1

Back in 1993 one of the authors conducted an Ada programming course that the
other author attended. Both were curious when they heard about the existence
of Gnat, because their only way of programming in Ada by this time was to
log into some ancient workstation running an even older compiler on it. It was
Gnat’s appearance that changed things radically. All of a sudden it was possible
for everyone to run one’s "Personal Ada’ on one’s Personal Computer. Since then
a long time has passed and "Ada for the People’ alias Gnat is close to validation,
which 1s much more then most people had expected. There is strong evidence

The Role of GNAT within Project WOOP

Johann Blieberger
Bernd Burgstaller
Department of Automation
Technical University Vienna

November 13, 1995

Abstract

WOOP, as an acronym for Worst Case Performance of Object-Oriented
Programs, is a research project at the Technical University of Vienna that
is aimed at the determination of the timing-behavior of software for real-
time systems'. Topics of research include the utilization of such high level
language constructs as recursion and general loops so that they can be
used safely without substantially reducing their computational capabilit-
ies. Beyond that, current research aims at merging the concept of full
timing predictability with the paradigm of object-oriented programming
in order to supply the developer with the ability to create fully predict-
able software at a very high level of abstraction. Due to its reliability and
maintainability, Ada has been chosen as reference language for the entire
project. A tool that incorporates the theoretical results is currently under
development. Since its analytical tasks blend well with the analysis Gnat
performs on programs, we decided to use Gnat in a rather uncommon way
taking its source code to build our own tool on top of it.

Introduction

!Project WOOP is supported by the Austrian Science Foundation (FWF) under grant

P10188-MAT.



that this year’s programming course will be held for the second time now using
Gnat, tasking and everything supported. The former Ada beginner has become a
team member of project WOOP, and he is currently among those who build the
Woop Pre-Processor (Wpp) on top of Gnat. By the time of its completion, this
tool will be capable of providing timing constraints for object-oriented real-time
programs containing discrete loops [Bli94] and even recursions [BL95].

By today’s standards, this is a rather uncommon use of a compiler, but the
public availability of the source code of Gnat could make this a common case,
since we found it suitable for many different kinds of applications. This paper
is meant as an example of how this can be accomplished. It should give an idea
of the vast potential within Gnat that waits there to be explored and used.

The remaining sections of this paper are structured as follows: Section 2 gives
an overview of the major research topics of project WOOP namely recursion,
discrete loops and real-time objects. Section 3 elaborates on the concept of
discrete loops. Section 4 lists the options one has to implement a tool like Wpp.
It points out the reasons that finally led to the decision to build on top of Gnat.
Section 5 delves into the implementational details of discrete loops. It contains
examples of applications where our approach of (re)using the source code of Gnat
could also be useful.

2 About WOOP

The following excerpt is taken from [Bli95].

Project Description. The most significant difference between real-time sys-
tems and other computer systems is that the system behavior must not only be
correct but the result of a computation must be available within a predefined
deadline. Tt has turned out that a major progress in order to guarantee the
timeliness of real-time systems can only be achieved if the scheduling problem
is solved accordingly. Most scheduling algorithms assume that the runtime of
a task is known a priori. Thus the worst case performance of a task plays a
crucial role. We recognize two difficult tasks in estimating the timing behavior
of a program:

e Determine the number of iterations of a certain loop
o Investigate the behavior of recursive procedures in time and space

Most researchers try to ease the task of estimating the number of general loop
iterations by forbidding general loops, i.e., by forcing the user to supply constant
upper bounds for the number of iterations. Another approach is to let the user
specify a time bound within which the loop has to complete. Recursive proced-
ures are forbidden in all well-known real-time languages, too. Project WOOP
follows a different approach: The gap between general loops and for-loops is
narrowed by defining discrete loops. These loops are known to complete and



are easy to analyze (especially their numbers of iterations) and capture a large
part of applications which otherwise would have been implemented by the use
of general loops. These include Heapsort, a bottom-up version of Mergesort and
Fuclid’s Algorithm to compute the greatest common divisor of two positive num-
bers. Furthermore all divide & conguer algorithms can be handled by discrete
loops, e.g. binary search and tree traversing algorithms such as weight-balanced
trees (BB[a]-trees) or AVL-trees.

Recursive procedures and functions can also be used within real-time applic-
ations, as long as certain requirements are met (cf. [BL94]). We managed to
prevent these requirements from being too restrictive such that not only simple
mathematical recursions, like the Factorial Numbers and the Fibonacci Num-
bers, but also more complicated recursive procedures, like a recursive version of
Mergesort and recursive tree traversal algorithms, can be handled.

Concerning object oriented programming, we require that each method of a
real-time object/class has to be equipped by a WCP-formula which describes
the Worst Case Performance behavior of the method. In general this formula
does not only depend on the execution speed of the processor, but it also depends
on generic parameters of the real-time object. One major advantage of WCP-
formulas is that they greatly improve reusability of software.

Summing up, Project WOOP comprises several tasks:

1. Define syntax and semantics of WCP-formulas.

2. Develop language features to implement real-time programs. This includes
discrete loops and adapting recurstve procedures and functions.

3. Define syntax and semantics of a programming language, that contains all
concepts elaborated in (1), (2) and (3).

4. Adapt an existing compiler (Gnat) for this programming language by
adding all necessary features.

5. Design and implement a tool to estimate all simple statements of the pro-
gramming language. Note that this task extends to analyzing the program
as well as the corresponding object code.

3 Discrete Loops

The following 1s a brief summary on Discrete Loops that provides the necessary
wnsight to understand their implementation. The exact theoretical treatment can
be found in [Bli9]]

In contrast to for-loops, discrete loops allow for a more complex depend-
ency between two successive values of the loop-variable. In fact an arbitrary
functional dependency between two successive values of the loop-variable is ad-
missible, but this dependency must be constrained in order to ensure that the



loop completes and to determine the number of iterations of the loop. Which
values are assigned to the loop-variable is completely governed by the loop-body.
The loop-header, however, contains a list of all those values that can possibly
be assigned to the loop-variable during the next iteration. In fact each item of
this list of values is a function of the loop-variable.

A simple example is shown in Figurel. In this example the loop-variable K
will assume the values 1,2/4,8,16,32,64,.. until finally a value greater than N

discrete K in 1 .. N new K := 2+K loop
- loop body
end loop;

Figure 1: A simple example of a discrete loop

would be reached. Of course the effect of this example can also be achieved by
a simple for-loop, where the powers of two are computed within the loop-body.

A more complex example is depicted in Figure 2. In this example the loop-
variable K can assume the values 1,2,4,9,18,37,75,... until finally a value greater

discrete K in 1 .. N new K := 2«K | 2«K+1 loop
— loop body
end loop;

Figure 2: A more complex example of a discrete loop

than N would be reached. But it is also possible that K follows the sequence
1,3,6,13,26,52,105,.... Here the same effect can not be achieved by a for-loop,
because the value of the loop-variable cannot be determined exactly before the
loop-body has been completely elaborated.

The reason for this is the indeterminism involved in discrete loops: Clearly
the loop-body determines exactly which of the given alternatives is chosen, thus
one can say that there definitely is no indeterminism involved. On the other hand,
from an outside view of the loop one cannot determine which of the alternat-
ives will be chosen, without having a closer look at the loop-body or without

? outside-view”

exactly knowing which data is processed by the loop. It 1s this
indeterminism that is meant here. Furthermore this indeterminism enables us to
estimate the number of loop iterations quite accurately without having to know

all the details of the loop body.



3.1 Monotonical Discrete Loops

Monotonical Discrete Loops can be characterized best by the sequence of values
the loop variable can take: if this sequence is strictly monotonically increasing
(e.g. Figure 1), we speak of so-called monotonically increasing discrete loops.
In the case of monotonically decreasing sequences we speak of monotonically
decreasing discrete loops. The syntax of a monotonical discrete loop is given in
conjunction with the syntax of for- and while-loops below.

loop _statement ::=
[loop_simple name:]
[iteration_scheme] loop
sequence_of_statements
end loop [loop_simple name];

iteration_scheme ::= while condition
| for for_loop_parameter_specification
| discrete discrete_loop_parameter_specification

for_loop_parameter_specification ::=
identifier in [reverse] discrete_range

discrete_loop_parameter_specification ::=
identifier := initial_value in [reverse] discrete_range
new identifier := list_of_iteration_functions

list_of_iteration_functions ::=
iteration_function { | iteration_function}

iteration_function ::= expression

For a loop with a discrete iteration scheme, the loop parameter specification is
the declaration of the loop wariable with the given identifier. The initial value of
the loop variable is given by initial value. The optional keyword reverse defines
the loop to be monotonically decreasing; if it is missing, the loop is considered
to be monotonically increasing. Within the sequence of statements, the loop
variable behaves like any other variable, i.e., it can be used on both sides of an
assignment statement.

Before the sequence of statements is executed, the list of iteration functions
is evaluated to produce a list of possible successive values. Tt 1s also checked
whether all of these values are greater than the value of the loop variable if the
keyword reverse is missing, or whether they are smaller than the value of the
loop variable if reverse is present. If one of these checks fails, the exception
monotonic_error is raised.



After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor_error is raised.

If the value of the loop variable is still within the discrete range stated in
the loop header, the loop is iterated (at least) once more. If it is not within the
range, the loop completes.

These semantics ensure that such a loop always completes, either because
the value of the loop variable is outside the given range or because one of the
above checks fails.

A lot of these runtime checks can be avoided by ensuring at compile time
that the iteration functions are monotonical functions, or by means of data-
flow analysis in order to make sure that successor_error will never be raised.
Moreover we might even detect the number of iterations of the loop, which clearly
depends on the initial value of the loop variable, on the discrete range, and on
the iteration functions.

Figure 4 shows an implementation of Heapsort using a discrete loop.

3.2 Discrete Loops with a Remainder Function

Although monotonical discrete loops are applicable to many problems where a
general loop would have to be used otherwise, it is sometimes not desirable
or even not possible to have the loop variable follow a monotonical iteration
sequence. Many times this does not mean that the problem under consideration
does not impose some upper bound on the number of iterations of the loop.

To be able to treat such cases, we have introduced the concept of the so-called
remainder loop variable. The remainder loop variable draws its name from the
fact that it usually describes the amount of work that remains to be done at
some stage of the loop?. The value of the remainder loop variable is computed
during each iteration by the remainder function, which must be a monotonically
decreasing function. By that means we are able to guarantee upper bounds as
well as termination in a similar way as for monotonical discrete loops.

Since the remainder loop variable must be of a discrete type, this restriction
is not imposed on the loop variable anymore. Therefore the programmer is free
to iterate over whatever he chooses except limited or abstract types, which is
considered a major advantage over the traditional for-loop.

Figure 3 shows an example of a discrete loop with a remainder function.
Its purpose is traversing a binary tree. The loop variable points to the current
node, whereas the remainder loop variable describes the height of the remaining
subtree.

Due to space considerations, the remaining sections of this paper will only
deal with monotonical discrete loops.

2e.g. the number of remaining data items



discrete Node_Pointer := Root
new Node_Pointer := Node_Pointer.Left | Node_Pointer.Right
with H := Height
new H := H - 1 loop

— loop body:

— Here the node pointed at by node_pointer is processed
— and node_pointer is either set to the left or right

—  Successor.

—  The loop is completed if node_pointer = null.

end loop;

Figure 3: Template for Binary Iree Traversal

4 Implementation Considerations

It has ever been seen as an integral part of Project WOOP to implement a tool
that incorporates the theoretical results gathered. Concerning discrete loops that
meant that we would have to build a compiler for a programming language that
had been augmented by the concept of discrete loops. Two possibilities seemed
to exist to get the job done:

e Build from scratch.
e Use a scanner/parser generator to simplify things a little bit.

To further ease the task of implementation we decided to build a precompiler at
first. This precompiler would have to translate discrete loops to standard Ada.
The resulting code could then be compiled by any Ada compiler. Thus our tool
had to perform the following tasks:

e Scan its input.
e Perform syntax checks
e Perform semantic checks.

e Analyze discrete loops in order to find an upper bound for the number of
iterations.

e Transform discrete loops into their equivalent in standard Ada, preserving
the semantics of those loops.

o Generate the resulting Ada code.



Note that this has to be done for the entire program, considering only those
statements belonging to a discrete loop does by no means suffice!

In this situation 1t was the availability of Gnat that saved us a lot of work
and enabled us to focus on the main problems. It prevented us from coding a
complete front-end for the whole Ada programming language while providing
every facility we needed to build upon. Gnat itself is written entirely in Ada,
which makes this huge piece of software (over 12 megabyte of source code) very
modular. In fact this is also an achievement of the Gnat Team, since good
tools alone do not necessarily lead to good programs. The coupling between
its modules is really loose. In this way one can apply modifications locally and
need not know all the details of the program as a whole. We found the source
code of Gnat very well structured and fully documented. Tt left us with enough
space to add where we needed and in the way we wanted.

5 What we actually did

In this section we discuss the implementation of Wpp within Gnat. We will
focus on the important cornerstones in order to get the ”big picture”. Besides
giving some insight on the way Gnat internally works, this should also convince
the reader, that Gnat’s source, despite its sheer size and complexity, can be
understood and used creatively in any area that somehow depends on the analysis
of Ada programs. Possible areas of application include software metrics, pretty
printers, code transformers, and code optimizers.

5.1 The Abstract Syntax Tree

The Abstract Syntax Tree (or AST for short) is perhaps Gnat’s single most
important data structure. It is constructed by the recursive descent parser and
represents the input-program in a tree-like form. Subsequent processing in the
front end traverses the tree, transforming it in various ways and adding se-
mantic information. Therefore no separate symbol table structure is needed.
Every single piece of the Ada programming language finds its reflection in the
AST. It has got nodes for statements, expressions, declarations, tasks and so on.
We chose to treat discrete loops as a special form of for-loops and augmented
the node N_Loop_Parameter_Specification (a descendant of N_Iteration_Scheme
which is a descendant of N_Loop_Statement) with nodes for the initial_value and
the list_of_iteration_functions.

AST-access is governed by a high-level interface that checks for the validity of
the required access (you cannot convince Gnat to provide you with a loop-body
out of a case-statement, for example). Since, for obvious reasons, Gnat is very
picky about this, we created our own high-level interface for WOOP-specific
parts of the AST. A tool that checks for the consistency of such modifications is
provided with Gnat.



5.2 Modifying Gnat’s Scanner

We only had to add the keyword discrete, which was no big deal at all.
Keywords are ordered alphabetically in the scanner, so we put it between digits
and do. We also had to provide a string-representation for the new token. All
in all it took not more than about ten lines of code!

5.3 Modifying the Parser

As it has been stated above, Gnat incorporates a recursive descent parser. Tt
is divided into thirteen child units that properly reflect the structure of the cor-
responding chapters of the Ada Reference Manual. Loops belong to statements,
therefore we were only concerned with the file representing chapter 5 of [RM95].
The first thing to do was to tell the parser to call our function when encountering
a discrete loop:

— Discrete_Statement

when Tok_Discrete =>
Append_To (Statement_List, P_Discrete_Statement);

The code-fragment above is located in the part of the parser that deals with a
Sequence_of Statements. On encountering token discrete, it calls our function
P_Discrete_Statements and appends the resulting tree to the current node. Fur-
ther changes took place only within this function which freed us from the task of
“messing around” too much with the parser. P_Discrete_Statements deals with
the following topics:

1. Parse the identifier containing the loop variable.

2. Parse the expression containing the initial_value.

3. Parse the loop’s discrete_range and check for the keyword reverse.
4. Parse the list of iteration functions.

5. Put together the results of (1) .. (4) in a (sub)tree and return it to Gnat.

5.4 Semantic Analysis of Discrete Loops

Semantic analysis in general performs name and type resolution, decorates the
AST with various attributes and performs all static legality checks on the pro-
gram. Type resolution is done using a two-pass algorithm. During the first
(bottom-up) pass, each node within a complete context is labeled with its type,
or if overloaded with the set of possible meanings of each overloaded reference.
During the second (top-down) pass, the type of the complete context is used to



resolve ambiguities and choose a unique meaning for each identifier in an over-
loaded expression [DS95]. In the case of a loop statement, Gnat has to analyze
the loop’s iteration_scheme and the body of the loop. Since the body of a dis-
crete loop does not semantically differ from any other loop, we leave the latter
task to Gnat. This of course does not prevent us from performing special checks
(compare 3.1) on the body after semantic analysis has been completed.

The sole purpose of the analysis of the iteration_scheme of a discrete loop
is to determine the type of the loop variable and to verify that this type is a
discrete type. Please note that such an iteration_scheme contains three entities
that provide type-information:

e The expression representing the initial_value.
e The discrete_range.

e The iteration functions contained in the list_of_iteration_functions.

The algorithm we chose for type resolution is depicted in pseudo-code in
Figure 5.
It starts with calls to procedure Analyze to carry out the bottom-up pass for
the loop’s init_id and iteration_scheme. This leaves us with at least one possible
type for both arguments. Strictly speaking, we get one type for non-overloaded
entities and N (N € N, N > 1) for overloaded ones. Code lines (3) to (17)
aim at computing the intersection between these two sets of types. To avoid
ambiguity, we require that the resulting set contains at most one type. An
empty set means that nit_id and discrete_range where type-incompatible which
is equivalent to finding a bad type. To recover from such an error, bad types are
treated as 'type wild-cards’ that match any given type (they are said to be of
type ’Any_Type’). This is exactly the difference between statement issue_error
(lines 1 & 15) and return_error (lines 19 & 28): the first one complains put
continues execution, whereas the latter one quits issuing an error-message. Note
that our algorithm does in no way terminate before having passed line 18! This
ensures that the loop variable is visible during subsequent analysis of the loop
body. Furthermore it allows a loop variable to appear in an iteration_function.
Confer Figure 2 that this absolutely makes sense.

The remaining part of the algorithm (lines 20 - 37) distinguishes between
two cases:

e We have found type "Universal_Integer’, which makes us consult the list of
iteration_functions to find some specific integer-type (line 27).

e We have already found a specific type that has to fit the iteration_functions.

In order to avoid anonymous base types (we are generating source code, how
should we refer to them) we have to compute their so-called first named subtypes
(lines 21 & 33). What remains to be done is to resolve all three entities (init_id,
discrete_range & list_of_iteration_functions with the type we have found. This

corresponds to pass two (top-down) of Gnat’s type resolution algorithm.

10



5.5 Estimating the Number of Iterations of a Discrete Loop

Simple cases, like the one depicted in Figure 4 are solved by Wpp itself. If
things turn out to be more complex (e.g. complicated recurrence relations are
involved), Wpp passes this task over to Mathematica. Since it was not until now

that Mathematica has been ported to Linux, our interface to Math Link is still
under implementation.

5.6 Transformation of Discrete Loops into Standard Ada

When transforming a discrete loop, two prerequisites have to be met under all
circumstances:

1. For every discrete loop that has to be transformed, we have to preserve
the semantics given in section 3.1.

2. The enclosing program’s semantics must not be changed.

Figure 6 shows the resulting code that has been generated for the loop given in
Figure 4. The body of the loop remains untouched (lines 27 - 36). The code
before and afterwards corresponds to that ’extra work’ it takes to make the loop
behave in a ‘discrete’ way. It can be regarded as three steps:

1. Declare the types and objects we need.
2. Compute the possible successive values (done on a per iteration basis).

3. Check whether the new value of the loop variable is contained in the list of
possible successive values and whether it is still within its range (done on
a per iteration basis).

The following sections elaborate on the topics given above.

5.6.1 Step 1: Declaration of Types and Objects.

In order to meet prerequisite (1) stated above, we chose to declare things locally
using Ada’s block_statement (cf. line 1 - 11). Constant UB contains the upper
bound for the number of iterations of that loop.

The loop variable is declared and initialized at line 10. Tts type has been
derived by the algorithm in Figure 5. The remaining declarations are devoted
to holding the possible successive values while the loop body is executed. Note
that for any declaration except the loop variable we have to ensure that it does
not hide some other entity declared in an enclosing scope of the program.

The exceptions monotonic_error and successor_error are declared in a package
called DiscLoops. Wpp checks whether those entities are visible and generates a
with_clause if necessary.

11



5.6.2 Step 2: Computation of the Possible Successive Values.

This has to be done ’before’ each iteration (cf. lines 13 - 25)3. The reason for the
exception handler (lines 19 - 24) is that we do not want an overflowing iteration
function to alter the flow of execution by means of a constraint_error exception.
If such an overflow occurs, we catch the corresponding exception and exclude
the iteration function from further evaluation by setting its out_of_range flag. As
long as at least one valid iteration function remains to predict the new value of
the loop variable, the loop is correct, provided that this value is assigned to the
loop variable in the next iteration.

Furthermore we have to ensure that the values each iteration function com-
putes (lines 15-18) are monotonically increasing or decreasing. As stated in 3.1,
this would otherwise raise the exception monotonic_error.

5.6.3 Step 3: Consistency Checks.

An iteration of a discrete loop can not be called complete until we have ensured
that the loop variable has been assigned a value in the loop body that conforms
to the iteration functions. This of course has to be done after the loop body
has been executed (conf. lines 37 & 38). If no iteration function predicted the
value of the loop variable, or if all iteration functions are already out of range,
the exception successor_error is raised.

5.7 Code Generation

It is one of Gnat’s built in abilities to dump the source code from the generated
tree. Although this feature was only meant for debugging purposes, it perfectly
suits our needs: we let Gnat do all the work until it encounters a discrete loop
in the tree. This is the point were we take over in order to generate what is
depicted in Figure 6. For the loop body and at the end of the loop we return
control to Gnat.

6 Conclusion

In this paper we have shown that the source code of Gnat can be (re)used in
any area that somehow depends on the analysis of Ada programs. Possible areas
of application include software metrics, pretty printers, code transformers, and
code optimizers.

Concerning the implementation of Wpp, Gnat left us with nothing to wish
for. We found its source code very well structured and fully documented. The
coupling between its modules is really loose. In this way one can apply modi-
fications locally and need not know all the details of the program as a whole.

3The computation for the 27¢ iteration function has been left out for space considerations

12



Tools are provided that ensure the consistency of modifications of critical parts
of the compiler. Various debugging facilities ease the task of testing.

References

[RM95] TISO/TEC 8652, Reference manual for the Ada programming lan-
guage, 1995.

[Bli94] J. BLIEBERGER, Discrete loops and worst case performance, Com-
puter Languages, 20 (1994), no. 3, 193-212.

[Bli95] J. BLIEBERGER, Project WOOP - Worst Case Performance of Object-
Oriented Real-Time Programs, A position paper on Project WOOP,
(1995).

[BL94] J. BLIEBERGER AND R. LIEGER, Worst-case space and time complez-
ity of recursive procedures, (to appear), 1994.

[BL95] J. BLIEBERGER AND R. LIEGER, Real-time recursive procedures, Pro-
ceedings of the 7t" EUROMICRO Workshop on Real-Time Systems,
Odense, Denmark, June 1995. IEEE Press.

[DS95] R.DEWAR AND E.SCHONBERG, The GNAT Project: A GNU-Ada9X

Compiler, cs.nyu.edu 1995.

DEPARTMENT OF AUTOMATION (183/1), TECHNICAL UNIVERSITY OF VIENNA, TREITL-
STR. 1/4, A-1040 VIENNA

Email: blieb@auto.tuwien.ac.at bburg@auto.tuwien.ac.at

13



3]

26
27
28
29
30
31
32
33
34
35
36

N : constant Positive := 77; -- number of elements to be sorted

subtype Index is Positive range 1 .. N;
type Sort_Array is array(Index) of Integer;

procedure Heapsort (Arr : in out Sort_Array) is

N : Index := Arr’Length;
T : Index;

procedure Siftdown(N,K : Index) is

J : Index;
V : Integer;
begin
V := Arr(K);
discrete H:= Kin 1 .. N/2 new H := 2«H | 2«H+1 loop
J := 2«H;
if J < N and then Arr(J) < Arr(J+1) then
J = J+1;
end if;
if V > Arr(J) then
Arr(H) := V;
exit;
end if;
Arr(H) := Arr(J);
Arr(J) := V;
H:=1J
end loop;

end Siftdown;

begin -- Heapsort
for K in reverse 1 .. N/2 loop
Siftdown(N,K);

end loop;

for M in reverse 2 .. N loop
T := Arr(1);
Arr(1) := Arr(M);
Arr(M) = T;
Siftdown(M-1,1);

end loop;

end Heapsort;

Figure 4: An implementation of Heapsort using a discrete loop

14



[oe)

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Analyze (init_id); Analyze (discrete_range);
if they do not yield discrete types then issue_error; end if;

if Is_Overloaded (init_id) and Is_Overloaded (discrete_range) then
T := Compute_the_Intersection_of_both_Typesets;
elsif Is_Overloaded (init_id) and not Is_Overloaded (discrete_range) then
if Type(discrete_range) € Typeset(init_id) then
T := Type(discrete_range);
end if;
elsif not Is_Overloaded (init_id) and Is_Overloaded (discrete_range) then
if Type(init_id) € Typeset(discrete_range) then
T := Type(init_id);
end if;
else
if Type(init_id) % Type(discrete_range) then
issue_error;
end if;
end if;

Make the entity of the loop variable visible;
if no suitable type found then return_error; end if;

if T # Universal_Integer then
T := First_Named_Subtype (Base_Type (T));
Resolve_Init_Id (T);
Resolve_Discrete_Range (T);
Analyze_List_Of_Iteration_Functions;
Resolve_List_Of_lteration_Functions ('T');
else
Analyze_List_Of_Iteration_Functions;
T := Determine_Type_of_lteration_functions;
if T = Any_Type then return_error; end if;
if T = Universal_Integer then
T := Standard_Integer;
else
T := First_Named_Subtype (Base_Type (T));
end if;
Resolve_Init_Id (T);
Resolve_Discrete_Range (T);
Resolve_List_Of_Iteration_Functions (T);
end if;

Figure 5: Pseudo-code type resolution of an iteration_scheme.

15



© 00 ~J O Ut W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42

declare
UB : constant integer := DisclLoops.Numerics.Floor (
DiscLoops.Numerics.Log (2, n/(2+k))+1.0);
type PSV_Type is record
out_of range : Boolean := false;
value : integer;
end record,;
PSV1: PSV_Type;
PSV2 . PSV_Type;
h : integer := k;
begin
whilehin 1. n /2 loop
if not PSV1.0ut_Of_Range then
begin
PSV1.Value := 2 * h;
if PSV1.Value < h then
raise DiscLoops. MONOTONIC_ERROR;
end if;
exception
when CONSTRAINT_ERROR =>
PSV1.0ut_Of_Range := True;
when others =>
raise;
end;
end if;

—  Sequence of Statements:
j:=2 % h;
if j < n and then arr (j) < arr (j + 1) then
J=j+ 1
end if;
if v > arr (j) then
arr (h) := v;
exit;
end if;
arr (h) := arr (j);
arr (j) := v; h :=j;

if (PSV1.0ut_Of_Range or PSV1.Value # h) and then (
PSV2.0ut_Of_Range or PSV2.Value # h) then
raise DiscLoops.SUCCESSOR_ERROR;
end if;
end loop;
end;

Figure 6: Discrete Loop of Figure 4 transformed into Ada

16



