
Introduction
Steps towards static analysis

Conclusion

Introducing static analysis to a mature project

Jacob Sparre Andersen

JSA Research & Innovation

January 2017

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Getting started...
Magnitudes
Example

Getting started...

I have previously been presented with anecdotal evidence that
it is very hard to get any benefit from static analysis tools, if
they aren’t used on a project from day one, since they have a
tendency to need the developers to stay within a limited set of
patterns, which the tools can recognise as correct.

The task of introducing static analysis tools to the maintenance
process for a close to 30 years old application, is thus not easy,
but we’re giving it a try anyway...

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Getting started...
Magnitudes
Example

Magnitudes

The application used as a case:

Number of actively maintained variants:
5 (that I know of)
Number of variants in production:
≈ 30
Number of Ada source files (excluding generated ones):
≈ 3_500 (per variant)
Lines of Ada source text (excluding generated code):
≈ 500_000 (per variant)

There is a big overlap between the different variants, but each
variant is maintained as an independent project.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Getting started...
Magnitudes
Example

An example

Our first experiment1 was with AdaControl and the rule
“Unsafe_Paired_Calls”, which we can use to find places where
started SQL transactions risk not being committed or rolled
back2.

It was very effective:

AdaControl found thousands of places, where the source text
didn’t match the two “Unsafe_Paired_Calls” rules we had
formulated.

1Besides enabling more compiler warnings.
2Or where they can be rolled back without being started first.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Getting started...
Magnitudes
Example

An example

Our first experiment1 was with AdaControl and the rule
“Unsafe_Paired_Calls”, which we can use to find places where
started SQL transactions risk not being committed or rolled
back2.

It was very effective:

AdaControl found thousands of places, where the source text
didn’t match the two “Unsafe_Paired_Calls” rules we had
formulated.

1Besides enabling more compiler warnings.
2Or where they can be rolled back without being started first.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Improving the static analysis tool

Given the history of the application we didn’t quite believe
things were as bad as AdaControl reported.

We started categorising the findings, and this lead to an
expansion of the “Unsafe_Paired_Calls” rule in AdaControl,
such that AdaControl now recognises the most commonly used
“safe” pattern of unsafe paired calls in the application.

This made a significant reduction in the number of rule
violations reported by AdaControl.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Zero warning policy

Even though improving the tool helped quite a lot, there are still
many more rule violations than we have resources to fix
immediately.

If we worked under a “zero warning policy” we would have to
either:

Remove the check.
⇒ Less tool support for improving quality.
Take the time to do it anyway.
⇒ Not delivering on time to customers.

Neither is a good choice, but there is no doubt we want to
deliver what and when we have promised to the customers.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Selective checking

We decided to try an intermediate solution in the form of this
rule:

Full static analysis is enabled for
all new compilation units, and for
all compilation units subjected to significant changes.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Selective checking problems

Theoretically this is a quite nice rule.

In practice somewhat less so.

The rule requires the developer to make a decision.

This decision will in practice be decided based on the spare
time available to the developer and his/her estimate of how
much time it will take to fix the revealed problems (and pattern
mismatches).

Our experience so far is that developers only very rarely make
significant changes to a compilation unit. – Practically no old
compilation units have been added to the set of checked units.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Selective checking problems

Theoretically this is a quite nice rule.

In practice somewhat less so.

The rule requires the developer to make a decision.

This decision will in practice be decided based on the spare
time available to the developer and his/her estimate of how
much time it will take to fix the revealed problems (and pattern
mismatches).

Our experience so far is that developers only very rarely make
significant changes to a compilation unit. – Practically no old
compilation units have been added to the set of checked units.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Selective checking problems

We needed a better strategy...

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Non-zero warnings policy

When a “zero warning policy” doesn’t work, why not try a
“non-zero warnings policy”?

If you don’t have any warnings, you’re not checking hard
enough.
The number of warnings (rule violations per rule) should be
decreasing with time.

And we can always add more rules later on.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Non-zero warnings policy

When a “zero warning policy” doesn’t work, why not try a
“non-zero warnings policy”?

If you don’t have any warnings, you’re not checking hard
enough.
The number of warnings (rule violations per rule) should be
decreasing with time.

And we can always add more rules later on.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Non-zero warnings policy: Tooling

A non-zero warnings policy is more challenging to implement
than a zero warning policy, since you need tooling to keep
track of the development in the number of warnings.

We have decided to keep track of:

Project What we’re analysing.
Source file What we’re analysing.
Run A counter – providing temporal evolution.
Tool How we’re analysing.
Rule How we’re analysing.
Violations Number of rule violations.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Improving the tool
Selective zero warning policy
Non-zero warnings policy

Non-zero warnings policy: Tooling

The build-analyse-test process needs a slight modification to
implement a non-zero warnings policy:

Instead of just converting any warnings reported by the
compiler and rule violations reported by the static analysis tools
as errors, the number of warnings/rule violations should be
reported to the NZWP tracker3, which then reports pass/fail
based on the best case so far for that specific combination of
project, source file4, tool and rule.

3NZWP = Non-zero Warnings Policy
4Should that be omitted?

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

I believe I have shown that it is feasible to introduce static
analysis tools to mature software projects, even if it isn’t as
simple as using them from day one.

This means that one can consider adding new static analysis
tools to the analysis suite of existing projects as one becomes
aware of them, without worrying about an infeasible start-up
cost.

Jacob Sparre Andersen Introducing static analysis to a mature project



Introduction
Steps towards static analysis

Conclusion

Contact

Jacob Sparre Andersen
JSA Research & Innovation
jacob@jacob-sparre.dk

http://www.jacob-sparre.dk/

Jacob Sparre Andersen Introducing static analysis to a mature project

http://www.jacob-sparre.dk/

	Introduction
	Getting started...
	Magnitudes
	Example

	Steps towards static analysis
	Improving the tool
	Selective zero warning policy
	Non-zero warnings policy

	Conclusion

