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Have you ever read/written a paper including...

“ for the ease of the presentation we omit [...]
this would be easily [...]"

... and never read/written about that omitted thing?
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Have you ever developed a RT system including...

non-volatile memory
communication devices
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Have you ever developed a RT system including...

non-volatile memory
communication devices

... and realized the different access times they have
depending on the requested operation?
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Motivation

Study the impact of considering heterogeneous access
costs for multiprocessor resource sharing protocols
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Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor
v’ Fixed priority scheduling
v’ Resource arbitration

v Access cost to shared resources bounded

v" Number of concurrent accesses
v" FIFO order

v’ Spin-wait
X MSRP : non-preemtable
X MrsP :local ceiling priority
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Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol
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Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource
* Preemptable
* Local preemptions may affect remote waiting tasks

* Helping mechanism
* Spin-waiting tasks can undertake preempted accesses
* Progress is done as long as a requesting task can execute
* Implemented by migrating the preempted task

X Not allowed under Ravenscar profile

© DIT/UPM 2017



MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

C;

ﬁ\EU

© DIT/UPM 2017



MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

’)"jEF(Ti)

© DIT/UPM 2017

C;



MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

’)"jEF(Ti)

= |map(G(r7))|¢’

© DIT/UPM 2017

C;



MSRP & MrsP timing analysis

R, =C; + max Z Oj

7; €hpl(7)

ﬁ\EU

* Only difference : arrival blocking (&)

© DIT/UPM 2017



MSRP & MrsP timing analysis

pr— —

R;
R; = C; + max(é Z ™ C
J

7; €hpl(7)
* Only difference : arrival blocking (&)

* MSRP: highest el value of any resource accessed by a lower priority
task.

© DIT/UPM 2017



MSRP & MrsP timing analysis

R;
R; = C; + max(é Z ™ C
J

7; €hpl(7)

* Only difference : arrival blocking (&)

* MSRP: highest el value of any resource accessed by a lower priority
task.

* MrsP : highest el value of any resource accessed by a lower priority
task and an equal or higher priority task.
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Evaluation

Synthetic task sets
N° of processors (N) = N° shared resources (R): 2, 4, 8, 16
Processor utilization: [0.1, 0.05, 0.7]

Task % of processor utilization: random uniformly distributed
[0.1,0.2], [0.1,0.3], [0.1,0.4], [0.1,0.5], [0.1,0.9], [0.25,0.75]

Priority assignment : Deadline Monotonic

100,000 task sets for each combination
* Each analyzed with MSRP and MrsP
°* homogeneous

* heterogeneous
© DIT/UPM 2017



Evaluation — Resource usage

* Each task has probability of 1/R of using each resource
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Evaluation — Resource usage

Each task has probability of 1/R of using each resource
Accessing time is random [0.01%, 10.00%)] of task C

If the resource is used, the probability of accessing the resource
n time per release is P(n) = 1/n?
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Response time overhead (%) over optimal resource scheduling
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Evaluation - Tendencies

High priority tasks more benefited in relative overheads
Lower priority tasks more benefited in net time values

MSRP more benefited from heterogeneous approach
* Ravenscar-like approach

The more complex the system, the more benefit from heterogeneity
* Number of processors

* Processor utilization
* Disparity among task utilizations

Raw data, more results & charts available upon request

© DIT/UPM 2017



Conclusions

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter
* Formalized

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter
* Formalized
* \erified

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP
* MSRP : Ravenscar choice

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP
* MSRP : Ravenscar choice
* MrsP : full Ada programs

© DIT/UPM 2017



Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP
* MSRP : Ravenscar choice
* MrsP : full Ada programs

 Task allocation strategies required
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