of 
components whose integrity is not sufficiently high), aiming 
to operate in the highest possible LoS

 In design time, it is proven that functionality is safe in each 
of the possible LoS, as long as a set of defined safety rules 
for each LoS are satisfied

 The Safety Kernel selects the LoS by checking which safety 
rules are satisfied, given the collected data validity and 
timeliness information

5



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Safety Kernel architecture

6

Periodic thread: 

periodically runs 

TFD, Safety 

Manager and Data 

Component 

Multiplexer, and 

evaluates safety 

rules to determine 

the possible LoS

Initialization 

thread: 

parses XML 

file containing 

safety rules 

and build 

structures in 

repositoriesListener thread: 

collects heartbeats 

(timeliness info) 

and validity info



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Safety Kernel timing analysis

 The relative deadline for the execution of the Safety 
Kernel process is equal to its period:

 The SK process includes two threads and its WCET 
depends on the WCET of its threads:

 The WCET of the listener thread is:

 The WCET of the periodic thread is:

7

DSK = TSK

Npackets x Clistener + Cperiodic ≤ DSK

Clistener = Cpacket_reading + max{Cpacket_processing}

Cperiodic = CTFD_SF + CSM + CDCM



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Safety Kernel assumptions

 Bounded input:

 The number of received packets (heartbeats, validity 
indications) is bounded by Npackets

 It is hard to enforce this bound at design time because the 
nominal system might malfunction and send too many 
packets to the Safety Kernel

 Bounded execution time:

 The execution time of each Safety Kernel job is bounded 
by DSK

 This bound might be violated only when some fault 
interferes with the (expectedly predictable) execution 
time of the Safety Kernel tasks

8



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Non-intrusive runtime monitor

 Runtime verification of assumptions is 
performed by an Observer Entity that may be 
implemented using versatile FPGA-based 
platforms

9



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Observer entity & Safety Kernel

10



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Verifying SK assumptions

 Bounded input (Npackets)

 Initialize the Observer Entity counting monitor with 
Npackets whenever a new instance of SK process starts

 By configuring the address of first instruction as an event of 
interest, linking the event to the counting monitor

 Decrement counter whenever a packet is received

 By configuring the address of a relevant instruction within the 
listener thread as an event of interest

 Detect violation when counter is smaller than zero

 Call an exception handler (if it exists) to deal with such 
unforeseen situations

 E.g., start manoeuvre to stop the car, because a critical 
component for the vehicle safety is not working properly

11

How?

How?



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Verifying SK assumptions

 Bounded execution time (DSK)
 Initialize the Observer Entity timeliness monitor with DSK

when new instance of SK process starts

 Addresses of first and last instructions will be used as events of 
interest to start/stop the time counter

 Decrement time counter at each system clock tick

 Detect violation when counter is smaller than zero

 Stop time counter when the SK process ends

 Like before, call an exception handling if a violation is 
detected

12

How?



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Safety Kernel implementation
 FPGA-based development board

 Processing unit: LEON3 soft-processor (SPARC v8 arch)

 RTEMS executing on top

 Support for TSP on RTEMS allows for hybrid system architecture
 Nominal system may be on separate hardware, connected to the board through some 

of its interfaces (e.g., Ethernet)

 Available resources are adequate to support the Observer Entity

13



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Implementation on Raspberry PI
 Raspberry PI Model B Rev 2.0

 ARM 11 processor (700MHz)

 Real-Time Linux

 No support for hybridization nor for non-intrusive runtime verification

 Purpose was to compare the performance of a soft-core processor 
(LEON3) with a real core (ARM) to run the Safety Kernel

14



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Evaluation setup
 Experiments to measure the Safety Kernel execution time, 

which determines the minimum period TSK
 Considered only the periodic thread, given that the Input 

Data Manager task (listener thread) is very simple

 Measured the contribution of each SK component executed 
by the periodic thread (TFD, SM and DCM) to the overall 
execution time

 Varied number of safety rules to process in each iteration of 
the periodic thread, from 1 to 100

 Results correspond to the average of 100 iterations

15



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Results

 The execution time is mostly determined by the Safety Manager (SM) 
component, which processes the safety rules

 Using a real processor significantly improves the performance (about 
20x in this case)

 The results show that the Safety Kernel performance on a real 
processor is appropriate for most applications, which require 
response times in the order of a few milliseconds

16



Ada-Europe, Vienna, Austria, June 14, 2017© António Casimiro

Conclusions
 The execution time of the Safety Manager should be further improved, 

possibly by using techniques to process safety rules in parallel

 Integration of non-intrusive runtime verification mechanisms is easy to 
do in reconfigurable logic supporting soft-processors

 Integration on ARM processors requires ARM CoreSight facilities

 Adding non-intrusive runtime verification is important to detect the 
violation of design assumptions, otherwise simply ignored

 Therefore, it may significantly contribute to enhance the overall 
system dependability

17



Thank you for your attention!

To reach me: casim@ciencias.ulisboa.pt

Web page: http://www.di.fc.ul.pt/~casim


