
DATA-FLOW FRAMEWORKS FOR
WORST-CASE EXECUTION TIME ANALYSIS

JOHANN BLIEBERGER

Abstract. The purpose of this paper is to introduce frameworks based on

data-flow equations which provide for estimating the worst-case execution time

(WCET) of (real-time) programs. These frameworks allow several different
WCET analysis techniques, which range from näıve approaches to exact anal-

ysis, provided exact knowledge on the program behaviour is available. How-
ever, data-flow frameworks can also be used for symbolic analysis based on

information derived automatically from the source code of the program.

As a byproduct we show that slightly modified elimination methods can be
employed for solving WCET data-flow equations, while iteration algorithms

cannot be used for this purpose.

1. Introduction

Data-flow analysis is primarily used by compilers to optimize the performance
of the generated code (cf. [ASU86]). Data-flow analysis algorithms are also used to
solve problems in verification, debugging, testing, parallelization, vectorization and
parallel programming environments. They provide information about a program or
environment without executing the code.

A lot of theoretical results on data-flow frameworks has been derived (cf. e.g.
[KU76, KU77]) and a large number of algorithms has been developed (cf. e.g. [AC76,
GW76, HU77, Sre95, SGL98, Tar81a, Tar81b]). See [MR90, RP86] for an overview.

Worst-Case Execution Time (WCET) analysis does not have such a long-stand-
ing tradition (cf. e.g. [CBW96, HS91, ITM90, NP93, Par93, PK89, PS97, Sha89]).
Designers of real-time programming languages usually restrict language features
in order to make it possible to guarantee time bounds and introduce new language
features to let the programmer add extraneous information on the algorithms which
cannot be determined from the source code.

Several different approaches to WCET analysis have been pursued. The most
important ones are described shortly in the following:

1. In [KS86, HS91] Real-Time Euclid, a language for implementing real-time
systems, is presented. Real-Time Euclid prohibits the use of recursions and
goto-statements. Loops are restricted to time bounded loops and simple for-
loops. An algorithm for calculating an upper bound of the WCET of Real-
Time Euclid programs is described in [SHH91].

Although in the meantime it has been proved that more general loop-
statements can be used in real-time programming languages (cf. [Bli94]) and
that recursion can be employed without harm in real-time systems (cf. [BL96,
Bli00]), the concept of schedulability analysis, which is also introduced in
[HS91], is still very important for real-time applications.

One of the minor results of this paper is that goto-statements can be used
for implementing real-time systems without prohibiting schedulability analy-
sis, i.e., although gotos are present in a program, its WCET can be determined

Date: October 25, 2000.
Key words and phrases. real-time systems, worst-case execution time, data-flow analysis, sym-

bolic evaluation.

1

2 J. BLIEBERGER

effectively. We would like to note that this result sets theoretical foundations
of real-time systems and does not give arguments of whether gotos should be
used in programming using high-order programming languages or not.

2. The idea to estimate WCET of programs written in higher-level languages has
been introduced in [Sha89]. So-called schemas are used to estimate the best
and worst-case execution time of statements of higher-level languages and an
extension of Hoare logic (cf. [Hoa69]) is employed to prove the timeliness (and
correctness) of real-time programs. The method is also able to handle certain
real-time language constructs such as delays and time-outs.

Although Hoare logic is employed, the user has to give constant loop bounds
in order to let the compiler determine upper and lower bounds of the number
of iterations of a loop.

3. Continuing and extending [Sha89] best and worst-case execution time is es-
timated by employing static and dynamic program paths analysis in [Par93].
This is done by specifying program paths by regular expressions. Since pro-
cessing this information sometimes requires exponential time, an interface
definition language is introduced which allows efficient analysis but does not
have the expressive power of regular expressions.

4. Determining the execution time of a code segment is also mentioned in [GR91].
Real-time concurrent C uses a tool which originally is based on [MACT89].

5. In [PK89] language constructs have been introduced in order to let the pro-
grammer integrate knowledge about the actual behavior of algorithms which
cannot be expressed using standard programming language features. These
constructs are scopes, markers, and loop sequences. Markers are used to de-
fine the number of loop iterations if this number cannot be estimated from the
program automatically, e.g., if a general loop is used. Nevertheless all loops
are forced to have a constant upper bound.

6. In [PS97] an integer linear programming approach (similar to that of [LM95])
is employed, which together with so-called T-graphs is used to determine the
WCET of real-time programs. A T-graph is similar to a control flow graph
(CFG) of a program. In fact, a T-graph is dual to its corresponding CFG,
which means that the nodes of the T-graph can be mapped to the edges of
the CFG and the edges of the T-graph can be mapped to the nodes of the
CFG.

In [PS97] it is proved that the employed method can be used to determine
the exact timing behavior of a program and not only an upper bound of it.
This can also be proved for our approach. In addition our symbolic approach
can handle formal and generic parameters (cf. [Ada95]) too.

7. Partial evaluation is used in [NP93] to estimate the execution time of programs
at compile time. This is done by use of compile time variables, i.e., a variable
whose value is definitely known at compile time. Taking advantage of these
values, programming language constructs can be simplified thereby speeding
up the program in most cases.

This approach does not need to restrict programming language constructs
such as loops, recursion, or dynamic storage allocation as long as compile
time known values are involved. It can even solve certain simple problems
of concurrent programming and synchronization of concurrent processes at
compile time.

8. In [CBW96] WCET analysis and program proof are combined for the SPARK
Ada subset (cf. [CJM+92]). It is based on a slight generalization of [Tar81b].
The method allows WCET analysis depending on the program’s input data,
but not in such a general manner as described in this paper. In particular,
the modes introduced in [CBW96] appear automatically in our approach.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 3

procedure power(x,n: positive; y: out positive) is
h : positive; -- Node 1
l : positive := x; -- Node 1
e : positive := n; -- Node 1

begin
y := 1; -- Node 1
while e>0 loop -- Node 2

h := e mod 2; -- Node 3
e := e / 2; -- Node 3
if h=1 then -- Node 3

y := y∗l; -- Node 4
end if ;
l := l∗l; -- Node 5

end loop;
end power;

Figure 1. A Simple Procedure for Raising to a Power

This paper introduces frameworks based on data-flow equations that provide
for estimating the WCET of real-time programs. These frameworks allow several
different WCET analysis techniques with various precisions, which range from näıve
approaches to exact analysis, provided exact knowledge on the program behavior is
available. In addition, data-flow frameworks can also be used for symbolic analysis
based on information derived automatically from the source code of the program.

In Section 2 we give a short overview of data-flow frameworks and their most im-
portant properties. In Section 3 we set up a simple data-flow framework for WCET
analysis which includes most of the state-of-the-art WCET analysis techniques. In
Section 4 we provide a fully oracle-based data-flow framework for WCET analysis,
which can be shown to produce the exact timing behavior of the underlying pro-
gram. Section 5 is devoted to symbolic evaluation techniques which can be used
to replace the oracle from Section 4. Section 6 discusses our results and compares
them to other approaches known from literature.

The underlying program representation of our model is the control flow graph
(CFG), a directed labeled graph. Its nodes are the program statements, whereas
its edges represent transfers of control between basic blocks. We assume that the
WCET of each basic block is fixed and can be determined at compile time, i.e., we
do not consider effects of caching or pipelining. Cache hit/miss prediction with help
of symbolic evaluation is presented in [BFS00]; symbolic analysis of pipelining will
be treated in a forthcoming paper.

Example 1. We use a running example shown in Figure 1. The corresponding con-
trol flow graph (CFG) is depicted in Figure 2. The comments added at statements
in Figure 1 indicate in which node of the control flow graph they are contained.
Edges in the CFG show possible flow of control in procedure power. Note that
an extraneous edge from node entry to node exit has been inserted which has no
correspondence to the actual data-flow in procedure power; it is present to simplify
algorithms based on the CFG.

Remark 1.1. Throughout the paper we use the following notational conventions:
1. We write bxc to denote the smallest integer greater or equal to x.
2. By dxe we denote the greatest integer smaller or equal to x
3. By ldx we denote the binary logarithm of x and by log x the natural logarithm

of x.
4. The empty set is denoted by ∅.

4 J. BLIEBERGER

Figure 2. Control Flow Graph of Power Example

2. Data-Flow Frameworks

In this section we give a short overview of data-flow frameworks. In most cases
we will use the notation and definitions given in [MR90].

In general data-flow analysis algorithms gather facts about the use and defini-
tion of data, and information about control and data dependencies in programs.
Data-flow frameworks are algebraic structures used to encode and solve data-flow
problems. A data-flow framework for a problem involves a flow graph, a semilattice
of values, and a set of functions from the semilattice to itself. In the following we
give definitions and important properties of data-flow frameworks.

Definition 2.1. A data-flow framework D is a quadruple

D = 〈G,L, F,M〉 ,

where

G = 〈V,E, ρ〉

is the flow-graph, where V is the set of vertices, E is the set of edges and ρ is the
unique entry node and the in-degree of ρ is zero,

L = 〈A, 0, 1,∧〉

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 5

is a meet semilattice, that is
• A is a set (often a power set),
• 0 and 1 are distinguished elements of A,
• ∧ is an operation meet with the following properties:

∧ is commutative and associative
a ∧ a = a

a ∧ 0 = 0
a ∧ 1 = a

F is a class of functions

F ⊆ {f : L→ L};

• F contains the identity function ı, and
• usually the constant functions 0 and 1, and
• is closed under composition and pointwise meet; that is,

∀f, g ∈ F : f ◦ g ∈ F
(where the notation fk represents iterated composition of f and f0 = ı), and

if h(x) = f(x) ∧ g(x), then h ∈ F ;

and

M : E → F

If p = (p0, p1, . . . , pn) is a path in G with ei = (pi−1, pi), then
• M(Λ) = ı where Λ is the empty path and
• M(p) = M(en) ◦M(en−1) ◦ · · · ◦M(e1).

The meet operation implies a reflexive partial order ≤ defined by

a ≤ b iff a ∧ b = a.

Example 2. A well-known data-flow problem is the Reaching Definitions Problem
(cf. e.g. [ASU86, MR90]): A given variable X may be defined in several basic blocks
of the procedure, and the interesting question is: Which of these definitions reach
the entry to some other basic block? This information could be used to answer the
questions: Which definitions of X reach a given use of X in an expression? Is X used
anywhere before it is defined?

A definition d of X in block B is downward-exposed if no other definition of X
occurs after d in B. A downward-exposed definition of X in block B′ reaches the
entry of block B if there is a path from the exit of B′ to B on which no other
definition of X occurs.

This leads to the following set of equations:

Reach(B) =
⋃

B′∈Preds(B)

[Reach(B′) ∩ Pres(B′) ∪Gen(B′)]

Reach(ρ) = ∅,

where Reach(B) is the set of definitions reaching the top of B, Preds(B) is the set of
predecessors of B, Pres(B) is the set of definitions preserved through B (that is, not
superseded by more recent definitions), and Gen(B) is the set of downward-exposed
definitions generated in B.

6 J. BLIEBERGER

The flow-graph G of the reaching definitions problem is the flow-graph of the
underlying procedure. L is the power set lattice on the set of downward-exposed
definitions in the procedure (with the reversed order, meet is union, 1 = ∅ and
0 = the universal set of all downward-exposed definitions). F is the set of functions
{f(X) = X∩A∪B | A,B ∈ L}; and M is the mapping assigning to an edge (B,B′)
the function f(X) = X ∩ Pres(B) ∪Gen(B).

In the following we will give some properties of data-flow frameworks. Many
more and more restrictive properties are discussed in literature. Since, however, our
intention is primarily in proving and disproving properties of data-flow frameworks
for worst-case execution time analysis, we restrict our interest to the following
properties.

Properties 2.1.
1. A semilattice L is closed under finite meets if it is closed under arbitrary non-

empty meets. If it is also closed under arbitrary infinite meets, it is called
closed under infinite meets [Kil73].

2. A semilattice has the descending chain condition (d.c.c.) if any descending
chain of semilattice elements

x1 > x2 > . . .

is finite. The relation > is defined by

a > b iff a ≥ b and a 6= b.

3. A function f is monotone if

∀f ∈ F ∀x, y ∈ L : x ≤ y ⇒ f(x) ≤ f(y).

f is distributive if

∀f ∈ F ∀x, y ∈ L : f(x ∧ y) = f(x) ∧ f(y),

and continuous for (in)finite meets if L is closed under arbitrary (non-empty)
(in)finite meets and

∀f ∈ F ∀ non-empty sets {xi}i∈I ⊆ L : f

(∧
i∈I

xi

)
=
∧
i∈I

f(xi).

4. For f ∈ F , define

f [k] =
k−1∧
i=0

f i.

We say that F is bounded if for any f ∈ F the chain {f [i]} is finite.
5. f@ is called a pseudo-transitive closure of f if

(a) f@(x) ≤ f i(x) ∀x ∈ L, i ≥ 0, and
(b) if x ∈ L is such that x ≤ f(x) then x ≤ f@(x).

Example 2. The reaching definition problem is monotone and distributive, closed
under infinite meets and continuous for infinite meets, F is bounded∗ and it has a
pseudo-transitive closure.†

The set of equations for the reaching definitions problem of the power example
is shown in Table 1 where we have written Xi instead of Reach(Bi). Note that we
can restrict our interest to the variables e, h, l, and y because x and n cannot not
be overwritten within procedure power (compare [Ada95] for semantic details).

We will use this set of equations in the following to solve the reaching definitions
problem by an iteration algorithm.
∗ In fact Reaching Definition has much more restrictive properties but those given above are

enough to contrast this example with the data-flow frameworks given in Sections 3, 4, and 5.
† A more restrictive closure exists.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 7

Xentry = ∅
Xexit = X2 ∩ {e, h, l, y} ∪ ∅
X1 = Xentry ∩ {e, h, l, y} ∪ ∅
X2 = (X1 ∩ {h, y} ∪ {e, l}) ∪ (X5 ∩ {e, h, y} ∪ {l})
X3 = X2 ∩ {e, h, l, y} ∪ ∅
X4 = X3 ∩ {l, y} ∪ {e, h}
X5 = (X3 ∩ {l, y} ∪ {e, h}) ∪ (X4 ∩ {e, h, l} ∪ {y})

Table 1. Set of Equations for Reaching Definitions Problem of
Power Example

Xentry {e, h, l, y} ∅
Xexit {e, h, l, y} {e, h, l, y}
X1 {e, h, l, y} ∅
X2 {e, h, l, y} {e, h, l, y}
X3 {e, h, l, y} {e, h, l, y}
X4 {e, h, l, y} {e, h, l, y}
X5 {e, h, l, y} {e, h, l, y}

Table 2. Results of Reaching Definitions Problem of Power Ex-
ample Obtained by an Iteration Algorithm

1. We first initialize the variables Xentry, . . . , X5 to {e, h, l, y} the zero element
(0) of the underlying semilattice.

2. Then according to the set of equations in Table 1, we produce new values for
the variables X... by inserting the old ones on the right side of the equations.

3. This procedure is continued until no change in X... occurs.
We obtain the results in Table 2. As can be seen the algorithm “converges” very
fast, which is a great advantage of iteration algorithms. However, as we will see in
the following section, they cannot be employed for every data-flow framework.

3. A Data-Flow Framework for Simple WCET

In this section we define a simple data-flow framework for worst-case execution
time analysis. The idea is based on methods for WCET analysis widely used in
literature, e.g. [PK89, Sha89, HS91, ITM90, GR91]. In general, WCET analysis
has to deal with two problems‡:

1. Determine the timing behavior of if-then-else statements.
2. Determine the number of loop iterations.

Our simple approach handles case (item 1) by defining that (roughly speaking) the
WCET of an if-then-else statement is equal to the maximum of the WCET of the
then- and the else-branch. In case (item 2) we assume that there is an oracle which
when given a certain loop statement, returns the (maximum) number of iterations
of that loop. Usually the programmer has to state in the program code how often a
certain loop iterates, i.e., it is assumed that the programmer has knowledge which
cannot be derived from the source code alone. In this case the programmer takes
the part of the oracle.

We define a semilattice based on set T , the set of time values. Time can be
measured either by natural numbers (e.g. number of machine cycles) or by real
numbers. Thus T is either equal to N0 or to R+

0 .

‡ We ignore recursive procedures here. Solutions to the problem of WCET analysis of recursive
real-time procedures can be found in [BL95, BL96, Bli00].

8 J. BLIEBERGER

We associate with each basic block B a number τB ∈ T which accounts for the
time used by the execution of B. We assume that each τB is invariable, i.e., the
timing behavior of a basic block does not change if it is executed several times.
This excludes effects of caching or pipelining from our model. Some research on
this subject has been conducted (cf. [HBW94, HWH95, LL94, AMWH94]) but these
issues are out of the scope of this paper. In [BFS00] cache hit analysis is performed
with help of symbolic evaluation.

The data-flow framework defined below will allow for estimating the overall tim-
ing behavior of a procedure by employing solution algorithms well-known for “clas-
sic” data-flow frameworks.

Definition 3.1.
L =

〈
N0(R+

0), 0,∧
〉

where N0 = {0, 1, 2, 3, . . . } is the set of non-negative integers, R+
0 = {x ≥ 0 | x ∈ R}

is the set of non-negative real numbers, and where for all a, b ∈ N0(R+
0)

a ∧ b := max(a, b).

We call this operator the max meet operator.

The relation imposed by this meet operator is ≥.

Remark 3.1. Note that the lattice defined in Definition 3.1 is infinite, i.e., there is
a 0 but no 1-element.

Properties 3.1.
1. L does not have d.c.c. because L is infinite.
2. L is closed under finite meets. L is not closed under infinite meets, e.g.

∞∧
i=1

i→∞ 6∈ L.

3. L is continuous for finite meets.

Definition 3.2. The function space F is defined by

F = {fc(x) = x+ c}, where x, c ∈ N0(R+
0).

Properties 3.2.
1. F is monotone and distributive.

Proof. For all fc ∈ F and for all x, y ∈ L
x ≥ y ⇒ fc(x) = x+ c ≥ y + c = fc(y).

Thus F is monotone.
For all fc ∈ F and for all x, y ∈ L

fc(x ∧ y) = max(x, y) + c = max(x+ c, y + c) =

max(fc(x), fc(y)) = fc(x) ∧ fc(y).

Thus F is distributive.

2. F is continuous for finite meets.
3. F is not bounded.

Proof.

f [k]
c (x) =

k−1

Max
i=0

(
f ic(x)

)
=

k−1

Max
i=0

(x+ i · c) =

x+
k−1

Max
i=0

(i · c) = x+ (k − 1) · c.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 9

Xentry = τentry

Xexit = max(Xentry, X2) + τexit

X1 = Xentry + τ1
X2 = max(X1, X5) + τ2
X3 = X2 + τ3
X4 = X3 + τ4
X5 = max(X3, X4) + τ5

Table 3. Set of Equations for Power Example

4. There does not exist a pseudo-transitive closure for F .

Proof. A function f@ does not exist for all x ∈ L, i ≥ 0 such that

f@c (x) ≥ f ic(x) = x+ i · c.

Definition 3.3. The mapping M assigns to an edge (B,B′) the function fτB (x) =
x+ τB .

Remark 3.2. Since M(e) does not depend on the target, but only on the source of
e, M could be viewed as defined on V alone.

Definition 3.4. Definition 3.3 results in the following set of WCET equations

WCET(B) = Max
B′∈Preds(B)

WCET(B′) + τB

WCET(ρ) = τρ,

where Preds(B) denotes the set of predecessors of B and τB ∈ T is the time used
to execute basic block B.

Example 1. The set of equations for our example is shown in Table 3. For sake of
simplicity we write Xi instead of WCET(Bi).

From the properties derived above the following observation can be proved easily.

Observation 1. If the control flow graph G = (V,E, ρ) contains loops, the WCET
data-flow framework defined in Definition 3.4 cannot be solved by iteration algo-
rithms.

Proof. Since L does not have d.c.c. and F is not bounded, each loop statement
implies that the WCET-values increase permanently.

Hence the iteration does not converge.
As an example use the set of equations in Table 3 with arbitrary starting values.

Insert these values on the right side of the equations, then perform this procedure
with the new values, and so on.

Remark 3.3. Note that iteration algorithms do not make use of the oracle. In
contrast, as will be shown below, elimination methods can exploit this information
quite well.

In the following we will show how the data-flow framework for WCET analysis
can be solved by elimination algorithms. Our arguments are based on [Pau88].

The starting point of [Pau88] are recursive definitions or equations. These equa-
tions are solved by first building a dependency graph. The dependency graph

10 J. BLIEBERGER

contains an edge from x1 to x2 if the variable x2 appears on the right side of the
equation for x1.

If the dependency graph is acyclic, the set of equations can be solved by simple
insertions, thereby eliminating one variable after the other. If it contains cycles,
insertions alone are not enough to obtain a solution. However, if a rule is available
for replacing such an equation with one in which the left variable does not appear
on the right, with a guarantee that any solution to this new equation set will satisfy
the original, then it becomes possible to move the elimination process forward. Such
a rule is called loop-breaking rule.

More formally, assume a set of equations E of the form{
Ei : xi = Wi(xi1 , . . . , xini) | i = 1, . . . , n

}
where Ei is the label for the ith equation. For each legitimate selection of val-
ues in their respective domains assigned to the right side variables {xi1 , . . . , xini},
Wi(xi1 , . . . , xini) is constructible and has a single value. The set of values that
Wi(xi1 , . . . , xini) takes, as the right side variables assume all their legitimate val-
ues, has a partial ordering, inducing the relation ≤.

A substitution transformation of E, s(E, i, j), for 1 ≤ i, j ≤ n, yields the result of
substituting the right side of Ei for an occurrence of xi on the right side of equation
Ej , i 6= j, and simplifying the resultant right side of Ej according to identities
relating different expressions of Wi. s(E, i, j) differs from E at most in having
different Ej equations. s(E, i, j) = E if xi does not occur non-trivially in Wj .

An equation Ei is said to have a loop-breaking rule if there is an equation

ei : xi = wi(xi1 , . . . , xini) (= b(E, i))

for xi in which
LB-1: xi does not occur (non-trivially) on the right of ei.
LB-2: No variable that was not originally on the right is introduced.
LB-3: Every solution to ei is a solution to Ei.
LB-4: For every solution S to Ei, there is a solution s of ei so that s ≤ S.
A set of equations E is said to have a loop-breaking rule if for each equation

in E and for any equation resulting from E by a sequence of substitutional and
loop-breaking transformations, there is a loop-breaking rule.

Properties 3.3.
1. Each solution of s(E, i, j) is a solution of E and vice versa.
2. Each solution s of b(E, i) is a solution to Ei, and for every solution S to E,

there is a solution s of b(E, i) so that s ≤ S.
3. If a sequence of applications of transformations to a set of equations E pro-

duces the set E′, then the solution to E′ is also a solution to E, and if
SOL = {xi = Si | i = 1, . . . , n} is a solution to E, then there is a solu-
tion sol = {xi = si | i = 1, . . . , n} of E′ with {si ≤ Si | i = 1, . . . , n} (we say
sol ≤ SOL).

Proof. Properties 3.3.1–3 are proved in [Pau88].

A Gaussian-Elimination-Type algorithm can be used to solve sets of equations.
For data-flow analysis the special structure of flow graphs can be exploited to con-
struct algorithms with improved time complexity. For example see [AC76, HU77,
Tar81a, GW76, Sre95, SGL98] and [RP86] for an overview of the first four algo-
rithms. For our purposes we use the algorithm of [Sre95, SGL98].

Returning to our equations of Definition 3.4, we have to determine how to insert
one equation into another, how to simplify our equations, and how to set up a
loop-breaking rule.

We define the following normal form for our WCET equations:

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 11

Definition 3.5. A WCET equation is in normal form if it has the form

WCET(Bi) = Max
j∈J⊆{1,...,n}

(
WCET(Bj) + τnj

)
where τnj are expressions not involving WCET(.).

It is easy to see that an equation can always be brought to normal form.
Our loop-breaking rule is defined as follows:

Definition 3.6. Assume we have the following equation

Ei : WCET(Bi) =

max
(

WCET(Bi) + τni , Max
j∈J⊆{1,...,n},j 6=i

(
WCET(Bj) + τnj

))
.

Then we replace it with

ei = b(E, i) : WCET(Bi) =

ORACLE(iter) · τni + Max
j∈J⊆{1,...,n},j 6=i

(
WCET(Bj) + τnj

)
,

where ORACLE(iter) denotes the number of iterations of the loop. Finally we bring
equation ei to normal form.

For WCET analysis conditions LB-3 and LB-4 cannot be interpreted in an ap-
propriate manner. We therefore replace them with the following conditions:

WCET-LB-3: For equation Ei

Ei : xi = Wi(xi1 , . . . , xi, . . . , xini)

define the recurrence relation Ri:

xi(0) = W
(0)
i (xi1 , . . . , xini),

xi(k + 1) = Wi(xi1 , . . . , xi(k), . . . , xini)

where W (0)
i (. . .) is a function not depending on xi which can somehow be

derived from Wi.
Next consider o = ORACLE(iter) not a constant value returned by the

oracle but a variable o ∈ N0. Then every solution si(o) to equation ei has to
be a solution to Ri, i.e.,

si(0) = W
(0)
i (xi1 , . . . , xini),

si(o+ 1) = Wi(xi1 , . . . , si(o), . . . , xini).

WCET-LB-4: For every solution S to Ei, there is a solution s of ei so that
s ≥ S.

Note that WCET-LB-4 differs from LB-4 only by replacing “≤” with “≥” and that
Properties 3.3.1–3 can be proved with “≤”, LB-3 and LB-4 replaced with “≥”,
WCET-LB-3 and WCET-LB-4, respectively.

It remains to show that our loop-breaking rule fulfills the four conditions LB-1,
LB-2, WCET-LB-3, and WCET-LB-4. We obtain:

LB-1: WCET(Bi) does not occur on the right side of ei.
LB-2: No additional variable is introduced on the right.
WCET-LB-3: Setting

W
(0)
i (. . .) =

∧
j∈J⊆{1,...,n},j 6=i

(
WCET(Bj) + τnj

)
,

it is easy to see that this condition is valid too.
In fact, every solution si(o) with o ≥ ORACLE(iter) will be a solution to

Ei.

12 J. BLIEBERGER

Xentry = τentry

Xexit = max(Xentry + τexit, X2 + τexit)
X1 = Xentry + τ1
X2 = max(X1 + τ2, X5 + τ2)
X3 = X2 + τ3
X4 = X3 + τ4
X5 = max(X3 + τ5, X4 + τ5)

Table 4. Set of Equations for Power Example in Normal Form

WCET-LB-4: This condition is also easy to verify.

Example 1. Returning to our example, the equations brought to normal form are
shown in Table 4. Now, we solve this set of equations by applying the algorithm
described in [Sre95, SGL98]. We write “a → b” for indicating that equation Ea is
inserted into Eb and we write “c 6�” for loop-breaking equation Ec. Furthermore
we use the abbreviation τd,e for τd + τe, which we generalize for arbitrary sets of
subscripts.

We solve our set of equations assuming that n = 11, i.e., we compute an estimate
for WCET of procedure power called with the arbitrary parameter x and n = 11.

4→ 5:
X5 = max(X3 + τ5, X3 + τ4,5) = X3 + τ4,5

by definition of the max meet operator.
5→ 2:

X2 = max(X1 + τ2, X3 + τ2,4,5)

3→ 2:
X2 = max(X2 + τ2,3,4,5, X1 + τ2)

2 6�:

X2 = ORACLE(iter) · τ2,3,4,5 +X1 + τ2 = X1 + τ2 + 4 · τ2,3,4,5
2→ exit:

Xexit = max(Xentry + τexit, X1 + τexit,2 + 4 · τ2,3,4,5)

1→ exit:
Xexit = (Xentry + τexit,1,2 + 4 · τ2,3,4,5)

Note that the contribution of the edge (entry → exit) disappears because of
the max meet operator. If this would not have happened, we had to “subtract”
it from the result below.

entry→ exit:
Xexit = τexit,entry,1,2 + 4 · τ2,3,4,5

As can be easily verified, this equals the WCET estimate w.r.t. the max meet
operator. Unfortunately the estimate ignores that the edge (3→ 5) is followed one
time and the path (3→ 4→ 5) is followed only three times.

As can be seen from the discussions and from the example above, elimination
algorithms are well-suited for solving data-flow equations which describe the WCET
behavior of procedures. However, one drawback of the max meet operator has been
pointed out at the end of the example, namely that we do not get an exact WCET
estimate. We will show in the following section how to obtain such an exact WCET
estimate by employing a fully oracle-based approach.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 13

Pentry(z) = zτentry

Pexit(z) = zτexit
(
0 · Pentry(z) + 1

5 · P2(z)
)

P1(z) = zτ1Pentry(z)
P2(z) = zτ2 (P1(z) + P5(z))
P3(z) = zτ3 4

5P2(z)
P4(z) = zτ4 3

4P3(z)
P5(z) = zτ5

(
1
4P3(z) + P4(z)

)
Table 5. Set of Equations for Power Example

4. A Fully Oracle-Based Data-Flow Framework

In contrast to Section 3 we define an oracle-based meet operator ∧. For each
edge (B′, B) the oracle returns a real value 0 ≤ ORACLE(B′, B) ≤ 1 such that∑

B′∈Succs(B)

ORACLE(B,B′) = 1.

ORACLE(B,B′) is a measure of how often the edge (B,B′) is taken by executing
the underlying procedure compared to the edges through the other successors of
B. We call ORACLE(B,B′) execution frequency (compare [Ram96] for a similar
approach).

By allowing ORACLE(B,B′) = 0 we are able to model dead paths.
In contrast to Section 3 we set up equations of generating functions Pi(z) in the

following way.

Definition 4.1.

Pi(z) = zτi
∑

j∈Preds(i)

ORACLE(j, i)Pj(z),

Pentry(z) = zτentry .

Again the underlying semilattice is not limited, which implies that the equations
of Definition 4.1 cannot be solved by iteration algorithms.

Since the resulting equations are all linear equations, the loop breaking rule can
be defined by simply solving the equation in a straight-forward way. Thus the
solutions are rational functions.

Employing well-known facts of generating functions (cf. e.g. [GKP89]), the worst-
case timing behavior of the underlying program is given by

d

dz
Pexit(z)

∣∣∣∣
z=1

which means that we differentiate Pexit w.r.t. z and then set z = 1.

Remark 4.1. Note that PB(1) equals the number of how often basic block B is
executed.

Example 1. The set of equations of our power example (n = 11) take now the
form shown in Table 5. Note that we have modeled the edge (entry → exit) as
being a dead path by assigning a path execution frequency of zero.

Solving this set of equations again using the algorithm described in [Sre95,
SGL98], we proceed as follows:

4→ 5:

P5(z) = zτ5
(

1
4

+ zτ4
3
4

)
P3(z)

14 J. BLIEBERGER

5→ 2:

P2(z) = zτ2
(
P1(z) + zτ5

(
1
4

+ zτ4
3
4

)
P3(z)

)
3→ 2:

P2(z) = zτ2P1(z) + zτ2,3,5
(

1
5

+ zτ4
3
5

)
P2(z)

2 6�:

P2(z) =
zτ2P1(z)

1− zτ2,3,5
(

1
5 + zτ4 3

5

)
2→ exit:

Pexit(z) =
1
5
· zτ2,exitP1(z)

1− zτ2,3,5
(

1
5 + zτ4 3

5

)
1→ exit:

Pexit(z) =
1
5
· zτ1,2,exitPentry(z)

1− zτ2,3,5
(

1
5 + zτ4 3

5

)
entry→ exit:

Pexit(z) =
1
5
· zτentry,1,2,exit

1− zτ2,3,5
(

1
5 + zτ4 3

5

)
Note that for example P2(1) = 5, P3(1) = 4, and P4(1) = 3.

It remains to calculate
d

dz
Pexit(z)

∣∣∣∣
z=1

= τentry + τ1 + 5τ2 + 4τ3 + 3τ4 + 4τ5 + τexit.

This is the exact timing behavior of procedure power for n = 11.

In fact we have the following theorem.

Theorem 4.1. Solving a set of WCET equations based on the frequency meet op-
erator, we always obtain the exact timing behavior of the underlying procedure and
not a less accurate estimate of the WCET.

Proof. The proof is obvious from the definitions and from the discussion above,
provided that the oracle always produces correct values, i.e., ORACLE(B′, B) gives
the exact path execution frequencies.

It remains to mention some results on the performance of elimination algorithms.

Theorem 4.2. One of the algorithms presented in [Sre95, SGL98] solves data-flow
equations in O(log |N | · |E|) insertions and loop-breaking operations, where |N | de-
notes the number of nodes in the CFG and |E| is the number of edges of the CFG.
The CFG is supposed to be reducible.

The method described in [Tar81a] takes O(|E| ·α(|E|, |N |)) time, where α denotes
the inverse Ackermann’s function. Thus this algorithm behaves almost linear in time
on reducible CFGs.

Remark 4.2. If the oracle gives its answer in O(1) time, we have at hand algorithms
allowing efficient WCET analysis of (real-time) programs.

5. Getting Rid of the Oracle – A Symbolic Evaluation Approach

In this section we show how we can replace the oracle with symbolic evaluation
and by solving conditional recurrence relations.

Before we give a formal foundation of our symbolic evaluation approach, we study
our power example in detail to justify our theoretical treatment in the rest of the
section.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 15

Example 1. In contrast to Sections 3 and 4 we will not assume that n = 11, but
we will derive symbolic formulas for the quantities of interest.

First we show how the number of loop iterations of procedure power can be
determined. Now, the condition at the loop header (e > 0) is solely responsible
for loop completion. Taking a closer look to the loop body, we see that there is a
simple recurrence relation associated to variable e. Since e = n before the loop is
entered the first time, we obtain for k ≥ 0:

e(0) = n

e(k + 1) =
⌊
e(k)

2

⌋
(1)

This forms a strictly decreasing sequence of numbers and the loop completes if
e(ω) = 0, where ω denotes the smallest index fulfilling e(ω) = 0.

If we can determine ω from the recurrence relation (1), we have found a symbolic
formula for the number of iterations of the loop, which clearly depends on the initial
value e(0) = n. Fortunately we can find a closed form expression for the solution
of (1). Using well-known facts of the floor-function (cf. [GKP89]), we obtain for
k ≥ 0

e(k) =
⌊ n

2k
⌋
.(2)

Now e(k) becomes zero if the nominator in (2) gets greater than the denominator,
i.e., if

2k > n.

Taking logarithms we get
ω = bldnc+ 1.

This is a reasonable simple formula, which the oracle can use for producing the
number of loop iterations.

The other interesting quantity for determining the WCET of procedure power
is how often Node 4 of the corresponding control flow graph is executed. We are
successful if we can give a symbolic formula for this frequency in terms of n. Again
we can set up a recurrence relation for the frequency f(k), (k ≥ 0):

f(0) = 0,

f(k + 1) =

{
1 + f(k), if e(k) mod 2 = 1,
f(k), otherwise.

(3)

We can give a closed formula for f(k) if we accept the function ν(k), which gives
the number of ones in the binary representation of k, to be a “primitive function”
that can be used in closed-form expressions. ν(k) can be defined by

ν(0) = 0,

ν(2k) = ν(k),

ν(2k + 1) = 1 + ν(k).

Then recurrence (3) is solved by

f(k) = ν(k).(4)

If ν(.) is not considered a “primitive function”, the oracle can replace ν(k) with
an upper bound of ν(k), thereby obtaining an upper bound for the WCET, and not
a formula for the exact timing behavior. The proposed upper bound is

ν(k) ≤ bld kc+ 1.

Summing up we either derive the exact formula

WCET = τexit + τentry + τ1 + τ2 + (bldnc+ 1) · (τ2 + τ3 + τ5) + ν(n) · τ4

16 J. BLIEBERGER

syntax semantics
null [S1, p1] ∪ · · · ∪ [Sk, pk]
s1;s2 val(s2, val(s1, [S1, p1] ∪ · · · ∪ [Sk, pk]))
v := E [vset(S1, v, val(E,S1)), p1] ∪ · · · ∪

[vset(Sk, v, val(E,Sk)), pk]

Table 6. Evaluating Simple Statements

or the upper bound

WCET ≤ τexit + τentry + τ1 + τ2 + (bldnc+ 1) · (τ2 + τ3 + τ4 + τ5).

5.1. Symbolic Evaluation. Symbolic evaluation is a form of static program analy-
sis in which symbolic expressions are used to denote the values of program variables
and computations (cf. e.g. [CHT79, Plo80, CR81, Sch96, BFS00, BB98, BBS99,
BBS00, FS97]). In addition a path condition describes the impact of the program’s
control flow onto the values of variables and the condition under which control flow
reaches a given program point.

5.1.1. Program State and Context. The state S of a program is a set of pairs
{(v1, e1), . . . , (vm, em)} where vi is a program variable and ei is a symbolic ex-
pression describing the value of vi for 1 ≤ i ≤ m. For each variable vi there exists
exactly one pair (vi, ei) in S.

A program consists of a sequence of statements that may change S.
A path condition specifies a condition that is valid at a certain program point.

If conditional statements are present, there may be several different valid program
states at the same program point. A different path condition is associated with
each of them.

Pairs of states S and path conditions C specify a program context which is defined
by

k⋃
i=1

[Si, Ci]

where k denotes the number of different program states valid at a certain program
point. A program context completely describes the variable bindings at a specific
program point together with the associated path conditions.

The function vget(S, v) is used to extract the value of variable v from program
state S, vset(S, v, n) returns the state that is implied by setting the value of v in S
to n.

5.1.2. Expressions and Simple Statements. Expressions are evaluated symbolically
in such a straightforward manner that we do not elaborate on details. The interested
reader is referred to [CHT79, FS97] for a more complete treatment of this issue for
certain programming languages.

Examples for simple statements are given in Table 6. We use val(. . .) for denoting
symbolic evaluation of program contexts. Of course, details of evaluating simple
statements may differ from programming language to programming language, thus,
again, we do not go too deeply into details.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 17

5.1.3. Conditional Statements. In case of an if-statement both branches are evalu-
ated according to

val(if c then s1 else s2, [S1, p1] ∪ · · · ∪ [Sk, pk]) 7→
val(s1, [S1, p1 ∧ val(c,S1)] ∪ · · · ∪

[Sk, pk ∧ val(c,Sk)]) ∪
val(s2, [S1, p1 ∧ ¬ val(c,S1)] ∪ · · · ∪

[Sk, pk ∧ ¬ val(c,Sk)]).

Case-statements can be treated in a similar way.

5.1.4. Loop Statements. For a while-statement there are two cases:
1. the loop terminates and
2. the loop does not terminate.

In case (item 1) the path condition and the negated loop condition build the new
path condition. In case (item 2) the loop is evaluated recursively and the path
condition is extended by the (non-negated) loop condition.

val(while c do s, [S1, p1] ∪ · · · ∪ [Sk, pk]) 7→
val(while c do s,

val(s, [S1, p1 ∧ val(c,S1)] ∪ · · · ∪
[Sk, pk ∧ val(c,Sk)]) ∪

[S1, p1 ∧ ¬ val(c,S1)] ∪ · · · ∪
[Sk, pk ∧ ¬ val(c,Sk)])

Clearly in only very rare cases we will obtain a symbolically decidable loop. For
all the other loops we have to use alternate approaches. We will elaborate on this
issue later (cf. Definition 5.4).

Other loop-statements can be treated similarly.

5.2. A Data-Flow Framework for Symbolic Evaluation. In order to set up
a data-flow framework for symbolic evaluation of programs, we first note that a
basic block contains simple statements and expressions only. Control flow affecting
statements (ifs, loops, . . .) are mirrored by the structure of the control flow graph.
The conditions used for affecting the control flow, however, are evaluated at the end
of the basic block which has more than one successor. We assume in the following
that an edge (of the CFG) e = (B′, B) has assigned a condition Cond(B′, B) which
must evaluate to true for the control flow to follow this edge. In case of the then-
branch of an if-statement Cond is the condition of the if-statement, in case of the
else-branch it is the negated condition of the if-statement, in case of a while-loop
Cond is the condition at the loop header for the edge going to the loop body, and
for the edge not going to the loop body it equals the exit condition. For-loops can
be modeled similarly.

In case of general loops with exit-statements Cond is the condition at the loop
header for the edge going to the loop body, and for the edge not going to the loop
body (if any) it equals the negated condition at the loop header. For each edge
leaving the loop its Cond is the corresponding exit condition.

In the following we assume that each basic block does not have more than two
successors§.

Definition 5.1. We start by defining a meet semilattice for program contexts as
follows

L = 〈A, 0, 1,∪〉 ,
§ This assumption is no real restriction since it can be generalized to any number of successors

in a straightforward manner.

18 J. BLIEBERGER

where A denotes the power set of program contexts, 0 is the set of all program
contexts, 1 is the empty set, and ∪ is the symeval meet operator .

Definition 5.2. We define the following set of equations for the symbolic evalua-
tion framework:

SymEval(ρ) = [S0, C0],

where S0 denotes the initial state containing all variables which are assigned their
initial values, and C0 is true,

SymEval(B) =⋃
B′∈Preds(B)

PrpgtCond(B′, B,SymEval(B′)) | LocalEval(B),

where LocalEval(B) = {(vi1 , ei1), . . . , (vim , eim)} denotes the symbolic evaluation
local to basic block B. The variables that get a new value assigned in the basic
block are denoted by vi1 , . . . ,vim . The new symbolic values are given by ei1 , . . . ,eim .
It is important to note that the variables contained in the symbolic expressions are
either global variables, parameters or variables getting assigned a symbolic value
before this basic block is executed. The propagated conditions are defined by

PrpgtCond(B′, B,PC) ={
Cond(B′, B)� PC, if B′ has two successors,
PC, otherwise.

Denoting by PC a program context, the operation � is defined as follows:

Cond(B′, B)� PC = Cond(B′, B)� [S1, p1] ∪ · · · ∪ [Sk, pk]

= [S1,Cond(B′, B) ∧ p1] ∪ · · · ∪ [Sk,Cond(B′, B) ∧ pk].

Note that the definition of PrpgtCond(. . .) prevents the symbolic evaluation
framework from being bounded. Thus it cannot be solved by iteration algorithms.
By defining a suitable loop-breaking rule, however, we can still employ elimination
algorithms.

Before we give our loop-breaking rule, we define a normal form for SymEval
equations.

Definition 5.3. A SymEval equation Ei is in normal form if it has the form

Ei : SymEval(Bi) = ⋃
1≤j≤r,1≤ij≤n

(
Cj � SymEval(Bij)

)∣∣ {(vj1 , ej1), . . . , (vjm , ejm)},

where 1 ≤ jk ≤ m.

Remark 5.1. Note that it is possible to bring any SymEval equation to normal form
because of the following properties of the involved operators (the Ci are conditions,
PCi are program contexts, and LocalEvali denote local symbolic evaluations):

C1 � (C2 � PC1) = (C1 ∧ C2)� PC1

(C1 � PC1 | LocalEval1) | LocalEval2 =

C1 � PC1 | (LocalEval1 | LocalEval2)

C1 � (PC1 ∪PC2) = (C1 � PC1) ∪ (C1 � PC2)

(PC1 ∪PC2) | LocalEval1 = (PC1 | LocalEval1) ∪ (PC2 | LocalEval1)

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 19

Definition 5.4. The loop-breaking rule for SymEval equations is defined as follows:
Assume we have the following equation (we use Xi for SymEval(Bi) as a shorthand)

Ei : Xi =
⋃

1≤j≤r,1≤ji≤n

(Cj �Xi)| {(vj1 , ej1), . . . , (vjs , ejs)} ∪⋃
1≤k≤t,1≤ik≤n,ik 6=i,1≤k≤n

(Ck �Xik)| {(vk1 , ek1), . . . , (vku , eku)},

then we replace it with

ei : Xi =
⋃

1≤k≤t,1≤ik≤n,ik 6=i,1≤k≤n

((Ck �Xik)| {(vk1 , ek1), . . . , (vku , eku)})|LoopExit,

where
LoopExit = {(vj1 , vj1(⊥, ω`)), . . . , (vjt , vjt(⊥, ω`))}

for all variables vji being contained in⋃
1≤j≤r

{(vj1 , ej1), . . . , (vjs , ejs)}.

The purpose of our loop-breaking rule is to replace a loop by a set of recur-
rence relations. Each induction variable (cf. [ASU86]) gives raise to an (indirect)
recursion. Let v be such a variable, then v(v0, ω`) denotes the symbolic solution
of the recursion, where v0 is a suitable initial value and ω` denotes the number of
iterations of loop `¶ (v(v0, 0) = v0). If no initial value is known or the initial value
is irrelevant to the solution, we write v(⊥, ω`).

It is easy to see that Definition 5.4 fulfills condition LB-1 to LB-4 in Section 3.
Thus, as a byproduct, we have the following observation.

Observation 2. Symbolic evaluation can be performed on reducible and irreducible
control flow graphs.

Proof. The proof follows immediately from the fact that for instance the algorithm
for solving data-flow equations by elimination presented in [Sre95, SGL98] is capable
of handling both reducible and irreducible flow graphs.

In order to perform symbolic evaluation according to the SymEval framework,
we still have to clarify
• how to set up the recurrence relation during loop-breaking,
• how to handle {. . . , (v, e1), . . . } | {. . . , (v, e2), . . . },
• {. . . , (v, e), . . . } | {. . . , (w, e(v)), . . . },
• {. . . , (v, e), . . . } | {. . . , (v, v(⊥, ω)), . . . },
• [{. . . , (v, e), . . . }, C(. . . , v, . . .)],
• [{. . . , (v, v(v0, ω)), . . . }, C(. . . , v, . . .)],
• [{. . . , (v, v(v0, ω)), . . . }, C(. . . , v(⊥, ω), . . .)], and
• how to handle arrays and pointers.

Definition 5.5.
1. Sequence – If a situation like

{. . . , (v, e1), . . . } | {. . . , (v, e2), . . . },
is encountered during symbolic evaluation, we replace it with

{. . . , (v, e2), . . . }.
The pair (v, e1) is not contained in the new set.

¶ Each loop gets assigned a unique number ` ∈ N.

20 J. BLIEBERGER

2. Expression Substitution – If a situation like

{. . . , (v1, e1), . . . } | {. . . , (v2, e2(v1)), . . . },
where e(v) denotes an expression involving variable v, is encountered during
symbolic evaluation, we replace it with

{. . . , (v1, e1), . . . , (v2, e2(e1)), . . . }.
3. Initial Iteration Value – If a situation like

{. . . , (v, e), . . . } | {. . . , (v, v(⊥, ω)), . . . }
is encountered during symbolic evaluation, we replace it with

{. . . , (v, v(e, ω)), . . . }.
The pair (v, e) is not contained in the new set.

For the situations discussed above it is important to apply the rules in the
correct order, which is to elaborate the elements of the right set from left to
right.

4. Condition Substitution – If a situation like

[{. . . , (v, e), . . . }, C(. . . , v, . . .)]

is encountered during symbolic evaluation, we replace it with

[{. . . , (v, e), . . . }, C(. . . , e, . . .)].

5. Iteration Entry Condition – If a situation like

[{. . . , (v, v(v0, ω)), . . . }, C(. . . , v, . . .)]

is encountered during symbolic evaluation, we replace it with

[{. . . , (v, v(v0, ω)), . . . }, C(. . . , v0, . . .)].

6. Nested Loop Entry Condition – If a situation like

[{. . . , (v, v(v0, ω)), . . . }, C(. . . , v(⊥, ω), . . .)]

is encountered during symbolic evaluation, we replace it with

[{. . . , (v, v(v0, ω)), . . . }, C(. . . , v(v0, ω), . . .)]

Setting up recurrence relations during loop-breaking is described in the following.
If there are nested loops in the source code of interest, we start by setting up
recurrence relations from the innermost loop and proceed to the outermost‖.

Definition 5.6. Let v denote a variable, then we call v(k) its recursive counterpart.
According to the notation in Definition 5.4 we set up a recurrence relation for

all 1 ≤ j ≤ r, 1 ≤ q ≤ s and for k ≥ 0 by

vjq (k + 1) = ejq (k) if Cj(k) evaluates to true,

where ejq (k) and Cj(k) means that all variables contained in ejq and Cj are replaced
with their recursive counterparts.

Note that we have not specified initial values for the recursion; these are supposed
to be supplied by situations handled by Definition 5.5.

Since the expressive power of the system of conditional recurrence relations de-
fined in Definition 5.6 is equal to that of recursive functions with the µ operator
(cf. [Rog92]), solving such systems of recurrence relations is undecidable; in fact it
is equivalent to the halting problem. However, for simple loops, such as for-loops
or discrete loops (cf. [Bli94]), which generalize for-loops, the corresponding systems
of recurrence relations can be solved.

‖ This is guaranteed by the algorithm described in [Sre95, SGL98].

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 21

The undecidability of the above problem shows that we cannot get rid of the
oracle completely, but certainly today’s real-time programming languages and their
designers place too heavy a burden on the oracle (the programmer) by letting it
alone determine the number of loop iterations (cf. e.g. [PK89, HS91, Sha89, ITM90,
GR91]).

The time complexity of symbolic evaluation of a reducible CFG is the same
as that given by Theorem 4.2 in terms of insertions and loop-breaking operations.
Solving conditional recurrence relations, however, may take considerably more time.
In fact, since solving such recursions is undecidable, we cannot give time-bounds
for this task. Hence we cannot set up bounds for the time used by the oracle to
give its answers.

Finally arrays and pointers are an extremely difficult problem for symbolic eval-
uation. Although there has been some progress in research on array privatization
(cf. e.g. [MAL93, Li92]) and the aliasing problem induced by dynamic data struc-
tures (cf. e.g. [Lan92, Ram94, LR92, Deu94]), we do not pursue these issues in this
paper. Consequently in the rest of the paper arrays showing up in Example 3 are
handled up to a certain degree of complexity only. To be more specific, recurrence
relations on arrays are not solved explicitely and array subscripts are treated only
if they are constant or of simple structure. Pointers are not treated at all because
they are not contained in any example of this paper. How arrays can be treated
in a symbolic evaluation framework is described and heavily used in [BFS00]. The
same ideas can be used to model aliasing effects [BBS99] and pointers [SBF00].

5.3. Symbolic Instrumentation. In this section we describe a method for deter-
mining symbolic path execution frequencies. We call the method symbolic instru-
mentation.

Definition 5.7. For each basic block Bi of a CFG we define a symbolic integer-
valued variable bi. The initial value of bi is zero and by entering basic block Bi, the
variable bi is incremented by one.

We call such a CFG symbolically instrumented and bi an instrumentation variable
and its symbolic value after symbolic evaluation basic block execution frequency.

We have the following theorem.

Theorem 5.1. By symbolic evaluation of a symbolically instrumented CFG we get
symbolic formulas for the basic block execution frequencies (provided all recurrence
relations can be solved).

Proof. After symbolic evaluation of the instrumented CFG the symbolic formulas of
the variables bi describe how often the corresponding basic block Bi will be executed
during runtime.

Symbolic instrumentation can also handle finding safe upper bounds for condi-
tional recurrence relations by exploiting the structure of the underlying CFG. Before
we give the corresponding result, we need some definitions.

Definition 5.8. In a CFG, a node x dominates another node y iff all paths from
the entry node to y always pass through x. We write xdom y in this case.

If xdom y and x 6= y, then x strictly dominates y. We write x stdom y to indicate
that x strictly dominates y.

A node x is said to immediately dominate another node y, if x stdom y and there
is no other node z 6= x and z 6= y such that x stdom z stdom y.

Theorem 5.2. The solution of the instrumentation variable bj of basic block Bj
can be used as a safe upper bound for the solution of bi, the instrumentation variable
of basic block Bi, if Bj is the immediate dominator of Bi, Bi and Bj are contained

22 J. BLIEBERGER

Xentry = [{(e,⊥), (h,⊥), (l,⊥), (y,⊥), (b3,⊥), (b4,⊥)}, true]
Xexit = (¬(e > 0))�X2

X1 = Xentry | {(l, x), (e, n), (y, 1)}
X2 = X1 ∪X5

X3 = ((e > 0)�X2) | {(b3, b3 + 1), (h, e mod 2), (e, e/2)}
X4 = ((h = 1)�X3) | {(b4, b4 + 1), (y, y · l)}
X5 = (X4 | {(l, l · l)}) ∪ (¬(h = 1)�X3 | {(l, l · l)})

Table 7. Set of SymEval Equations for Power Example

in the same loop, and Bj is not the loop header node of a for- or while-loop. If Bj
is such a loop header node, bi = bj − 1. If Bj is in a loop, but Bi is not in the same
loop, bi can be bounded by the instrumentation variable of the immediate dominator
of the loop header of the loop containing Bj.

Proof. The proof is straightforward by definition of immediate dominators (see Def-
inition 5.8 or [ASU86]) and instrumentation variables.

Remark 5.2. Note that the dominator tree, a tree whose edges reflect the immediate
dominance relation, can be constructed in linear time (see [ALT96]).

If we have symbolic expressions for all instrumentation variables bi, we can set
up equations

bi =
∑

Bj∈Succs(Bi)

cij

bi =
∑

Bk∈Preds(Bi)

cki(5)

where cij is a symbolic counter assigned to edge eij = (Bi, Bj), Preds(Bi) and
Succs(Bi) denote the set of predecessors and successors of Bi, respectively.

Note that each variable cij occurs exactly two times in the set of equations (5).
Furthermore note that if we make some variable explicit

cij = eij

and insert it for the other occurrence of cij , we obtain a new set of equations with
the number of variables reduced by one, but again each variable occurs exactly two
times.

Performing this reduction process iteratively until only one variable is left and
doing a backward substitution thereafter, we see that the system of equations (5)
can be solved in O(|E|) steps. Thus we have proved the following theorem.

Theorem 5.3. If symbolic expressions for all instrumentation variables of a CFG
are available, symbolic expressions for all path execution frequencies can be deter-
mined in O(|E|) time, where |E| denotes the number of edges of the CFG.

Remark 5.3. If only symbolic upper bounds for some bi in equation (5) are known,
we obtain a system of inequalities. However, it is easy to see that solving this
system after replacing all “≤” by “=”, produces symbolic upper bounds for the
path execution frequencies.

In the following we show how symbolic instrumentation works in practice by
applying it to two examples, our power example and Heapsort.

Example 1. To keep the number of variables small, we will perform computations
only for two instrumentation variables of our power example, namely for b3 and

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 23

b4. The set of SymEval equations is given in Table 7. The symbol ⊥ is used to
denote undefined values. Note that the edge (entry → exit) has been assigned
Cond = false.

Solving this set of equations again using the algorithm described in [Sre95,
SGL98], we proceed as follows:

4→ 5:

X5 = ((h = 1)�X3) | {(b4, b4 + 1), (y, y · l), (l, l · l)} ∪
(¬(h = 1)�X3) | {(l, l · l)}

5→ 2:

X2 = X1∪ ((h = 1)�X3) | {(b4, b4 + 1), (y, y · l), (l, l · l)} ∪
(¬(h = 1)�X3) | {(l, l · l)}

3→ 2:

X2 = X1 ∪ ((h = 1) ∧ (e > 0)�X2) |
{(b3, b3 + 1), (h, e mod 2), (e, e/2), (b4, b4 + 1), (y, y · l), (l, l · l)} ∪

(¬(h = 1) ∧ (e > 0)�X2) |
{(b3, b3 + 1), (h, e mod 2), (e, e/2), (l, l · l)}

2 6�:

X2 =X1 | {(b3, b3(⊥, ω)), (h, h(⊥, ω)), (e, e(⊥, ω)),

(b4, b4(⊥, ω)), (y, y(⊥, ω)), (l, l(⊥, ω))}

2→ exit:

Xexit = (¬(e(⊥, ω) > 0))�X1 |
{(b3, b3(⊥, ω)), (h, h(⊥, ω)), (e, e(⊥, ω)),

(b4, b4(⊥, ω)), (y, y(⊥, ω)), (l, l(⊥, ω))}

1→ exit:

Xexit = (¬(e(n, ω) > 0))�Xentry |
{(b3, b3(⊥, ω)), (h, h(⊥, ω)), (e, e(n, ω)),

(b4, b4(⊥, ω)), (y, y(1, ω)), (l, l(x, ω))}

Note that we have used rule item 3 of Definition 5.5.
entry→ exit:

Xexit = [{(e, e(n, ω)), (h, h(⊥, ω)), (l, l(x, ω)) ,

(y, y(1, ω)), (b3, b3(0, ω)), (b4, b4(0, ω))}, (n > 0)]

Note that we have used rules item 4 and item 6 of Definition 5.5.
The recurrence relations for the variable e has already been studied at the begin-

ning of Section 5. According to Definition 5.6 we obtain the following conditional
recurrence relations for b3 and b4:

b3(k + 1) = b3(k) + 1 if e(k) > 0

and

b4(k + 1) = b4(k) + 1 if (e(k) mod 2 = 1) ∧ (e(k) > 0).

Using the initial values we get

b3(0, ω) = b3(0, bldnc+ 1) = bldnc+ 1

24 J. BLIEBERGER

N: constant positive := ??; -- number of elements to be sorted
subtype index is positive range 1 .. N;
type sort array is array(index) of integer;

procedure heapsort(
arr: in out sort array) is

N: index := arr’length;
t: index;

procedure siftdown(N,k:index) is
j: index;
v: integer;

begin
v := arr(k);
discrete h := k in 1..N/2 new h := 2∗h | 2∗h+1 loop

j := 2∗h;
if j<N and then arr(j)<arr(j+1) then

j := j+1;
end if ;
if v ≥ arr(j) then

arr(h) := v;
exit;

end if ;
arr(h) := arr(j);
arr(j) := v;
h := j;

end loop;
end siftdown;

begin -- heapsort
for k in reverse 1..N/2 loop

siftdown(N,k);
end loop;
for M in reverse 2..N loop

t := arr(1);
arr(1) := arr(M);
arr(M) := t;
siftdown(M-1,1);

end loop;
end heapsort;

Figure 3. Implementation of Heapsort in Ada

and

b4(0, ω) = b4(0, bldnc+ 1) = ν(n) ≤ bldnc+ 1,

where the upper bound has been obtained by exploiting the fact that Node 3 is the
immediate dominator of Node 4.

As a final remark note that we did not have to find solutions to all recurrence
relations. For example variables l and y do not affect path execution frequencies.
In a sense our approach requires “minimal” knowledge to determine path execution
frequencies.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 25

Figure 4. CFG of Procedure siftdown

Xentry = [{(arr, arr), (N,N), (k, k), (h,⊥), (j,⊥), (v,⊥), (b3, 0)}, true]
Xexit = (¬C1)�X2 ∪X6

X1 = Xentry | {(v, arr(k)), (h, k))}
X2 = X1 ∪X7

X3 = C1 �X2 | {(b3, b3 + 1), (j, 2 · h)}
X4 = C2 �X3 | {(j, j + 1)}
X5 = X4 ∪ ¬C2 �X3

X6 = C3,ω(⊥,⊥)�X5 | {(arr(h), v)}
X7 = ¬C3 �X5 | {(arr(h), (arr(j)), (arr(j), v), (h, j)}

Table 8. Set of SymEval Equations for Procedure siftdown

Example 3. Heapsort is a well-known and well-studied sorting algorithm (com-
pare [Knu73b, Sed88, SS93]). We are now going to apply symbolic instrumentation
to the implementation shown in Figure 3.

In this section we concentrate on procedure siftdown; the example will be com-
pleted in Section 5.4. The corresponding CFG is shown in Figure 4. A discrete loop
(cf. [Bli94]) is used in siftdown. First, we ignore its effect by simply assuming that
it is replaced with

h := k;
while h in 1 .. N/2 loop

where h is a variable of type Index.

26 J. BLIEBERGER

The SymEval equations for siftdown are given in Table 8. We have used the
following abbreviations:

C1 = 1 ≤ h ≤ N/2,
C1,ω(h0) = 1 ≤ h(h0, ω) ≤ N/2,
C2 = (j < N)∧(arr(j) < arr(j + 1)),

C3 = v ≥ arr(j),
C3,ω(v0, j0) = v(v0, ω) ≥ arr(j(j0, ω)),

where ∧ is semantically equivalent to Ada’s and then operator, and we have used
underlining for denoting the values of parameters and global variables. Note that
we have to use C3,ω(⊥,⊥) for the definition of equation X6 since 5→ 6 is an edge
leaving the loop via an exit-statement. Note also that we have restricted our interest
to the instrumentation variable b3 to keep the example small.

The solving procedure according to [Sre95, SGL98] is:
7→ 2:

X2 = X1 ∪ ¬C3 �X5 | {(arr(h), (arr(j)), (arr(j), v), (h, j)}
6→ exit:

Xexit =(¬C1)�X2 ∪
C3,ω(⊥,⊥)�X5 | {(arr(h), v)}

4→ 5:
X5 = C2 �X3 | {(j, j + 1)} ∪ ¬C2 �X3

5→ 2:

X2 = X1 ∪
(¬C3 ∧ C2)�X3 |
{(j, j + 1), (arr(h), (arr(j + 1)), (arr(j + 1), v), (h, j + 1)} ∪

(¬C3 ∧ ¬C2)�X3 |
{(arr(h), (arr(j)), (arr(j), v), (h, j))}

5→ exit:

Xexit =(¬C1)�X2 ∪
(C3,ω(⊥,⊥) ∧ C2)�X3 | {(j, j + 1), (arr(h), v)} ∪
(C3,ω(⊥,⊥) ∧ ¬C2)�X3 | {(arr(h), v)}

3→ 2:

X2 = X1 ∪ (¬C3 ∧ C2 ∧ C1)�X2 | {(b3, b3 + 1), (j, 2 · h+ 1),

(arr(h), arr(2 · h+ 1)), (arr(2 · h+ 1), v), (h, 2 · h+ 1)} ∪
(¬C3 ∧ ¬C2 ∧ C1)�X2 | {(b3, b3 + 1), (j, 2 · h),

(arr(h), (arr(2 · h)), (arr(2 · h), v), (h, 2 · h))}
3→ exit:

Xexit = (¬C1)�X2 ∪
(C3,ω(⊥,⊥) ∧ C2 ∧ C1)�X2 | {(b3, b3 + 1), (j, 2 · h+ 1), (arr(h), v)} ∪
(C3,ω(⊥,⊥) ∧ ¬C2 ∧ C1)�X2 | {(b3, b3 + 1), (j, 2 · h), (arr(h), v)}

2 6�:

X2 = X1 | {(b3, b3(⊥, ω)), (arr, arr(⊥, ω)), (h, h(⊥, ω)), (j, j(⊥, ω))}
Note that we have collapsed all array assignments into one recursion.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 27

2→ exit: After several simplifications we obtain:

Xexit = (¬C1,ω(⊥))�X1 |
{(b3, b3(⊥, ω)), (arr, arr(⊥, ω)), (h, (h(⊥, ω)), (j, j(⊥, ω))} ∪

(C1,ω(⊥) ∧ C2 ∧ C3,ω(⊥,⊥))�X1 |
{(b3, b3(⊥, ω) + 1), (arr, arr(⊥, ω)), (arr(h), v),

(h, (h(⊥, ω)), (j, 2 · h(⊥, ω) + 1)} ∪
(C1,ω(⊥) ∧ ¬C2 ∧ C3,ω(⊥,⊥))�X1 |
{(b3, b3(⊥, ω) + 1), (arr, arr(⊥, ω)), (arr(h), v),

(h, (h(⊥, ω)), (j, 2 · h(⊥, ω))}

1→ exit:

Xexit =(¬C1,ω(⊥))�Xentry |
{(v, arr(k)), (b3, b3(⊥, ω)), (arr, arr(⊥, ω)),

(h, (h(k, ω)), (j, j(⊥, ω))} ∪
(C1,ω(⊥) ∧ C2 ∧ C3,ω(⊥,⊥))�Xentry |
{(v, arr(k)), (b3, b3(⊥, ω) + 1), (arr, arr(⊥, ω)),

(arr(h), v), (h, (h(k, ω)), (j, 2 · h(k, ω) + 1)} ∪
(C1,ω(⊥) ∧ ¬C2 ∧ C3,ω(⊥,⊥))�Xentry |
{(v, arr(k)), (b3, b3(⊥, ω) + 1), (arr, arr(⊥, ω)),

(arr(h), v), (h, (h(k, ω)), (j, 2 · h(k, ω))}

entry→ exit: This step is straightforward and is left to the reader.
Now we turn to setting up a recurrence relation for b3. We obtain for k ≥ 0

b3(k + 1) = b3(k) + 1 if (¬C3 ∧ C1).

Since C3 depends on arr, the recursion for b3 cannot be solved by simple means.
The semantics of discrete loops, however, ensure that no variables except those

used in the loop-header affect the number of loop iterations (compare [Bli94] for
details). To be more specific, discrete loops are a means to abstract from details of
the loop body by declaring that certain parts of the loop body will not affect the
timing behavior of the loop. In a sense discrete loops support the oracle in finding
conservative and safe estimates of the WCET.

Thus we can concentrate on variable h and the recurrence relation given in the
loop header. The theory developed for discrete loops [Bli94] implies that we only
have to deal with the following recurrence relation to get a safe upper bound for
the number of iterations (j ≥ 1)

h(0) = k,

h(j + 1) = 2 · h(j).

Its solution is easily determined to be

h(j) = k · 2j .

Now, we want to determine ω such that

h(ω) ≤ N/2 ≤ h(ω + 1).

Taking logarithms we get
ω = bldN − ld kc − 1

and finally we obtain

b3(0, ω) ≤ bldN − ld kc − 1 ≤ dldNe − bld kc − 1.

28 J. BLIEBERGER

Xentry = [{(arr, arr), (N,N), (t, k), (b3, 0), (b6, 0)}, true]
Xexit = (¬C5)�X5

X1 = Xentry | {(N,N), (k, 1)}
X2 = X1 ∪X3

X3 = C4 �X2 | {(arr, arr′), (b3, b3 + 1), (k, k + 1)}
X4 = (¬C4)�X2 | {(M, 2)}
X5 = X4 ∪X6

X6 = C5 �X5 | {(t, arr(1)), (arr(1), arr(M)), (arr(M), t),
(arr, arr′), (b6, b6 + 1), (M,M + 1)}

Table 9. Set of SymEval Equations for Procedure heapsort

which is a symbolic formula for the number of iterations in terms of N and k, the
parameters of procedure siftdown.

This example shows that discrete loops significantly facilitate setting up recur-
rence relations for the number of loop iterations. In addition, solving this recurrence
relations becomes possible because of their comparatively simple structure, which
is induced by discrete loops too. Note also that the semantics of discrete loops is
easily checked and enforced by a precompiler which produces standard Ada95 code
out of Ada code augmented with discrete loops (cf. [Bur96]).

On the other hand, using discrete loops for WCET analysis, some information
on the algorithm used in the loop body is lost, but this is certainly out-weighted by
the simple recurrence relations produced by discrete loops.

Finally, using Theorem 5.2 we find the following symbolic formula for the upper
bound of the timing behavior of procedure siftdown:

τ1 + τ2 · (dldNe − bld kc)(6)

where τ1, τ2 ∈ T are time values but do not denote the timing behavior of some
basic blocks.

5.4. Interprocedural WCET Data-Flow Analysis. For programs consisting
of several procedures and functions, we can build a call graph. The nodes of the
call graph are the procedures and functions of the program. If procedure A calls
B, there is an edge from node A to B in the call graph. If there are no recursive
procedures and functions, the call graph is acyclic.

By topologically sorting (cf. [Knu73a, Meh84]) an acyclic call graph, symbolic
evaluation can be applied to the graph in such a way that a symbolic formula for
the WCET of a procedure P is available before another procedure Q, which calls
P , is analyzed.

We have the following theorem:

Theorem 5.4. If the call graph of a program is acyclic, a WCET estimate for the
program can be found by symbolic evaluation of the procedures and functions that
constitute the program, provided that a WCET estimate for these procedures and
functions can be determined by symbolic evaluation.

Remark 5.4. WCET analysis of recursive procedures and functions can be per-
formed by the approach described in [BL95, BL96, Bli00].

Remark 5.5. We do not discuss problems originating from aliasing in this paper.
How symbolic evaluation can be used to solve these problems is discussed in [BBS99,
SBF00].

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 29

Figure 5. CFG of Procedure heapsort

Example 3. Returning to our Heapsort example, the CFG of procedure heapsort
is shown in Figure 5. The SymEval equations can be found in Table 9. We have
used the following abbreviations:

C4 = 1 ≤ k ≤ N/2,
C4,ω1(k0) = 1 ≤ k(k0, ω1) ≤ N/2,
C5 = 2 ≤M ≤ N
C5,ω2(M0) = 2 ≤M(M0, ω2) ≤ N.

Furthermore we have restricted our interest to the instrumentation variables b3 and
b6. By (arr, arr′) we denote that the array arr is assigned a new value by procedure
siftdown.

According to [Sre95, SGL98] the insertions and loop-breaking operations have to
be done as follows.

6→ 5:

X5 = X4 ∪ C5 �X5 |{(t, arr(1)), (arr(1), arr(M)), (arr(M), t)

(arr, arr′), (b6, b6 + 1), (M,M + 1)}
5 6�:

X5 = X4 |
{(b6, b6(⊥, ω2)), (t, t(⊥, ω2)), (arr, arr(⊥, ω2)), (M,M(⊥, ω2))}

5→ exit:

Xexit = (¬C5,ω2(⊥))�X4 |
{(b6, b6(⊥, ω2)), (t, t(⊥, ω2)), (arr, arr(⊥, ω2)), (M,M(⊥, ω2))}

30 J. BLIEBERGER

3→ 2:

X2 = X1 ∪ C4 �X2 | {(arr, arr′), (b3, b3 + 1), (k, k + 1)}

4→ exit:

Xexit = ((¬C5,ω2(⊥)) ∧ (¬C4,ω2(⊥)))�X2 |
{(b6, b6(⊥, ω2)), (t, t(⊥, ω2)), (arr, arr(⊥, ω2)), (M,M(2, ω2))}

2 6�:

X2 =¬C4,ω1(⊥)�X1 |
{(b3, b3(⊥, ω1)), (arr, arr(⊥, ω1)), (k, k(⊥, ω1))}

2→ exit:

Xexit =(¬C5,ω2(⊥) ∧ ¬C4,ω1(⊥))�X1 |
{(b3, b3(⊥, ω1)), (arr, arr(⊥, ω1)), (k, k(⊥, ω1)),

(b6, b6(⊥, ω2)), (t, t(⊥, ω2)),

(arr, arr(⊥, ω2)), (M,M(2, ω2))}

1→ exit:

Xexit =(¬C5,ω2(⊥) ∧ ¬C4,ω1(⊥))�Xentry |
{(b3, b3(⊥, ω1)), (arr, arr(⊥, ω1)), (k, k(1, ω1)),

(b6, b6(⊥, ω2)), (t, t(⊥, ω2)),

(arr, arr(⊥, ω2)), (M,M(2, ω2))}

entry→ exit: This step is straightforward and is left to the reader.
It remains to set up recurrence relations for b3 and b6. We obtain

b3(k + 1) = b3(k) + 1 if 1 ≤ k ≤ N/2

and
b6(M + 1) = b3(M) + 1 if 2 ≤M ≤ N .

It is easy to derive
b3(0, ω1) = bN/2c

and
b6(0, ω2) = N − 1.

In order to derive an upper bound for the WCET of the first for-loop, we have
to sum equation (6) for 1 ≤ k ≤ N/2. We obtain

WCETfor1 ≤
∑

1≤k≤N/2

τ1 + τ2 · (dldNe − bld kc − 1) =

⌊
N

2

⌋
τ1 + τ2 ·

bN/2cdldNe − ∑
1≤k≤N/2

bld kc


which by some manipulations (cf. [GKP89]) gives

WCETfor1 ≤
⌊
N

2

⌋
τ1 + τ2 ·

(⌊
5
2
N

⌋
− bldNc − 1

)
.(7)

The second for-loop can be treated similarly. Inserting (k → 1, N →M − 1) into
equation (6), we get

τ1 + τ2 · (dld(M − 1)e).(8)

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 31

We have to sum (8) for 2 ≤ M ≤ N to obtain an upper bound for the timing
behavior of the second for-loop

WCETfor2 ≤
∑

2≤M≤N

τ1 + τ2 · (dld(M − 1)e) =

∑
2≤M≤N−1

τ1 + τ2 · (dldMe) =

(N − 1) · τ1 + τ2 ·
(

(N − 1)dld(N − 1)e − 2dld(N−1)e + 1
)
.

Adding this to (7) and taking care of some time constant τ3 for initialization work,
we can determine a symbolic formula for the upper bound of the WCET of procedure
heapsort.

6. Discussion and Related Work

Shortly repeating the major results of this paper we have shown the following:

1. There exist efficient (almost linear) algorithms for performing worst-case ex-
ecution time analysis of real-time programs (Theorem 4.2).

This is the first result on the timing behavior of WCET analysis in litera-
ture.

2. WCET analysis can be performed on reducible and irreducible CFGs.
This, for instance, proves that restrictions concerning goto, break, return,

and exit-statements in real-time programming languages are not necessary. In
addition, it shows that WCET analysis (even with help of symbolic evaluation)
can be applied to assembler or machine-code programs.

3. Slightly modified elimination methods can be used for solving WCET data-flow
frameworks and symbolic evaluation frameworks; iteration algorithms cannot
be employed for this purpose.

4. Symbolic evaluation can be done for reducible and irreducible CFGs (Obser-
vation 2).

This shows that symbolic evaluation cannot only be applied to toy lan-
guages but it can be used to analyze complex high-order programming lan-
guage programs as well as low-level assembler or machine-code programs.

5. Solving (conditional) recurrence relations for symbolic evaluation WCET anal-
ysis is performed only on demand.

It is not necessary to perform a complete symbolic evaluation of a program
in order to determine its WCET. Symbolic instrumentation is based on sym-
bolic evaluation but it can be expected to be easier to solve than symbolic
evaluation itself.

In the following we compare our approach to other approaches known from lit-
erature. Some of the following approaches have already been commented on in
Section 1.

1. Tarjan’s approach for solving sets of data-flow equations (cf. [Tar81b]) is able
to handle WCET data-flow frameworks too. The operators for regular expres-
sions ∪, ·, and ∗ have to be interpreted appropriately for WCET analysis.

A correct interpretation uses ∪ as the meet operator (for example the max
meet or the frequency meet operator), · as +, which models the juxtaposition
of basic blocks, and ∗ as ORACLE(iter) for the number of loop iterations.

Tarjan’s method is also well-suited for solving our SymEval framework.
Nevertheless we have chosen the “loop-breaking rule” approach because it

is more intuitive and requires less knowledge on graph theory. In addition,
we believe that programmers are more accustomed to thinking in terms of
equations than in terms of program paths and regular expressions.

32 J. BLIEBERGER

2. The method described in [CBW96] allows WCET analysis depending on the
program’s input data but focuses on annotating the underlying program.

In contrast our approach relies on symbolic evaluation to extract extraneous
information out of the source code in order to perform WCET analysis.

The modes introduced in [CBW96] appear automatically in the symbolic
WCET formulas of procedures or functions of our approach.

3. The integer linear programming approach of [PS97] is fully oracle-based like
our data-flow framework described in Section 4. Like our approach, it is known
to produce the exact timing behavior, provided the oracle (programmer) pro-
duces exact path execution frequencies and the exact number of iterations
of loops. In contrast, our approach presented in Section 4 does not need an
oracle for loop iterations.

In addition, it is not obvious how the approach of [PS97] can be extended
to a symbolic evaluation method like that described in Section 5.

Furthermore ILP is NP-complete and thus has exponential worst-case be-
havior. Our approach, with the max meet or the frequency meet operator,
has almost linear worst-case timing behavior (cf. Theorem 4.2).

7. Conclusion

In this paper we have introduced frameworks based on data-flow equations which
provide for estimating the worst-case execution time of real-time programs and for
symbolic evaluation of such programs. These frameworks allow several different
WCET analysis techniques with various precisions, which range from näıve ap-
proaches to exact analysis, provided exact knowledge on the program behavior is
available.

We have implemented the algorithm presented in [Sre95, SGL98] for almost all
control flow affecting language features of Ada. At the current stage our implemen-
tation does not support exceptions. These and tasking features will be implemented
in the near future. This implementation allowed us to perform several examples
with the max and frequency meet operators. An implementation of the symbolic
evaluation data-flow framework is under way and will be completed in the year
2000.

Our approach allows to use off-the-shelf software for manipulating and solving
equations. In particular, we are using Mathematica∗∗ for this purpose.

Nevertheless a lot of work remains to be done. The next step will be to study
WCET analysis for multi-processor systems and effects of pipelining with help of
symbolic evaluation.

References

[AC76] F. E. Allen and J. Cocke, A program data flow analysis procedure, Comm. ACM 19
(1976), no. 3, 137–147. 1, 10

[Ada95] ISO/IEC 8652, Ada reference manual, 1995. 2, 6
[ALT96] Stephen Alstrup, Peter W. Lauridsen, and Mikkel Thorup, Dominators in linear

time, Tech. Report TR DIKU 96-35, Department of Computer Science, University of
Copenhagen, 1996. 22

[AMWH94] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, Bounding worst-case instruc-
tion cache performance, Proc. of the Fifteenth IEEE Real-Time Systems Symposium
(1994), 172–181. 8

[ASU86] Alfred V. Aho, Ravi Seti, and Jeffrey D. Ullman, Compilers: principles, techniques,

and tools, Addison-Wesley, Reading, MA, 1986. 1, 5, 19, 22

∗∗ Mathematica is a trademark of Wolfram Research Inc.

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 33

[BB98] Johann Blieberger and Bernd Burgstaller, Symbolic reaching definitions analysis of

Ada programs, Proceedings of Ada-Europe’98 (Uppsala, Sweden), June 1998, pp. 238–
250. 16

[BBS99] Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz, Interprocedural Symbolic

Evaluation of Ada Programs with Aliases, Ada-Europe’99 International Conference
on Reliable Software Technologies (Santander, Spain), June 1999, pp. 136–145. 16,

21, 28
[BBS00] Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz, Symbolic Data Flow

Analysis for Detecting Deadlocks in Ada Tasking Programs, Ada-Europe’2000 Inter-

national Conference on Reliable Software Technologies (Potsdam, Germany), June
2000, (to appear). 16

[BFS00] Johann Blieberger, Thomas Fahringer, and Bernhard Scholz, Symbolic cache analysis
for real-time systems, Real-Time Systems, Special Issue on Worst-Case Execution

Time Analysis 18 (2000), no. 2/3, 181–215. 3, 8, 16, 21

[BL95] Johann Blieberger and Roland Lieger, Real-time recursive procedures, Proceedings of
the 7th EUROMICRO Workshop on Real-Time Systems (Odense), 1995, pp. 229–235.

7, 28
[BL96] Johann Blieberger and Roland Lieger, Worst-case space and time complexity of re-

cursive procedures, Real-Time Systems 11 (1996), no. 2, 115–144. 1, 7, 28

[Bli94] Johann Blieberger, Discrete loops and worst case performance, Computer Languages
20 (1994), no. 3, 193–212. 1, 20, 25, 27, 27

[Bli00] Johann Blieberger, Real-time properties of indirect recursive procedures, Information
and Computation (2000), (to appear). 1, 7, 28

[Bur96] Bernd Burgstaller, The WOOP preprocessor – an implementation of discrete loops,

Diploma thesis, TU Vienna, Dept. of Automation, 1996. 28
[CBW96] Roderick Chapman, Alan Burns, and Andy Wellings, Combining static worst-case

timing analysis and program proof, Real-Time Systems 11 (1996), no. 2, 145–171. 1,
2, 2, 32, 32

[CHT79] Thomas E. Cheatham, Glenn H. Holloway, and Judy A. Townley, Symbolic evaluation

and the analysis of programs, IEEE Trans. on Software Engineering 5 (1979), no. 4,
403–417. 16, 16

[CJM+92] B.A. Carré, T.J. Jennings, F.J. Maclennan, P.F. Farrow, and J.R. Garnsworthy,
SPARK: The SPADE Ada kernel, Program Validation Ltd., 3.1 ed., 1992. 2

[CR81] L.A. Clarke and D.J. Richardson, Symbolic evaluation methods for program analysis,

Program Flow Analysis (S.S. Muchnik and N.D. Jones, eds.), Prentice Hall, Engle-
wood Cliffs, New Jersey, 1981, pp. 264–300. 16

[Deu94] Alain Deutsch, Interprocedural may-alias analysis for pointers: Beyond k-limiting,
Proceedings of the ACM SIGPLAN’94 Conf. on PLDI, 1994, pp. 230–241. 21

[FS97] T. Fahringer and B. Scholz, Symbolic Evaluation for Parallelizing Compilers, Proc.

of the ACM International Conference on Supercomputing, July 1997. 16, 16
[GKP89] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics,

Addison-Wesley, Reading, MA, 1989. 13, 15, 30
[GR91] Narain Gehani and Krithi Ramamritham, Real-time Concurrent C: A language for

programming dynamic real-time systems, The Journal of Real-Time Systems 3 (1991),
377–405. 2, 7, 21

[GW76] Susan L. Graham and Mark Wegman, Fast and usually linear algorithm for global

flow analysis, J. ACM 23 (1976), no. 1, 172–202. 1, 10
[HBW94] Marion G. Harmon, T. P. Baker, and David B. Whalley, A retargetable technique for

predicting execution time of code segments, Real-Time Systems 7 (1994), 159–182. 8

[Hoa69] Charles Anthony Richard Hoare, An axiomatic basis for computer programming,
Communications of ACM 12 (1969), 576–580. 2

[HS91] Wolfgang A. Halang and Alexander D. Stoyenko, Constructing predictable real time
systems, Kluwer Academic Publishers, Boston, 1991. 1, 1, 1, 7, 21

[HU77] Matthew S. Hecht and Jeffrey D. Ullman, A simple algorithm for global data flow

analysis problems, SIAM J. Comput. 4 (1977), no. 4, 519–532. 1, 10
[HWH95] C. A. Healy, D. B. Whalley, and M. G. Harmon, Integrating the timing analysis of

pipelining and instruction caching, Proc. of the Sixteenth IEEE Real-Time Systems
Symposium (1995), 288–297. 8

[ITM90] Yutaka Ishikawa, Hideyuki Tokuda, and Clifford W. Mercer, Object-oriented real-time
language design: Constructs for timing constraints, ECOOP/OOPSLA ’90 Proceed-
ings, October 1990, pp. 289–298. 1, 7, 21

[Kil73] G. Kildall, A unified approach to global program optimization , Proc. of the First
ACM Symposium on Principles of Programming Languages (New York, NY), 1973,

pp. 194–206. 6

34 J. BLIEBERGER

[Knu73a] Donald E. Knuth, Fundamental algorithms, second ed., The Art of Computer Pro-

gramming, vol. 1, Addison-Wesley, Reading, Mass., 1973. 28
[Knu73b] Donald E. Knuth, Sorting and searching, The Art of Computer Programming, vol. 3,

Addison-Wesley, Reading, Mass., 1973. 25

[KS86] Eugene Kligerman and Alexander D. Stoyenko, Real-time Euclid: A language for
reliable real-time systems, IEEE Transactions on Software Engineering 12 (1986),

no. 9, 941–949. 1
[KU76] John B. Kam and Jeffrey D. Ullman, Global data flow analysis and iterative algo-

rithms, J. ACM 23 (1976), no. 1, 158–171. 1

[KU77] John B. Kam and Jeffrey D. Ullman, Monotone data flow analysis frameworks, Acta
Informatica 7 (1977), 305–317. 1

[Lan92] William Landi, Undecidability of static analysis, Lett. Prog. Lang. Syst. 1 (1992),
no. 4, 323–337. 21

[Li92] Zhiyuan Li, Array privatization for parallel execution of loops, Proceedings of the

International Conference on Supercomputing, 1992, pp. 313–322. 21
[LL94] J.C. Liu and H.J. Lee, Deterministic upperbounds of the worst-case execution times

of cached programs, Proc. of the Fifteenth IEEE Realt-Time Systems Symposium
(1994), 182–191. 8

[LM95] Yau-Tsun Steven Li and Sharad Malik, Performance analysis of embedded software

using implicit path enumeration, ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Real-Time Systems (La Jolla, California), vol. 30, ACM SIGPLAN

Notices, June 1995. 2
[LR92] William Landi and Barbara G. Ryder, A safe approximate algorithm for interprocedu-

ral pointer aliasing, Proceedings of the ACM SIGPLAN’92 PLDI-6, 1992, pp. 235–248.
21

[MACT89] Aloysius K. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat, Evaluating tight

execution time bounds of programs by annotations, Proc. IEEE Workshop on Real-
Time Operating Systems and Software, 1989, pp. 74–80. 2

[MAL93] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam, Array-data flow anal-

ysis and its use in array privatization, Proceedings of the 20th ACM POPL’93, 1993,
pp. 2–15. 21

[Meh84] Kurt Mehlhorn, Graph algorithms and NP-completeness, Data Structures and Algo-
rithms, vol. 2, Springer-Verlag, Berlin, 1984. 28

[MR90] Thomas J. Marlowe and Barbara G. Ryder, Properties of data flow frameworks – a

unified model, Acta Informatica 28 (1990), 121–163. 1, 4, 5
[NP93] Vivek Nirkhe and William Pugh, A partial evaluator for the Maruti hard real-time

system, The Journal of Real-Time Systems 5 (1993), 13–30. 1, 2
[Par93] Chang Yun Park, Predicting program execution times by analyzing static and dynamic

program paths, The Journal of Real-Time Systems 5 (1993), 31–62. 1, 2

[Pau88] Marvin C. Paull, Algorithm design – a recursion transformation framework, Wiley
Interscience, New York, NY, 1988. 9, 9, 10

[PK89] Peter Puschner and Christian Koza, Calculating the maximum execution time of real-
time programs, The Journal of Real-Time Systems 1 (1989), 159–176. 1, 2, 7, 21

[Plo80] Erhard Ploedereder, A semantic model for the analysis and verification of programs

in general, higher-level languages, Ph.D. thesis, Division of Applied Sciences, Harvard
University, 1980. 16

[PS97] Peter Puschner and Anton V. Schedl, Computing maximum task execution times – a
graph-based approach, Real-Time Systems 13 (1997), no. 1, 67–91. 1, 2, 2, 32, 32

[Ram94] G. Ramalingam, The undecidability of aliasing, ACM Transactions on Programing

Languages and Systems 16 (1994), no. 5, 1467–1471. 21
[Ram96] G. Ramalingam, Data Flow Frequency Analysis, PLDI’96, May 1996, pp. 267–277.

13
[Rog92] Hartley Rogers, Theory of recursive functions and effective computability, MIT Press,

Cambridge, MA, 1992. 20

[RP86] Barbara G. Ryder and Marvin C. Paull, Elimination algorithms for data flow analysis,
ACM Computing Surveys 18 (1986), no. 3, 277–316. 1, 10

[SBF00] Bernhard Scholz, Johann Blieberger, and Thomas Fahringer, Symbolic Pointer Anal-
ysis for Detecting Memory Leaks, ACM SIGPLAN Workshop on ”Partial Evaluation

and Semantics-Based Program Manipulation” (PEPM’00) (Boston), January 2000.
21, 28

[Sch96] Bernhard Scholz, Symbolische Verifikation von Echtzeitprogrammen, Diploma thesis,

TU Vienna, Dept. of Automation, 1996. 16
[Sed88] Robert Sedgewick, Algorithms, second ed., Addison-Wesley, Reading, MA, 1988. 25

DATA-FLOW FRAMEWORKS FOR WCET ANALYSIS 35

[SGL98] Vugranam C Sreedhar, Guang R. Gao, and Yong-Fong Lee, A new framework for

elimination-based data flow analysis using dj graphs, ACM Transactions on Program-
ming Languages and Systems 20 (1998), no. 2, 388–435. 1, 10, 10, 12, 13, 14, 19, 20,

23, 26, 29, 32

[Sha89] Alan C. Shaw, Reasoning about time in higher-level language software, IEEE Trans-
actions on Software Engineering 15 (1989), no. 7, 875–889. 1, 2, 2, 7, 21

[SHH91] Alexander Stoyenko, V. Hamacher, and R. Holt, Analyzing hard real-time programs
for guaranteed schedulability, IEEE Transactions on Software Engineering 17 (1991),

no. 8, 737–750. 1

[Sre95] Vugranam C. Sreedhar, Efficient program analysis using DJ graphs, Ph.D. thesis,
School of Computer Science, McGill University, Montréal, Québec, Canada, 1995. 1,

10, 10, 12, 13, 14, 19, 20, 23, 26, 29, 32
[SS93] Russel Schaffer and Robert Sedgewick, The analysis of heapsort, Journal of Algo-

rithms 15 (1993), 76–100. 25

[Tar81a] Robert Endre Tarjan, Fast algorithms for solving path problems, J. ACM 28 (1981),
no. 3, 594–614. 1, 10, 14

[Tar81b] Robert Endre Tarjan, A unified approach to path problems, J. ACM 28 (1981), no. 3,
577–593. 1, 2, 31

Department of Automation (183/1), Technical University of Vienna, Treitlstr. 1/4,

A-1040 Vienna

E-mail address: blieb@auto.tuwien.ac.at

	Introduction
	Data-Flow Frameworks
	A Data-Flow Framework for Simple WCET
	A Fully Oracle-Based Data-Flow Framework
	Getting Rid of the Oracle -- A Symbolic Evaluation Approach
	Symbolic Evaluation
	Program State and Context
	Expressions and Simple Statements
	Conditional Statements
	Loop Statements

	A Data-Flow Framework for Symbolic Evaluation
	Symbolic Instrumentation
	Interprocedural WCET Data-Flow Analysis

	Discussion and Related Work
	Conclusion

