
Sanitizing Sensitive Data:

How to get it Right (or at

least Less Wrong…)

Roderick Chapman, 14th June 2017

Contents

• The problem…

• Technical issues

• Design goals

• Ada language support

• A policy for sanitization

• Related and further work

Contents

• The problem…

• Technical issues

• Design goals

• Ada language support

• A policy for sanitization

• Related and further work

The problem…

• “Secure coding” standards call for “sanitization” of

“sensitive” data after it has been used.

• What does this actually mean?

• How do you do it?

• How do you know you’ve got it right?

• Oh.. and we had to do this for a client project, to

meet GCHQ evaluation standards…

The problem…
• Standards survey:

• GCHQ IA Developers’ Note 6: Coding
Requirements and Guidance

• CERT Coding Standards

• ISO SC22/WG23 Technical Report 24772

• Common Weakness Enumeration (CWE)

• Cryptography Coding Standard

The problem…
• GCHQ IA Developers’ Note 6: Coding Requirements and

Guidance

“Sanitise all variables that contain sensitive data (such as

cryptovariables and unencrypted data) … sanitisation may

require multiple overwrites or verification, or both.”

“if a variable can be shown to be overwritten

shortly afterwards, it may be acceptable not to sanitise it,

provided it is sanitised when it is no longer needed.

‘Shortly’ is not defined more precisely, since it will depend

on the situation”

The problem…
• GCHQ IA Developers’ Note 6: Coding Requirements and

Guidance

“Sanitise all variables that contain sensitive data (such as

cryptovariables and unencrypted data) … sanitisation

may require multiple overwrites or verification, or both.”

“if a variable can be shown to be overwritten

shortly afterwards, it may be acceptable not to sanitise it,

provided it is sanitised when it is no longer needed.

‘Shortly’ is not defined more precisely, since it will depend

on the situation”

What does this

actually mean?

Contents

• The problem…

• Technical issues

• Design goals

• Ada language support

• A policy for sanitization

• Related and further work

Technical issues

• So why not just “write zeroes” to the variable?

declare

T : Word32;

begin

-- Do stuff with T;

-- Now sanitize T

T := 0;

end;

Technical issues
• So why not just “write zeroes” to the variable?

• T is local, therefore final assignment is dead in
information-flow terms.

• Optimizing compilers can remove the final
assignment. Oops!

• Modern compilers try very hard to remove
redundant loads and stores.

• “All zeroes” might not be a valid value, so can a legal
assignment statement be written at all?

Technical issues
• Derived values and copies…

• If A and B are “sensitive”, then

C := A op B;

• Is C also “sensitive”? Does C require sanitization?

• What about copies of sensitive date – in compiler-
generated local variables, CPU registers, data
cache? How do you sanitize those (without
assembly language programming…)?

Technical issues

• By-Copy parameter passing…

• See above – copies are bad!

• How do you sanitize a By-Copy “in” parameter

anyway???

Technical issues
• CPU data caching and memory hierarchy.

• Memory subsystem in a modern CPU is really really
complicated!

• Multiple levels of cache.

• Instruction re-ordering and write coalescing etc. etc.

• Register renaming (more copies!)

• Operating system paging and virtual memory? Has a
copy of my sensitive data been written to disk?!?!

Contents

• The problem…

• Technical issues

• Design goals

• Ada language support

• A policy for sanitization

• Related and further work

Design goals…
• For a recent project…design constraints and goals:

• Sanitization code in source Ada and/or SPARK – no assembly language
required.

• Portable – no use of non-portable or implementation-defined language
features.

• “Bare metal” embedded target, so compatibility with GNAT Pro
Zero-FootPrint (ZFP) runtime library.

• Compatible with both SPARK 2005 and SPARK 2014 languages and
verification tools.

• “Just works” (with confidence) at any compiler optimization level.

Contents

• The problem…

• Technical issues

• Design goals

• Ada language support

• A policy for sanitization

• Related and further work

Ada support
• Various language mechanisms were investigated,

including…

• Controlled Types

• Volatile aspect

• Limited and By-Reference types

• Inspection_Point pragma

• No_Inline aspect

Controlled Types
• Define a “Finalize” procedure that does the sanitization?

• Tempting, but…

• Significant support from the runtime library required,
so no chance of this working with ZFP.

• Not allowed by SPARK anyway.

• Complex (i.e. not very well understood) semantics
and implementation issues.

• Therefore…rejected!

Volatile

• Easy! Just mark a sensitive object as Volatile, and

the compiler will respect the reads and writes

exactly as indicated in the source code…

• Better still … use Volatile Types for all sensitive

data.

• Looks good, but…

Volatile

• Problems with Volatile

1. It is a blunt instrument – it preserves all reads

and writes of an object, not just the “last one”,

so some performance penalty…

2. Compilers don’t always get it right anyway…

• Paper from EMSOFT 2008.

• Have compilers improved? Not sure…

• Are “commercial” compilers better than “open source”
(e.g. GNAT Pro vs FSF GCC vs LLVM)? Don’t know…

Limited types

• A very useful mechanism in Ada…

• No assignment by default. Good!

• Passed By-Reference, so no copies. Good!

By-Reference types
• Another useful mechanism in Ada, and useful where

limited types are not appropriate.

• Some types are defined to be “By Reference”, so avoids
copying of sensitive parameters, for example

• Tagged types (RM 6.2(5))

• Record with Volatile component (RM C.6(18))

• GNAT –gnatRm flag can be used to verify passing
mechanism chosen for each parameters of each
subprogram.

Inspection_Point

• Added to Annex H in Ada 95, but little used (or

understood?)

• Very useful requirement in RM H 3.2(9):

‘The implementation is not allowed to perform “dead store

elimination” on the last assignment to a variable prior to a point

where the variable is inspectable. Thus an inspection point has the

effect of an implicit read of each of its inspectable objects.’

• Exactly what we want! But…

Inspection_Point

• How does it work?

• GNAT sources ada/gcc-interface/trans.c, in function

Pragma_to_gnu ()

tree gnu_expr = gnat_to_gnu (gnat_expr);

...

ASM_VOLATILE_P (gnu_expr) = 1;

• So … see concerns above over correct compilation

of Volatile.

No_Inline

• Regehr recommends using a subprogram to

perform the santization, and making sure that

subprogram can never be inlined.

• This is intended to prevent inlining and

subsequent optimization of the sanitizing

assignment.

Pattern 1

• Combining these ideas yields a pattern for a

sanitized abstract data type:

package Sensitive is

type T is limited private; -- so no assignment

procedure Sanitize (X : out T);

pragma No_Inline (Sanitize);

private

type T is limited record -- so by-reference

F : … -- and so on…

end record;

end Sensitive;

Pattern 1

• To allow for alternative implementations (i.e. for

different targets/operating systems), the body of

Sanitize is supplied as a separate subunit.

• For a ZFP/Bare-Metal target, we might write:

separate (Sensitive)

procedure Sanitize (X : out T) is

begin

X.F := 0; -- or other valid value

pragma Inspection_Point (X);

end Sanitize;

SPARK

• In both SPARK 2005 and SPARK 2014, a sanitizing

assignment is reported as “Ineffective” by

information-flow analysis.

• So ... expect this, and justify:

pragma Warnings (Off, “unused assignment”,

Reason => “Sanitization”);

T := 0;

pragma Inspection_Point (T);

SPARK
• What about proof?

• For non-limited types, we could declare a constant
for the “sanitized value”, and use that in post-
conditions and/or assertions.

• Note, though, that the value of the constant must
be valid, so a value with representation
2#0000_0000_…# might not be OK.

• For limited types, we could declare a Boolean-
valued function, thus:

SPARK

package Sensitive is

type T is limited private; -- so no assignment

function Is_Sanitized (X : in T) return Boolean;

procedure Sanitize (X : out T)

with Post => Is_Sanitized (X);

pragma No_Inline (Sanitize);

private

-- As before…

end Sensitive;

Contents

• The problem…

• Technical issues

• Design goals

• Ada language support

• A policy for sanitization

• Related and further work

Policy

• Identification and Naming

• Project must clearly define what is “sensitive”.

• Consider global and local variables carefully…

• May also depend on physical characteristics of

memory (e.g. Stack might be in “secure RAM”,

but library-level data isn’t…)

Policy

• Identification and Naming

• Sensitive constants are not permitted.

• Define a naming convention for sensitive types,

variables and formal parameters.

• Choose convention to facilitate automated search

of compiler and tool output.

Policy

• Types and Patterns

• Use by-reference types for sensitive data.

• Use limited types as per Pattern 1 above where

possible.

• Use pragma Warnings to suppress SPARK flow

error.

Policy

• Compiler switches

• Use –gnatwa to get “useless assignment” warning

enabled.

• Use –gnatRm to verify passing mechanism.

• Use –g and –fverbose-asm to check generated

code if necessary.

Contents

• The problem…

• Technical issues

• Design goals

• Ada language support

• A policy for sanitization

• Related and further work

Related and Further Work (1)

• Special compiler switch to automatically sanitize

local data?

• -ferase-stack perhaps?

• Actually, this has already been done by the team

at www.embecosm.com in GCC and LLVM.

• Will it work with Ada?

http://www.embecosm.com/

Related and Further Work (2)

• What about a new language-defined Aspect?

Key : Word32 with Sensitive; -- ???

• Then compiler takes care of it?

Related and Further Work (3)

• A binding to C11 “stdatomic” library would be

good…

• Provides portable access to “memory fence”

instructions and so on…

Related and Further Work (4)

• What is the impact of Link-Time Optimization

(LTO)?

• No idea…

• Can we use information-flow analysis to track

values derived from sensitive data?

• Like “taint analysis” in other languages…

Homework…

Questions…

