
LOCK ELISION FOR

PROTECTED OBJECTS

USING INTEL TRANSACTIONAL

SYNCHRONIZATION EXTENSIONS

Seongho Jeong, Shinhyung Yang and Bernd Burgstaller

Department of Computer Science

Yonsei University, Korea

Motivation

2

 Locks are commonly used to protect shared data

from data races

 A coarse-grained lock protects a large amount of

shared data

 Advantage: easy to implement, hardly any bugs

 Disadvantage: scalability bottleneck

 Ada protected objects (POs) are a monitor construct

for mutual exclusion

 Same scalability problem if used for coarse-grained locking

 Example: concurrent hash table

 Protect the entire hash table by a coarse-grained lock

 tasks serialize even if accessing different keys

 With locks, tasks serialize, even if they

access different portions of the shared data.

Motivation (cont.)

3

X

Z

Y

Locked

Hash table

Task A Task B Task C

acquire lock

update X

release lock

acquire lock

update Y

release lock

acquire lock

update Z

release lock

Time

Motivation (cont.)

4

 Observation: not all tasks using a PO access

the same part of the shared data

Fine-grained locking of individual data-items can

be a fix (but an error-prone one).

 Goal: provide fine-grained parallelism for

coarse-grained locks.

Time

Task A Task B Task C

Elide lock

update X

commit

Elide lock

update Y

commit

Elide lock

update Z

commit

X

Z

Y

Hash table

Free

Our contributions

5

1. Adapt GNU Ada run-time library (GNARL) to

elide locks from protected functions and

procedures.

2. Investigate opportunities and difficulties with

lock elision of protected entries.

3. Evaluate the approach for multiple

benchmarks in terms of scalability.

4. Provide programming- and language-design

directions for more parallelism obtainable

from lock elision with POs in Ada.

 Transaction
 Indivisible process

 Composed by multiple operations inside transactional
region

 Accesses multiple memory locations atomically

 Speculative execution
 Tentative and invisible to other tasks

 Either commits or aborts

 Keeps read-set and write-set of a transaction

 Possible to run in parallel because changes are
tentative
 Transaction commits in the absence of data-conflict.

 Start over in case of transaction abort.

Transactions enable parallelism

6

Data conflict in transaction

7

Assume task T is inside a transaction:

 A data conflict occurs iff another task

 reads a location in task T’s write-set, or
writes a location in task T’s read-set or write-set.

 Transaction aborts if data conflict is detected.

Changes in write-set will be discarded.

 xbegin, xend to delimit
transactional region

 Transaction aborts if

 a data conflict occurs
 In units of cache-lines

 a task exceeds the read/write set capacity limit,

 an illegal instruction is executed
 interrupt, system call, ..., or

 an explicit abort by software is called (xabort instruction).

 Abort state is reported in EAX register.

 Fall-back path is always required.
 Transaction can fail endlessly.

 Need to ensure progress by falling back on conventional lock.

Intel TSX

8

L1: xbegin L1
L1: <Transactional operations>
L1: xend ;commit changes
L1: <Operations after commit>
L1:....
L1: <Operations on abort>

Lock elision with Intel TSX

 Run critical section inside transaction.

Elide lock acquisition to enter critical section.

Commit upon exit of critical section.

Multiple tasks in critical section at the same time.

 As long as tasks access different cache lines.

9

Task A Task B

acquire lock

update X

release lock

acquire lock

update Y

release lock
Time

Task A Task B

xbegin

update X

xend

xbegin

update Y

xend

Time

Protected objects in GNAT

10

 GNARL wraps protected function and

procedure calls by a lock/unlock pair to

achieve mutual exclusion:

X

Z

Y

Hash table

Locked

Shared

data:

Protected objects in GNAT

11

 GNARL wraps protected function and

procedure calls by a lock/unlock pair to

achieve mutual exclusion:

X

Z

Y

Hash table

Locked

Shared

data:

Insert

Protected objects in GNAT

12

 GNARL wraps protected function and

procedure calls by a lock/unlock pair to

achieve mutual exclusion:

Insert

X

Z

Y

Hash table

Locked

Shared

data:

UnlockWrite_Lock

Adapted Write_Lock:

 Attempt lock elision

 Call Try_Elision

 Else acquire lock

 Fall-back path

 to prevent infinite abort

13

GNARL lock elision

14

Successful elision

 Call Try_Elision

before acquiring lock

 Start transaction via

xbegin

1

15

Successful elision

 Call Try_Elision

before acquiring lock

 Start transaction via

xbegin

 On success:

 Return and proceed in

transactional mode

2

1

16

Transaction aborts

 If a transaction aborts,

the CPU transfers control

back to statement xbegin

 State = STARTED is

false at this moment

 Two causes for

transaction abort:

A. Non-retryable

 Capacity overflow

 Illegal instructions

B. Retryable

 Data conflict

 Software-induced abort

Transfer here on
transaction abort

A

B

17

Non-retryable aborts

 On abort due to capacity:

 Asynchronous transfer of

control to xbegin.

 CPU reports the cause of

abort (state).

 Do not retry in hopeless

situations.

 Fall back to conventional

lock acquisition.

1

2

3

4

1

2

4

3

Transfer here on
transaction abort

18

Retryable aborts

Retry may succeed if:

A. A lock is held by a

competing task dwelling

on the fall-back path

 Once task detects this, it

will abort explicitly (xabort)

B. A data conflict occurred.

Data

Conflict

A

B

xabort

19

How to retry?

 On explicit abort or abort

because of data conflict:

Confirm retry might

succeed

Back off and wait until

lock is free.

Proceed to retry.

1

2

5

6

4

5

6

1 4

3

Transfer here on
transaction abort

20

Giving up on elision

 Retry with backoff:

Try Max_Retry times

Report failure

Fall back to conventional

lock acquisition

7

8

1 6

7

8

1

2

4

5

6

3

X

Z

Y

Free

Shared data

Lock elision for protected entries

 Variables occurring in entry_barrier constitute shared data.

 POs update such state variables inside protected operations.

 Examples: growable hash table, queue, semaphore, ...

 State variable updates drastically increase data conflicts.

 Annihilate performance gain from elision. (Observed ~50% abort rate)

21

Manual code transformations

Entry_1:

Entry_2:

X

Z

Y

Free

22

 To leverage parallelism, programmer may transform entry into two halves:

1) Entry_1 (original barrier, not elided): update state variables, requeue on Entry_2.

2) Entry_2 (true barrier, elided): update remaining shared data.

 Limitations:

a) Not applicable if state variables need to be updated at end of entry-code.

b) Only profitable if parallelizing Entry_2 is profitable.

c) Manual code-transformation may introduce concurrency bugs.

❖ Observed up to 5x speedup over non-split entry from this example.

 Ada 2012 RM Chapter 9.5.3(16):

 Queued entry calls with an open barrier must precede all other protected
operations (eggshell model).

 The RM does not state the reason for Clause 9.5.3(16), but probably to
avoid starvation.

 Clause 9.5.3(16) restricts the parallelism obtainable from lock elision.

We considered two possible implementation scenarios:

1. Permissive lock elision

 Waive Clause 9.5.3(16) by PO type annotation.

 Reason: for many parallel workloads, starvation is not an issue,
throughput is.

2. Restrictive lock elision

 Switch the PO's mode from elided to non-elided when an entry call is
enqueued at a closed barrier.

 Switch back to elided mode after all queued entries have been
processed.

Restrictions of the Eggshell model

23

Experimental evaluation

24

 Three synthetic and one real-world benchmarks

1) Linked lists

▪ A counter-example due to capacity aborts from traversal.

2) Dijkstra’s Dining Philosophers ☺

3) Concurrent hash table ☺

4) K-means clustering ☺

▪ From Stanford STAMP suite

Employed protected procedures & functions only.

 Evaluation platform:

44 cores (2 CPU Intel Xeon E5-2699 v4 system)

Linux kernel version 4.9.4, GCC/GNAT 6.3.0

 All synthetic benchmarks ran in a tight loop
 Example: Dining Philosophers

 Computation-to-communication ratio thereby
minimized
 Simulates a highly-contended PO

 An upper bound for the best-possible performance
improvement (Amdahl’s Law)

Measurement set-up

25

 Max_Retry

Empirically, Max_Retry should be higher than the

number of participating tasks

Max_Retry = 200 for all our experiments.

 Padding & alignment to prevent false sharing

Reduces possibility of data conflict

Data structure layout may need to be revised.

Performance tuning

26

 Each fork as a PO

 1 million meals

per philosopher

Acquire &

release forks

repeatedly

 Show benefit from

omitting lock

acquisition

Dining philosophers

27

Normalized execution time

Concurrent hash table

28

 Random key generation for operations

 50 million operations in a tight loop

Normalized time for lookupNormalized time for insert

Concurrent hash table (cont.)

29

Abort rates (%) for lookup

Abort rates (%) for insert

 Ported from

STAMP

benchmark suite

 Cluster centers

as a PO

 More clusters

 fewer data

conflicts

 Higher dimension

 less benefit

→ from lock elision

K-means clustering

30

10 clusters, 32 dimensions 100 clusters, 2 dimensions

100 clusters, 64 dimensions100 clusters, 32 dimensions

Conclusion

31

 Implemented lock elision for protected functions and

procedures in the Ada 2012 GNARL.

 Presented possible schemes for lock elision with entries.

 Demonstrated that lock elision can improve performance

significantly.

 Not all types of POs benefit from speculative execution.

 Programmer intervention may be required to selectively

enable elision for certain POs.

 Provided tuning methods to optimize performance.

 Experimental results showed the scalability of lock elision for

several benchmarks on up to 44 cores.

Thank you!

Q&A

