
Static Partial-Order Reduction of Concurrent
Systems in Polynomial Time

Robert Mittermayr and Johann Blieberger

Institute of Computer-Aided Automation
Vienna University of Technology

Austria

Abstract. We present an algorithm for attacking the state explosion
problem in analyzing multithreaded programs. Our approach employs
partial-order reduction and static virtual coarsening. It uses information
on shared variables to generate and interleave blocks of statements.
Our algorithm performs polynomially as long as the number of shared
variables is constant.

1 Introduction

With the advent of multi-core processors scientific and industrial interest focuses
on multithreaded applications. Examples like [3] show that writing even small
multithreaded programs can be a tedious task.

For safety-critical systems or robust embedded systems, software has to be
provably correct. So, in order to incorporate concurrently executing threads in
safety-critical systems, these concurrent programs have to be proved to be cor-
rect. Verifying concurrent programs is challenging because the number of thread
interleavings grows exponentially in the number of statements of the program.
All state-of-the-art methods, such as model-checking, suffer from this so-called
state explosion problem.

The main contributions of this paper are a theoretical analysis of interleav-
ings, an algorithm for the static reduction of interleavings needed to be taken
into account in order to generate the state space, and a worst-case estimation of
this algorithm.

The remainder of the paper is organized as follows. In Section 2 the state ex-
plosion problem is discussed theoretically. An algorithm for reducing the
amount of interleavings without losing any computational results is presented
in Section 3. The worst-case behavior of the presented algorithm is presented
in Section 4. In Section 5 an example shows how the algorithm works. Related
work is discussed in Section 6. Finally, we conclude the paper and outline possible
future work in Section 7.

2 Interleavings and the State Explosion Problem

For the analysis of multithreaded software in general it is very important to
analyze all possible execution sequences. This ensures that each possible state

2 Robert Mittermayr and Johann Blieberger

is reached. In this section we will start with an example which introduces the
problem in practice. The simple example will be followed by a theoretical analysis
of the state explosion problem.

As a motivating example consider

P : (x:=4︸ ︷︷ ︸
a

; x:=x + 3︸ ︷︷ ︸
b

) ‖ (x:=2︸ ︷︷ ︸
c

; x:=(x ∗ x) + 1︸ ︷︷ ︸
d

) .

Program P may result in six states. All possible final states of program P
are depicted in Table 1. Please note that we define all statements in this paper
to be atomic.

Order x

a b c d 5
a c b d 26
a c d b 8
c a b d 50
c a d b 20
c d a b 7

Table 1. Computation results

For enumerating the number of interleavings for n threads (t1, t2, . . . , tn)
where each ti has ki statements (where 1 ≤ i ≤ n) the multinomial theorem can
be applied. This results in

(k1 + k2 + k3 + · · ·+ kn

kn

)
. . .

(k1 + k2 + k3

k3

)
·
(k1 + k2

k2

)
=

(k1 + k2 + k3 + · · ·+ kn)!

k1!k2!k3! . . . kn!

interleavings.

Lemma 1 (Number of Interleavings). Given n threads (t1, t2, . . . , tn) where
each ti has ki statements, the number of interleavings is given by

(
n∑

i=1

ki

)
!

n∏
i=1

ki!
. (1)

ut
Lemma 1 shows how simple it is to get astronomically high numbers of inter-

leavings. If we have 20 statements in each of three threads we get (60!
(20!)3 ≈ 5×1026

interleavings.
In order to find the maximum of Eq. (1) we have to maximize

k!
n∏

i=1

ki!
(2)

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 3

where k =
∑n

i=1 ki. In the following we use the gamma function Γ (x) (cf. [1]) to
replace the integer factorial by a real-valued function. Note that Γ (m+1) = m!.

In order to find the extreme value of Eq. (2) we employ the logarithmic
derivative of Eq. (2) which simplifies the calculations significantly.

The derivative of

log(k!)−
n∑

i=1

log(Γ (ki + 1)) + λ(
n∑

i=1

ki − k)

with respect to ki is

−Γ ′(ki + 1)
Γ (ki + 1)

+ λ = 0,

where 1 ≤ i ≤ n. This is valid for all ki, in particular for i = s and i = t, i.e.,

Γ ′(ks + 1)
Γ (ks + 1)

=
Γ ′(kt + 1)
Γ (kt + 1)

.

Using the digamma function ψ(x) = Γ ′(x)
Γ (x) (cf. [1]) we can write

ψ(ks + 1) = ψ(kt + 1).

Because ψ(x) is monotonically increasing for x ≥ 0 (cf. e.g. [1]) we get

ks = kt, for all 1 ≤ s, t ≤ n

which implies ki = k/n, provided that n divides k (n|k).
Thus we have proved the following lemma.

Lemma 2. For a given number of statements k, the worst-case number of in-
terleavings appears if all n threads have the same number of statements. In this
case the number of interleavings is given by

k!((
k
n

)
!
)n (3)

where n|k. ut
In the following we write k = β · n. If the number of statements per thread

β ≥ 1 is fixed, Formula (3) can be estimated by Stirling’s approximation m! =
(m

e)m
√

2πm(1 + O(1
m)) as m →∞ (cf. e.g. [1]) giving

(β n)!
(β!)n

∼ nβ n+ 1
2 (2πβ)−

n
2 + 1

2 , (n →∞). (4)

For β ∈ {5, 10, 15, 20, 25, 30} the characteristics of this formula are depicted in
Fig. 1. This case describes the practical case when there is e.g. an Ada task type
defining tasks with β statements.

In Fig. 2 the behavior of a variable number of statements per thread 2 ≤
β ≤ 200 and a variable number of threads 1 ≤ n ≤ 40 is depicted in logarithmic
scale. Please note that the functions depicted in Fig. 1 and 2 are actually defined
for natural numbers only. The same applies for the figures in Section 4.

4 Robert Mittermayr and Johann Blieberger

2 4 6 8 10
Threads1. ´ 10-7

1. ´ 1044
1. ´ 1095
1. ´ 10146
1. ´ 10197
1. ´ 10248

Interleavings

Fig. 1. Interleavings for fixed number
of statements per thread

10

20

30

40

Threads

0

50

100

150

200

Β
0

5000

10 000

Interleavings HlogL

Fig. 2. Interleavings for a variable
number of threads and statements per
thread

3 Algorithm

In this section we present an algorithm for reducing the amount of interleavings
without losing possible resulting states. We achieve this by building blocks of
statements. We combine a virtual coarsening approach similar to [2, 16] with a
partial order relation of blocks of statements. The correctness of virtual coars-
ening has been proved in [2].

We say that a statement accesses a variable v if the statement reads or writes
the variable v. A variable is said to be shared if more than one thread accesses
it. The set of shared variables is denoted by V . We refer to the set of threads
with T .

Definition 1. A block is a list of consecutive statements and contains at most
one statement accessing shared variables. If the number of blocks is minimized,
we call the resulting list of consecutive blocks minimum block list.

We define a strict partial order relation “<” between blocks that is irreflexive,
asymmetric, and transitive. Let bli and blj be blocks. Then bli < blj holds
iff there exists an execution sequence of the underlying program such that bli
preceeds blj .

We distinguish between two kinds of strict partial order relations, intra-
thread and inter-thread orders. Intra-thread orders define orders of blocks within
a thread and inter-thread orders define an ordering between blocks of different
threads.

Both relations can be represented by graphs. We call such graphs partial
order graphs or PO graphs for short.

Let t(bli) = tj when bli is part of thread tj , where 1 ≤ j ≤ n and 1 ≤ i ≤ b.
Let a(vi) = {blj | ∃ statement s in blj which accesses vi}. Let a(vi, tj) =
{blk | ∃ statement s in blk which accesses vi and t(blk) 6= tj}. In addition, we
define SV (bli) = {vj | where block bli contains a statement which accesses the
shared variable vj}. Let the number of shared variables be r and further let b(vj)

denote the number of blocks accessing shared variable vj (over all threads).

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 5

The algorithm consists of the following six steps:

Find shared variables. This step fills the set V .
Build minimum block list.
Generate partial orders for the blocks accessing the same shared variables.
Construct PO graphs
Apply topological sorting to each PO graph. This step results in exactly one

order of blocks for any PO graph constructed in the previous step.
Compute the state space of the program by executing the blocks in the or-

ders calculated in the previous step.

The algorithm is presented in more detail below.

Algorithm ()
1 List[] blocks := new List[1..n]
2 List[][] blocks var := new List[1..r][1..n]
3 List[] finalInterThreadOrderedBlocks
4 ListOfListOfPartialOrders combinedInterThreadOrderedBlocks
5 FindSharedVariables()
6 BuildBlocks()
7 GenerateOrders()
8 ConstructPOGraphs()
9 TopologicalSorting()
10 ComputeStateSpace()

GenerateOrders ()
1 GenerateIntraThreadOrders
2 GenerateInterThreadOrders
3 CombineInterThreadOrders

GenerateIntraThreadOrders ()
1 for each thread ti ∈ T do
2 for each pair blj , blj+1 ∈ blocks[i] do
3 Define blj < blj+1

4 endfor
5 endfor

BuildBlocks ()
1 for each thread ti ∈ T do
2 boolean firstBlock := true
3 Block actualBlock := new Block()
4 blocks[i].add(actualBlock)
5 for each statement s ∈ ti do
6 if s accesses v ∈ V then
7 if not firstBlock then
8 actualBlock := new Block()
9 blocks[i].add(actualBlock)
10 else
11 firstBlock := false
12 endif
13 endif
14 append s to actualBlock
15 endfor
16 endfor

6 Robert Mittermayr and Johann Blieberger

GenerateInterThreadOrders ()
1 int b var k
2 for each thread ti ∈ T do
3 for each blj ∈ blocks[i] do
4 for each vk ∈ SV (blj) do
5 blocks var[k][i].add(blj)
6 endfor
7 endfor
8 endfor
9 for each vk ∈ V do
10 b var k := b(vk)

11 Block[] interThreadOrderedBlocks := new Block[1..b var k]
12 Interleave rec(blocks var[k], interThreadOrderedBlocks , 1, k)
13 endfor

Interleave rec (List[] blks, Block[] interThrdOrdBlks, int block nr, int var nr)
1 for each i ∈ {1 . . . n} do
2 if blks[i].count() > 0 then
3 interThrdOrdBlks[block nr]:=blks[i].getHead()
4 if block nr = b var k then
5 finalInterThreadOrderedBlocks [var nr].add(new List(interThrdOrdBlks))
6 else
7 List[] local blks:=blks.clone()
8 local blks.removeHead()
9 interleave rec(local blks, interThrdOrdBlks, block nr + 1, var nr)
10 endif
11 endif
12 endfor

CombineInterThreadOrders ()
1 GenerateCombinations rec(0,new ListOfPartialOrders())

GenerateCombinations rec (int cur var,ListOfPartialOrders ordersTillNow)
1 for each interThreadOrderedBlocks ∈
2 finalInterThreadOrderedBlocks [cur var] do
3 ListOfPartialOrders ordersToUse := ordersTillNow.clone()
4 for each pair bli, bli+1 ∈
5 finalInterThreadOrderedBlocks [cur var][interThreadOrderedBlocks] do
6 Define bli < bli+1 and add it to ordersToUse
7 endfor
8 if cur var < r then
9 GenerateCombinations rec(cur var+1,ordersToUse)
10 else
11 combinedInterThreadOrderedBlocks.add(ordersToUse)
12 endif
13 endfor

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 7

ConstructPOGraphs ()
1 for each concreteOrders ∈ combinedInterThreadOrderedBlocks do
2 use PO graph generated from intra-thread orders for a new PO graph
3 for each PO(bi, bj) ∈ concreteOrders do
4 add directed edge from nodebi to nodebj

5 endfor
6 add PO graph to the set of resulting PO graphs
7 endfor

Each of the steps (except the first one) uses information generated in the previous
steps. Note that we generate the reduced state space without generating the
original state space as an intermediate result. This is of course important because
if the original state space would be generated it would abandon the achieved
reductions. In addition, note that our approach, in its current version, needs no
human modeling or specification input.

The initial exponential growth of interleavings in terms of the number of
statements can be reduced to an exponential growth in terms of the number
of shared variables. In a lot of cases this approach enables static analysis of
multithreaded programs.

If a statement accesses two or more different shared variables, it may happen
that conflicting partial order relations appear. If e.g. a statement s1 in block
bl1 which is part of thread t1 reads variable x and writes variable y, whereas
statement s2 in block bl2 which is part of thread t2 writes the shared variable x
and reads the variable y then the algorithm generates the following inter-thread
orders (

bl1 < bl2
bl2 < bl1

)
×

(
bl1 < bl2
bl2 < bl1

)
.

This results in a cyclic directed graph1. Topological sorting can detect this and
the algorithm can be aborted for such contradictory partial orders. In the above
example the algorithm aborts two times and only the two orders bl1; bl2 and
bl2; bl1 are being generated.

The presented algorithm acts on the assumption that all threads are running
at the same time. In addition, it is assumed that every statement s1 of a thread
t1 may happen in parallel to every statement s2 of another thread t2 (cf. e.g. [4]).
This assumptions assure the completeness of the approach. On the other hand
this conservative approach may lead to false positives.

Please note that currently we are not handling conditionals, loops, and pro-
cedure calls. This will be future work.

4 Worst-Case Analysis

In this section we assume that each statement only accesses one single shared
variable. Note however that this is no real constraint because statements access-
ing several shared variables can be replaced by simpler statements accessing only
one single shared variable by introducing artificial (local) variables.
1 Note that duplicate partial orders can be ignored during PO graph construction.

8 Robert Mittermayr and Johann Blieberger

In addition to the definitions in previous sections let b
(vj)
i denote the number

of blocks in thread i accessing shared variable vj .
To derive the worst-case complexity of the approach from Section 3, a mul-

tivariate extreme value calculation can be employed. The following expression,
which denotes the number of graphs generated, has to be maximized

r∏

j=1

n∑

i=1

b
(vj)
i

(
b(vj) − b

(vj)
i

)
. (5)

In addition, we have the following constraint

n∑

i=1

b
(vj)
i = b(vj).

Differentiating

r∏

j=1

n∑

i=1

b
(vj)
i

(
b(vj) − b

(vj)
i

)
+ λ1

(
n∑

i=1

b
(vj)
i − b(vj)

)

with respect to b
(vj)
i , we get for all 1 ≤ i ≤ n and 1 ≤ j ≤ r

b(vj) − 2 bi
(vj) + λ1 = 0. (6)

Summing up (6) for i = 1, 2, . . . , n, we have n b(vj) − 2 b(vj) + nλ1 = 0, which
implies λ1 = 2−n

n b(vj). Inserting this into (6), we obtain

b
(vj)
i =

b(vj)

n
. (7)

Inserting (7) into (5), we get

r∏

j=1

b(vj)

(
b(vj) − b(vj)

n

)
=

r∏

j=1

[(
b(vj)

)2
(

1− 1
n

)]
=

(
1− 1

n

)r r∏

j=1

(
b(vj)

)2

(8)

which has to be maximized under the constraint
r∑

j=1

b(vj) = b. (9)

Differentiating

(
1− 1

n

)r r∏

j=1

(
b(vj)

)2

+ λ2

r∑

j=1

b(vj) − b

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 9

with respect to b(vj) we obtain
(

1− 1
n

)r

2 b(vj)
∏

1≤l≤r
l 6=j

(
b(vl)

)2

+ λ2 = 0

which implies

λ2 = − 2
b(vj)

(
1− 1

n

)r r∏

l=1

(
b(vl)

)2

. (10)

Now, (10) is valid for all vj , in particular for j = s and j = t, i.e.,

2
b(vs)

(
1− 1

n

)r r∏

l=1

(
b(vl)

)2

=
2

b(vt)

(
1− 1

n

)r r∏

l=1

(
b(vl)

)2

which implies b(vs) = b(vt) for all s, t. By using Eq. (9) we get

b(vj) =
b

r
. (11)

By inserting Eq. (11) into Eq. (8) we have proved the following theorem.

Theorem 1 (Number of PO Graphs). The number of PO graphs with b
nodes for n threads and r shared variables is bounded above by

r∏

j=1

((
b

r

)2 (
1− 1

n

))
=

(
b

r

)2r (
1− 1

n

)r

≤
(

b

r

)2r

. (12)

ut

From Theorem 1 we know an upper bound of the number of graphs with
b nodes. Because topological sorting hast to be applied for every graph our
algorithm has the following worst-case behavior

O

(
b

(
b

r

)2r (
1− 1

n

)r
)

. (13)

This shows that if r = O(1) the algorithm behaves polynomially.
A simple computation shows that the extreme value of (13) appears if

r =
b

e

√
1− 1

n
,

where e denotes the base of the natural logarithm.

Corollary 1 (Worst-Case Value of r). For a given pair (n, b), Eq. (12) has
its maximum at r = (b/e) ·

√
1− 1/n. For n →∞ this results in r → b/e. ut

10 Robert Mittermayr and Johann Blieberger

By using Corollary 1 the extreme value of (13) is bounded above by

O

b

 e√

1− 1
n

2 b
e

√
1− 1

n (
1− 1

n

) b
e

√
1− 1

n

 =

O

(
b
(
e

2
e

)b
√

1− 1
n

)
= O

(
b
(
e

2
e

)b
)

.

Hence we summarize our results in the following theorem.

Theorem 2. The worst-case timing behavior of the algorithm presented in Sec-
tion 3 is

O

(
b
(
e

2
e

)b
)

where b denotes the number of blocks of the underlying program and e
2
e =

2.087 ut

This concludes that our approach from Section 3 behaves exponentially in
the worst-case.

For the remaining part of this section it is assumed that each block consists of
5 statements. In Fig. 3 the curves of Fig. 2 and our worst-case are compared. The
achieved reduction of the complexity is for n = 20 and β = 200 at least 104923.
Please keep in mind that this is still the worst-case behavior of our algorithm
where r = (b/e) ·

√
1− 1/n, i.e., for practical settings we expect an even higher

reduction.
Large values of n and/or b lead to more reduction. Figure 4 depicts the

reduction in the worst-case for β = 50 in dependence of n ranging from 1 to 20.
Figure 5 shows the achieved reduction in worst-case settings for n = 20 in
dependence of β ranging from 1 to 200.

10
20

30
40

Threads

0
50

100
150 200

Β

0

5000

10 000

Complexity HlogL

Fig. 3. Comparison

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 11

5 10 15 20
Threads

-1200

-1000

-800

-600

-400

-200

Reduction HlogL

Fig. 4. Reduction for 50 blocks per
thread

50 100 150 200
Β

-5000

-4000

-3000

-2000

-1000

0
Reduction HlogL

Fig. 5. Reduction for 20 threads with
each β blocks

5 Example

If each of the three threads in Figure 6 has 20 statements then we have β = 20
and n = 3. The possible interleavings on a statement level (cf. Eq. (4)) are
(β n)!
(β!)n = 60!

(20!)3 ≈ 5× 1026.
If only the shown statements access the shared variables e and f we get with

our algorithm one block for each of the first two threads, namely bl1 and bl2,
respectively. Because the third thread accesses both of the two variables two
blocks are being generated, namely bl3 and bl4.

By interleaving these blocks (cf. Lemma 1) we obtain 4!
1!1!2! = 12 different

interleavings. Although this is already an enormous reduction, it can still be
improved. This is due to the fact that only orders of blocks concerning the same
shared variables are relevant. We express this by using the notation of inter-
thread orders.

Only the orders of bl1 and bl3 and, similarly, the orders of bl2 and bl4 are
relevant. To express all possible combinations GenerateInterThreadOrders of
our algorithm generates

(
bl1 < bl3
bl3 < bl1

)
×

(
bl2 < bl4
bl4 < bl2

)
.

P : int e := 0;

int f := 0;

thread {
.
.
.

e := 1;

.

.

.
}

thread {
.
.
.

f := 1;

.

.

.
}

thread {
.
.
.

e := 2;

f := 2;

.

.

.
}

Fig. 6. Example with 3 threads

12 Robert Mittermayr and Johann Blieberger

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
bl4

bl2 bl3bl1

e := 1; f := 1;
e := 2;
f := 2;

Fig. 7. Blocks for Example 6

The third thread contains an intra-thread order bl3 < bl4. Because of this
the initial PO graph for every concrete interleaving (in this example) looks like
the one depicted in Fig. 8(a). In the following this graph is now used as a basis for

±°
²¯

±°
²¯

±°
²¯

±°
²¯ ?

b1

b2 b4

b3

(a) Intra-thread orders

ON inter-tread order

1 bl1 < bl3, bl2 < bl4
2 bl1 < bl3, bl4 < bl2
3 bl3 < bl1, bl2 < bl4
4 bl3 < bl1, bl4 < bl2

(b) Inter-thread orders

Fig. 8. Partial orders

every PO graph constructed by our algorithm. For every pair of the above inter-
thread orders, a PO graph is being constructed. Table 8(b) shows the resulting
partial orders with an assigned order number (ON) for ease of reference. By
adding the partial orders of one order number to the PO graph in Fig. 8(a)
results in a new graph. The four different PO graphs shown in Fig. 9 are being
generated if this is done for every line in Table 8(b).

±°
²¯

±°
²¯

±°
²¯
±°
²¯

?

-

-

b1

b2 b4

b3

(a) Order Number 1

±°
²¯

±°
²¯

±°
²¯
±°
²¯

?

-

¾

b1

b2 b4

b3

(b) Order Number 2

±°
²¯

±°
²¯

±°
²¯
±°
²¯

?

¾

-

b1

b2 b4

b3

(c) Order Number 3

±°
²¯

±°
²¯

±°
²¯
±°
²¯

?

¾

¾

b1

b2 b4

b3

(d) Order Number 4

Fig. 9. PO Graphs

Sorting the nodes in each PO graph using topological sorting leads to four
computations. Each computation gives a unique result2. This means we get four
interleavings which compute all possible results for the shared variables e and
f. For the PO graphs from Fig. 9(a), 9(b), 9(c), and 9(d) we get bl1; bl3; bl2; bl4,
bl1; bl3; bl4; bl2, bl3; bl1; bl2; bl4, and bl3; bl1; bl4; bl2, respectively. The results are
2 Unless two different computations result in an identical state by chance.

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 13

shown in Table 2. Please note that some orders of blocks depend on how topo-
logical sorting is implemented, in particular, when there are two or more possible
block arrangements3. In this case two or more interleavings build an equivalence
class (cf. [2]). For verification purposes only one exemplar in this equivalence
class needs to be computed. For example topological sorting of the PO graph
in Fig. 9(a) can also result in bl1; bl2; bl3; bl4. This is due to the fact that the
order of bl2 and bl3 is irrelevant concerning the resulting state of the shared
variables e and f. With our approach exactly one of the possible interleavings
is being computed. This helps to achieve an enormous reduction in the number
of interleavings.

ON Order e f

1 bl1; bl3; bl2; bl4 2 2
2 bl1; bl3; bl4; bl2 2 1
3 bl3; bl1; bl2; bl4 1 2
4 bl3; bl1; bl4; bl2 1 1

Table 2. Computation Results

6 Related Work

Early reduction algorithms can be found in [14]. In [18] (Chapters 6 and 7)
Valmari gives a good survey of models and approaches used so far. Due to space
limitations we cite only some fundamental approaches and techniques in the
following.

Virtual Coarsening. The idea is that in a concurrent program only the or-
dering of actions visible to other threads is important. This reduction can
be made without loss of information [2, 16].

Stubborn Sets. In [17, 18] the theory of stubborn sets, which is based on com-
mutativity, is presented. Two versions, weak and strong, are distinguished.
The weak theory is more complicated and more difficult to implement, but
it leads to better reduction results. This method tries to “save effort by post-
poning the investigation of structural transitions to future states. . . ” [18].

Sleeping and Persistent Sets. In [6, 7] sleeping sets and persistent sets are
presented. Sleeping sets capture information of the past of the search. This
information is being used to avoid unnecessary transitions. “. . . sleep sets
avoid the investigation of transitions that have been investigated in the past
states.” [18]. Persistent sets can be seen as an enhancement of stubborn sets.
The semantic model was inspired by Mazurkiewicz’s traces [11].

3 Nevertheless, this has no effect on the computed results.

14 Robert Mittermayr and Johann Blieberger

Ample Sets. Ample sets are persistent sets satisfying additional conditions
sufficient for LTL model checking [15]. Minea [12] uses also ample sets, but
with a less restrictive independence relation.

Symmetric Reduction. A system may contain several identical components
that are coupled to each other. Symmetric reduction tries to find such sym-
metries. Its complexity is proved to be the same as that of the graph iso-
morphism problem [9].

Dynamic Partial-Order Reduction. An approach somehow similar to ours,
but dynamic in its nature, can be found in [8].

There is a lot of work building on the papers mentioned above. Some combine
several approaches to achieve better results. A short overview of other techniques
e.g. binary decision diagrams (BDDs), unfolding method, data independence,
and Holzmann’s supertrace can be found in [18]. In order to perform a more
precise commutativity analysis a static and dynamic object escape analysis is
being incorporated in [5]. Information about locks is being collected. This ap-
proach improves the performance of partial-order techniques on shared-memory
programs.

CHESS [13], a concurrency unit testing tool, exhaustively explores the thread
schedules of a concurrent program within a budget of c preemptions. Model
checking techniques are being used in order to systematically generate all inter-
leavings for a given scenario.

In [10] it is shown that for unidirectional bitvector problems in analyzing
parallel programs with shared memory it is sufficient to perform a linear scan of
each thread rather than to analyze all possible interleaving sequences.

7 Conclusion

We have presented an algorithm for attacking the state explosion problem in an-
alyzing multithreaded programs. Our approach employs partial-order reduction
and static virtual coarsening. It uses information on shared variables to generate
and interleave blocks of statements. The number of interleavings compared to
the original setting is reduced significantly.

Our algorithm performs polynomially as long as the number of shared vari-
ables is constant. However, its worst-case behavior is exponential.

We have already implemented the algorithm and tested it on hand-crafted
examples. An interface to an existing compiler or parser will be a future step.

We are currently working on an operational semantics which should enable
the justification of our work. Furthermore, we are planning to support condi-
tionals and loops.

References

1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, New York, 1964.

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 15

2. E. A. Ashcroft and Z. Manna. Formalization of Properties of Parallel Programs. In
B. Meltzer and D. Michie, editors, Proc. of the Sixth Annual Machine Intelligence
Workshop, Edinburgh, 1970, pages 17–41. University of Edinburgh Press, 1971.

3. M. Ben-Ari and A. Burns. Extreme Interleavings. IEEE Concurrency, 6(3):90–91,
1998.

4. B. Burgstaller, J. Blieberger, and R. Mittermayr. Static Detection of Access
Anomalies in Ada95. In Proceedings of the 11th International Conference on Re-
liable Software Technologies – Ada-Europe’2006, Porto, Portugal, volume 4006 of
Lecture Notes in Computer Science, pages 40–55. Springer-Verlag, June 2006.

5. M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath. Exploiting Object Es-
cape and Locking Information in Partial-Order Reductions for Concurrent Object-
Oriented Programs. Formal Methods in System Design, 25(2-3):199–240, 2004.

6. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, New York, NY, USA, 1996.

7. P. Godefroid. On the Costs and Benefits of Using Partial-Order Methods for
the Verification of Concurrent Systems. In D. A. Peled, V. R. Pratt, and G. J.
Holzmann, editors, POMIV’96: Proc. of the DIMACS workshop on Partial Order
Methods in Verification, pages 289–303, New York, USA, 1997. AMS Press, Inc.

8. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian Partial-Order Reduc-
tion. In D. Bosnacki and S. Edelkamp, editors, SPIN, volume 4595 of Lecture Notes
in Computer Science, pages 95–112. Springer-Verlag, 2007.

9. T. Junttila. On The Symmetry Reduction Method For Petri Nets and Similar
Formalisms. PhD thesis, Helsinki University of Technology, 2003.

10. J. Knoop, B. Steffen, and J. Vollmer. Parallelism for Free: Efficient and Optimal
Bitvector Analyses for Parallel Programs. ACM Transactions on Programming
Languages and Systems, 18(3):268–299, May 1996.

11. A. Mazurkiewicz. Introduction to Trace Theory. In V. Diekert and G. Rozenberg,
editors, The Book of Traces, pages 3–41. World Scientific Pub. Co., Inc., 1995.

12. M. Minea. Partial Order Reduction for Verification of Timed Systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 1999.

13. M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic Testing
of Multithreaded Programs. SIGPLAN Not., 42(6):446–455, 2007.

14. W. T. Overman. Verification of Concurrent Systems: Function and Timing. PhD
thesis, University of California, Los Angeles, 1981.

15. D. Peled. Combining Partial Order Reductions with On-the-fly Model-Checking.
In D. Dill, editor, CAV ’94: Proc. of the 6th Int. Conf. on Computer Aided Verifi-
cation, volume 818 of LNCS, pages 377–390, London, UK, 1994. Springer-Verlag.

16. A. Pnueli. Applications of Temporal Logic to the Specification and Verification
of Reactive Systems: A Survey of Current Trends. In J.W. de Bakker, W.-P. de
Roever, and G. Rozenberg, editor, Current Trends in Concurrency, volume 224 of
Lecture Notes in Computer Science, pages 510–584. Springer-Verlag, 1986.

17. A. Valmari. Eliminating Redundant Interleavings During Concurrent Program
Verification. In Odijk, E. and others, editor, PARLE’89: Proc. of the Conf. on
Parallel Architectures and Languages Europe, Eindhoven, Netherlands; Vol. 2, vol-
ume 366 of LNCS, pages 89–103, Berlin, Germany, 1989. Springer-Verlag.

18. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, volume 1491 of LNCS, pages 429–528. Springer-Verlag, September 1996.

