
AdaStreams: A Type-based Programming
Extension for Stream-Parallelism with Ada 2005

Gingun Hong1, Kirak Hong1, Bernd Burgstaller1 and Johann Blieberger2

1 Yonsei University, Korea
2 Vienna University of Technology, Austria

Abstract. Because multicore CPUs have become the standard with all
major hardware manufacturers, it becomes increasingly important for
programming languages to provide programming abstractions that can
be mapped effectively onto parallel architectures.
Stream processing is a programming paradigm where computations are
expressed as independent actors that communicate via data streams. The
coarse-grained parallelism exposed in stream programs facilitates such an
efficient mapping of actors onto the underlying hardware.
In this paper we propose a type-based stream programming extension
to Ada 2005. AdaStreams is a type-hierarchy for actor-specification to-
gether with a run-time system that supports the execution of stream
programs on multicore architectures. AdaStreams is non-intrusive in the
sense that no change of an Ada 2005 programming language implemen-
tation is required. Legacy-code can be mixed with a stream-parallel ap-
plication, and the use of sequential legacy code with actors is supported.
Unlike previous approaches, AdaStreams allows creation and subsequent
execution of stream programs at run-time.
We have implemented AdaStreams for Intel multicore architectures. We
provide initial experimental results that show the effectiveness of our
approach on an Intel X86-64 quadcore processor. The initial release of
our work is available for download at [1].

1 Introduction

For the past three decades, improvements in semi-conductor fabrication and chip
design produced steady increases in the speed at which uniprocessor architec-
tures executed conventional sequential programs. This era is over, because power
and thermal issues imposed by laws of physics inhibit further performance gains
from uniprocessor architectures. To sustain Moore’s Law and double the per-
formance of computers every 18 months, chip designers are therefore shifting to
multiple processing cores. The IBM Cell BE [12] processor provides 9 processing
cores, Microsoft’s Xbox CPU [2] has 3 cores, and more than 90% of all PCs
shipped today have at least 2 cores. According to a recent survey conducted by
IDC [13], all PCs (desktops, mobile and servers) will be multi-cores in 2010, with
quad and octal cores together already constituting more than 30% market share.
For programming languages it becomes therefore increasingly important to pro-
vide programming abstractions that work efficiently on parallel architectures.



2 Gingun Hong, Kirak Hong, Bernd Burgstaller and Johann Blieberger

Many imperative and early object-oriented languages such as Fortran, C and
C++ were designed for a single instruction stream. Extracting parallelism that is
sufficiently coarse-grained for efficient multicore execution is then left to the com-
piler. However, sequential applications usually contain too many dependencies
to make automated parallelization feasible within the static analysis capabili-
ties of compilers. Ada, C# and Java provide thread-level concurrency already
as part of the programming language itself. Thread-level concurrency allows the
expression of task-parallelism (performing several distinct operations – tasks –
at the same time), data-parallelism (performing the same task to different data
items at the same time) and pipeline parallelism (task parallelism where tasks
are carried out in a sequence, every task operating on a different instance of the
problem) [19] already in the source code.

Because threads execute in a shared address space, it is the programmer’s
responsibility to synchronize access to data that is shared between threads.
Thread-level concurrency plus synchronization through protected objects, mon-
itors, mutexes, barriers or semaphores [14, 11] is commonly referred to as thread
and lock-based programming. In addition to the difficulties of writing a cor-
rect multi-threaded program, thread and lock-based programming requires the
programmer to handle the following issues.

1. Scalability: applications should scale with the number of cores of the un-
derlying hardware. Encoding a programming problem using a fixed set of
threads limits scalability.

2. Efficiency: over-use of locks serializes program execution, and the provision
of lock-free data structures is difficult enough to be still considered a publish-
able result. Programs are likely to contain performance bugs:3 cache coher-
ence among cores is a frequent source of performance bugs with data that is
shared between threads. False sharing [19] is a performance bug where data
is inadvertently shared between cores through a common cache-line.

3. Composability: composing lock-based software may introduce deadlocks and
performance bugs.

It is therefore important to identify programming abstractions that avoid the
above problems. Pipeline parallelism is so common in parallel programs that
it was selected as a distinguished parallel programming pattern [20]. Because
pipeline parallelism operates on a conceptually infinite data stream, it is often
called stream parallelism.

Stream-parallel programs consist of a set of independent actors that commu-
nicate via data streams. Actors read from their input channels, perform com-
putations and write data on their output channels. Each actor represents an
independent thread of execution that encapsulates its own state. Actors are self-
contained, without references to global variables or to the state information of
other actors. The self-containedness of actors rules out any dependencies except
those implied by communication channels: an actor can execute if sufficient data
is available on its input channels and if the output channels provide enough
3 Bugs that prevent an otherwise correct program from executing efficiently.



AdaStreams Stream-programming Library 3

space to accommodate the data produced by the actor. Because of this lack
of dependencies stream programs provide a vast amount of parallelism, which
makes them well-suited to run on multi-core architectures.

A/D bandpass mpeg server

Fig. 1. Example stream program

Fig. 1 depicts an example stream program that consists of an A/D converter,
a bandpass filter, an mpeg-encoder and a network server that provides an mpeg
data-streaming service. The application domain for stream parallelism includes
networks, voice, video, audio and multimedia programs. In embedded systems,
applications for hand-held computers, smart-phones and digital signal processors
operate on streams of voice and video data.

Despite its large application domain, stream-parallelism is not well-matched
by general purpose programming languages; mainly because actors and streams
are not provided at the language level. As a consequence, programmers need
to devise their own abstractions, which are then prone to lack readability, ro-
bustness and performance. A programming language implementation that is not
aware of stream parallelism most likely will not be able to take advantage of the
abundance of parallelism provided by stream programs.

The contributions of this paper are as follows.

– We present a type-based stream programming extension for Ada 2005. Our
extension lifts the abstraction level for the development of stream programs.
Actors are expressed as tagged types and conveniently connected via a single
method call.

– We provide design and implementation of a run-time system for Ada 2005
that allows the execution of stream programs. Our run-time system manages
the data channels between actors, load-balances and schedules actors among
the parallel execution units of a processor, and provides the complete stream
program execution infrastructure.

– Unlike previous approaches, we allow the dynamic creation of stream graphs.
Instead of applying heuristics, we profile stream programs to load-balance
actors among the parallel execution units of a processor.

– The initial release of AdaStreams is available for download at [1].

The remainder of this paper is organized as follows: in Sec. 2 we provide back-
ground information and survey related work. In Sec. 3 we introduce the type-
based programming abstractions for stream-parallelism proposed for Ada 2005.
In Sec. 4 we describe the design and implementation of the run-time system re-
quired to support applications that use our programming abstractions for stream
parallelism. Sec. 5 contains our evaluation of AdaStreams on the Intel x86-64
architecture. We draw conclusions and outline future work in Sec. 6.



4 Gingun Hong, Kirak Hong, Bernd Burgstaller and Johann Blieberger

2 Background and Related Work

A survey on programming languages that include a concept of streams can be
found in [22]. For example, Lustre [8] is a synchronous dataflow programming
language used for safety-related software in aircrafts, helicopters, and nuclear
power plants. However, it supports only a limited number of data types and
control statements. Esterel [5] improves on the number of control statements
and is well-suited for control-dominated synchronous systems. Both languages
require a fixed number of inputs to arrive at the same time before a stream node
executes.

StreamIt [24] uses syntax similar to Java and is more flexible than its prede-
cessors. A StreamIt programmer constructs a stream graph consisting of filters
which are connected by a fixed number of constructs: Pipelines, SplitJoins, and
FeedbackLoops. Two types of splitters are supported: Duplicate and RoundRobin.
A FeedbackLoop allows to create cycles in the stream graph. In contrast to its
predecessors, StreamIt supports a dynamic messaging system for passing irreg-
ular, low-volume control information between filters and streams.

We do not consider specification languages like SDL [4] here because in this
paper we are interested more in implementing systems than in designing systems.

Our approach differs from Kahn process networks [15] which allow data-
dependent communication. Leung et al. show in [18] how Kahn process networks
can be mapped onto parallel architectures using MPI for communication.

Summing up, our approach for AdaStreams goes beyond that of StreamIt
because we allow dynamic creation of stream graphs. Messaging can be done via
standard Ada features such as protected objects. In contrast to the languages
mentioned above, the whole spectrum of data types available in Ada can be
used for streaming. However, currently we do not provide predefined structured
stream graphs like StreamIt does with its Pipelines, SplitJoins, and Feedback-
Loops. The filters, splitters and joiners provided by the AdaStreams library are
sufficient to generate structured graphs. For example, Fig. 3(d) shows how a
feedback loop can be constructed with AdaStreams. As explained in [23], it is
yet not entirely clear whether structured stream graphs are sufficient for all
possible applications. Our plan with AdaStreams is to survey the stream graph
patterns arising from real-world applications and build higher-level stream graph
constructs from commonly occurring patterns.

Stream programs expose an abundant amount of explicit parallelism already
in the source code. Actors (i.e., stream graph nodes) constitute independent units
of execution that interact only through data channels. Actors may be stateless
or encapsulate state. Despite this amount of parallelism it is still a challeng-
ing task to schedule a stream program on a parallel architecture. The obvious
solution of assigning an Ada task to each filter and to model communication
via producer-consumer style bounded buffers induces too much context-switch
and synchronization overhead for all but the largest filters. In fact filters often
contain only a small amount of computation, which makes it hard to maintain a
high computation-to-communication ratio with stream programs. StreamIt and
AdaStreams require that the amount of data consumed and produced by an



AdaStreams Stream-programming Library 5

actor is known a priori . Stream graphs with this property employ synchronous
data-flow (SDF). Figure 2 depicts an SDF example stream graph. The num-
bers associated with each input and output of an actor denote the number of
data items consumed and produced during one actor execution. For example,
Actor a2 consumes two data items and produces one data item per execution.
Conceptually, an SDF graph repeatedly applies an algorithm to an infinite data

a1 a3

a2

32

2

4 3

1

18 12

Actor Iterations

a1 3
a2 6
a3 2

Fig. 2. Example: SDF and minimal steady-state schedule

stream. An SDF graph is executing in steady-state if the amount of data buffered
between actors remains constant across repeated executions. The table in Fig. 2
depicts the number of iterations required for each actor such that the above SDF
graph stays in steady state. E.g., Actor a1 has to be executed three times, result-
ing in 3× 2 data items on channel a1→a3. Actor a3 will consume those 6 data
items during its two executions. Computing the steady state for SDF graphs
has been studied in [17]4. StreamIt uses a variant of this algorithm for struc-
tured SDF graphs [16]. An SDF graph is scheduled based on its steady state.
The scheduler consists of two phases, one bootup-phase to bring the system into
steady state, and the steady-state schedule itself.

The stream programming paradigm is also applied in Google’s recently-
released systems programming language “Go” [10]. Go provides co-routines that
communicate via channels.

3 A Type-based Programming Abstraction for Stream
Parallelism with Ada 2005

To add a stream programming abstraction to the Ada programming language,
the following approaches are conceivable: (1) extend the core language itself
through language extensions, (2) provide a compiler extension for streaming
constructs, or (3) provide a programming library that the user can link with
standard Ada application code. AdaStreams is strictly a library. Although lan-
guage extensions are attractive, they create a high barrier to adoption, especially
in commercial settings. A library-based extension allows re-use of legacy code,
opens up a migration path and does not require programmers to step out of
their accustomed programming environment. Moreover, a library lowers the en-
try barrier for language researchers and enthusiasts who want to work in this
area themselves. We felt that at this stage the stream programming paradigm

4 Note that a steady state for a given SDF graph need not exist in general.



6 Gingun Hong, Kirak Hong, Bernd Burgstaller and Johann Blieberger

is still in the state of flux, which suggests to choose a library as a light-weight
approach to begin with. Ada provides excellent support for packages, types and
generic programming, which facilitates library creation. A library-only solution
is of course not perfect. We had to omit features that require compiler support,
like filter fusion/fission to improve load-balancing of stream programs on multi-
core architectures. However, libraries have been successfully applied to extend
programming languages, as demonstrated by the POSIX threads library [7] and
by the Intel Thread Building Blocks [21].

Fig. 3 shows the three actor programming primitives that AdaStreams pro-
vide: filters, splitters and joiners. Together, these primitives are sufficient to
generate arbitrary stream graph structures. Fig. 3(d) shows how a loop can be
constructed from a joiner, a filter and a splitter.

Filter

(a) Filter

Splitter

(b) Splitter

Joiner

(c) Joiner

Joiner

Filter

Splitter

(d) Loop Compound Stmt.

Fig. 3. Three AdaStreams stream-graph primitives and one compound statement

Each AdaStreams filter has an input and output type. That way filters are
allowed to convert data, which allows the generation of heterogeneous stream
graphs. Splitters and joiners are restricted to a single type. Types are used
during stream graph creation to ensure type compatibility of adjacent stream
graph primitives. Users may define arbitrary types by extending our abstract
tagged root type Root_Data_Type as depicted in Fig. 4.

Root Data Type

Int Float

Fig. 4. Root data type hierarchy

We chose a hierarchy of tagged types depicted in Fig. 5 to represent stream
program actors. The abstract type Base_Filter at the root of this hierarchy
contains the commonalities among actors. Types Filter, Splitter and Joiner
are generic types parameterized by the respective input or input and output
types from the root data type hierarchy.

Type Base_Filter is depicted in Fig. 6. Every actor has to provide a primi-
tive operation named Work (line 5) which encodes the actor’s computation. The



AdaStreams Stream-programming Library 7

Base Filter

Filter Splitter Joiner

Fig. 5. Type hierarchy for AdaStream filters

Base_Filter record can be extended by actors that need to keep state informa-
tion across invocations of the work function.

1 with Root Data Type;
2 package Base Filter is

3 type Base Filter is abstract tagged private;
4 type Base Filter Ptr is access all Base Filter’Class;

5 procedure Work (f: access Base Filter) is abstract;

6 procedure Connect(f: access Base Filter;
7 b: access Base Filter’Class;
8 out weight: Positive := 1;
9 in weight: Positive := 1) is abstract;

10 function Get In Type(f: access Base Filter)
11 return Root Data Type.Root Data Type’Class is abstract;
12 procedure Set In Weight (f: access Base Filter; in weight : positive) is abstract;
13 private
14 type Base Filter is abstract tagged null record;
15 end Base Filter;

Fig. 6. Base Filter type

Every actor needs a Connect operation (lines 6–9) to attach its streamgraph
successor(s). The arguments to the Connect operation are the downstream suc-
cessor (line 7) and the number of output data items (line 8) of this actor plus the
number of input data items (line 9) of the downstream successor. For example,
to connect actors X and Y via edge X 1 2 Y , operation X.Connect(Y,1,2)
would be used by the AdaStreams library user. In the case of multiple successors
(i.e., with splitters), the Connect operation must be invoked for each successor.
The successor’s Set_In_Weight operation is invoked from within Connect to
communicate the in_weight argument value to the successor. out_weight and
in_weight of stream-graph edges are used to compute the steady state schedule
as outlined in Sec. 2.

At run-time, operation Connect checks that the data types used in the filters
to be connected are equivalent. Operation Get_In_Type (lines 10 and 11 in
Fig. 6) is used to retrieve the input type of the downstream actor. If the data
types differ, exception RTS.Stream_Type_Error is raised. Hence we combine a
type secure approach with dynamic creation of arbitrary stream graphs.

Filters, splitters, and joiners (see Fig. 3) specific to a chosen root data type
can be instantiated from the generic packages Filter, Splitter, and Joiner.



8 Gingun Hong, Kirak Hong, Bernd Burgstaller and Johann Blieberger

These packages are parameterized by the respective input or input and output
types.

1 with Root Data Type, Base Filter;
2 generic
3 type In Type is new Root Data Type.Root Data Type with private;
4 type Out Type is new Root Data Type.Root Data Type with private;
5 package Filter is
6 type Filter is abstract new Base Filter.Base Filter with private;
7 procedure Work(F: access Filter) is abstract;
8 procedure Push(F: access Filter; Item: Out Type);
9 function Pop(F: access Filter) return In Type;
10 . . .
11 private
12 type Filter is abstract new Base Filter.Base Filter with record
13 In Var : aliased In Type;
14 Out Var : aliased Out Type;
15 In Weight : Positive; -- # data items Work() pops per invocation
16 Out Weight : Positive; -- # data items Work() pushes per invocation
17 end record;
18 end Filter;

Fig. 7. Generic package providing the AdaStreams filter type

The generic package for filters is depicted in Fig. 7. AdaStreams filters provide
primitive operation Pop to retrieve a single data item from a filter’s input stream.
Likewise, operation Push allows a filter to write a data item onto the output
stream. Operations Push and Pop are to be used within a filter’s Work operation.
As already mentioned, by overriding the abstract primitive operation Work of a
filter, the user implements the actual behavior of the filter. The Work-operations
of splitters and joiners are provided by our implementation: splitters partition
the incoming data stream into sub-streams, joiners merge several incoming data
streams of the same type into a single stream.

1

2

3

4

5

6

7

8

5

6

7

8

7

8

5

6

8

7

6

5

6

8

5

7

8

7

6

5

4

8

3

7

2

6

1

5

8

7

6

5

4

3

2

1

1

2

3

4

3

4

1

2

4

3

2

1

2

4

1

3

4

3

2

1

Printer

Splitter

Splitter

Merge
n=2

Merge
n=2

Splitter

Merge
n=2

Merge
n=2

Joiner

Joiner

Merge
n=4

Merge
n=4

Joiner
Merge
n=8

Fig. 8. The merge filters in the merge sort benchmark, with N=8



AdaStreams Stream-programming Library 9

Fig. 8 shows a stream-parallel version of the Mergesort algorithm for N = 8
data items. During each steady-state execution (aka iteration) of this stream
program, 8 data items are popped from the input stream, sorted, and pushed
onto the output stream. We chose this example because it showcases the dynamic
creation of stream-graphs depending on user input data (parameter N). The
Mergesort example is implemented as follows:

1. First the stream data type is declared by extending the Root_Data_Type.
In our case it is an integer type (see Fig. 9). The implementation of the
operations for this type are not shown since they are straight-forward.

2. Next the filters needed for Mergesort are defined by extending the standard
filter type. We need a filter for the source of the stream to be sorted. This is
filled via a random number generator. In addition we need a Merger for doing
the actual work and a Printer to display the final result. Splitters and joiners
are also defined as shown in Fig. 10. Note that for space-considerations we
had to move the implementations of the above filter’s Work-operations to the
paper’s accompanying technical report [9].

3. Procedure Main5 uses the recursive function SetUp_MergeSort to setup the
stream graph needed by Mergesort. This is done in a standard way. A ref-
erence to this can be found in almost any book on algorithms and data
structures. An example of the stream graph for N = 8 items to be sorted
is shown in Fig. 8. Runtime arguments of Main are the number of CPUs to
use and the number of iterations of the stream graph.

1 package Root Data Type.Int is

2 type Int is new Root Data Type with record
3 I : Integer;
4 end record;

5 function "+" (Left, Right : Int) return Int;

6 function "<=" (Left, Right : Int) return Boolean;

7 end Root Data Type.Int;

Fig. 9. Root Data Type.Int

4 The AdaStreams Run-time System

We implemented the AdaStreams run-time system (RTS) as an Ada package that
must be compiled and linked with applications that wish to use the AdaStreams
library. Package RTS contains several child packages as shown in Fig 11 and
exports only two procedures, as depicted in Fig 12. Procedure Connect is used
by our generic implementations of filters, splitters and joiners. The Connect

5 Shown in the paper’s accompanying technical report [9].



10 Gingun Hong, Kirak Hong, Bernd Burgstaller and Johann Blieberger

1 with Root Data Type.Int, Base Filter, Filter, Splitter, Joiner;
2 package UserFilters is
3 package Int Filter is new Filter (Root Data Type.Int.Int, Root Data Type.Int.Int);
4 package Int Splitter is new Splitter (Root Data Type.Int.Int);
5 package Int Joiner is new Joiner (Root Data Type.Int.Int);

6 type Merger (aValue : Integer) is new Int Filter.Filter with record
7 N : Integer := aValue;
8 end record;
9 procedure Work (F : access Merger);
10
11 type Source is new Int Filter.Filter with null record;
12 procedure Work (F : access Source);

13 type Printer is new Int Filter.Filter with null record;
14 procedure Work (F : access Printer);
15 end UserFilters;

Fig. 10. Mergesort Filters

Stream graph PerfmonProfiler BarrierScheduler Buffer manager

compute
steady state
iterations

allocate buffers
profile/load
balance filters

assign filters
to CPU and
run

barrier waitget CPU cycles

RTS

Fig. 11. Component diagram for the AdaStreams run-time system

operations from the Base_Filter type hierarchy invoke RTS.Connect to inform
RTS about connections between actors. Child-component RTS.Stream Graph
maintains the stream-graph topology from calls to RTS.Connect.

After the stream graph has been created, the RTS client calls RTS.Run to ex-
ecute the stream graph on NrCPUs for NrIterations. At this stage RTS executes
the following steps:

1. The steady-state for the given stream graph is calculated as outlined in
Sec. 2. We use a thin binding to the GiNaC C++ symbolic algebra pack-
age [3]. Package RTS.Stream Graph sets up a system of linear equations
that models the input-output behavior of the stream graph. The solution
to this equation system denotes the steady state iterations for each ac-
tor. For a stream graph that has no steady state RTS raises exception In-
valid Stream Graph. This is not a limitation of our framework but a man-
ifestation of a defective stream graph structure: due to sample rate incon-
sistencies any schedule for such a graph will result either in deadlock or
unbounded buffer sizes [17].

2. Buffers representing the data channels are allocated between adjacent actors.
The size of a buffer is computed as the data type size times the input or
output rate times the number of steady-state iterations.



AdaStreams Stream-programming Library 11

1 with Base Filter;
2 package RTS is
3 Stream Type Error : exception;
4 -- Raised with connections of type-incompatible filters.

5 Invalid Stream Graph : exception;
6 -- Raised for a stream that has no steady state.

7 procedure Connect(From : Base Filter.Base Filter Ptr;
8 To : Base Filter.Base Filter Ptr;
9 Out Weight : Positive := 1;
10 In Weight : Positive := 1);

11 procedure Run (NrCPUs : Positive; NrIterations : Natural);
12 end RTS;

Fig. 12. RTS run-time system package specification

3. A boot schedule to bring the stream graph into steady state is computed and
executed on the actors. During this bootup phase the actors are profiled to
determine the execution times of their work functions. Profiling uses the x86-
64’s hardware cycle counters exported by the clock library from [6] (again
we use a thin binding). Based on the execution times the actors are allocated
to CPUs using a simple but fast greedy algorithm: actors are sorted from
largest to smallest work function execution time. CPU allocation happens
then in a round-robin fashion from the sorted list of actors.

4. For every CPU a scheduler from package RTS.Schedulers is created and
the corresponding actors are registered with the scheduler. A scheduler is
an Ada task that maintains a list of registered actors together with the
corresponding numbers of steady-state iterations. Invocation of a scheduler’s
Run entry initiates execution of the registered actors’ work functions.

5. Stream graph execution is initiated with the schedulers.

There is no need for synchronization of actor execution within a single CPU,
because schedulers invoke work functions sequentially. However, across CPUs
schedulers need to be synchronized. It is worth noting that we require only a
single barrier (implemented as a protected object) for scheduler synchronization.
As depicted in Fig. 13, we actually employ two buffers between adjacent actors.

Filter 1

Buffer 1 Buffer 2

Filter 2

push

pop

(a) Iteration N

Filter 1

Buffer 1 Buffer 2

Filter 2

push

pop

(b) Iteration N + 1

Fig. 13. Double-buffering applied with data channels



12 Gingun Hong, Kirak Hong, Bernd Burgstaller and Johann Blieberger

Two buffers ensure that both the reader and the writer have their own buffer
and need not synchronize with each buffer access. After every steady state iter-
ation schedulers synchronize on the barrier and swap the read and write buffers
before the next iteration. Barriers with double buffering reduce synchronization
overhead among schedulers and keep the computation-to-communication ratio
of stream programs high.

5 Experimental Results

We devised the following Ada benchmark programs to conduct an initial evalu-
ation of the AdaStreams library:

1. Synthetic: this is a synthetic benchmark that uses a busy wait loop to spend
CPU cycles. In this benchmark each work function spins for one second
before pushing a single data item. Consequently, this benchmark has a very
high computation-to-communication ratio.

2. Mergesort: this benchmark uses a stream of random integers, reads N el-
ements from the stream and outputs the N elements in sorted order (as
outlined in Sec. 3).

3. Block matrix multiply: Block matrix multiply splits each matrix in the
stream into blocks and multiplies blocks with small communication over-
head. Blocks are added and combined.

4. Matrix multiply: multiplies two square matrices. It transposes one of them
and multiplies two matrices in parallel.

Benchmark Filters Splitters Joiners

Synthetic 58 1 1

Mergesort 33 15 15

Matrix Multiply 44 5 5

Block Matrix Multiply 31 7 7

Table 1. Characteristics of benchmark programs implemented with AdaStreams

Table 1 shows the characteristic features of our benchmark stream programs.
All benchmarks were compiled with the 64-bit version of GNAT GPL 2009
(20090511). To determine the scalability of the AdaStreams implementation with
respect to the number of CPU cores, we executed all benchmarks on an Intel
x86-64 server with two Xeon 5120 quadcore CPUs. As expected, the synthetic
benchmark with its high workload scaled best. Matrix multiply also scaled very
well, with a speedup of a factor of almost 5 with 8 CPU cores. Block matrix
multiply achieved a speedup of almost three times with more than four cores.
The work functions of Mergesort show very fine-grained parallelism; under those
circumstances scalability was reasonable. It should be noted that scalability of



AdaStreams Stream-programming Library 13

1 2 3 4 5 6 7 8
Number of CPU Schedulers

1

2

3

4

5

6

7

Sp
ee

du
p

Synthetic
Block matrix multiply
Merge sort
Matrix multiply

Fig. 14. Scalability of stream benchmark programs

stream programs was achieved without changing even a single line of source
code—mapping of actors to different numbers of CPU cores was all transpar-
ently handled by the AdaStreams library.

6 Conclusions and Future Work

In this paper we have proposed a type-based stream programming extension to
Ada 2005. AdaStreams is a type-hierarchy for actor-specification together with
a run-time system that supports the execution of stream programs on multicore
architectures. AdaStreams is non-intrusive in the sense that no change of an
Ada 2005 programming language implementation is required. Legacy-code can
be mixed with a stream-parallel application, and the use of sequential legacy
code with actors is supported. Unlike previous approaches, AdaStreams allows
dynamic creation of stream programs. Messaging (known from StreamIt) can be
done via standard Ada features such as protected objects. The whole spectrum
of data types available in Ada can be used for streaming. Each AdaStreams filter
has an input and output type. That way filters are allowed to convert data, which
allows the generation of heterogeneous stream graphs. Splitters and joiners are
restricted to a single type.

We have implemented AdaStreams for Intel multicore architectures. We pro-
vide initial experimental results that show the effectiveness of our approach on
an Intel X86-64 quadcore processor. The initial release of our work is available
for download at [1].

Our plan with AdaStreams is to survey the stream graph patterns arising
from real-world applications and build higher-level stream graph constructs from
commonly occurring patterns. We will investigate improvements to our greedy
actor allocation algorithm.

References

1. AdaStreams Web Site. http://elc.yonsei.ac.kr.



14 Gingun Hong, Kirak Hong, Bernd Burgstaller and Johann Blieberger

2. J. Andrews and N. Baker. Xbox 360 System Architecture. IEEE Micro, 26(2):25–
37, 2006.

3. C. Bauer, A. Frink, and R. Kreckel. Introduction to the GiNaC Framework for
Symbolic Computation within the C++ Programming Language. J. Symb. Com-
put., 33(1):1–12, 2002.

4. F. Belina and D. Hogrefe. The CCITT-Specification and Description Language
SDL. Computer Networks, 16:311–341, 1989.

5. G. Berry and G. Gonthier. The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Sci. Comput. Program., 19(2):87–152, 1992.

6. R. E. Bryant and D. R. O’Halloran. Computer Systems: A Programmer’s Perspec-
tive. Prentice-Hall, 2003.

7. D. Buttlar, J. Farrell, and B. Nichols. PThreads Programming. O’Reilly, 1996.
8. P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A Declarative Language

for Programming Synchronous Systems. In POPL, pages 178–188, 1987.
9. G. Hong, K. Hong, B. Burgstaller and J. Blieberger. AdaStreams: A Type-based

Programming Extension for Stream-Parallelism with Ada 2005. Technical Report
TR-0003, ELC Lab, Dept. of Computer Science, Yonsei University, Seoul, Korea,
http://elc.yonsei.ac.kr, March 2010.

10. Google. The Go Programming Language Specification, retrieved Nov. 2009, http:
//golang.org.

11. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

12. IBM Redbooks. Programming the Cell Broadband Engine Architecture: Examples
and Best Practices. http://www.redbooks.ibm.com, August 2008.

13. IDC. PC Semiconductor Market Briefing: Re-Architecting the PC and the Migra-
tion of Value, June 2008, http://www.idc.com.

14. ISO/IEC 8652:2007. Ada Reference Manual, 3rd edition, 2006.
15. G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J. L.

Rosenfeld, editor, Information Processing, pages 471–475, Stockholm, Sweden, Aug
1974. North Holland, Amsterdam.

16. M. Karczmarek, W. Thies, and S. Amarasinghe. Phased Scheduling of Stream
Programs. SIGPLAN Not., 38(7):103–112, 2003.

17. E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. IEEE Trans. Comput., 36(1):24–35, 1987.

18. M.-K. Leung, I. Liu, and J. Zou. Code Generation for Process Network Models
onto Parallel Architectures. Technical Report UCB/EECS-2008-139, EECS De-
partment, University of California, Berkeley, Oct 2008.

19. C. Lin and L. Snyder. Principles of Parallel Programming. Addison Wesley, 2008.
20. T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for Parallel Pro-

gramming. Addison Wesley, 2007. 3rd printing.
21. J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.
22. R. Stephens. A Survey of Stream Processing. Acta Informatica, 34:491–541, 1997.
23. W. Thies. Language and Compiler Support for Stream Programs. PhD thesis,

Massachusetts Institute of Technology, Feb. 2009.
24. W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A Language for

Streaming Applications. In CC ’02: Proceedings of the 11th International Con-
ference on Compiler Construction, pages 179–196, London, UK, 2002. Springer
LNCS.


