
Department of Mathematics, University of Padua

Ravenscar-EDF
Comparative Benchmarking of an

EDF Variant of a Ravenscar Runtime

Ada Europe 2017
22nd Int’l Conference on Reliable Software Technologies

Paolo Carletto: carletto.paolo@gmail.com
Tullio Vardanega: tullio.vardanega@math.unipd.it

June 13, 2017



1/16

Outline of the Talk

Introduction

The RM-to-EDF Transformation Process
The Ada Ravenscar Profile
Turning Priorities into Deadlines
Implementation Challenges

Evaluation Results
Highest Schedulable Utilization
Runtime Overhead
Resilience to Overload Situations
Locking Policy

Future Work
Migration to Other Technologies
Multilayered Scheduling

Conclusions

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



2/16

Introduction
The Background

I 1973: Liu and Layland address the question of which online
(preemptive) scheduling policy for single-core processors is
theoretically the best

I Nonetheless, most existing real-time kernels use FPS

I Easier to implement
I Simpler to understand and supposedly more "stable"

I 2005: Buttazzo sustains the superiority of EDF also from a practical
standpoint

I 2017: We present an empirical, quantitative comparison between
concrete implementations of EDF and FPS

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



2/16

Introduction
The Background

I 1973: Liu and Layland address the question of which online
(preemptive) scheduling policy for single-core processors is
theoretically the best

I Nonetheless, most existing real-time kernels use FPS
I Easier to implement
I Simpler to understand and supposedly more "stable"

I 2005: Buttazzo sustains the superiority of EDF also from a practical
standpoint

I 2017: We present an empirical, quantitative comparison between
concrete implementations of EDF and FPS

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



2/16

Introduction
The Background

I 1973: Liu and Layland address the question of which online
(preemptive) scheduling policy for single-core processors is
theoretically the best

I Nonetheless, most existing real-time kernels use FPS
I Easier to implement
I Simpler to understand and supposedly more "stable"

I 2005: Buttazzo sustains the superiority of EDF also from a practical
standpoint

I 2017: We present an empirical, quantitative comparison between
concrete implementations of EDF and FPS

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



2/16

Introduction
The Background

I 1973: Liu and Layland address the question of which online
(preemptive) scheduling policy for single-core processors is
theoretically the best

I Nonetheless, most existing real-time kernels use FPS
I Easier to implement
I Simpler to understand and supposedly more "stable"

I 2005: Buttazzo sustains the superiority of EDF also from a practical
standpoint

I 2017: We present an empirical, quantitative comparison between
concrete implementations of EDF and FPS

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



3/16

Introduction
Our Project

The Benchmark
1. It makes a very fair comparison between runtimes

I We changed only the scheduling operations

2. The application stays unchanged
I Any performance difference is directly ascribable to the scheduler

3. We stressed each system to the theoretical limit discussed in the
literature

I Using exactly the same, unchanged, application software
I The switch of scheduling policy is completely transparent to it

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



3/16

Introduction
Our Project

The Benchmark
1. It makes a very fair comparison between runtimes

I We changed only the scheduling operations
2. The application stays unchanged

I Any performance difference is directly ascribable to the scheduler

3. We stressed each system to the theoretical limit discussed in the
literature

I Using exactly the same, unchanged, application software
I The switch of scheduling policy is completely transparent to it

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



3/16

Introduction
Our Project

The Benchmark
1. It makes a very fair comparison between runtimes

I We changed only the scheduling operations
2. The application stays unchanged

I Any performance difference is directly ascribable to the scheduler
3. We stressed each system to the theoretical limit discussed in the

literature
I Using exactly the same, unchanged, application software
I The switch of scheduling policy is completely transparent to it

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



4/16

The RM-to-EDF Transformation Process
The Ada Ravenscar Profile

I The Ravenscar profile is an important asset of the Ada programming
language

Ada
Ravenscar

Profile

Full analysis for 
timing feasibility 

Simple yet 
flexible

Engineered to the 
highest level of integrity

Lean, small 
and fast

I The first-ever Ravenscar runtime to be released for industrial use was
produced by AdaCore for the LEON processor family

I That technology originated from a fork of the Open Ravenscar
Real-Time Kernel (ORK+) developed by the Technical University of
Madrid for the European Space Agency (ca. 2000)

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



4/16

The RM-to-EDF Transformation Process
The Ada Ravenscar Profile

I The Ravenscar profile is an important asset of the Ada programming
language

Ada
Ravenscar

Profile

Full analysis for 
timing feasibility 

Simple yet 
flexible

Engineered to the 
highest level of integrity

Lean, small 
and fast

I The first-ever Ravenscar runtime to be released for industrial use was
produced by AdaCore for the LEON processor family

I That technology originated from a fork of the Open Ravenscar
Real-Time Kernel (ORK+) developed by the Technical University of
Madrid for the European Space Agency (ca. 2000)

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



4/16

The RM-to-EDF Transformation Process
The Ada Ravenscar Profile

I The Ravenscar profile is an important asset of the Ada programming
language

Ada
Ravenscar

Profile

Full analysis for 
timing feasibility 

Simple yet 
flexible

Engineered to the 
highest level of integrity

Lean, small 
and fast

I The first-ever Ravenscar runtime to be released for industrial use was
produced by AdaCore for the LEON processor family

I That technology originated from a fork of the Open Ravenscar
Real-Time Kernel (ORK+) developed by the Technical University of
Madrid for the European Space Agency (ca. 2000)

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



5/16

The RM-to-EDF Transformation Process
Turning Priorities into Deadlines

Deadline 
Ordered 
Ready 
Queue

Task T

Shared 
Resource
under DFP

Wait on
PO (Entry) Wait

Ready

Running 
Queue

Select

PO (Exit) Delay_until (Enter)

Switch

Ext_itSignal

Time 
Ordered 

Suspended 
Tasks 
Queue

Clock_itSelect

Switch

Interrupt

1. Task Dispatching Policy: from “FIFO Within Priorities” to “EDF”1
2. Locking Policy: from IPCP to DFP2

1A. Burns, An EDF Runtime Profile based on Ravenscar. Ada Lett. 33, 1 (June 2013)
2A. Burns and A. Wellings. The Deadline Floor Protocol and Ada. Ada Lett. 36, 1 (July 2016)

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



6/16

The RM-to-EDF Transformation Process
Implementation Challenges

Interrupt handling intrinsically assumes priorities, which – in principle – do
not belong in an EDF system

I Our solution reserves a fictitious position at the top of the ready queue
for the current interrupt handler

I If an interrupt handler is active, that position is used and the
deadline-based part of the queue is frozen

I If no interrupt is running, that position is not in use and cannot be
contended

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



6/16

The RM-to-EDF Transformation Process
Implementation Challenges

Interrupt handling intrinsically assumes priorities, which – in principle – do
not belong in an EDF system

I Our solution reserves a fictitious position at the top of the ready queue
for the current interrupt handler

I If an interrupt handler is active, that position is used and the
deadline-based part of the queue is frozen

I If no interrupt is running, that position is not in use and cannot be
contended

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



6/16

The RM-to-EDF Transformation Process
Implementation Challenges

Interrupt handling intrinsically assumes priorities, which – in principle – do
not belong in an EDF system

I Our solution reserves a fictitious position at the top of the ready queue
for the current interrupt handler

I If an interrupt handler is active, that position is used and the
deadline-based part of the queue is frozen

I If no interrupt is running, that position is not in use and cannot be
contended

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



7/16

Evaluation Results
Buttazzo’s Analysis

Buttazzo claimed EDF better than RM (FPS) in many respects

I Lower runtime overhead
I Less preemptions

I Easier analysis
I More robust under
overloads

I Transient
I Permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



7/16

Evaluation Results
Buttazzo’s Analysis

Buttazzo claimed EDF better than RM (FPS) in many respects

I Lower runtime overhead
I Less preemptions

I Easier analysis
I More robust under
overloads

I Transient
I Permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



7/16

Evaluation Results
Buttazzo’s Analysis

Buttazzo claimed EDF better than RM (FPS) in many respects

I Lower runtime overhead
I Less preemptions

I Easier analysis
I More robust under
overloads

I Transient
I Permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



8/16

Evaluation Results
Beyond Buttazzo’s Results

What is weak in Buttazzo’s analysis?
I Task cardinality too small (10-30 tasks) to be significant

I Overload analysis confined to specific cases and not sufficiently general
I Different preemption behavior observed under 100%

I Lack of practical implementation and analysis of resource sharing
protocols

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



8/16

Evaluation Results
Beyond Buttazzo’s Results

What is weak in Buttazzo’s analysis?
I Task cardinality too small (10-30 tasks) to be significant
I Overload analysis confined to specific cases and not sufficiently general

I Different preemption behavior observed under 100%

I Lack of practical implementation and analysis of resource sharing
protocols

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



8/16

Evaluation Results
Beyond Buttazzo’s Results

What is weak in Buttazzo’s analysis?
I Task cardinality too small (10-30 tasks) to be significant
I Overload analysis confined to specific cases and not sufficiently general
I Different preemption behavior observed under 100%

I Lack of practical implementation and analysis of resource sharing
protocols

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



8/16

Evaluation Results
Beyond Buttazzo’s Results

What is weak in Buttazzo’s analysis?
I Task cardinality too small (10-30 tasks) to be significant
I Overload analysis confined to specific cases and not sufficiently general
I Different preemption behavior observed under 100%

I Lack of practical implementation and analysis of resource sharing
protocols

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



9/16

Evaluation Results
Highest Schedulable Utilization

Which tasksets achieved the highest schedulable utilization in each
runtime variant?

Taskset Type Task
Types

Delta
Schedulable
Utilization

Max
CPU
Load

EDF FPS

RC DM PR RC DM PR

Constrained Short & Mid 2,89% 105,50% 30.714 0 3.637 29.850 415 6.202

Implicit Mid Only 3,72% 102,63% 18.691 0 837 18.021 673 2.040

Constrained All 0,05% 104,06% 24.398 0 5.131 24.409 0 5.211

Implicit All 5,22% 100,85% 24.935 953 6.309 26.236 0 5.715

I RC: count of regular completions
I DM: count of deadline misses
I PR: count of preemptions

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



9/16

Evaluation Results
Highest Schedulable Utilization

Which tasksets achieved the highest schedulable utilization in each
runtime variant?

Taskset Type Task
Types

Delta
Schedulable
Utilization

Max
CPU
Load

EDF FPS

RC DM PR RC DM PR

Constrained Short & Mid 2,89% 105,50% 30.714 0 3.637 29.850 415 6.202

Implicit Mid Only 3,72% 102,63% 18.691 0 837 18.021 673 2.040

Constrained All 0,05% 104,06% 24.398 0 5.131 24.409 0 5.211

Implicit All 5,22% 100,85% 24.935 953 6.309 26.236 0 5.715

I RC: count of regular completions
I DM: count of deadline misses
I PR: count of preemptions

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



10/16

Evaluation Results
Runtime Overhead

Do the less preemptions and context switches that EDF incurs justify the
higher costs of its scheduling operations?

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



10/16

Evaluation Results
Runtime Overhead

Do the less preemptions and context switches that EDF incurs justify the
higher costs of its scheduling operations?

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



10/16

Evaluation Results
Runtime Overhead

Do the less preemptions and context switches that EDF incurs justify the
higher costs of its scheduling operations?

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



10/16

Evaluation Results
Runtime Overhead

Do the less preemptions and context switches that EDF incurs justify the
higher costs of its scheduling operations?

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



11/16

Evaluation Results
Resilience to Overload Situations

What happens to EDF and FPS under overload conditions, when the
CPU utilization exceeds 100%?

I FPS presents a linear behavior
I EDF’s behaviour varies dramatically depending on the nature of the
overload situation

I Transient vs permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



11/16

Evaluation Results
Resilience to Overload Situations

What happens to EDF and FPS under overload conditions, when the
CPU utilization exceeds 100%?

I FPS presents a linear behavior
I EDF’s behaviour varies dramatically depending on the nature of the
overload situation

I Transient vs permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



11/16

Evaluation Results
Resilience to Overload Situations

What happens to EDF and FPS under overload conditions, when the
CPU utilization exceeds 100%?

I FPS presents a linear behavior
I EDF’s behaviour varies dramatically depending on the nature of the
overload situation

I Transient vs permanent

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



12/16

Evaluation Results
Locking Policy

How does DFP perform compared to IPCP?

I It presents a logarithmic converging progression as the computation
time of the protected procedure increases

I DFP incurs more cumulative overhead than IPCP
I Due to the need to read the clock in checking absolute deadlines

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



12/16

Evaluation Results
Locking Policy

How does DFP perform compared to IPCP?

I It presents a logarithmic converging progression as the computation
time of the protected procedure increases

I DFP incurs more cumulative overhead than IPCP
I Due to the need to read the clock in checking absolute deadlines

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



12/16

Evaluation Results
Locking Policy

How does DFP perform compared to IPCP?

I It presents a logarithmic converging progression as the computation
time of the protected procedure increases

I DFP incurs more cumulative overhead than IPCP
I Due to the need to read the clock in checking absolute deadlines

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



13/16

Future Work
Migration to Other Technologies

Is it feasible to migrate Ravenscar-EDF from LEON to ARM
technology?
I We analyzed the ARM Cortex-M version of the AdaCore runtime in the
GAP-2016 offering

Specific CPU Packages Generic CPU Packages

BB.Board_Support

BB.Parameters

BB.CPU_Primitives

BB.Interrupts

BB.Threads.Queues

BB.Threads

BB.Protection

BB.Time

System.OS_Interface

…

I The FPS version can be easily
converted to EDF one modifying
only a small part of the original
packages

I This should yield a runtime with
more widespread use than for the
LEON processor family

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



13/16

Future Work
Migration to Other Technologies

Is it feasible to migrate Ravenscar-EDF from LEON to ARM
technology?
I We analyzed the ARM Cortex-M version of the AdaCore runtime in the
GAP-2016 offering

Specific CPU Packages Generic CPU Packages

BB.Board_Support

BB.Parameters

BB.CPU_Primitives

BB.Interrupts

BB.Threads.Queues

BB.Threads

BB.Protection

BB.Time

System.OS_Interface

…

I The FPS version can be easily
converted to EDF one modifying
only a small part of the original
packages

I This should yield a runtime with
more widespread use than for the
LEON processor family

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



13/16

Future Work
Migration to Other Technologies

Is it feasible to migrate Ravenscar-EDF from LEON to ARM
technology?
I We analyzed the ARM Cortex-M version of the AdaCore runtime in the
GAP-2016 offering

Specific CPU Packages Generic CPU Packages

BB.Board_Support

BB.Parameters

BB.CPU_Primitives

BB.Interrupts

BB.Threads.Queues

BB.Threads

BB.Protection

BB.Time

System.OS_Interface

…

I The FPS version can be easily
converted to EDF one modifying
only a small part of the original
packages

I This should yield a runtime with
more widespread use than for the
LEON processor family

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



14/16

Future Work
Multilayered Scheduling

How can we take benefit of the best of both?
I EDF generates a feasible schedule (if any exists) within 100% CPU
utilization

I FPS has more resilience beyond 100% CPU utilization

The Solution
A co-existence of both algorithms
should yield the best of both worlds:
EDF "becomes" FPS above 100%
load
I A double linkedlist could offer a
quick switch mechanism

I It should be based on a threshold
value computed dynamically by
the runtime on the idle time

P = Priority;
D = Rel_Deadline;
EDF_NEXT;
EDF_PREV;
FPS_NEXT;
FPS_PREV;

MultiScheduled Task

Multi_Insert ();
Multi_Extract ();

P = Priority;
NEXT;

FPS Task

Insert ();
Extract ();

D = Rel_Deadline;
NEXT;

EDF Task

Insert ();
Extract ();

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



14/16

Future Work
Multilayered Scheduling

How can we take benefit of the best of both?
I EDF generates a feasible schedule (if any exists) within 100% CPU
utilization

I FPS has more resilience beyond 100% CPU utilization

The Solution
A co-existence of both algorithms
should yield the best of both worlds:
EDF "becomes" FPS above 100%
load
I A double linkedlist could offer a
quick switch mechanism

I It should be based on a threshold
value computed dynamically by
the runtime on the idle time

P = Priority;
D = Rel_Deadline;
EDF_NEXT;
EDF_PREV;
FPS_NEXT;
FPS_PREV;

MultiScheduled Task

Multi_Insert ();
Multi_Extract ();

P = Priority;
NEXT;

FPS Task

Insert ();
Extract ();

D = Rel_Deadline;
NEXT;

EDF Task

Insert ();
Extract ();

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



15/16

Future Work
Multilayered Scheduling

Protocol complexity

3/11 9/13

7/4

2/5 5/2

EDF Layer

FPS Layer

EDF_Prev EDF_Next

FPS_Prev FPS_Next

Deadline / Priority

M
or

e 
U

rg
en

t

Le
ss

 U
rg

en
t

I O(n) asymptotically
I The same limit of a common linked list
I Our Multilayered Scheduling does not
increase runtime complexity

I It earns the benefits of both protocols
I Max efficiency with CPU load ≤ 100%
I Max stability with CPU load > 100%

I Yet, interrupts could be difficult to
manage in a dual scheme

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



15/16

Future Work
Multilayered Scheduling

Protocol complexity

3/11 9/13

7/4

2/5 5/2

EDF Layer

FPS Layer

EDF_Prev EDF_Next

FPS_Prev FPS_Next

Deadline / Priority

M
or

e 
U

rg
en

t

Le
ss

 U
rg

en
t

I O(n) asymptotically

I The same limit of a common linked list
I Our Multilayered Scheduling does not
increase runtime complexity

I It earns the benefits of both protocols
I Max efficiency with CPU load ≤ 100%
I Max stability with CPU load > 100%

I Yet, interrupts could be difficult to
manage in a dual scheme

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



15/16

Future Work
Multilayered Scheduling

Protocol complexity

3/11 9/13

7/4

2/5 5/2

EDF Layer

FPS Layer

EDF_Prev EDF_Next

FPS_Prev FPS_Next

Deadline / Priority

M
or

e 
U

rg
en

t

Le
ss

 U
rg

en
t

I O(n) asymptotically
I The same limit of a common linked list

I Our Multilayered Scheduling does not
increase runtime complexity

I It earns the benefits of both protocols
I Max efficiency with CPU load ≤ 100%
I Max stability with CPU load > 100%

I Yet, interrupts could be difficult to
manage in a dual scheme

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



15/16

Future Work
Multilayered Scheduling

Protocol complexity

3/11 9/13

7/4

2/5 5/2

EDF Layer

FPS Layer

EDF_Prev EDF_Next

FPS_Prev FPS_Next

Deadline / Priority

M
or

e 
U

rg
en

t

Le
ss

 U
rg

en
t

I O(n) asymptotically
I The same limit of a common linked list
I Our Multilayered Scheduling does not
increase runtime complexity

I It earns the benefits of both protocols
I Max efficiency with CPU load ≤ 100%
I Max stability with CPU load > 100%

I Yet, interrupts could be difficult to
manage in a dual scheme

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



15/16

Future Work
Multilayered Scheduling

Protocol complexity

3/11 9/13

7/4

2/5 5/2

EDF Layer

FPS Layer

EDF_Prev EDF_Next

FPS_Prev FPS_Next

Deadline / Priority

M
or

e 
U

rg
en

t

Le
ss

 U
rg

en
t

I O(n) asymptotically
I The same limit of a common linked list
I Our Multilayered Scheduling does not
increase runtime complexity

I It earns the benefits of both protocols
I Max efficiency with CPU load ≤ 100%
I Max stability with CPU load > 100%

I Yet, interrupts could be difficult to
manage in a dual scheme

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



15/16

Future Work
Multilayered Scheduling

Protocol complexity

3/11 9/13

7/4

2/5 5/2

EDF Layer

FPS Layer

EDF_Prev EDF_Next

FPS_Prev FPS_Next

Deadline / Priority

M
or

e 
U

rg
en

t

Le
ss

 U
rg

en
t

I O(n) asymptotically
I The same limit of a common linked list
I Our Multilayered Scheduling does not
increase runtime complexity

I It earns the benefits of both protocols
I Max efficiency with CPU load ≤ 100%
I Max stability with CPU load > 100%

I Yet, interrupts could be difficult to
manage in a dual scheme

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



16/16

Conclusions

I In this work, we built an experimental framework based on an EDF
variant of an Ada Ravenscar runtime and compared it with the original
FPS version

I Our tests confirmed the theoretical conclusions of earlier works
I Yet, we showed that the actual gain of EDF over FPS is far lower than
anticipated even for CPU loads very close to 100%, where EDF was due to
reap the best of its benefit

I We also experimentally observed the fragility of EDF in contrast to the
resilience of FPS under overload conditions

I We provided a baseline technology to further investigate this matter
I We are contemplating some hypothesis to combine the best of EDF and
FPS in a single runtime

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



16/16

Conclusions

I In this work, we built an experimental framework based on an EDF
variant of an Ada Ravenscar runtime and compared it with the original
FPS version

I Our tests confirmed the theoretical conclusions of earlier works

I Yet, we showed that the actual gain of EDF over FPS is far lower than
anticipated even for CPU loads very close to 100%, where EDF was due to
reap the best of its benefit

I We also experimentally observed the fragility of EDF in contrast to the
resilience of FPS under overload conditions

I We provided a baseline technology to further investigate this matter
I We are contemplating some hypothesis to combine the best of EDF and
FPS in a single runtime

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



16/16

Conclusions

I In this work, we built an experimental framework based on an EDF
variant of an Ada Ravenscar runtime and compared it with the original
FPS version

I Our tests confirmed the theoretical conclusions of earlier works
I Yet, we showed that the actual gain of EDF over FPS is far lower than
anticipated even for CPU loads very close to 100%, where EDF was due to
reap the best of its benefit

I We also experimentally observed the fragility of EDF in contrast to the
resilience of FPS under overload conditions

I We provided a baseline technology to further investigate this matter
I We are contemplating some hypothesis to combine the best of EDF and
FPS in a single runtime

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



16/16

Conclusions

I In this work, we built an experimental framework based on an EDF
variant of an Ada Ravenscar runtime and compared it with the original
FPS version

I Our tests confirmed the theoretical conclusions of earlier works
I Yet, we showed that the actual gain of EDF over FPS is far lower than
anticipated even for CPU loads very close to 100%, where EDF was due to
reap the best of its benefit

I We also experimentally observed the fragility of EDF in contrast to the
resilience of FPS under overload conditions

I We provided a baseline technology to further investigate this matter
I We are contemplating some hypothesis to combine the best of EDF and
FPS in a single runtime

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



16/16

Conclusions

I In this work, we built an experimental framework based on an EDF
variant of an Ada Ravenscar runtime and compared it with the original
FPS version

I Our tests confirmed the theoretical conclusions of earlier works
I Yet, we showed that the actual gain of EDF over FPS is far lower than
anticipated even for CPU loads very close to 100%, where EDF was due to
reap the best of its benefit

I We also experimentally observed the fragility of EDF in contrast to the
resilience of FPS under overload conditions

I We provided a baseline technology to further investigate this matter

I We are contemplating some hypothesis to combine the best of EDF and
FPS in a single runtime

22nd International Conference on Reliable Software Technologies | Ada Europe 2017



16/16

Conclusions

I In this work, we built an experimental framework based on an EDF
variant of an Ada Ravenscar runtime and compared it with the original
FPS version

I Our tests confirmed the theoretical conclusions of earlier works
I Yet, we showed that the actual gain of EDF over FPS is far lower than
anticipated even for CPU loads very close to 100%, where EDF was due to
reap the best of its benefit

I We also experimentally observed the fragility of EDF in contrast to the
resilience of FPS under overload conditions

I We provided a baseline technology to further investigate this matter
I We are contemplating some hypothesis to combine the best of EDF and
FPS in a single runtime

22nd International Conference on Reliable Software Technologies | Ada Europe 2017


	Introduction
	The RM-to-EDF Transformation Process
	The Ada Ravenscar Profile
	Turning Priorities into Deadlines
	Implementation Challenges

	Evaluation Results
	Highest Schedulable Utilization
	Runtime Overhead
	Resilience to Overload Situations
	Locking Policy

	Future Work
	Migration to Other Technologies
	Multilayered Scheduling

	Conclusions

