AdaCore Safe, Contract-Based

The GNAT Pro Company

Parallel Programming

Ada-Europe 2017

www.adacore.com

Outline

e Vocabulary for Parallel Programming

e Approaches to Supporting Parallel Programming
- With examples from Ada 202X, Rust, ParaSail, Go, etc.

e Fostering a Parallel Programming Mindset
e Enforcing Safety in Parallel Programming
e Additional Kinds of Contracts for Parallel Programming

Parallel Lang Support 2

Vocabulary

e Concurrency vs. Parallelism
e Program, Processor, Process
e Thread, Task, Job

e Strand, Picothread, Tasklet, Lightweight Task, Work
Item (cf. Workqueue Algorithms)

o Server, Worker, Executor, Execution Agent, Kernel/0S
Thread, Virtual CPU

Parallel Lang Support 3

Vocabulary

What is Concurrency vs. Parallelism?

Concurrency Parallelism
e “concurrent” o “parallel” programming
programming constructs constructs allow

allow programmer to ... programmer to ...

Parallel Lang Support 4

Ada

The GNAT Pro Company

Concurrency vs. Parallelism

Concurrency

“concurrent”
programming constructs
allow programmer to
simplify the program by
using multiple logical
threads of control to reflect
the natural concurrency in
the problem domain

e heavier weight constructs
OK

Parallelism

e “parallel” programming

constructs allow
programmer to divide and
conquer a problem, using
multiple threads to work in
parallel on independent
parts of the problem to
achieve a net speedup

e constructs need to be light
weight both syntactically
and at run-time

Parallel Lang Support 5

The GNAT Pie S _

Threads, Picothreads, Tasks, Tasklets, etc.

e No uniformity in naming of threads of control within a
process

— Thread, Kernel Thread, OS Thread, Task, Job, Light-Weight
Process, Virtual CPU, Virtual Processor, Execution Agent,
Executor, Server Thread, Worker Thread

- “Task” generally describes a logical piece of work

- “Thread” generally describes a virtual CPU, a thread of control
within a process

— “Job” in the context of a real-time system generally describes a
single period’s actions within a periodic task
e No uniformity in naming of user-level very lightweight
threads

— Task, Microthread, Picothread, Strand, Tasklet, Fiber, Lightweight
Thread, Work Item

— "“User level” -- scheduling is done by code outside of the kernel/
operating-system

Parallel Lang Support 6

Vocabulary we will use

e Focus on Parallelism within context of Concurrency

e "Task” will be used as a higher-level logical piece of
work to do
— Task can potentially use parallelism internally
e "“Picothread,” “"Tasklet,” "Work Item” will be used to
talk about smaller unit of work to be performed
sequentially

e "“Kernel Thread” or “"Server (Thread)” will be used to
talk about a resource for executing picothreads

Parallel Lang Support 7

Various Approaches to Supporting Parallel Programming

e Library Approach
— Provide an API for spawning and waiting for tasklets
— Some sort of synchronization — at least "mutex”es
— Examples include TBB, Java Fork/Join, Rust

e Pragma Approach
— No new syntax

— Everything controlled by pragmas on:
- Declarations
- Loops
- Blocks
— OpenMP is main example here; OpenACC is similar

e Syntax Approach
— Explicit Fork/Join
- Cilk+, Go, CPlex, Chalice

— Structured Parallelism - Safe, Implicit Fork/Join
- Ada 2012/202X, ParaSail

Parallel Lang Support 8

The GNAT Fie S _

What about Safety?

o Safety can be achieved in two main ways:
— Add rules to make dangerous features safer -- Ada, Rust
— Simplify language by removing dangerous features -- SPARK, ParaSail
e Language-Provided Safety is to some extent orthogonal to
approach to supporting parallel programming

— Harder to provide using Library Approach, but Rust does it by having more
complex parameter modes and special semantics on assignment

- Very dependent on amount of “aliasing” in the language

o Level of safety determined by whether compiler:
— Treats programmer requests as orders to be followed -- unsafe
— Treats programmer requests as checkable claims -- safe

o If compiler can check claims, compiler can also insert safe
parallelism automatically

Parallel Lang Support 9

Library Approach - TBB, Java Fork/Join, Rust

e Compiler is removed from the picture completely
— Except for Rust, where compiler enforces pointer ownership
e Run-time library controls everything

— Focuses on the scheduling problem

— May need some run-time notion of “tasklet ID” to know what work to
do

e Can be verbose and complex

— Feels almost like going back to assembly language
— No real sense of abstraction from details of solution
— Can use power of C++ templates to approximate syntax approach

Parallel Lang Support 10

TBB — Threading Building Blocks (Intel) using C++ templates

void SerialApplyFoo(float af], size_ tn) // Sequential Version
{ for(size_t i=0; i!=n; ++i) Foo(a[i]); }

#include "tbb/tbb.h"
using namespace tbb;
class ApplyFoo {
float *const my_a;
public:
void operator()(const blocked _range<size t>&r) const {
float *a = my_a;
for(size_t i=r.begin(); i'=r.end(); ++i)
Foo(al[i]);
}

ApplyFoo(float a[]) : my_a(a) {}
2

#include "tbb/tbb.h”
void ParallelApplyFoo(float a[], size_tn) {
parallel_for(blocked range<size t>(0,n), ApplyFoo(a));

}

Parallel Lang Support 11

Java Fork/Join

import java.util.concurrent.ForkdJoinPool;
import java.util.concurrent.RecursiveTask;

class Sum extends RecursiveTask<Long> {
static final int SEQUENTIAL_THRESHOLD = 5000;

int low;
int high;
int[] array;

Sum(int[] arr, int lo, int hi) {

array = arr;
low =lo;
high = hi;

}

Parallel Lang Support 12

Java Fork/Join (cont’'d)

protected Long compute() {

if(high - low <= SEQUENTIAL_THRESHOLD) {
long sum = 0;
for(int i=low; i < high; ++i)

sum += arrayl[i];

return sum;

} else {
int mid = low + (high - low) / 2;
Sum left = new Sum(array, low, mid);
Sum right = new Sum(array, mid, high);
left.fork();
long rightAns = right.compute();
long leftAns = left.join();
return leftAns + rightAns;

}
}

static long sumArray(int[] array) {
return ForkJoinPool.commonPool().invoke(new Sum(array,0,array.length));

}
}

Parallel Lang Support 13

Ada

The GNAT Pro Company

The Rust Language

e Rust is from Moazilla http://rust-lang.org
- From “browser” development group
- Browser has become enormous, complex, multithreaded

— C-ish syntax, but with more of a “functional” language feel
- Trait-based inheritance and polymorphism; match instead of switch

— Safe multithreading using owned and managed storage
- Owned storage in global heap, but only one pointer at a time (no
garbage collection)
e Similar to C++ “Unique” pointers
» Compile-time enforcement of ownership, including transfer
- Originally also provided Managed storage in task-local heap, allowing
many pointers within task to same object, but since dropped to avoid
need for garbage collector
- Complex rules about assignment and parameter passing
e COpy VS. move vs. reference semantics
» temporarily borrowing (a ref) vs. permanently moving

Parallel Lang Support 14

Example using Rust (and futures)

fn Word Count

Simple
cases

Divide
and ==
Conquer

(S ¢ &str; Separators : &str)
-> uint {
let Len = S.len();
match Len {
0 => return 0; // Empty string
1 => return if Separators.contains(S[0]) { O } else { 1 };
// One character string

=> // Multi-character string; divide and conquer
— let Half Len = Len/2;
let Left Sum = future::spawn {
| | Word Count(S.slice(0, Half Len-1), Separators)};
let Right Sum = future::spawn {
| | Word Count(S.slice(Half Len, Len-1),
Separators)};

if Separators.contains(S[Half Len]) ||
Separators.contains(S[Half Len+l]) { // Separator(s) at border

return Left Sum.get() + Right Sum.get(); // read from futures
} else { // Combine words at border
return Left Sum.get() + Right Sum.get() — 1;// read from futures
- }
}

Parallel Lang Support 15

AdaCore

The GNAT Pro Company

Word Count Examples use “divide and conquer”

S:

“This 1s a test, but| 1it’s a bit borin?."
1111111111 (2222222222333333333

1234567890123456789(0123456789012345678

Separators: [* *, ‘,", ‘."]

Word Count (S, Separators) == ?
|S| == 38 // |..| means “length”
Half Len == 19

Word Count(S[1 .. 19], Separators) ==

Word Count(S[19 <.. 38], Separators) ==

Sum == // X <.. Y means (X, Y]
S[19] == ‘t’ // ‘t’ not in Separators
S[19+1] == * ! // * * 1is 1in Separators

return 9

Parallel Lang Support 16

Pragma Approach - OpenMP, OpenACC

e User provides hints vi #pragma omp/acc
e No building blocks - all smarts are in the compiler

e Not conducive to new ways of thinking about problem

- Language provides no new constructs, so no help in developing
new kinds of solutions, new paradigms

e Becomes a "pattern match” problem

— What patterns are recognized by compiler, and hence will be
parallelized, vectorized, otherwise optimized

Parallel Lang Support 17

OpenMP example of summing array

#define N 10000 /*size of a*/

void calculate(long *); /*The function that calculates the elements of a*/
int i;

long w;

long a[N];

calculate(a);

long sum = 0;

[*forks off the threads and starts the work-sharing construct*/
#pragma omp parallel for private(w) reduction(+:sum) schedule(static,1)
for(i=0;i < N; i++)
{ .
w =i
sum = sum + w*a([i];
}

printf("\n %li",sum);

Parallel Lang Support 18

Two Main Syntax Approaches

e Fork/Join Parallelism - Harder to enforce safety
- Go, Cilk+, CPlex, Chalice

e Structured Parallelism - Implicit Fork/Join

- ParaSail
— Ada 202x

e Parallel “for” loops appear in both

Parallel Lang Support 19

Why Add Syntax? To Escape the Sequential Mindset

e Many problems are inherently parallel
— or at least not “fundamentally” sequential

e Years of training in programming have taught us to
think sequentially
— “a program is a sequence of instructions to the computer”

e Need to “"un-learn” these lessons

— try to preserve the natural parallelism of the problem in the
solution

e Use iterators to describe solution, without imposing an
order
— this is why the “default” loop in ParaSail is unordered

— must explicitly say “forward” or “reverse” if that is essential to
solution

- may want to separate out I/O of data from computation because
of difficulty of doing “unordered” I/0O

Parallel Lang Support 20

Ada

The GNAT Pro Company

Biggest challenges to achieve "“parallel” mindset

e Avoiding global data

And you are not allowed to just substitute one big shared data structure
that is passed “everywhere” — (ParaSail compiler example)

Break global data up into pieces according to when it is created or
updated (exclusive use), and when it is merely being read (shared use)

Use local data whenever possible by grouping creator and user

e Separating (and trying to shrink) parts of program that need
to operate sequentially from those that don’t

Sequential output often needed to produce deterministic, repeatable
result, hence ...

Sequentially assign unique, ordered indices to each part of problem

Perform each part independently (in parallel), using unique index as
appropriate
Sequentially emit final results in order of unique indices

Parallel Lang Support 21

Use high-level constructs

o Use sets, maps, iterators, comprehensions

o Keeps program out of the “"housekeeping” and “single-
element” activities which can create unnecessary
sequential code

Parallel Lang Support 22

Explicit Fork/Join Syntax Approach -- Cilk, Go, CPlex, Chalice

e Asynchronous function call
— cilk_spawn C(X) // Cilk
- go G(B) // Go
- _Task _Call F(A) // CPlex
- fork tk := vr.call() // Chalice

e Wait for spawned strand/goroutine/task
— cilk sync; or implicit at end of function
- <implicit for Go>
- _Task _Sync; or end of _Task _Block { ... }
- join tk;

Parallel Lang Support 23

The GNAT Fie S -

Cilk+ from MIT and Intel

e Keywords — Express task parallelism:
— cilk_for - Parallelize for loops
— cilk_spawn - Specifies that a function can execute in parallel
— cilk_sync — Waits for all spawned calls in a function

e Reducers:

— Eliminate contention for shared variables among tasks by
automatically creating views of them as needed and "reducing"
them in a lock free manner

— “tasklet local storage” + reduction monoid (operator + identity)
e Array Notation:

— Data parallelism for arrays or sections of arrays.
e SIMD-Enabled Functions:

— Define functions that can be vectorized when called from within an
array notation expression or a #pragma simd loop.

o #pragma simd: Specifies that a loop is to be vectorized

Parallel Lang Support 24

AdaCore

Fibonacci example in Cilk+

int fib(int n)
d
1f (n<2){
return n;
)
int X = cilk spawn fib(n-1);
int y = fib(n-2);
cilk sync;
return X +y;

Parallel Lang Support 25

Cilk+ quicksort example

void parallel_quicksort(T* first, T* last) {
while(last-first>QUICKSORT_CUTOFF) {
// Divide
T* middle = divide(first,last);
if(!'middle) return;

// Now have two subproblems: [first..middle) and (middle..last)
if(middle-first < last-(middle+1)) {
// Left problem [first..middle) is smaller, so spawn it.
cilk_spawn parallel_quicksort(first, middle);
// Solve right subproblem in next iteration.
first = middle+1;
) else {
// Right problem (middle..last) is smaller, so spawn it.
cilk_spawn parallel_quicksort(middle+1, last);
// Solve left subproblem in next iteration.
last = middle;
b
b

// Base case
std::sort(first,last);
} // Imp“CIt Cllk_SynC Parallel Lang Support 26

Ada

The GNAT Pro Company

The Go Language

e Go is from Google http://golang.org
— Rob Pike from early Bell Labs Unix design team
— Quite “"C"” like syntactically but with some significant

differences:
— Object name precedes type name in syntax; allows type

name to be omitted when can be inferred
e e.g. ' Xint;” vs Mint X;" = “X := 3;" // declares and inits X

— No pointer arithmetic; provides array slicing for divide-and-

conquer
- “Goroutines” provide easy asynchronous function calls;

communicate via channels and select statements, but no

race-condition checking built in
— Interfaces and method sets but no classes

— Fully garbage collected

Parallel Lang Support 27

Word Count Example using Go (with goroutines and channels)

func Word Count
(s string; separators string) int = {
slen := len(s)
switch slen {

case 0: return 0 // Empty string
case 1:
Simple if strings.Containqune(separtors, S[0]1) {
cases return 0 // A single separator
} else {
return 1 // A single non-separator
— }
default: // Multi-character string; divide and conquer
— half len := slen/2
var left sum = make(chan int) // create a channel for left half
var right sum = make(chan int) // create a channel for right half
go func() {left sum <- Word Count(s[O:half len], separators)}()
go func() {right sum <- Word Count(s[half len:slen], separators)}()
Divide
and - if strings.ContainsRune(separators, rune(s[half len-1]1)) ||
Conquer strings.ContainsRune(separators, rune(s[half len])) {
// At least one separator at border
return <-left sum + <-right sum // read from channels
} else { // Combine words at border
return <-left sum + <-right sum - 1 // read from channels
- }
}
}

Parallel Lang Support 28

The GNAT Pie S _

Chalice from Microsoft Research (Rustan Leino)

e Fork/join parallelism
e Permission “contracts” in pre- and postconditions
— requires acc(X) & acc(Z) & X > Z
- requires rd(Y) &Y >0
— ensures rd(Y) // gives access back
- (may dispose of access, meaning object is destroyed)
e “acc” is full r/w permission, “rd” is fractional r/o perm.

e Permissions also used for locking order
- requires waitlevel from.mu << to.mu
— prevent deadlock by strict partial order of locks
e Permissions carried in channels, and need credits for
send and receive
- where acc(X) & rd(Y) // message carries r/w accto X, r/oto Y
— requires credit(chan, +2) // right to receive 2 messages

— requires credit(chan, -3) // obligation to send 3 messages
Parallel Lang Support 29

Structured Parallelism Approach - Implicit Safe Fork/Join

parallel -— Ada 202X
sequence of statements

{and
sequence of statements}

end parallel;

or...

sequence of statements
{1 // ParaSail
sequence of statements}

Parallel Lang Support 30

AdaCore

The GNAT Pro Company

Word_Count example using “"heavy weight” tasks:

function Word Count(S : String; Separators : String) return Natural is

Simple
cases

Start
outer ==
task

use Ada.Strings.Maps;
Seps : constant Character Set := To Set(Separators);

task type TT(First, Last : Natural; Count : access Natural);

subtype WC TT is TT; -- So is visible inside TT
task body TT is begin
ol if First > Last then -- Empty string
Count.all := 0;
elsif First = Last then -- A single character
if Is In(S(First), Seps) then
Count.all := 0; -- A single separator
else
Count.all := 1; -- A single non-separator
—_— end if;
else -- Divide and conquer
e See next slide
end if;
end TT;
Result : aliased Natural := 0;
begin
— declare -- Spawn task to do the computation
Tsk : TT(S'First, S'Last, Result'Access);
begin
null;
end; -- Wait for subtask

== return Result;
end Word Count;

Parallel Lang Support 31

AdaCore

The GNAT Pro Company

“"Heavy” Word_Count example (cont'd):

function Word Count(S : String; Separators : String) return Natural is
use Ada.Strings.Maps;
Seps : constant Character Set := To_ Set(Separators);
task type TT(First, Last : Natural; Count : access Natural);
subtype WC _TT is TT; -- So is visible inside TT
task body TT is begin
if ... -- Simple cases (see previous slide)
else -- Divide and conquer
declare
Midpoint : constant Positive := (First + Last) / 2;
Left Count, Right Count : aliased Natural := 0;
begin
declare -- Spawn two subtasks for distinct slices
Left : WC TT(First, Midpoint, Left Count'Access);
Right : WC TT(Midpoint + 1, Last, Right Count'Access);
. begin
Divide null;
and end; -- Wait for subtasks to complete
Conquer

if Is In(S(Midpoint), Seps) or else
Is In(S(Midpoint+l), Seps) then -- At least one separator at border
Count.all := Left Count + Right Count;
else -- Combine words at border
Count.all := Left Count + Right Count - 1;
end if;
end;
end if;
end TT;
«. See previous slide
end Word Count;

Parallel Lang Support 32

AdaCore

The GNAT Pro Company

Word_Count example using structured light-weight construct:

function Word Count (S : String; Separators : String) return Natural
with Global => null, Potentially Blocking => False is
case S’'Length is

when 0 => return 0; -- Empty string
when 1 => -- A single character
. if Is In(S(S’'First), Seps) then
Simple — return 0; -- A single separator
cases else
return 1; -- A single non-separator
end if;
— when others =>
declare -- Divide and conquer
Midpoint : constant Positive := (S’'First + S'Last) / 2;
Left Count, Right Count : Natural;
begin
parallel -- Spawn two tasklets for distinct slices
Left Count := Word Count (S(S’'First .. Midpoint), Separators);
.. and
Divide Right_Count := Word Count i dpoi ' ;
ght Count : ord Count (S(Midpoint+l .. S’'Last), Separators);
and end parallel; -- Wait for tasklets to complete
Conquer
if Is In(S(Midpoint), Seps) or else
Is In(S(Midpoint+l), Seps) then -- At least one separator at border
return Left Count + Right Count;
else -- Combine words at border
return Left Count + Right Count - 1;
end if;
end;
end case;

end Word Count; Parallel Lang Support 33

Aca

T Pro Company

Parallel Loop

for I in parallel 1 .. 1 000 loop
A(I) := B(I) + C(I);
end loop;

for Elem of parallel Arr loop
Elem := Elem * 2;
end loop;

Parallel loop is equivalent to parallel block by unrolling loop, with each
iteration as a separate alternative of parallel block.

Compiler will complain if iterations are not independent or might block
(again, using Global/Nonblocking aspects)

Parallel Lang Support 34

The GNAT Pie S _

Parallel Loop Issues

o Exiting the block/loop, or a return statement

— All other tasklets are aborted (need not be preemptive) and awaited,
and then, in the case of return with an expression, the expression is
evaluated, and finally the exit/return takes place.

— With multiple concurrent exits/returns, one is chosen arbitrarily, and
others are aborted.

e Handling arrays with many elements with small amount of
work to be done on each element

— Compiler may choose to “chunk” the loop into subloops, each subloop
becomes a tasklet (subloop runs sequentially within tasklet).

e Accumulating results without excessive synchronization on
accumulators
— Special support for map/reduce

Parallel Lang Support 35

Safety through Simplification — SPARK 202X and ParaSail

e Eliminate global variables
e Operation can only access or update variable state via its parameters

e Eliminate parameter aliasing
- Use “hand-off” semantics

e Eliminate explicit threads, lock/unlock, signal/wait

— Concurrent objects synchronized automatically

e Eliminate run-time exception handling
— Compile-time checking and propagation of preconditions

e Eliminate pointers
— Adopt notion of “optiona

Ill

objects that can grow and shrink

e Eliminate global heap with no explicit allocate/free
of storage and no garbage collector
— Replaced by region-based storage management (local heaps)
— All objects conceptually live in a local stack frame

Parallel Lang Support 36

Ada

The GNAT Pro Company

Why The Simplifications? Especially, why Pointer Free?
e Consider F(X) + G(Y)

We want to be able to safely evaluate F(X) and G(Y) in
parallel without looking inside of F or G

Presume X and/or Y might be incoming var (in-out)
parameters to the enclosing operation
No global variables is clearly pretty helpful

— Otherwise F and G might be stepping on same object
No parameter aliasing is important, so we know X and Y
do not refer to the same object
What do we do if X and Y are pointers?

— Without more information, we must presume that from X
and Y you could reach a common object Z

- How do parameter modes (in-out vs. in, var vs. non-var)
relate to objects accessible via pointers?

Result: pure value semantics for non-concurrent objects

Parallel Lang Support 37

The GNAT Pie S _

Expandable Objects Instead of Pointers to Avoid Aliasing

All types have additional null value; objects can be
declared optional (i.e.null is OK) and can grow and
shrink

- Eliminates many of the common uses for pointers, e.g. trees

— Assignment (V:=") is by copy

- Move ("<==") and swap (“<=>") operators also provided
e Generalized indexing into containers replaces pointers
for cyclic structures
— for each N in Directed_Graph[I].Successors loop ...

e Region-Based Storage Mgmt can replace Global Heap
— All objects are “local” with growth/shrinkage using local heap
- “null” value carries indication of region to use on growth

SPARK 202X and Rust use pointer ownership instead

— More complex semantic model than expandable objects
— But more familiar to Ada and C programmers

Parallel Lang Support 38

Pointer-Free Trees
interface Tree_Node
<Payload_Type is Assignable<>>is
var Payload : Payload_Type;
var Left : optional Tree_Node := null;
var Right : optional Tree_Node := null;
end interface Tree_Node;

var Root : Tree_Node<Univ_String> := (Payload => “Root");
Root.Left := (Payload => “L”, Right => (Payload => “LR"));
Root.Right <== Root.Left.Right; // Root.Left.Right now null

L L]

\ “Root” / \ “Root” / \ “Root” /

Parallel Lang Support 39

Ada

The GNAT Pro Company

How do Iterators Fit into this Picture?

e Computationally-intensive Programs Typically Build,
Analyze, Search, Summarize, and/or Transform Large
Data Structures or Large Data Spaces

o Iterators encapsulate the process of walking data
structures or data spaces

e The biggest speed-up from parallelism is provided by
spreading the processing of a large data structure or
data space across multiple processing units

e So...high level iterators that are amenable to a safe,
parallel interpretation can be critical to capitalizing on
distributed and/or multicore hardware.

Parallel Lang Support 40

Ada

The GNAT Pro Company

Syntax for parallel Map/Reduce in ParaSail (and Ada 202X?)

e Expression in <...> gives initial value, and is replaced after each
computation with result

o Associativity of operation allows parallelism
e Can be easier to comprehend than foldl, foldr, foldll, ..

// Compute sum of squares of counts
Sum Sgrs :=
(for P => Root then P.Left || P.Right
while P not null => <0> + P.Count**2)

// Compute max of counts (Max(null, A) ==
Max Count :=
(for P => Root then P.Left || P.Right
while P not null => Max(<null>, P.Count))

Parallel Lang Support 41

Ada

The GNAT Pro Company

Review of Syntax Approach to Parallelism

e Cilk+, Go, CPlex, Chalice
— Use asynchronous function call + synchronize (explicit or implicit)
- Few safety checks in Cilk+/Go/Cplex; full checks in Chalice

— Provides safe communication mechanisms such as Go’s channel
and Cilk’s Reducer

— Cilk’s Reducer provides “tasklet local storage” so each “chunk”
gets its own accumulator

— Reducer uses "monoid” = operator + identity (aka “zero”)

e Ada 202X
— parallel block: “parallel F(X); and G(Y); end parallel”
— parallel loop with array of partial results with one element per
chunk
e ParaSail - safety through simplification

— No globals, no pointers, no parameter aliasing, expandable
objects
- Implicit safe parallel semantics for all operators

e Both Ada 202X and ParaSail:

— Syntactic Sugar for many kinds of iterators
Parallel Lang Support 42

Ada

The GNAT Pro Company

Enforcing Safety in a Parallel Program - Data Races
e Data races

- Two simultaneous computations reference same object and at least one
is writing to the object

— Reader may see a partially updated object

— If two Writers running simultaneously, then result may be a
meaningless mixture of two computations

e Solutions to data races

— Dynamic run-time synchronization to prevent simultaneous use
- Use full locks or atomic hardware instructions such as compare-and-swap

— Static compile-time checks to prevent simultaneous incompatible
references — depends on constraints on aliasing

e Can support both
— Dyamic: Chalice "*monitor” objects; ParaSail “concurrent” objects

— Static: Chalice permissions in preconditions; Rust “borrowing”; ParaSail
hand-off semantics plus no globals; SPARK anti-aliasing checks

— Reminiscent of capability-based systems: compile-time or run-time

Parallel Lang Support 43

Safely solving the data race problem

Data-Race safety mantra from Niko Matsakis of Rust fame:
=> Aliasing, Mutability, Concurrency - pick any two
e No Aliasing
— Occam, Erlang - “shared nothing” — distributed programming
e Immutable Data
— Haskell - Pure functional language

e Mostly Immutable Data + All shared data synchronized

— Clojure - Mostly functional, optimistic transaction-based sync on
shared data

e No user-visible parallelism
— APL, Matlab - parallelism inside vector/matrix operations of
language
e Constrained Aliasing
— SPARK, Rust, ParaSail, Chalice, Ada 202X

— Can use both Compile-Time and Run-Time checks
Parallel Lang Support 44

Ada

The GNAT Pro Company

Constrained Aliasing

e SPARK
- No pointers - array indexing for bounded “linked” data structures
- Global annotations establish the frame
- No aliasing on parameter passing
e Rust
- Pointer ownership transferred by assignment A =B // B now dead

- Reference as way to temporarily grant access X = &mut'Y
- Borrowing checker to make sure exclusive mut references

e ParaSail

- No global variables and no pointers

- Handoff semantics on parameter passing based on “mode”
e Chalice

- acc(X) & rd(Y) in preconditions and postconditions

- permissions at activation-record level - no finer granularity of ownership
e Ada 202X

- Global annotations

- Anti-aliasing preconditions using X’Overlaps_Storage(Y)

Parallel Lang Support 45

Global annotations in Ada 202X

Global => in out all -- default for non-pure pkgs
Global => null -— default for pure packages

-—- Explicitly identified globals with modes
Global => (in P1.A, P2.B,

in out P1.C,
out P1.D, P2.E)

-— Pkg data, access collection, task/protected/atomic
Global => in out P3 -— pkg P3 data
Global => in out Pl.Acc Type -- acc type
Global => in out synchronized -- prot/atomic

Parallel Lang Support 46

Can add run-time guarded objects for flexibility

e Monitors in Chalice
— Three states for objects: non-monitor, available, held
e Concurrent objects in ParaSail

— external view - aliasing permitted, but no access

- internal view — gained implicitly when calling an operation
- back to compile-time checks when inside the operation

e Protected/Atomic objects in SPARK
— external view - aliasing permitted, but no access
— internal view - no parallelism

Parallel Lang Support 47

The GNAT Fie S _

Safety in a Parallel Program -- Deadlock
e Deadlock, also called “"Deadly Embrace”
— One thread attempts to lock A and then lock B
— Second thread attempts to lock B and then lock A

e Solutions amenable to language-based approaches

— Chalice: Assign full order to all locks; must acquire locks according
to this “waitlevel” order

— ParaSail/SPARK: Localize locking into "monitor”-like construct and
check for cyclic locking
e More general kind of deadlock - waiting forever
— One thread waits for an event to occur, but event never occurs
— Chalice solution based on send/receive “credit”
- ParaSail/Ada 202X: Identify where blocking might occur
— Nonblocking aspect in Ada 202X
- queued qualifier in ParaSail

Parallel Lang Support 48

Nonblocking aspect in Ada 202X; “"queued” in ParaSail
- Ada 202X Nonblocking aspect

procedure Suspend Until True
(S : in out Suspension Object)
with Nonblocking => False;
package Ada.Characters.Handling
with Nonblocking => True 1is ..
« ParaSail “"queued” qualifier

« Note that default is non-blocking

queued func Delay Until (Until : Time);

Parallel Lang Support 49

Ada

The GNAT Pro Company

Conclusions on Approaches to Safe Parallel Programming

Library, Pragma, and Syntax Approaches Possible
Safety can be provided in any approach

Safety can come from more rules, or fewer features

New kinds of contracts may be needed
— Global annotations (if globals are allowed at all)
— Pointer ownership contracts (Rust, SPARK 202X?)
— Extended parameter modes/permissions (Chalice, ParaSail)
— Non-Blocking contracts (Ada 202X, ParaSail)
— Send/Receive Credits (Chalice)

Language support for parallel programming should
- try to help programmers “escape” the sequential mindset

— help think in terms of overall problem to be solved, not the order
to solve it

— identify all possible data races and deadlocks at compile time to
keep the problem tractable

Parallel Lang Support 50

