
Safe, Contract-Based 
Parallel Programming 

Presentation cover 
page EU 

www.adacore.com

Ada-Europe 2017 
June 2017 
Vienna, Austria
 
 
Tucker Taft 
AdaCore Inc 
 



Parallel Lang Support 2  

Outline 

•  Vocabulary for Parallel Programming 

•  Approaches to Supporting Parallel Programming 

–  With examples from Ada 202X, Rust, ParaSail, Go, etc. 

•  Fostering a Parallel Programming Mindset 

•  Enforcing Safety in Parallel Programming 

•  Additional Kinds of Contracts for Parallel Programming 



Parallel Lang Support 3  

Vocabulary 

•  Concurrency vs. Parallelism 

•  Program, Processor, Process 

•  Thread, Task, Job 

•  Strand, Picothread, Tasklet, Lightweight Task, Work 
Item (cf. Workqueue Algorithms) 

•  Server, Worker, Executor, Execution Agent, Kernel/OS 
Thread, Virtual CPU 



Parallel Lang Support 4  

Vocabulary 
What is Concurrency vs. Parallelism? 

Concurrency 
•  “concurrent” 

programming constructs 
allow programmer to … 

Parallelism 
•  “parallel” programming 

constructs allow 
programmer to … 



Parallel Lang Support 5  

Concurrency vs. Parallelism 

Concurrency 
•  “concurrent” 

programming constructs 
allow programmer to 
simplify the program by 
using multiple logical 
threads of control to reflect 
the natural concurrency in 
the problem domain 

•  heavier weight constructs 
OK  

Parallelism 
•  “parallel” programming 

constructs allow 
programmer to divide and 
conquer a problem, using 
multiple threads to work in 
parallel on independent 
parts of the problem to 
achieve a net speedup  

•  constructs need to be light 
weight both syntactically 
and at run-time  



Parallel Lang Support 6  

Threads, Picothreads, Tasks, Tasklets, etc. 

•  No uniformity in naming of threads of control within a 
process 

–  Thread, Kernel Thread, OS Thread, Task, Job, Light-Weight 
Process, Virtual CPU, Virtual Processor, Execution Agent, 
Executor, Server Thread, Worker Thread 

–  “Task” generally describes a logical piece of work 

–  “Thread” generally describes a virtual CPU, a thread of control 
within a process 

–  “Job” in the context of a real-time system generally describes a 
single period’s actions within a periodic task 

•  No uniformity in naming of user-level very lightweight 
threads 

–  Task, Microthread, Picothread, Strand, Tasklet, Fiber, Lightweight 
Thread, Work Item 

–  “User level” -- scheduling is done by code outside of the kernel/
operating-system  



Parallel Lang Support 7  

Vocabulary we will use 

•  Focus on Parallelism within context of Concurrency 

•  “Task” will be used as a higher-level logical piece of 
work to do 

–  Task can potentially use parallelism internally 

•  “Picothread,” “Tasklet,” “Work Item” will be used to 
talk about smaller unit of work to be performed 
sequentially 

•  “Kernel Thread” or “Server (Thread)” will be used to 
talk about a resource for executing picothreads 



Parallel Lang Support 8  

Various Approaches to Supporting Parallel Programming 

•  Library Approach 
–  Provide an API for spawning and waiting for tasklets 

–  Some sort of synchronization – at least “mutex”es 

–  Examples include TBB, Java Fork/Join, Rust 

•  Pragma Approach 
–  No new syntax 

–  Everything controlled by pragmas on: 
–  Declarations 

–  Loops 

–  Blocks 

–  OpenMP is main example here; OpenACC is similar 

•  Syntax Approach 
–  Explicit Fork/Join 

–  Cilk+, Go, CPlex, Chalice 

–  Structured Parallelism – Safe, Implicit Fork/Join 
–  Ada 2012/202X, ParaSail 



Parallel Lang Support 9  

What about Safety? 

•  Safety can be achieved in two main ways: 
–  Add rules to make dangerous features safer             --  Ada, Rust 

–  Simplify language by removing dangerous features   --  SPARK, ParaSail 

•  Language-Provided Safety is to some extent orthogonal to 
approach to supporting parallel programming 

–  Harder to provide using Library Approach, but Rust does it by having more 
complex parameter modes and special semantics on assignment 

–  Very dependent on amount of “aliasing” in the language 

•  Level of safety determined by whether compiler: 
–  Treats programmer requests as orders to be followed   --  unsafe 

–  Treats programmer requests as checkable claims         --  safe 

•  If compiler can check claims, compiler can also insert safe 
parallelism automatically 



Parallel Lang Support 10  

Library Approach – TBB, Java Fork/Join, Rust 

•  Compiler is removed from the picture completely 
–  Except for Rust, where compiler enforces pointer ownership 

•  Run-time library controls everything 

–  Focuses on the scheduling problem 

–  May need some run-time notion of “tasklet ID” to know what work to 
do 

•  Can be verbose and complex 

–  Feels almost like going back to assembly language 

–  No real sense of abstraction from details of solution 

–  Can use power of C++ templates to approximate syntax approach 



Parallel Lang Support 11  

TBB – Threading Building Blocks (Intel) using C++ templates 

void SerialApplyFoo( float a[], size_t n )   //  Sequential Version 
    { for( size_t i=0; i!=n; ++i ) Foo(a[i]); } 
 
#include "tbb/tbb.h"  
using namespace tbb;  
class ApplyFoo { 
   float *const my_a; 
public:  
   void operator()( const blocked_range<size_t>& r ) const {  
      float *a = my_a;  
      for( size_t i=r.begin(); i!=r.end(); ++i )  
         Foo(a[i]); 
   } 
   ApplyFoo( float a[] ) : my_a(a) {} 
}; 
 
#include "tbb/tbb.h” 
void ParallelApplyFoo( float a[], size_t n ) { 
   parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a));  
} 



Parallel Lang Support 12  

Java Fork/Join 

import java.util.concurrent.ForkJoinPool; 
import java.util.concurrent.RecursiveTask; 
  
class Sum extends RecursiveTask<Long> { 
    static final int SEQUENTIAL_THRESHOLD = 5000; 
  
    int low; 
    int high; 
    int[] array; 
  
    Sum(int[] arr, int lo, int hi) { 
        array = arr; 
        low   = lo; 
        high  = hi; 
    } 
  
 



Parallel Lang Support 13  

Java Fork/Join (cont’d) 
 protected Long compute() { 
        if(high - low <= SEQUENTIAL_THRESHOLD) { 
            long sum = 0; 
            for(int i=low; i < high; ++i)  
                sum += array[i]; 
            return sum; 
         } else { 
            int mid = low + (high - low) / 2; 
            Sum left  = new Sum(array, low, mid); 
            Sum right = new Sum(array, mid, high); 
            left.fork(); 
            long rightAns = right.compute(); 
            long leftAns  = left.join(); 
            return leftAns + rightAns; 
         } 
     } 
  
     static long sumArray(int[] array) { 
         return ForkJoinPool.commonPool().invoke(new Sum(array,0,array.length)); 
     } 
} 



Parallel Lang Support 14  

The Rust Language 

•  Rust is from Mozilla           http://rust-lang.org 
–  From “browser” development group 

–  Browser has become enormous, complex, multithreaded 

–  C-ish syntax, but with more of a “functional” language feel 
–  Trait-based inheritance and polymorphism; match instead of switch 

–  Safe multithreading using owned and managed storage 
–  Owned storage in global heap, but only one pointer at a time (no 

garbage collection) 
•  Similar to C++ “Unique” pointers 

•  Compile-time enforcement of ownership, including transfer 

–  Originally also provided Managed storage in task-local heap, allowing 
many pointers within task to same object, but since dropped to avoid 
need for garbage collector 

–  Complex rules about assignment and parameter passing 
•  copy vs. move vs. reference semantics 

•  temporarily borrowing (a ref) vs. permanently moving 



Parallel Lang Support 15  

Example using Rust (and futures) 
fn Word_Count
  (S : &str; Separators : &str) 
  -> uint {
    let Len = S.len();
    match Len {
      0 => return 0; // Empty string
      1 => return if Separators.contains(S[0]) { 0 } else { 1 };
                     // One character string

      _ =>           // Multi-character string; divide and conquer
        let Half_Len = Len/2;
        let Left_Sum = future::spawn {
          || Word_Count(S.slice(0, Half_Len-1), Separators)};
        let Right_Sum = future::spawn {
          || Word_Count(S.slice(Half_Len, Len-1),
               Separators)};

        if Separators.contains(S[Half_Len]) ||
          Separators.contains(S[Half_Len+1]) { // Separator(s) at border
            return Left_Sum.get() + Right_Sum.get();    // read from futures  
        } else {                               // Combine words at border
            return Left_Sum.get() + Right_Sum.get() – 1;// read from futures 
        }
    }
 }

Simple 
cases 

Divide 
and 

Conquer 



Parallel Lang Support 16  

Word Count Examples use “divide and conquer” 

S: “This is a test, but  it’s a bit boring.”

Separators: [‘ ‘, ‘,’, ‘.’]

         1111111111 2222222222333333333
1234567890123456789 0123456789012345678

Word_Count(S, Separators) == ?

|S| == 38         // |…| means “length”
Half_Len == 19
Word_Count(S[1 .. 19], Separators) == 5
Word_Count(S[19 <.. 38], Separators) == 4
Sum == 9          // X <.. Y means (X, Y]
S[19] == ‘t’      // ‘t’ not in Separators
S[19+1] == ‘ ‘    // ‘ ‘ is in Separators
return 9



Parallel Lang Support 17  

Pragma Approach – OpenMP, OpenACC 

•  User provides hints vi #pragma omp/acc 

•  No building blocks – all smarts are in the compiler 

•  Not conducive to new ways of thinking about problem 
–  Language provides no new constructs, so no help in developing 

new kinds of solutions, new paradigms 

•  Becomes a “pattern match” problem 
–  What patterns are recognized by compiler, and hence will be 

parallelized, vectorized, otherwise optimized 



Parallel Lang Support 18  

OpenMP example of summing array 

#define N 10000 /*size of a*/ 
 void calculate(long *); /*The function that calculates the elements of a*/ 
 int i; 
 long w; 
 long a[N]; 
 calculate(a); 
 long sum = 0; 
 
 /*forks off the threads and starts the work-sharing construct*/ 
 #pragma omp parallel for private(w) reduction(+:sum) schedule(static,1) 
 for(i = 0; i < N; i++) 
    { 
      w = i*i; 
      sum = sum + w*a[i]; 
    } 
 printf("\n %li",sum); 
 



Parallel Lang Support 19  

Two Main Syntax Approaches 

•  Fork/Join Parallelism – Harder to enforce safety 
–  Go, Cilk+, CPlex, Chalice 

•  Structured Parallelism – Implicit Fork/Join 

–  ParaSail 

–  Ada 202x 

•  Parallel “for” loops appear in both 

 



Parallel Lang Support 20  

Why Add Syntax?   To Escape the Sequential Mindset 

•  Many problems are inherently parallel 
–  or at least not “fundamentally” sequential 

•  Years of training in programming have taught us to 
think sequentially 
–  “a program is a sequence of instructions to the computer” 

•  Need to “un-learn” these lessons 

–  try to preserve the natural parallelism of the problem in the 
solution 

•  Use iterators to describe solution, without imposing an 
order 

–  this is why the “default” loop in ParaSail is unordered 

–  must explicitly say “forward” or “reverse” if that is essential to 
solution 

–  may want to separate out I/O of data from computation because 
of difficulty of doing “unordered” I/O 



Parallel Lang Support 21  

Biggest challenges to achieve “parallel” mindset 

•  Avoiding global data 
–  And you are not allowed to just substitute one big shared data structure 

that is passed “everywhere” – (ParaSail compiler example) 

–  Break global data up into pieces according to when it is created or 
updated (exclusive use), and when it is merely being read (shared use) 

–  Use local data whenever possible by grouping creator and user 

•  Separating (and trying to shrink) parts of program that need 
to operate sequentially from those that don’t 

–  Sequential output often needed to produce deterministic, repeatable 
result, hence … 

–  Sequentially assign unique, ordered indices to each part of problem 

–  Perform each part independently (in parallel), using unique index as 
appropriate 

–  Sequentially emit final results in order of unique indices 



Parallel Lang Support 22  

Use high-level constructs 

•  Use sets, maps, iterators, comprehensions 

•  Keeps program out of the “housekeeping” and “single-
element” activities which can create unnecessary 
sequential code 



Parallel Lang Support 23  

Explicit Fork/Join Syntax Approach  -- Cilk, Go, CPlex, Chalice 

•  Asynchronous function call 
–  cilk_spawn C(X)   // Cilk 

–  go G(B)               // Go 

–  _Task _Call F(A)  //  CPlex 

–  fork tk := vr.call() // Chalice 

•  Wait for spawned strand/goroutine/task 
–  cilk sync;  or implicit at end of function 

–  <implicit for Go> 

–  _Task _Sync; or end of _Task _Block { … } 

–  join tk; 



Parallel Lang Support 24  

Cilk+ from MIT and Intel 

•  Keywords – Express task parallelism:  
–  cilk_for - Parallelize for loops 
–  cilk_spawn - Specifies that a function can execute in parallel 
–  cilk_sync – Waits for all spawned calls in a function 

•  Reducers: 
–  Eliminate contention for shared variables among tasks by 

automatically creating views of them as needed and "reducing" 
them in a lock free manner 

–  “tasklet local storage” + reduction monoid (operator + identity) 

•  Array Notation: 
–  Data parallelism for arrays or sections of arrays.  

•  SIMD-Enabled Functions: 
–  Define functions that can be vectorized when called from within an 

array notation expression or a #pragma simd loop.  

•  #pragma simd: Specifies that a loop is to be vectorized 



Parallel Lang Support 25  

Fibonacci example in Cilk+ 

int fib(int n) 
{ 
    if (n < 2) { 
        return n; 
    } 
    int x = cilk_spawn fib(n-1); 
    int y = fib(n-2); 
    cilk_sync; 
    return x + y; 
} 
 



Parallel Lang Support 26  

Cilk+ quicksort example 

void parallel_quicksort( T* first, T* last ) { 
    while( last-first>QUICKSORT_CUTOFF ) { 
        // Divide 
        T* middle = divide(first,last); 
        if( !middle ) return; 
 
        // Now have two subproblems: [first..middle) and (middle..last) 
        if( middle-first < last-(middle+1) )  { 
            // Left problem [first..middle) is smaller, so spawn it. 
            cilk_spawn parallel_quicksort( first, middle ); 
            // Solve right subproblem in next iteration. 
            first = middle+1; 
        } else { 
            // Right problem (middle..last) is smaller, so spawn it. 
            cilk_spawn parallel_quicksort( middle+1, last ); 
            // Solve left subproblem in next iteration. 
            last = middle; 
        } 
    } 
    // Base case 
    std::sort(first,last); 
}  // implicit cilk_sync 



Parallel Lang Support 27  

The Go Language 

•  Go is from Google              http://golang.org 

–  Rob Pike from early Bell Labs Unix design team 

–  Quite “C” like syntactically but with some significant 
differences: 

– Object name precedes type name in syntax; allows type 
name to be omitted when can be inferred 
•  e.g. “X int;” vs “int X;” ! “X := 3;” // declares and inits X 

–  No pointer arithmetic; provides array slicing for divide-and-
conquer 

–  “Goroutines” provide easy asynchronous function calls; 
communicate via channels and select statements, but no 
race-condition checking built in 

–  Interfaces and method sets but no classes 

–  Fully garbage collected 



Parallel Lang Support 28  

Word Count Example using Go (with goroutines and channels) 
func Word_Count
  (s string; separators string) int = {
    slen := len(s)
    switch slen {
      case 0: return 0 // Empty string
      case 1:  
        if strings.ContainsRune(separtors, S[0]) {
            return 0  // A single separator
        } else {
            return 1  // A single non-separator
        }
      default:     // Multi-character string; divide and conquer
        half_len := slen/2
        var left_sum = make(chan int)    // create a channel for left half
        var right_sum = make(chan int)   // create a channel for right half
        go func() {left_sum <- Word_Count(s[0:half_len], separators)}()
        go func() {right_sum <- Word_Count(s[half_len:slen], separators)}()

        if strings.ContainsRune(separators, rune(s[half_len-1])) ||
          strings.ContainsRune(separators, rune(s[half_len])) {
            // At least one separator at border
            return <-left_sum + <-right_sum     // read from channels  
        } else {    // Combine words at border
            return <-left_sum + <-right_sum - 1 // read from channels
        }
    }
 }

Simple 
cases 

Divide 
and 

Conquer 



Parallel Lang Support 29  

Chalice from Microsoft Research (Rustan Leino) 

•  Fork/join parallelism 

•  Permission “contracts” in pre- and postconditions 

–  requires acc(X) & acc(Z) & X > Z  

–  requires rd(Y) & Y > 0 

–  ensures rd(Y)    // gives access back 

–  (may dispose of access, meaning object is destroyed) 

•  “acc” is full r/w permission, “rd” is fractional r/o perm. 

•  Permissions also used for locking order 

–  requires waitlevel from.mu << to.mu 

–  prevent deadlock by strict partial order of locks 

•  Permissions carried in channels, and need credits for 
send and receive 

–  where acc(X) & rd(Y)  // message carries r/w acc to X, r/o to Y 

–  requires credit(chan, +2)  // right to receive 2 messages 

–  requires credit(chan, -3)   // obligation to send 3 messages 



Parallel Lang Support 30  

Structured Parallelism Approach – Implicit Safe Fork/Join 

 parallel                  -- Ada 202X 
    sequence_of_statements 
{and 
    sequence_of_statements} 
 end parallel; 
 
or… 
 
    sequence_of_statements 
{||                         // ParaSail 
    sequence_of_statements} 



Parallel Lang Support 31  

Word_Count example using “heavy weight” tasks: 
 function Word_Count(S : String; Separators : String) return Natural is
     use Ada.Strings.Maps;
     Seps : constant Character_Set := To_Set(Separators);
     
     task type TT(First, Last : Natural; Count : access Natural);
     subtype WC_TT is TT;  --  So is visible inside TT
     task body TT is begin
        if First > Last then     --  Empty string
           Count.all := 0;
        elsif First = Last then  --  A single character
           if Is_In(S(First), Seps) then
              Count.all := 0;    --  A single separator
           else
              Count.all := 1;    --  A single non-separator
           end if;
        else  --  Divide and conquer
           … See next slide
        end if;
     end TT;
     
     Result : aliased Natural := 0;
  begin
     declare  --  Spawn task to do the computation
        Tsk : TT(S'First, S'Last, Result'Access);
     begin
        null;
     end;  --  Wait for subtask
     return Result;
  end Word_Count;

Simple 
cases 

Start 
outer 
task 



Parallel Lang Support 32  

“Heavy” Word_Count example (cont’d): 
 function Word_Count(S : String; Separators : String) return Natural is
     use Ada.Strings.Maps;
     Seps : constant Character_Set := To_Set(Separators);     
     task type TT(First, Last : Natural; Count : access Natural);
     subtype WC_TT is TT;  --  So is visible inside TT
     task body TT is begin
        if …  --  Simple cases (see previous slide)
        else  --  Divide and conquer
           declare
              Midpoint : constant Positive := (First + Last) / 2;
              Left_Count, Right_Count : aliased Natural := 0;
           begin
              declare  --  Spawn two subtasks for distinct slices
                 Left : WC_TT(First, Midpoint, Left_Count'Access);
                 Right : WC_TT(Midpoint + 1, Last, Right_Count'Access);
              begin
                 null;
              end;  --  Wait for subtasks to complete
              
              if Is_In(S(Midpoint), Seps) or else
                Is_In(S(Midpoint+1), Seps) then  --  At least one separator at border
                 Count.all := Left_Count + Right_Count;
              else  --  Combine words at border
                 Count.all := Left_Count + Right_Count - 1;
              end if;
           end;
        end if;
     end TT;
     … See previous slide
end Word_Count;

Divide 
and 

Conquer 



Parallel Lang Support 33  

Word_Count example using structured light-weight construct: 
 function Word_Count (S : String; Separators : String) return Natural
   with Global => null, Potentially_Blocking => False is
     case S’Length is
      when 0 => return 0; --  Empty string
      when 1 =>           --  A single character
        if Is_In(S(S’First), Seps) then
           return 0;      --  A single separator
        else
           return 1;      --  A single non-separator
        end if;
      when others => 
        declare           --  Divide and conquer
           Midpoint : constant Positive := (S’First + S’Last) / 2;
           Left_Count, Right_Count : Natural;
        begin
           parallel       --  Spawn two tasklets for distinct slices
              Left_Count  := Word_Count (S(S’First .. Midpoint), Separators);
           and
              Right_Count := Word_Count (S(Midpoint+1 .. S’Last), Separators);
           end parallel;  --  Wait for tasklets to complete
              
           if Is_In(S(Midpoint), Seps) or else
             Is_In(S(Midpoint+1), Seps) then  --  At least one separator at border
              return Left_Count + Right_Count;
           else                               --  Combine words at border
              return Left_Count + Right_Count - 1;
           end if;
        end;
     end case;
 end Word_Count;

Simple 
cases 

Divide 
and 

Conquer 



Parallel Lang Support 34  

Parallel Loop 

for I in parallel 1 .. 1_000 loop 
   A(I) := B(I) + C(I); 
end loop; 
 
for Elem of parallel Arr loop 
   Elem := Elem * 2; 
end loop; 

Parallel loop is equivalent to parallel block by unrolling loop, with each 
iteration as a separate alternative of parallel block. 
 
Compiler will complain if iterations are not independent or might block 
(again, using Global/Nonblocking aspects) 



Parallel Lang Support 35  

Parallel Loop Issues 

•  Exiting the block/loop, or a return statement 
–  All other tasklets are aborted (need not be preemptive) and awaited, 

and then, in the case of return with an expression, the expression is 
evaluated, and finally the exit/return takes place. 

–  With multiple concurrent exits/returns, one is chosen arbitrarily, and 
others are aborted. 

•  Handling arrays with many elements with small amount of 
work to be done on each element 
–  Compiler may choose to “chunk” the loop into subloops, each subloop 

becomes a tasklet (subloop runs sequentially within tasklet). 

•  Accumulating results without excessive synchronization on 
accumulators 

–  Special support for map/reduce 



Parallel Lang Support 36  

Safety through Simplification – SPARK 202X and ParaSail 

•  Eliminate global variables 
•  Operation can only access or update variable state via its parameters 

•  Eliminate parameter aliasing 
–  Use “hand-off” semantics 

•  Eliminate explicit threads, lock/unlock, signal/wait 
–  Concurrent objects synchronized automatically 

•  Eliminate run-time exception handling 
–  Compile-time checking and propagation of preconditions 

•  Eliminate pointers 
–  Adopt notion of “optional” objects that can grow and shrink 

•  Eliminate global heap with no explicit allocate/free 
of storage and no garbage collector 
–  Replaced by region-based storage management (local heaps) 

–  All objects conceptually live in a local stack frame 



Parallel Lang Support 37  

Why The Simplifications?  Especially, why Pointer Free? 

•  Consider F(X) + G(Y) 
–  We want to be able to safely evaluate F(X) and G(Y) in 

parallel without looking inside of F or G 
–  Presume X and/or Y might be incoming var (in-out) 

parameters to the enclosing operation 
–  No global variables is clearly pretty helpful 

– Otherwise F and G might be stepping on same object 

–  No parameter aliasing is important, so we know X and Y 
do not refer to the same object 

–  What do we do if X and Y are pointers? 
– Without more information, we must presume that from X 

and Y you could reach a common object Z 
– How do parameter modes (in-out vs. in, var vs. non-var) 

relate to objects accessible via pointers? 

Result: pure value semantics for non-concurrent objects 



Parallel Lang Support 38  

Expandable Objects Instead of Pointers to Avoid Aliasing 

•  All types have additional null value; objects can be 
declared optional (i.e.null is OK) and can grow and 
shrink 
–  Eliminates many of the common uses for pointers, e.g. trees 

–  Assignment (“:=“) is by copy 
–  Move (“<==“) and swap (“<=>”) operators also provided 

•  Generalized indexing into containers replaces pointers 
for cyclic structures 
–  for each N in Directed_Graph[I].Successors loop ... 

•  Region-Based Storage Mgmt can replace Global Heap 
–  All objects are “local” with growth/shrinkage using local heap 

–  “null” value carries indication of region to use on growth 

•  SPARK 202X and Rust use pointer ownership instead 
–  More complex semantic model than expandable objects 

–  But more familiar to Ada and C programmers 



Parallel Lang Support 39  

Pointer-Free Trees 
interface Tree_Node 

   <Payload_Type is Assignable<>> is 

    var Payload : Payload_Type; 

    var Left : optional Tree_Node := null; 

    var Right : optional Tree_Node := null; 

end interface Tree_Node; 

 

var Root : Tree_Node<Univ_String> := (Payload => “Root”); 

Root.Left := (Payload => “L”, Right => (Payload => “LR”)); 

Root.Right <== Root.Left.Right;  // Root.Left.Right now null 

“Root” “Root” “Root” 

LR 

L LR L 



Parallel Lang Support 40  

How do Iterators Fit into this Picture? 

•  Computationally-intensive Programs Typically Build, 
Analyze, Search, Summarize, and/or Transform Large 
Data Structures or Large Data Spaces 

•  Iterators encapsulate the process of walking data 
structures or data spaces 

•  The biggest speed-up from parallelism is provided by 
spreading the processing of a large data structure or 
data space across multiple processing units 

•  So…high level iterators that are amenable to a safe, 
parallel interpretation can be critical to capitalizing on 
distributed and/or multicore hardware. 



Parallel Lang Support 41  

Syntax for parallel Map/Reduce in ParaSail (and Ada 202X?) 

•  Expression in <…> gives initial value, and is replaced after each 
computation with result 

•  Associativity of operation allows parallelism 
•  Can be easier to comprehend than foldl, foldr, foldl1, …

// Compute sum of squares of counts
Sum_Sqrs := 
 (for P => Root then P.Left || P.Right
    while P not null => <0> + P.Count**2)

// Compute max of counts (Max(null, A) == A)
Max_Count := 
 (for P => Root then P.Left || P.Right
   while P not null => Max(<null>, P.Count))



Parallel Lang Support 42  

Review of Syntax Approach to Parallelism 

•  Cilk+, Go, CPlex, Chalice 
–  Use asynchronous function call + synchronize (explicit or implicit) 
–  Few safety checks in Cilk+/Go/Cplex; full checks in Chalice 
–  Provides safe communication mechanisms such as Go’s channel 

and Cilk’s Reducer 
–  Cilk’s Reducer provides “tasklet local storage” so each “chunk” 

gets its own accumulator 
–  Reducer uses “monoid” = operator + identity (aka “zero”)  

•  Ada 202X 
–  parallel block: “parallel F(X); and G(Y); end parallel” 
–  parallel loop with array of partial results with one element per 

chunk 

•  ParaSail – safety through simplification 
–  No globals, no pointers, no parameter aliasing, expandable 

objects 
–  Implicit safe parallel semantics for all operators 

•  Both Ada 202X and ParaSail: 
–  Syntactic Sugar for many kinds of iterators 



Parallel Lang Support 43  

Enforcing Safety in a Parallel Program – Data Races 
•  Data races 

–  Two simultaneous computations reference same object and at least one 
is writing to the object  

–  Reader may see a partially updated object 

–  If two Writers running simultaneously, then result may be a 
meaningless mixture of two computations 

•  Solutions to data races 
–  Dynamic run-time synchronization to prevent simultaneous use 

–  Use full locks or atomic hardware instructions such as compare-and-swap 

–  Static compile-time checks to prevent simultaneous incompatible 
references – depends on constraints on aliasing 

•  Can support both 
–  Dyamic: Chalice “monitor” objects; ParaSail “concurrent” objects 

–  Static: Chalice permissions in preconditions; Rust “borrowing”; ParaSail 
hand-off semantics plus no globals; SPARK anti-aliasing checks 

–  Reminiscent of capability-based systems: compile-time or run-time 



Parallel Lang Support 44  

Safely solving the data race problem 

Data-Race safety mantra from Niko Matsakis of Rust fame: 

=> Aliasing, Mutability, Concurrency – pick any two 

•  No Aliasing 
–  Occam, Erlang – “shared nothing” – distributed programming 

•  Immutable Data 
–  Haskell - Pure functional language 

•  Mostly Immutable Data + All shared data synchronized 
–  Clojure – Mostly functional, optimistic transaction-based sync on 

shared data 

•  No user-visible parallelism 
–  APL, Matlab – parallelism inside vector/matrix operations of 

language 

•  Constrained Aliasing 
–  SPARK, Rust, ParaSail, Chalice, Ada 202X 

–  Can use both Compile-Time and Run-Time checks 



Parallel Lang Support 45  

Constrained Aliasing 

•  SPARK 
–  No pointers – array indexing for bounded “linked” data structures 

–  Global annotations establish the frame 

–  No aliasing on parameter passing 

•  Rust 
–  Pointer ownership transferred by assignment  A = B //  B now dead 

–  Reference as way to temporarily grant access  X = &mut Y 
–  Borrowing checker to make sure exclusive mut references 

•  ParaSail 
–  No global variables and no pointers  

–  Handoff semantics on parameter passing based on “mode” 

•  Chalice 
–  acc(X) & rd(Y) in preconditions and postconditions 

–  permissions at activation-record level – no finer granularity of ownership 

•  Ada 202X 
–  Global annotations 

–  Anti-aliasing preconditions using X’Overlaps_Storage(Y) 



Parallel Lang Support 46  

Global annotations in Ada 202X 

Global => in out all -- default for non-pure pkgs 
Global => null       -- default for pure packages 
 
-- Explicitly identified globals with modes 
Global => (in P1.A, P2.B, 
           in out P1.C, 
           out P1.D, P2.E) 
 
-- Pkg data, access collection, task/protected/atomic 
Global => in out P3           -- pkg P3 data 
Global => in out P1.Acc_Type  -- acc type 
Global => in out synchronized –- prot/atomic 
 



Parallel Lang Support 47  

Can add run-time guarded objects for flexibility 

•  Monitors in Chalice 
–  Three states for objects: non-monitor, available, held 

•  Concurrent objects in ParaSail 

–  external view – aliasing permitted, but no access 

–  internal view – gained implicitly when calling an operation 
–  back to compile-time checks when inside the operation 

•  Protected/Atomic objects in SPARK 
–  external view – aliasing permitted, but no access 

–  internal view – no parallelism 



Parallel Lang Support 48  

Safety in a Parallel Program -- Deadlock 
•  Deadlock, also called “Deadly Embrace” 

–  One thread attempts to lock A and then lock B 

–  Second thread attempts to lock B and then lock A 

•  Solutions amenable to language-based approaches 
–  Chalice: Assign full order to all locks; must acquire locks according 

to this “waitlevel” order 

–  ParaSail/SPARK: Localize locking into “monitor”-like construct and 
check for cyclic locking 

•  More general kind of deadlock – waiting forever 
–  One thread waits for an event to occur, but event never occurs 

–  Chalice solution based on send/receive “credit” 

–  ParaSail/Ada 202X: Identify where blocking might occur 

–  Nonblocking aspect in Ada 202X 

–  queued qualifier in ParaSail 



Parallel Lang Support 49  

Nonblocking aspect in Ada 202X; “queued” in ParaSail 

•  Ada 202X Nonblocking aspect 

   procedure Suspend_Until_True 
    (S : in out Suspension_Object) 
      with Nonblocking => False; 
 
   package Ada.Characters.Handling 
      with Nonblocking => True is … 
 
 
•  ParaSail “queued” qualifier 

•  Note that default is non-blocking 

   queued func Delay_Until(Until : Time); 



Parallel Lang Support 50  

Conclusions on Approaches to Safe Parallel Programming 

•  Library, Pragma, and Syntax Approaches Possible 

•  Safety can be provided in any approach 

•  Safety can come from more rules, or fewer features 

•  New kinds of contracts may be needed 
–  Global annotations (if globals are allowed at all) 

–  Pointer ownership contracts (Rust, SPARK 202X?) 

–  Extended parameter modes/permissions (Chalice, ParaSail) 

–  Non-Blocking contracts (Ada 202X, ParaSail) 

–  Send/Receive Credits (Chalice) 

•  Language support for parallel programming should 
–  try to help programmers “escape” the sequential mindset  

–  help think in terms of overall problem to be solved, not the order 
to solve it 

–  identify all possible data races and deadlocks at compile time to 
keep the problem tractable 


