\\‘ %):" d 114
o

Evaluating MSRP and MrsP with
the multiprocessor Ravenscar profile

Jorge Garrido
Juan Zamorano
Alejandro Alonso

Juan A. de la Puente ()

Z

=
Universidad Politecnica de Madrid (UPM), Spain

Have you ever read/written a paper including...

“ for the ease of presentation we omit [...]
this would be easily [...]"

© DIT/UPM 2017

Have you ever read/written a paper including...

“ for the ease of the presentation we omit [...]
this would be easily [...]"

... and never read/written about that omitted thing?

© DIT/UPM 2017

143.03

143.03

100.37

143.03

100.37

63.42

143.03

100.37

63.42

Have you ever developed a RT system including...

non-volatile memory
communication devices

© DIT/UPM 2017

Have you ever developed a RT system including...

non-volatile memory
communication devices

... and realized the different access times they have
depending on the requested operation?

© DIT/UPM 2017

Motivation

Study the impact of considering heterogeneous access
costs for multiprocessor resource sharing protocols

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor
v’ Fixed priority scheduling

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor
v’ Fixed priority scheduling
v’ Resource arbitration

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor

v’ Fixed priority scheduling

v’ Resource arbitration

v’ Access cost to shared resources bounded

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor
v’ Fixed priority scheduling
v’ Resource arbitration

v Access cost to shared resources bounded

v" Number of concurrent accesses
v" FIFO order

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor
v’ Fixed priority scheduling
v’ Resource arbitration

v Access cost to shared resources bounded

v" Number of concurrent accesses
v" FIFO order

v’ Spin-wait

© DIT/UPM 2017

Introduction — MSRP & MrsP

= MSRP — Multiprocessor Stack Resource Prolicy
= MrsP — Multiprocessor Resource Sharing Protocol

v’ Multiprocessor
v’ Fixed priority scheduling
v’ Resource arbitration

v Access cost to shared resources bounded

v" Number of concurrent accesses
v" FIFO order

v’ Spin-wait
X MSRP : non-preemtable
X MrsP :local ceiling priority

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource
* Preemptable

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource
* Preemptable
* Local preemptions may affect remote waiting tasks

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource
* Preemptable
* Local preemptions may affect remote waiting tasks

* Helping mechanism

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource
* Preemptable
* Local preemptions may affect remote waiting tasks

* Helping mechanism
* Spin-waiting tasks can undertake preempted accesses

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

Spin- wait is at local ceiling priority of resource
* Preemptable
* Local preemptions may affect remote waiting tasks

Helping mechanism
* Spin-waiting tasks can undertake preempted accesses
* Progress is done as long as a requesting task can execute

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource
* Preemptable
* Local preemptions may affect remote waiting tasks

* Helping mechanism
* Spin-waiting tasks can undertake preempted accesses
* Progress is done as long as a requesting task can execute
* Implemented by migrating the preempted task

© DIT/UPM 2017

Introduction - MrsP

= MrsP — Multiprocessor Resource Sharing Protocol

* Spin- wait is at local ceiling priority of resource
* Preemptable
* Local preemptions may affect remote waiting tasks

* Helping mechanism
* Spin-waiting tasks can undertake preempted accesses
* Progress is done as long as a requesting task can execute
* Implemented by migrating the preempted task

X Not allowed under Ravenscar profile

© DIT/UPM 2017

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

C;

ﬁ\EU

© DIT/UPM 2017

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

’)"jEF(Ti)

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

’)"jEF(Ti)

= |map(G(r7))|¢’

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R, =C; + max Z Oj

7; €hpl(7)

ﬁ\EU

* Only difference : arrival blocking (&)

© DIT/UPM 2017

MSRP & MrsP timing analysis

pr— —

R;
R; = C; + max(é Z ™ C
J

7; €hpl(7)
* Only difference : arrival blocking (&)

* MSRP: highest el value of any resource accessed by a lower priority
task.

© DIT/UPM 2017

MSRP & MrsP timing analysis

R;
R; = C; + max(é Z ™ C
J

7; €hpl(7)

* Only difference : arrival blocking (&)

* MSRP: highest el value of any resource accessed by a lower priority
task.

* MrsP : highest el value of any resource accessed by a lower priority
task and an equal or higher priority task.

© DIT/UPM 2017

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

’)"jEF(Ti)

= |map(G(r7))|¢’

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

rieF(r;)

= [map(G(r))|e’

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

rieF(r;)

.: o

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

T‘jEF(’Ti)

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

T‘jEF(’Ti)

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

T‘jEF(’Ti)

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

T‘jEF(’Ti)
o d=d+) &
7] ~J
= c
E : % Pr \P (1)

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

T‘jEF(’Ti)

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R;
1

C, =WCET; + Z n;e’

T‘jEF(Ti)

© DIT/UPM 2017

C;

MSRP & MrsP timing analysis

R;
R; = C; + max(é Z ™ C
J

7; €hpl(7)

C, =WCET; + Z n;e’

T‘jEF(Ti)

© DIT/UPM 2017

MSRP & MrsP timing analysis

R; = C; + max(é Z

7; €hpl(7)

R
1

C, =WCET; + Z n;e’

’)"jEF(Ti)

© DIT/UPM 2017

C;

Evaluation

* Synthetic task sets

© DIT/UPM 2017

Evaluation

* Synthetic task sets

* N°of processors (N)

© DIT/UPM 2017

Evaluation

* Synthetic task sets

* N°of processors (N) = N° shared resources (R)

© DIT/UPM 2017

Evaluation

* Synthetic task sets

* N°of processors (N) = N° shared resources (R): 2, 4, 8, 16

© DIT/UPM 2017

Evaluation

* Synthetic task sets
* N°of processors (N) = N° shared resources (R): 2, 4, 8, 16

* Processor utilization: [0.1, 0.05, 0.7]

© DIT/UPM 2017

Evaluation

Synthetic task sets
N° of processors (N) = N° shared resources (R): 2, 4, 8, 16
Processor utilization: [0.1, 0.05, 0.7]

Task % of processor utilization: random uniformly distributed
[0.1,0.2], [0.1,0.3], [0.1,0.4], [0.1,0.5], [0.1,0.9], [0.25,0.75]

© DIT/UPM 2017

Evaluation

Synthetic task sets
N° of processors (N) = N° shared resources (R): 2, 4, 8, 16
Processor utilization: [0.1, 0.05, 0.7]

Task % of processor utilization: random uniformly distributed
[0.1,0.2], [0.1,0.3], [0.1,0.4], [0.1,0.5], [0.1,0.9], [0.25,0.75]

Priority assignment : Deadline Monotonic

© DIT/UPM 2017

Evaluation

Synthetic task sets
N° of processors (N) = N° shared resources (R): 2, 4, 8, 16
Processor utilization: [0.1, 0.05, 0.7]

Task % of processor utilization: random uniformly distributed
[0.1,0.2], [0.1,0.3], [0.1,0.4], [0.1,0.5], [0.1,0.9], [0.25,0.75]

Priority assignment : Deadline Monotonic

100,000 task sets for each combination

© DIT/UPM 2017

Evaluation

Synthetic task sets
N° of processors (N) = N° shared resources (R): 2, 4, 8, 16
Processor utilization: [0.1, 0.05, 0.7]

Task % of processor utilization: random uniformly distributed
[0.1,0.2], [0.1,0.3], [0.1,0.4], [0.1,0.5], [0.1,0.9], [0.25,0.75]

Priority assignment : Deadline Monotonic

100,000 task sets for each combination
* Each analyzed with MSRP and MrsP
°* homogeneous

* heterogeneous
© DIT/UPM 2017

Evaluation — Resource usage

* Each task has probability of 1/R of using each resource

© DIT/UPM 2017

Evaluation — Resource usage

* Each task has probability of 1/R of using each resource

* Accessing time is random [0.01%, 10.00%] of task C

© DIT/UPM 2017

Evaluation — Resource usage

Each task has probability of 1/R of using each resource
Accessing time is random [0.01%, 10.00%)] of task C

If the resource is used, the probability of accessing the resource
n time per release is P(n) = 1/n?

© DIT/UPM 2017

== MSRP - Homo -

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

90000

80000

70000

40000

haN
\ \ 60000
\ \\ 50000
A

30000
20000
10000

T T T T T T T T T 1 0

0.1 015 0.2 025 03 035 04 045 05 055 06 065 0.7

(a) N = 2.

7T +MSRP - Hete ==e=MrsP - Homo ==@=MrsP- Hete ==#==Optimal =#=MSRP-Homo =:<=MSRP - Hete ==s=MrsP - HOmo =@=MrsP- Hete ==g==Optimal
1 ———¢—¢ 100000 -

—0—¢—0—0— 00—

T T T T T T T T T T

01 015 02 0.25 0.3 035 04 045 05 055 06 0.65 0.7

(b) N = 4.

=dr=MSRP - Homo « }{ -MSRP - Hete =#=MrsP - Homo =—@=MrsP- Hete =#==Optimal =d=MSRP-Homo =<+=MSRP - Hete ==#=MrsP - Homo =—@=—MrsP- Hete ==g==0ptimal

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

ﬁ‘ttttttttto— 100000
90000-\

‘!\\\ 80000
P 70000
\ 60000

N\
50000
3
40000

30000

20000

0.1 015 0.2 025 03 035 04 045 05 055 0.6 065 0.7

(¢) N =8.

O—————0—0—0—0—0—0—0—

10000 -
0 -

01 015 02 0.25 0.3 035 04 045 05 055 06 0.65 0.7

(d) N = 16.

Schedulable systems per system utilization
Tasks utilization [0.1,0.2]

% of schedulable systems

100

90

80

70

60

50

40

30

20

10

B MSRP-Homo " MSRP-Hete ®MrsP-Homo m MrsP-Hete

Processors
Schedulable systems per number of processors
Processor utilization 0.35 Tasks utilization [0.1,0.9]

16

Response time overhead (%) over optimal resource scheduling

B MSRP-Homo _IMSRP-Hete ®MrsP-Homo ™ MrsP - Hete m MSRP - Homo IMSRP - Hete ® MrsP-Homo ® MrsP - Hete

143.03

100.37

63.42

48.80 48.80
22.25

43.04
I :

Highest priority tasks Lowest priority tasks

Processor utilization 0.1 Tasks utilization [0.1,0.9] 8 processors

Evaluation - Tendencies

© DIT/UPM 2017

Evaluation - Tendencies

* High priority tasks more benefited in relative overheads

© DIT/UPM 2017

Evaluation - Tendencies

* High priority tasks more benefited in relative overheads
* Lower priority tasks more benefited in net time values

© DIT/UPM 2017

Evaluation - Tendencies

* High priority tasks more benefited in relative overheads
* Lower priority tasks more benefited in net time values

* MSRP more benefited from heterogeneous approach

© DIT/UPM 2017

Evaluation - Tendencies

* High priority tasks more benefited in relative overheads
* Lower priority tasks more benefited in net time values

* MSRP more benefited from heterogeneous approach
* Ravenscar-like approach

© DIT/UPM 2017

Evaluation - Tendencies

High priority tasks more benefited in relative overheads
Lower priority tasks more benefited in net time values

MSRP more benefited from heterogeneous approach
* Ravenscar-like approach

The more complex the system, the more benefit from heterogeneity

© DIT/UPM 2017

Evaluation - Tendencies

High priority tasks more benefited in relative overheads
Lower priority tasks more benefited in net time values

MSRP more benefited from heterogeneous approach
* Ravenscar-like approach

The more complex the system, the more benefit from heterogeneity
* Number of processors

© DIT/UPM 2017

Evaluation - Tendencies

High priority tasks more benefited in relative overheads
Lower priority tasks more benefited in net time values

MSRP more benefited from heterogeneous approach
* Ravenscar-like approach

The more complex the system, the more benefit from heterogeneity

* Number of processors
* Processor utilization

© DIT/UPM 2017

Evaluation - Tendencies

High priority tasks more benefited in relative overheads
Lower priority tasks more benefited in net time values

MSRP more benefited from heterogeneous approach
* Ravenscar-like approach

The more complex the system, the more benefit from heterogeneity
* Number of processors
* Processor utilization
* Disparity among task utilizations

© DIT/UPM 2017

Evaluation - Tendencies

High priority tasks more benefited in relative overheads
Lower priority tasks more benefited in net time values

MSRP more benefited from heterogeneous approach
* Ravenscar-like approach

The more complex the system, the more benefit from heterogeneity
* Number of processors

* Processor utilization
* Disparity among task utilizations

Raw data, more results & charts available upon request

© DIT/UPM 2017

Conclusions

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter
* Formalized

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter
* Formalized
* \erified

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP
* MSRP : Ravenscar choice

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP
* MSRP : Ravenscar choice
* MrsP : full Ada programs

© DIT/UPM 2017

Conclusions

* “Simple” improvements matter
* Formalized
* Verified
* Evaluated

* MrsP strictly dominates MSRP
* MSRP : Ravenscar choice
* MrsP : full Ada programs

 Task allocation strategies required

© DIT/UPM 2017

LY dit
ke

Evaluating MSRP and MrsP with
the multiprocessor Ravenscar profile

Jorge Garrido
Juan Zamorano

i str@dit.upm.es
Alejandro Alonso @ P
Juan A. de la Puente g \\
5\ Eﬁa f’-jﬁ‘
oY

it
e

Universidad Politecnica de Madrid (UPM), Spain

