
LOCK ELISION FOR

PROTECTED OBJECTS

USING INTEL TRANSACTIONAL

SYNCHRONIZATION EXTENSIONS

Seongho Jeong, Shinhyung Yang and Bernd Burgstaller

Department of Computer Science

Yonsei University, Korea

Motivation

2

 Locks are commonly used to protect shared data

from data races

 A coarse-grained lock protects a large amount of

shared data

 Advantage: easy to implement, hardly any bugs

 Disadvantage: scalability bottleneck

 Ada protected objects (POs) are a monitor construct

for mutual exclusion

 Same scalability problem if used for coarse-grained locking

 Example: concurrent hash table

 Protect the entire hash table by a coarse-grained lock

 tasks serialize even if accessing different keys 

 With locks, tasks serialize, even if they

access different portions of the shared data.

Motivation (cont.)

3

X

Z

Y

Locked

Hash table

Task A Task B Task C

acquire lock

update X

release lock

acquire lock

update Y

release lock

acquire lock

update Z

release lock

Time

Motivation (cont.)

4

 Observation: not all tasks using a PO access

the same part of the shared data

Fine-grained locking of individual data-items can

be a fix (but an error-prone one).

 Goal: provide fine-grained parallelism for

coarse-grained locks.

Time

Task A Task B Task C

Elide lock

update X

commit

Elide lock

update Y

commit

Elide lock

update Z

commit

X

Z

Y

Hash table

Free

Our contributions

5

1. Adapt GNU Ada run-time library (GNARL) to

elide locks from protected functions and

procedures.

2. Investigate opportunities and difficulties with

lock elision of protected entries.

3. Evaluate the approach for multiple

benchmarks in terms of scalability.

4. Provide programming- and language-design

directions for more parallelism obtainable

from lock elision with POs in Ada.

 Transaction
 Indivisible process

 Composed by multiple operations inside transactional
region

 Accesses multiple memory locations atomically

 Speculative execution
 Tentative and invisible to other tasks

 Either commits or aborts

 Keeps read-set and write-set of a transaction

 Possible to run in parallel because changes are
tentative
 Transaction commits in the absence of data-conflict.

 Start over in case of transaction abort.

Transactions enable parallelism

6

Data conflict in transaction

7

Assume task T is inside a transaction:

 A data conflict occurs iff another task

 reads a location in task T’s write-set, or
writes a location in task T’s read-set or write-set.

 Transaction aborts if data conflict is detected.

Changes in write-set will be discarded.

 xbegin, xend to delimit
transactional region

 Transaction aborts if

 a data conflict occurs
 In units of cache-lines

 a task exceeds the read/write set capacity limit,

 an illegal instruction is executed
 interrupt, system call, ..., or

 an explicit abort by software is called (xabort instruction).

 Abort state is reported in EAX register.

 Fall-back path is always required.
 Transaction can fail endlessly.

 Need to ensure progress by falling back on conventional lock.

Intel TSX

8

L1: xbegin L1
L1: <Transactional operations>
L1: xend ;commit changes
L1: <Operations after commit>
L1:....
L1: <Operations on abort>

Lock elision with Intel TSX

 Run critical section inside transaction.

Elide lock acquisition to enter critical section.

Commit upon exit of critical section.

Multiple tasks in critical section at the same time.

 As long as tasks access different cache lines.

9

Task A Task B

acquire lock

update X

release lock

acquire lock

update Y

release lock
Time

Task A Task B

xbegin

update X

xend

xbegin

update Y

xend

Time

Protected objects in GNAT

10

 GNARL wraps protected function and

procedure calls by a lock/unlock pair to

achieve mutual exclusion:

X

Z

Y

Hash table

Locked

Shared

data:

Protected objects in GNAT

11

 GNARL wraps protected function and

procedure calls by a lock/unlock pair to

achieve mutual exclusion:

X

Z

Y

Hash table

Locked

Shared

data:

Insert

Protected objects in GNAT

12

 GNARL wraps protected function and

procedure calls by a lock/unlock pair to

achieve mutual exclusion:

Insert

X

Z

Y

Hash table

Locked

Shared

data:

UnlockWrite_Lock

Adapted Write_Lock:

 Attempt lock elision

 Call Try_Elision

 Else acquire lock

 Fall-back path

 to prevent infinite abort

13

GNARL lock elision

14

Successful elision

 Call Try_Elision

before acquiring lock

 Start transaction via

xbegin

1

15

Successful elision

 Call Try_Elision

before acquiring lock

 Start transaction via

xbegin

 On success:

 Return and proceed in

transactional mode

2

1

16

Transaction aborts

 If a transaction aborts,

the CPU transfers control

back to statement xbegin

 State = STARTED is

false at this moment

 Two causes for

transaction abort:

A. Non-retryable

 Capacity overflow

 Illegal instructions

B. Retryable

 Data conflict

 Software-induced abort

Transfer here on
transaction abort

A

B

17

Non-retryable aborts

 On abort due to capacity:

 Asynchronous transfer of

control to xbegin.

 CPU reports the cause of

abort (state).

 Do not retry in hopeless

situations.

 Fall back to conventional

lock acquisition.

1

2

3

4

1

2

4

3

Transfer here on
transaction abort

18

Retryable aborts

Retry may succeed if:

A. A lock is held by a

competing task dwelling

on the fall-back path

 Once task detects this, it

will abort explicitly (xabort)

B. A data conflict occurred.

Data

Conflict

A

B

xabort

19

How to retry?

 On explicit abort or abort

because of data conflict:

Confirm retry might

succeed

Back off and wait until

lock is free.

Proceed to retry.

1

2

5

6

4

5

6

1 4

3

Transfer here on
transaction abort

20

Giving up on elision

 Retry with backoff:

Try Max_Retry times

Report failure

Fall back to conventional

lock acquisition

7

8

1 6

7

8

1

2

4

5

6

3

X

Z

Y

Free

Shared data

Lock elision for protected entries

 Variables occurring in entry_barrier constitute shared data.

 POs update such state variables inside protected operations.

 Examples: growable hash table, queue, semaphore, ...

 State variable updates drastically increase data conflicts.

 Annihilate performance gain from elision. (Observed ~50% abort rate)

21

Manual code transformations

Entry_1:

Entry_2:

X

Z

Y

Free

22

 To leverage parallelism, programmer may transform entry into two halves:

1) Entry_1 (original barrier, not elided): update state variables, requeue on Entry_2.

2) Entry_2 (true barrier, elided): update remaining shared data.

 Limitations:

a) Not applicable if state variables need to be updated at end of entry-code.

b) Only profitable if parallelizing Entry_2 is profitable.

c) Manual code-transformation may introduce concurrency bugs.

❖ Observed up to 5x speedup over non-split entry from this example.

 Ada 2012 RM Chapter 9.5.3(16):

 Queued entry calls with an open barrier must precede all other protected
operations (eggshell model).

 The RM does not state the reason for Clause 9.5.3(16), but probably to
avoid starvation.

 Clause 9.5.3(16) restricts the parallelism obtainable from lock elision.

We considered two possible implementation scenarios:

1. Permissive lock elision

 Waive Clause 9.5.3(16) by PO type annotation.

 Reason: for many parallel workloads, starvation is not an issue,
throughput is.

2. Restrictive lock elision

 Switch the PO's mode from elided to non-elided when an entry call is
enqueued at a closed barrier.

 Switch back to elided mode after all queued entries have been
processed.

Restrictions of the Eggshell model

23

Experimental evaluation

24

 Three synthetic and one real-world benchmarks

1) Linked lists 

▪ A counter-example due to capacity aborts from traversal.

2) Dijkstra’s Dining Philosophers ☺

3) Concurrent hash table ☺

4) K-means clustering ☺

▪ From Stanford STAMP suite

Employed protected procedures & functions only.

 Evaluation platform:

44 cores (2 CPU Intel Xeon E5-2699 v4 system)

Linux kernel version 4.9.4, GCC/GNAT 6.3.0

 All synthetic benchmarks ran in a tight loop
 Example: Dining Philosophers

 Computation-to-communication ratio thereby
minimized
 Simulates a highly-contended PO

 An upper bound for the best-possible performance
improvement (Amdahl’s Law)

Measurement set-up

25

 Max_Retry

Empirically, Max_Retry should be higher than the

number of participating tasks

Max_Retry = 200 for all our experiments.

 Padding & alignment to prevent false sharing

Reduces possibility of data conflict

Data structure layout may need to be revised.

Performance tuning

26

 Each fork as a PO

 1 million meals

per philosopher

Acquire &

release forks

repeatedly

 Show benefit from

omitting lock

acquisition

Dining philosophers

27

Normalized execution time

Concurrent hash table

28

 Random key generation for operations

 50 million operations in a tight loop

Normalized time for lookupNormalized time for insert

Concurrent hash table (cont.)

29

Abort rates (%) for lookup

Abort rates (%) for insert

 Ported from

STAMP

benchmark suite

 Cluster centers

as a PO

 More clusters

 fewer data

conflicts

 Higher dimension

 less benefit

→ from lock elision

K-means clustering

30

10 clusters, 32 dimensions 100 clusters, 2 dimensions

100 clusters, 64 dimensions100 clusters, 32 dimensions

Conclusion

31

 Implemented lock elision for protected functions and

procedures in the Ada 2012 GNARL.

 Presented possible schemes for lock elision with entries.

 Demonstrated that lock elision can improve performance

significantly.

 Not all types of POs benefit from speculative execution.

 Programmer intervention may be required to selectively

enable elision for certain POs.

 Provided tuning methods to optimize performance.

 Experimental results showed the scalability of lock elision for

several benchmarks on up to 44 cores.

Thank you!

Q&A

