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Abstract. We present a generic symbolic analysis framework for imper-
ative programming languages. Our framework is capable of computing
all valid variable bindings of a program at given program points. This in-
formation is invaluable for domain-specific static program analyses such
as memory leak detection, program parallelisation, and the detection of
superfluous bound checks, variable aliases and task deadlocks.

We employ path expression algebra to model the control flow information
of programs. A homomorphism maps path expressions into the symbolic
domain. At the center of the symbolic domain is a compact algebraic
structure called supercontext. A supercontext contains the complete con-
trol and data flow analysis information valid at a given program point.
Our approach to compute supercontexts is based purely on algebra and
is fully automated. This novel representation of program semantics closes
the gap between program analysis and computer algebra systems, which
makes supercontexts an ideal intermediate representation for all domain-
specific static program analyses.

Our approach is more general than existing methods because it can de-
rive solutions for arbitrary (even intra-loop) nodes of reducible and ir-
reducible control flow graphs. We prove the correctness of our symbolic
analysis method. Our experimental results show that the problem sizes
arising from real-world applications such as the SPEC95 benchmark suite
are tractable for our symbolic analysis framework.

1 Introduction

Static program analysis is concerned with the design of algorithms that deter-
mine the dynamic behaviour of programs without executing them. Symbolic
analysis is an advanced static program analysis technique. It has been success-
fully applied to memory leak detection [32], compilation of parallel programs [17,
22,37, 10], detection of superfluous bound checks, variable aliases and task dead-
locks [31,13,6,7], and to worst-case execution time analysis [4,8]. The results
gained using symbolic analysis provide invaluable information for optimising
compilers, code generators, program verification, testing and debugging.

* This work has been partially supported by the ARC Discovery Project Grant “Com-
pilation Techniques for Embedded Systems” under Contract DP 0560190 and the
ARC Discovery Project Grant “Distributed Data Processing for Wireless Sensor
Networks” under Contract DP 0664782.



Symbolic analysis [17,29,23] uses symbolic expressions to describe compu-
tations as algebraic formulae over a program’s problem space. Symbolic analysis
consists of two steps:

(1) the computation of symbolic expressions that describe all valid variable bind-
ings of a program at a given program point, and

(2) the formulation of a specific static analysis problem in terms of the computed
variable bindings.

As an example, consider the statement sequence depicted in Fig. 1. After the
declaration of two scalar variables, the read statement in line 2 assigns both
variables a new value. The subsequent assignment statements change the values
of both variables. Symbolic analysis applies symbolic values for program vari-
ables. Assuming that the read statement in line 2 yields the symbolic value u for
variable u, and v for variable v, then a simple sequence of forward substitutions
and simplifications computes the symbolic values depicted in the table at the
right of Fig. 1. Each row in the table denotes the symbolic values val, and val,
of variables u and v after execution of the corresponding statement. These sym-
bolic values describe the variable bindings that are valid at the corresponding
program points. Comparing the variable bindings depicted with line 2 and line 5,

1 integer::u,v;  valy|valy
2 read (w,v); u | v
3 u:=u+ v utv| v
4 v:i=u-v; u+v| u
5 u:=u-v; v | u

Fig. 1. Simple Statement Sequence

it is clear that the values of the variables u and v are swapped in the example in
Fig. 1. Due to the symbolic nature of the analysis this is true irrespective of the
concrete input values for u and v. Based on the computed variable bindings an
optimising compiler can derive that the expression u—v in line 4 of the example
program will always yield u, which makes an overflow check of this expression
redundant. (Note that variables u and v are of the same type!)

The above example reflects the clear-cut division of symbolic analysis into
(1) the computation of valid variable bindings, and (2) the formulation of the
specific analysis problem under consideration (e.g., range check elimination) in
terms of those variable bindings.

In this paper we propose a generic symbolic analysis framework that auto-
mates step (1) above. The need for such a generic symbolic analysis framework
stems from the observations

— that step (1) is a prerequisite common to all static analysis problems to be
solved by symbolic analysis, and

— that existing approaches to this problem are of limited applicability (i.e.,
they cannot compute a solution for program points within loops, they are
not applicable to irreducible control flow graphs, and they are often tailored
to a specific application).



Our generic symbolic analysis framework extends the applicability of existing
symbolic analysis applications to a larger class of programs. It allows the appli-
cation of symbolic analysis to other static analysis problems.

Our symbolic analysis framework accurately models the semantics of imper-
ative programming languages. We introduce a new representation of symbolic
analysis information called supercontext, which is a comprehensive and com-
pact algebraic structure describing the complete control and data flow analysis
information valid at a given program point.

We encode the side-effect of a single statement’s computation as a function
from supercontexts to supercontexts. We then extend this functional description
from single statements to program paths and sets of program paths. By doing so,
we gain a functional description of the input program in the symbolic domain.

With our approach the control flow information of the input program is mod-
elled by means of path expressions first introduced in [34]. A path expression
is a regular expression whose language is the set of paths emanating from the
start node of a control flow graph to a given node. We provide a natural ho-
momorphism that maps the regular expressions representing path sets into the
symbolic domain. We define these mappings by reinterpreting the -, +, and x*
operations used to construct regular expressions. The technical part of our work
shows that these mappings are indeed homomorphisms and that the symbolic
functional representation is correct.

With our approach we represent the infinitely many program paths arising
due to a loop by means of a closure context, which is an extension of a program
context (cf. [17]) that incorporates symbolic recurrence systems. In this way a
supercontext consists of a finite number of closure contexts. Symbolic analysis at
this stage reduces to the application of the functional representation of the input
program to a closure context representing the initial execution environment.

The contribution of our paper is as follows: Our approach is the first to prove
the semantic correctness of symbolic analysis with respect to the underlying
standard semantics. Second, we show the correctness of the meet over all paths
solution and the modelling of loops as symbolic recurrence systems. Third, our
approach does not restrict symbolic analysis to reducible flowgraphs, and it can
derive solutions for arbitrary graph nodes (even within nested loops). Fourth,
our approach is purely algebra-based and fully automated. It closes the gap
between static program analysis and computer algebra systems, which makes
supercontexts an ideal intermediate representation for all domain-specific static
program analyses. Fifth, the feasibility of our approach was proven by conducting
experiments with the SPEC95 benchmark suite. A high portion (i.e. 94%) of the
functions in SPEC95 has less than 10° closure contexts to analyse, with the
majority of those 94% involving even fewer than 4000 closure contexts.

The paper is organised as follows: In Sect. 2 we outline notations and back-
ground material. In Sect. 3 we define syntax and semantics of a flow language
that we use to develop our symbolic analysis methodology. In Sect. 4 we intro-
duce the symbolic analysis domain and the notion of symbolic execution along
program paths. Section 5 describes the main contribution of this paper, namely



the mapping to the symbolic domain through path expressions. In Sect. 6 we
discuss experimental results of the SPEC95 benchmark suite. Section 7 surveys
related work. Finally, in Sect. 8 we draw our conclusions and outline future work.
The proofs of the theorems stated in the paper have been made available in [11].

2 Background and Notation

We use N to denote the natural numbers, Z to denote the integers, and B =
{true, false} to denote the truth values from Boolean algebra. The finite set of
program variables is denoted by V. Dom denotes the domain of a function. A
control flow graph (CFG) is a directed labelled graph G = (N, E, n¢,n,) with
node set N and edge set E C N x N. Each edge e € E has a head h(e) € N
and a tail t(e) € N. The set of incoming edges for a given node n € N is defined
as in(n) = {e € E : t(e) = n}. Likewise we define the set of outgoing edges for
anode n € N as out(n) = {e € E : h(e) = n}. Entry (n.) and Exit (n,) are
distinguished CFG nodes used to denote the start and terminal node. The start
node n, has no incoming edges (in(n.) = 0)), whereas the terminal node n, has
no outgoing edges (out(n;) = @). We require that every node n is contained in
a program path from n. to n,, where a program path m = (e1,ea,...,e) is a
sequence of edges such that t(e,) = h(ey41) for 1 <r <k —1.

It is shown in [34] how program paths can be represented as regular expres-
sions: Let X' be a finite alphabet disjoint from {A,0,(,)}. A regular expression
is any expression built by applying the following rules:

“w.n

(1a) “A” and “P” are atomic regular expressions; for any a € X, “a” is an atomic
regular expression.

(1b) If Ry and Ry are regular expressions, then (R; + R3), (R1 - Ra), and (Ry)*
are compound regular expressions.

In a regular expression, A denotes the empty string, () denotes the empty set,
+ denotes union, - denotes concatenation, and * denotes reflexive, transitive
closure under concatenation. We use L(R) to denote the set of strings defined
by the regular expression R over Y. A regular expression R is simple if R = ()
or R does not contain () as a subexpression. Given a CFG G = (N, E,n.,n,),
we can regard any path 7 in G as a string over E, but not all strings over E
are paths in G. A path expression P of type (v, w) is a simple regular expression
over E such that every string in L(P) is a program path from node v to node w.
Standard algorithms such as Gaussian elimination can be applied to compute
path expressions from a CFG (cf. e.g., [25, 34]).

The following notational convention is used throughout the paper: to distin-
guish between corresponding entities from the standard semantic and symbolic
domain, we subscript the first with the letter ¢ and the latter with the letter s.

3 Standard Semantic Program Execution

An environment env of our Flow language maps a program variable v € V
to its value z € Z. The set of possible environments can be represented by a



function class Env C {env : V — Z}. Functions pred, : E — (Em) — B) and
o.: E — (Env — Enwv) associate with each edge e € E a branch-predicate and
a side-effect. The syntax of Flow branch predicates and side-effects is depicted
in Fig. 2.

pred : Predicate assign :  Assignment
pred ::= true|false|not pred|pred or pred assign ::= id := exp
| pred and pred | exp rel-op exp

Fig. 2. Syntactic Domain of the Flow Language

The valuation functions pred, : Predicate — (Env — B) and assign, :
Assignment — (Env — Env) map predicates and side-effects to the semantic
domain; due to space considerations we refer to [11, Sect. 3] for their definitions.

Control progresses from node h(e) to t(e) iff pred,(e)(env) = true, which
means that the predicate associated with edge e evaluates to true within envi-
ronment env. We require that for every node n # n, and environment env the
branch-predicate of exactly one outgoing edge evaluates to true.

The transition function § is of arity (N x Env) — (N x Env). Execution of
a transition (n,env) — (n',env’) via an edge e is defined as

(n,env) —(n',env’) :
(Je € out(n) : t(e) =n' Apred.(e)(env)) (1)

= env’ = o.(e)(env),

where = denotes implication. The iterated transition function 6* : (N x Env) —
(N x Env) is defined by 0*(n,, env) = (ng, env) and §*(n, env) = 6*(§(n, env)).
For any graph G = (N, F,n., n,) the environment env,, of the terminal node n,
represents the result of standard semantic program execution along the sequence
of transitions (1., env.) — (g, env,). Depending on the structure of G and the
initial environment env, such a transition sequence may not exist. Deciding on
its existence is in general equivalent to the halting problem.

4 Semantics of Symbolic Program Execution

The representation of variable values constitutes the main difference between
standard semantics and symbolic semantics. Whereas with standard semantics
the value of a variable is described by a concrete value z € Z, symbolic semantics
employs symbolic expressions. The relation between standard semantics and
semantics of symbolic program execution is depicted in (2).

The standard semantics of a program P is derived by the valuation func-
tion Scon that takes a program P as argument and returns a standard-semantic
functional description of the side-effect of P. The side-effect Scon[P] is a function
that maps a concrete input to a concrete output, written as Scon[P](In) = Out,
where In,Out € Env. Given the standard semantics of Flow programs from
Sect. 3, the computation of Scon[P](In) is equivalent to an application of the
iterated transition function 6* to start node n. and environment In.



sym

In ————— In,

Scon[[P]] Ssym[[P]] (2)

con

Out

Out,

Similarly we derive the semantics of symbolic program execution for pro-
gram P, denoted by Sgym[P]. It is the purpose of function Sgyr, to transform P
into a representation that is based on symbolic values instead of concrete ones.
The side-effect Sgym [P] of this representation is therefore a function that maps a
symbolic input Ing to the corresponding symbolic output Outs. Symbolic input
and output belong to the class Env, of symbolic environments that replaces the
concrete environments env : V — Z which are not able to bind identifiers to
symbolic expressions.

The diagram in (2) contains two additional functions, sym and con, that we
need in order to relate input and output of the functional descriptions Scon[P]
and Ssym[P]. Function sym transfers a concrete environment to the symbolic
domain, whereas function con instantiates a symbolic environment with a con-
crete one. The commutation of concrete and symbolic execution depicted in (2)
can then be formalised as

Scon[P](In) = con(In, Ssym[P](sym(In))), (3)

which means that the result of the symbolically executed program Sgym [P] over
input Ins = sym(In) and instantiated by In must be the same as the result
from standard semantic program execution Scon[P](In).

4.1 The Domain for Symbolic Program Execution

To be able to distinguish between a variable and its initial value, we introduce
the set V of initial value variables. This set is isomorphic to V. Its purpose is to
represent the initial values for the variables in V. The initial value operator _ :
V — V maps a variable v € V to the corresponding variable in V. As a shorthand
notation we write v for the application of the initial value operator to variable v.

The standard semantic model of the Flow language is based on integer arith-
metics. Transferring this property to the symbolic domain requires symbolic
expressions to be integer-valued as well.

Given the operations of addition and multiplication it follows that the multi-
variate polynomials from the ring Z[x], with indeterminates x = (21,...,2z,) €
V", are integer-valued expressions.

To support division, the ring Z[x] is extended to the quotient field Q(Z[x])
(cf. [18]). By means of the rounding operation Rnd we can “wrap” a ratio-
nal function x/y to obtain an integer-valued expression Rnd(x/y)3. Hence we

3 Simplifications of expressions involving operation Rnd have been investigated in [11,
Sect. 4.1], they are however outside the scope of this paper.



can model the integer division of two symbolic expressions x and y, y # 0, as
x divg y = Rnd(w / y), where the symbolic division operator divy denotes the
counterpart of the integer division operator div of the Flow standard semantics.

Let f( € {+®), -2 (1) ()} denote functions corresponding to the Flow
arithmetic operations, where (n) denotes the respective arity. They constitute
the corresponding operations on multivariate polynomials and rational func-
tions, with the only extension that they do accept arguments “wrapped” by the
rounding operator Rnd.

Definition 1. The set of integer-valued symbolic expressions of the domain
SymFEzxpr is inductively defined by

— Z[x] C SymEzpr

— for all f™ and all ey, ..., e, € SymEzpr, f™(e1,...,e,) € SymEzpr (i.e.,
application of functions (™ to symbolic expressions yields symbolic expres-
sions),

— for all e1,e2 € SymExpr, we have e1/es € SymExpr, iff e1/es is an integer-
valued symbolic expression,

— for all e1,es € SymExpr, we have Rnd(eq/es) € SymExpr.

Let f € {<, <,=,>,>} denote functions corresponding to the relational connec-
tives of the Flow language. They are extensions of their standard semantic coun-
terparts which operate on values of the symbolic expression domain SymExpr,
and return values of the symbolic predicate domain SymPred, e.g., <: SymExprx
SymExpr — SymPred. Moreover, let 1™ € {A) v (D} denote the logical
connectives of conjunction, disjunction and negation. They are extensions of
their standard semantic counterparts that operate on values of the symbolic
predicate domain SymPred.

Definition 2. The set of symbolic predicates of SymPred, the symbolic predicate
domain, is inductively defined as

— B C SymPred (i.e., true and false are symbolic predicates),

— for all f and all e1,es € SymEzxpr, we have f(e1,e2) € SymPred (i.e., ap-
plication of relational connectives to symbolic expressions yields symbolic
predicates),

— for alll and all ey, . ..e, € SymPred, we have (e, ..., e,) € SymPred (i.e.,
application of logical connectives to symbolic predicates yields symbolic pred-
icates).

It is shown in [11, Sect. 4.1] that the domain SymPred constitutes a Boolean
algebra.

Definition 3. A state s € S is a function that maps a program wvariable to
the corresponding symbolic expression. The set of possible states can be repre-
sented by a function class S C {f : V — SymExpr}. A clean slate state s
maps all variables in its domain to the corresponding initial value variables:
Yv € Dom(s) : s(v) = v. Note that if we restrict our interest to a subset of V
then states are partial functions.



Definition 4. A context ¢ € C C [S x SymPred| is defined by an ordered tu-
ple [s,p] where s denotes a state, and pathcondition p € SymPred describes the
condition for which the variable bindings specified through s hold (cf. [4, 17]).
We make use of the functions pc : C — SymPred and st : C — S to access a
context’s pathcondition and state. A clean slate context consists of a clean slate
state and a true pathcondition.

Standard semantic and symbolic side-effects and branch-predicates share the
syntactic domain depicted in Fig. 2. Due to space considerations we refer to [11,
Sect. 4.2] for an exhaustive description of the valuation functions into the sym-
bolic domain that are introduced in brief below. Equation (4) defines valuation
function assign, which maps the derivation tree of an assignment statement to
the corresponding side-effect in the symbolic domain. This side-effect is a func-
tion that transforms its argument context [s, p] by updating the state s with a
new symbolic expression at id[id].

assign, : Assignment — (C — C)

assign, [id:=exp](c) = A[s,p].[As1.s1[id[id] — exp,[exp](s1)](s), p](c) )

Branch-predicates are treated according to (5). The valuation function pred,
maps the derivation tree ¢ of a branch-predicate to a function f : C — C.
Application of f to the argument-context [s,p] results in a context [s,p A p],
where p’ € SymPred is a symbolic predicate corresponding to tree t.

pred, : Predicate — (C' — C)

1'31-‘6'3(13 [pred; and pred,](c) = (5)
Als.p].[s,p A (pe (pred,[pred,]([s, true]))
A pe (pred,[pred,] ([s, truel)))] (c)

4.2 Single-Edge Symbolic Execution

We express the effect of a computational step associated with a single edge e
by a member of the function class Fs C {f : C — C}. F; contains the identity
function ¢ which can be envisioned as a null-statement without any computa-
tional effect. We require Fs to be closed under composition, which allows us to
compose the computational steps of edges along program paths.

An edge transition function My : E — F assigns a function f € Fy to
each edge e € E of the CFG. The valuation function edge,[...] maps syntactic
constructs associated with CFG edges to the respective valuation functions for
branch predicates and side-effects, which allows us to specify functions f € F

as follows.
f=M(e)(c) = as(e) o pred(e)(c) =
= edge,[e : pred = assign](c) = (6)
= assign, [assign] (pred, [pred](c))



It follows immediately from the preceding denotational definitions of side-effects
and branch predicates that functions speciﬁed in the above way fulfil the prop-
erties required for function class F;

), (v,v)}, true]
er:u<>v=u —u+
{(u,u+v), (v,0)}, u # v

e2 : true = v = u-

‘ uU+v(wwL@#ﬂ
es : true = u := u-v
() Wb u# v =ca

Fig. 3. Symbolic Execution along Path m1 = (e1, ez, e3)

Figure 3 depicts our running example for which we determine the transition
function f for edge e;. Applying (6) and the valuation functions for branch
predicates and side-effects, we get

f=Ms(e1)(c) =edgeyfer :u<>v = u:=u+tv](c) =
= assign,[u := u+v](pred,[u <> v](c)) =

= A[s,p].[s[ur s(u) +s(v)],p A s(u) # s(v)](c).

4.3 Single-Path Symbolic Execution

For a forward data-flow problem we can extend the transition function M, from
edges e to program paths 7 as follows.

L, if w is the empty path
M, (m) = { (7)

Mg(eg)o -0 My(er), if m={e1,...,ex)

As a shorthand notation we may also use f. for Ms(e) and fr for M,(m). Clearly
if the computational effect of a single statement of a Flow program is described
by a function f € Fs, the computational effect of program execution along a
path 7 is defined by Ms(7)(ce), where ¢, denotes the initial context on entry
to m. (Proof by induction on the length of m omitted.)

In the previous example we determined the result of the transition func-
tion Mj(e1) which represents the effect of symbolic program execution along
edge e; of our running example. After evaluation of all edge transition functions
along the program path m; = (e1, ez, e3) we use function M,(m) to calculate the
effect of symbolic execution along path ;. We assume that the initial context c,
passed as argument to M, (m) contains two program variables u and v holding
their initial values v and v. Then the contexts depicted in Fig. 3 illustrate the
transformation of the initial context ¢, during symbolic execution along program
path 714 The context shown with node n, represents the result for M (m)(ce).

4 As a notational convention we depict the graphs of the contained states instead of
the states themselves.



4.4 Multi-Path Symbolic Execution

In the preceding example we have omitted symbolic execution along edge e4. As
long as we cannot decide that this path is infeasible, we have to analyse it for
our symbolic solution to be complete. Symbolic execution along edge e4 yields a
further program context ¢, = [{(u,u), (v,v)},u = v].

As can be seen from this example, the description of the symbolic solution in
terms of contexts increases with the number of program paths through a CFG;
each program path from the entry node n. to a given node n contributes one
context to the symbolic solution at node n. As long as CFGs are acyclic, the
number of contexts of this symbolic solution is finite. With the introduction of
cycles the number of program paths from the entry node to a given node n,
and hence the number of contexts of the symbolic solution at node n, becomes
infinite. In order to describe the joint effects of execution along several program
paths, we introduce a structure that allows us to aggregate contexts.

Definition 5. A supercontext sc € SC is a collection of contexts ¢ € C and
can be envisioned as a (possibly) infinite set

sc = {cl,...,ck,...} = {[sl,pl],...,[sk,pk],...}.

We write ¢ € sc to denote that context c is an element of the supercontext sc.
For supercontexts sci, sca € SC' the supercontext union operation sci U sca con-
tains those contexts that are either in sci, or in sce, or in both. If we regard
single contexts as one-element superconterts, we can use the supercontext union
operation to denote a supercontext sc through union over its context elements,
arriving at the following notation for supercontexts.

sce SC = l[j [Sk,Pk]] (8)

k=0

Note that supercontexts correspond to the notion of symbolic environments used
in the introduction of this section.

Because a supercontext consists of an arbitrary (even infinite) number of
contexts, it can represent the result of symbolic execution along an arbitrary
(even infinite) number of program paths. According to [24] the meet over all paths
(MOP) solution for a given CFG node n is the maximum information, relevant
to the problem at hand, which can be derived from every possible execution
path from the entry node n. to n. The MOP-solution of symbolic execution for
a given node n can then be written as

mop() = |J  Mu(m)(eo). (9)

mEePath(ne,n)

with Path(n.,n) denoting the set of all program paths from node n. to node n,
U denoting supercontext union, and ¢, denoting the initial argument context. A
correctness proof for the symbolic MOP-solution is given in [11].



5 Symbolic Evaluation

The symbolic execution approach of Sect. 4 is capable of computing the MOP-
solution for arbitrary CFG nodes. It is however not constructive in the sense that
we have not specified a method to obtain the set of program paths needed by this
approach. Furthermore, the MOP-solution delivered is infinite. In this section
we define a method to compute the MOP-solution that is both constructive and
finite. It is based on the regular expression algebra of Sect. 2, which we use to
model the program paths of a given CFG. The structure of regular expressions
imposes a horizontal functional decomposition of the CFG in contrast to the
approach of the previous section in which our functional decomposition was ver-
tically along whole program paths. As a consequence we have to extend domain
and codomain of the function class Fs introduced in Sect. 4.2 from contexts to
supercontexts, yielding a new function class Fg.:

Foe C{fsc:SC — SC}. (10)

We achieve this extension with the help of the wrapping operator wrap which
constructs a function fy. € Fy. of arity SC — SC from a function f; € F;
of arity C — C in passing each context of the supercontext-argument of f.
through fs:

wrap : (C — C) — (SC — SC)

U [SI»MD = [gfs([si,m)] -

=0

wrap(fs)(sc) 1= fuc (

The function class Fy. has the following properties, which are easily verified
from the definition of the wrapping operator, the properties of supercontexts
(cf. Definition 5), and the properties of the function class Fs on which Fi. is
based.

F1) Fy contains the identity function ¢.
) Fic is closed under U: Vf, g € Fye : (fUg)(z) = f(x) Ug(x).
F3) Fy. is closed under composition: Vf, g € Fys. : fog € Fi..
) Fy is closed under iterated composition (with fO = and fi = fi=1o f):

@) = [Ur@]. (1)
i>0

F5) Continuity of f € F. across supercontext union U:

Vf € Fye and X C SC : f(UX) = lU f(x)] .

xresc

Based on the edge transition function M (cf. Sect. 4.2) we define a new edge
transition function M, that encapsulates the wrapping operator inside:

AI&::E7_*1%C

M. (e) :::vvrap(MS(e)), (12)



We can compose edge transition functions from function class Fy. along program
paths in the same way shown for function class Fy in (7). In a similar way we
use the shorthand notation f. for M.(e), and fr for My.().

Let P # 0 be a path expression of type (v, w). For all z € SC, we define a
mapping ¢ as follows.

(A) =1, (13)
p(e) = Msc(e) = fe, (14)
(P + P2) = ¢(P1) U (12), (15)
(Pr1- Po) = ¢(P2) o ¢(P1), (16)
o(Py) = ¢(P1)". (17)

Lemma 1. Let P # () be a path expression of type (v,w). Then for all x € SC,

o)) = | | fl@)]:

weL(P)

Proof in [11]. Based on Lemma 1 we establish that the mapping ¢ is a homo-
morphism from the regular expression algebra to the function class Fy. of (10),
and that the computed solution corresponds to the MOP-solution for symbolic
execution of (9).

Theorem 1. For any node n let P(ne,n) be a path expression representing all
paths from ne ton. Then mop(n) = ¢(P(ne,n))(ce), where c. denotes the initial
context® valid at entry node ne.

Proof in [11]. It should be noted that Theorem 1 does not impose a restriction
on path expression P(n.,n). As a consequence, Theorem 1 holds for path ex-
pressions corresponding to CFGs with irreducible graph portions. Furthermore
it holds for arbitrary graph nodes, even within loops and nested loops.

5.1 Finite Supercontexts

It has been pointed out in Sect. 4.4 that the MOP solution becomes infinite
with the introduction of CFG cycles. CFG cycles induce * operators in path ex-
pressions; due to the iterated composition that is implied by the right-hand side
of (17), each x operator induces an infinite number of contexts in the resulting
supercontext.

In changing the mapping ¢ by replacing (17) with

¢(Py) = o(P1)®, (18)

we introduce a new operation ® which replaces the iterated composition opera-
tion from (11) by a composition operation that generates a finite representation

5 Since program contexts are one-element supercontexts, c. is a valid argument for
functions from class Fic.



for the result of symbolic evaluation of the CFG cycle corresponding to path ex-
pression P;. This finite representation is an extension of a context by a system
of symbolic recurrences [26] and is called a closure context. As will be pointed
out below, a system of symbolic recurrences makes a closure context an ezact
representation of the infinite set of contexts that is due to a CFG cycle. In this
way (18) changes our representation of a supercontext from an infinite set of
contexts to a finite set of closure contexts. The purpose of this change is to have
a compact representation of supercontexts that facilitates domain-specific static
program analyses and that can be implemented with CASs.

The remainder of this section is devoted to the definition of closure contexts
and the ® operation.

In analogy to the set V of program variables we define the set I, VN 1L = 0,
of loop index variables. We use lowercase letters, e.g., I, m, n, to denote elements
from L. Conceptually a loop index variable can be envisioned as an artificial
program variable that is assigned the value 0 upon entry of the loop body. After
each iteration of the loop body, its value is increased by one.

1 b:=b+1;
e1: true = 2 1:=0;
b:=b+1| es:true=j:=j+b 3 while j <= m loop
4 d:= 2xd;
5 j:=j+b;
e4:j >m < 6 |:=141;
=d = 2xd 7 end loop;

Fig. 4. Example Loop: Implicit vs. Explicit Loop Index Variable

Figure 4 depicts a Flow example loop together with a textual representation
where the loop index variable has been made explicit (cf. line 2 and 6). Associated
with a loop index variable | is a symbolic upper bound, denoted by |,. This
symbolic upper bound represents the number of loop iterations®. Specifically,
an upper bound of I, = 0 implies zero loop iterations, as can be inferred from
Fig. 47. Endless loops can be modelled by defining I, = +oco0.

Definition 6. The set of symbolic expressions (cf. Definition 1) is extended by

— L C SymEzpr (i.e., loop index variables are symbolic expressions), and

— for allv; € V, and | € L, v;(0) € SymEzpr, v;(I) € SymExpr, v;(1 + 1) €
SymEzpr, and v;(1—1) € SymExpr (i.e., dereferencing the value of a program
variable to specify a recurrence relation yields a symbolic expression).

5 Computing a symbolic upper bound for the number of loop iterations is beyond the
scope of this paper. It is discussed, among others, in [17, 5].

" This contrasts the notion of range expressions in contemporary programming lan-
guages, where range L..U denotes the interval [L, U] .



Definition 7. A range expression is a symbolic expression of the form 0 < <
lw, with loop index variable | € L, and |, being the symbolic upper bound of 1. We
extend the set of symbolic predicates of the domain SymPred (cf. Definition 2)
by the following rule to include range expressions: for all 1 € L, 0 <1 <, C
SymPred (i.e., range expressions constitute symbolic predicates).

We denote a recurrence system over loop index variable | by rs(l). We can

construct a recurrence system set r of k recurrence systems by
rii= U rs(l;).
1<j<k

Recurrence system sets can be nested, and the set of all recurrence system sets
is denoted by R. For our purpose it is furthermore beneficial to impose a to-
tal order < on the elements of a recurrence system set in order to obtain the
semantics of a list.

Definition 8. A closure context € is an element of the set C = S x SymPred x
R, denoted by [s,p,r]. For a clean slate closure context the state s is a clean
slate state, p is a true pathcondition, and r is the empty set. A context can
be considered a special case of a closure context with r = (). A supercontext
consisting of a finite number of closure contexts is denoted by Sc, for the set of
all such finite supercontexts we write SC.

Definition 9. We define operation ® of (18) in terms of the input/output-
behaviour of the function resulting from the application of operation ® to ¢(Py),
that is, p(P1)®. Let f = ¢(P1) be a functional description of the accumulated
side-effect of one iteration of the loop body represented by the path expression P;.
For a given closure context T, = [Sin, Pin, Tin] we define the properties of the clo-
sure context Cout = [Sout, Pouts Tout] TeSUlting from the application of f® to ¢,
that is,
Cout = (P () = 0(P1)® (@) = fO(Cin).- (19)
One iteration of the loop body determines the recurrence system that is due
to the induction variables of the loop body. Hence we start with a clean slate
closure context g = [so, po, o] and compute the result of symbolic evaluation of
one iteration of the loop body, denoted by ¢1.

c1 = [s1,p1,71] = f(%0). (20)
A substitution o for a given state s and an expression e € SymExpr is
defined such that o5 = {v1 — vi(e),...,v; — vj(e)}, with v; € Domf(s).
- —= 1<i<j

What follows is the description of Gy in terms of its state syq¢, its pathcondi-
tion poyue, and its recurrence system set roy¢.

State: The state s,y is computed from s;, by replacing the symbolic expressions
that describe the values of the variables v; by the value of the recurrence relation
for v; over loop index variable I.

Yv; € Dom(Sin) : Sout :: = Sin|vi — vi(1)] (21)

Hence we get graph(sout) = {(v1,v1(1)), ..., (Un,va (1))}



Pathcondition: The pathcondition p,,; of closure context Coyy has the form

pin AOST<1) A A p(l = 1). (22)
1<r<i
Therein the term p;, constitutes the pathcondition of closure context ¢;,. The
second term is a range expression according to Definition 7. It defines the value
of the loop index variable | to be in the interval [0, l,]. The third term denotes
the pathcondition accumulated during | iterations of the loop. It is actually
a conjunction of | instances of the pathcondition p; from (20), where the I'h
instance corresponds to o, (1—1)(p1).
An example will illustrate this. Assume the pathcondition p; = j < m from
Fig. 4. After | > 0 iterations the third term in the above equation will read

3(0) <m(0) A j(1) Sm(1) A-o- A G =1) <m(l—1)
= A (G0'=1)<m( —1)).
1<I<|

Recurrence System: Let IV denote the set of induction variables of the loop
under consideration. We set up a recurrence system over the loop index variable |,
from which we construct a recurrence system set r as follows.

, . ’Ul(O) L= Sin(vi)
. WMEIV'{WU+1y::o%J@gwn(” (23)
re::=osg,, 1(p1) (2)

Part (1) denotes the recurrence for induction variable v;. The boundary value of a
variable upon entry of the loop body is the variable’s value from the “incoming”
context (T;, in our case). We derive the recurrence relation for variable v; as
follows. State s; contains the variable bindings after the first iteration of the
loop body. In replacing all occurrences of the initial value variables v; € V by
their recursive counterpart v;(l), we obtain the bindings after iteration | 4 1,
denoted by v; (I +1). If we can derive a closed form for the recurrence relation of
variable v;, Part (1) consists only of a symbolic closed form expression over loop
index variable |. Part (2) holds the recurrence condition rc¢ for this recurrence
system. The condition is basically a symbolic predicate obtained by replacing
the initial value variables in the pathcondition p; (cf. (20)) by their recursive
counterparts.

Having set up the recurrence system set r according to (23), the recurrence
system set 7,,: of closure context Coyz is derived from r;, by appending r to it.

A recurrence system set can be simplified if we are able to derive closed forms
for the recurrence relations of the involved induction variables. There exists a
vast body of literature on this topic, e.g., [21, 26, 37,36, 22, 19]. These methods
are directly applicable to the recurrence system sets of our symbolic analysis
framework. Modern CASs such as Mathematica [38] provide an ideal platform
for the implementation of these methods.

Due to space limitations we refer to [11] for the details involved with the
construction of recurrence system sets for nested loops.



Returning to the running example of Fig. 4, we seek the MOP-solution for
node n;. The MOP-solution of this node is due to the path expression ey -(ez - €3)*
of type (ne,n1). Starting with the clean slate closure context ¢, = [s,p,7] =
[{(bJ_))’ (da C_l)a (jv.l)’ (mam)}’ truevw}v we compute ¢(61 '(62 '83)*)(6_6) = (fes °
fes)® 0 fo, (). Function application f.,(¢;) yields the closure context ¢z =
[{(b,b+1),(d,d), (j,j), (m,m)}, true,d], which reduces our computation to ( fe,o
fes)®(Cin). To apply operation ® we proceed according to Definition 9. Due
to (20) we have to compute the result of symbolic evaluation of one iteration of
the loop body to derive the underlying recurrence relations. For this we can reuse
the clean slate closure context ¢. by defining ¢y : : = ¢, and proceed with the cal-
culation of ¢1 = (fes 0 f@)(%) = [{(bvb)’ (d’ 2d)7 (j’l"i'b)? (m7m)}’ .l < ma@]
The closure context Couy resulting from the computation of Cour = (fes0 fe,)® (Cin)
can then be described in terms of its state soq¢, its pathcondition pey:, and its
recurrence system set r,,:. The loop index variable for this loop is I.

State: The state of €yt is obtained from the state of ¢;;, by replacing the symbolic
expressions that describe the values of the induction variables v; € IV = {d, j}
by the value of the recurrence relation for v; over loop index variable |. Hence
we get sout = {(b,b+1),(d,d(1)), (4,5 (1)), (m, m)}.

Pathcondition: According to (22) we get the pathcondition p,yu: = true A (0 <

I<l)n A (G0 =1) <m).

1<r<I
Recurrence System: According to (23) we arrive at the one-element recurrence
system set r’, with s;, = st(¢;;) and s; = st(e7) already substituted.

r = 0
{ =i +pr1 P
re::=j() <m (2)

d(0)::=d
d(l +1) =2.d(l) (la)
§(0)::=j

J(h+

Applying standard methods to solve the recurrence relations for the induction
variables d and j, we arrive at

{d()::=2"" (1a)
r= {40 :::l'—i-l-(b—i-l) (1b)
re::=j() <m (2)

Combining state Sy, pathcondition pyy: and the recurrence system set r yields

{(b,0+1),(d,d(1), (5, 5(1)), (m,m)}, (0 <1< 1) A N (M= 1) <m), {r}]

1<r<l

as the solution for the closure context .y, which is also the MOP-solution for
node ni. The intuitive meaning of this closure context unveils if we consider the
range expression (0 < | < 1,) that is part of its pathcondition: as loop index
variable | ranges from 0 to l,, the recurrence system r generates the variable



bindings of the respective context® ¢ valid after | loop iterations, i.e. ¢j = (fe, ©
fes)' © fe, (G2). Hence the closure context ouz represents a total number of I, + 1
contexts valid at node n;. Formally the closure context ¢, can be viewed as a
predicate YOVdVj¥mV!| : Cour, where the set {2 | 0 <z <|,)} C N is the universe
of discourse for loop index variable I.

The above closure context describes all variable bindings valid at node n; of
Fig. 4. It yields important information for static program analysis, e.g.,

— at node n, the variables b and m assume the values b+ 1 and m respectively
during all loop iterations,

— the induction variables d and j assume monotonically increasing/decreasing
sequences of values (depending on the initial values of variables d and b),

— the symbolic values of the induction variables d and j during each iteration
of the loop,

— a symbolic upper bound |, for the number of loop iterations (computed from
the recurrence condition as described in [17]), and therefore

— symbolic lower and upper bounds for the induction variables d and j.

It is instructive to consider a closure context once the associated loop L
has been exited. Upon exit of a loop via a given edge e, the pathcondition p
associated with e implies that | = |,. In other words, the conjunction of p
and the pathcondition of a closure context from node h(e) collapses the set of
contexts represented by the resulting closure context to the single context valid
after execution of the loop.

Returning to the example of Fig. 4, once we exit the loop via edge ey, the

fact that | = |, simplifies the closure context valid at node n, to
[{(b,b+1),(d,d(1.)), (5,5 (1)), (m,m)}, \ (GO7=1) <m) A j(le) > m, {r}],
1<r<i,

which represents the single context valid after execution of the loop. It should be
noted that the determination of loop exit edges is done based on path expressions,
which makes the above simplification a purely mechanical step in our symbolic
analysis method.

6 Experiments

The prototype implementation of our symbolic analysis framework constitutes
a term rewrite system based on OBJ3 ([3,20]) and Mathematica [38]. Together
with the analysis results of Flow sample programs, we have made it available
at [14].

Since the practicality of our symbolic analysis method critically depends on
the size of the path expressions occurring in practice, we have surveyed the
problem sizes arising from the programs of the complete SPEC95 benchmark
suite (cf. [33]). The SPEC95 benchmark suite consists of 18 benchmark programs
with GCC and the Perl interpreter among them. Overall, we investigated all 5053

8 Not to be mistaken with a closure context.



procedures, in an attempt to make the survey representative both in quantity
and in the problem sizes of the investigated programs.

The technical part of this survey comprised the definition of a metric to
compute the symbolic analysis problem sizes (i.e., the number of closure contexts
resulting from a given path expression), and to apply this metric to the path
expressions of the procedures from the SPEC95 benchmark code.

We compute the number of program paths of a path expression corresponding
to an acyclic CFG through the mapping ncc(e) = 1, nce(Py + P2) = nee(Py) +
nce(Py), and nec(Py - P2) = nee(Py) - nee(Py). Every such program path induces
the generation of one closure context during symbolic analysis®?. Our accumulated
nce metric (ancc) starts with the innermost nested loop of a path expression P
and computes the ncc count for its body. Thereafter the subexpression in P
that corresponds to this loop is replaced by a single edge and the ancc metric is
applied to the resulting expression. This is done for all loops across all nesting
levels, and for the topmost remaining loopless path expression itself. The ancc-
value for P then equals the sum of the calculated ncc counts.

10
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Fig. 5. Quantile Plot for SPEC95 Programs

In our survey each SPEC95 procedure has been accounted for through its
path expression of type (n.,n,). Figure 5 contains a quantile plot of the ancc
values of the SPEC95 procedures. It has been scaled to exclude outliers with
an ancc-value above 106. It shows that the distribution of ancc values starts at
the lowest possible value (1) and increases modestly up to the 0.94 quantile.
Thereafter we can observe an excessive increase of quantiles which indicates
that the final 6 percent of the distribution represent costly outliers. The two
distinguished data points in the upper right corner represent the 0.9 quantile
and the 0.94 quantile. It follows from those data points that 90 percent of the

9 Hence the name ncc which stands for number of closure contexts.



SPEC95 procedures show an ancc-value below 3238, and for 0.94 percent it is
still below 100, 000. This means that the problem sizes of more than 94 percent
of the procedures from the SPEC95 benchmark suite constitute no problem at
all for symbolic analysis, and that the ancc values for 90 percent of all procedures
are indeed very small. Due to space limitations we refer to [12] for a description
of the whole range of experiments carried out on the SPEC95 benchmark suite.

7 Related Work

P. and R. Cousot [16] pioneered abstract interpretation as a theory of semantic
approximation for semantic data and control flow analysis. The main differences
between abstract interpretation and our symbolic analysis are as follows: our
symbolic analysis framework precisely represents the values of program variables
whereas abstract interpretation commonly approximates a program’s computa-
tions. Second, path conditions guarding conditional variable values are not in-
cluded in abstract interpretation. Third, applications of abstract interpretation
are faced with a trade-off between the level of abstraction and the precision of
the analysis, and its approximated information may not be accurate enough to
be useful.

Haghighat and Polychronopoulos [22] base their symbolic analysis techniques
on abstract interpretation. The information of all incoming paths to a node is
intersected at the cost of analysis accuracy. Their method does not maintain
predicates to guard the values of variables and it is restricted to reducible CFGs.
No correctness proof of the used algorithms is given.

Van Engelen et al. [37,36] use chains of recurrences [39, 2] to model symbolic
expressions. Analysis is carried out directly on the CFG, with loops being anal-
ysed in two phases. In the first phase recurrence relations are collected, whereas
in the second phase the recurrence relations are solved in CR form. The anal-
ysis method is restricted to reducible CFGs, which makes it less general than
our approach. In comparison, our algebra-centered approach uses only standard
mathematical methods instead of specialised analysis algorithms. It provides for
a seamless integration of the chains of recurrences algebra to solve recurrence
relations, but it is not restricted to it.

The algorithms developed with both Haghighat’s and van Engelen’s ap-
proaches are tailored around the intended application (i.e., analysis problem). In
contrast we advocate a generic method that allows the formulation of arbitrary
domain-specific static analysis problems based on the MOP-solution.

In [4] symbolic evaluation is used for estimating the worst-case execution time
of sequential real-time programs. Symbolic evaluation is set up as a data-flow
problem, with equations describing the solutions at the respective CFG nodes.
In [17] a symbolic representation for contexts is introduced. Closure contexts are
an extension of this algebraic structure.

Tu and Padua [35] developed a system for computing symbolic values of ex-
pressions using a demand-driven backward analysis based on G-SSA form. Their
analysis can be more efficient than our approach if local analysis information suf-



fices to obtain a result, otherwise they may have to examine large portions of a
program. Tu and Padua require additional analysis to determine path conditions
in contrast to our approach that directly represents path conditions in the con-
text. For recurrences, Tu and Padua cannot directly determine the corresponding
recurrence system from a given G-SSA form. With our approach the extraction
of recurrence systems is an integral operation provided in the symbolic domain.

Menon et al. [27] describe a technique for dependence analysis that verifies the
legality of program transformations. They apply symbolic analysis to establish
equality of a program and its transformation. Their symbolic analysis engine is
limited to affine symbolic expressions and predicates consisting of conjunctions
and disjunctions of affine inequalities. Blume and Eigenmann [10] apply symbolic
ranges to disprove carried dependences of permuted loop nests. They use abstract
interpretation to compute the ranges for variables at each program point. Gerlek
et al. [19] describe a general induction variable recognition method based on a
demand-driven SSA form. Rugina and Rinard [31] carry out symbolic bounds
analysis for accessed memory regions. With their method they set up a system of
symbolic constraints that describe the lower and upper bounds of pointers, array
indices, and accessed memory regions. This system of constraints is then solved
using ILP. The Omega test [28] developed by W. Pugh is an integer programming
method that operates on a system of linear inequalities to determine whether
a dependence between variables exists. It has been extended to nonlinear tests
in [30,29].

8 Conclusions and Future Work

In this paper we have presented a generic symbolic analysis framework for imper-
ative programming languages. At the center of our framework is a comprehensive
and compact algebraic structure called supercontext. Supercontexts describe the
complete control and data flow analysis information valid at a given program
point. This information is invaluable for all kinds of static program analyses,
such as memory leak detection [32], program parallelisation [17,22,37,10], de-
tection of superfluous bound checks, variable aliases and task deadlocks [31,13,
6, 7], and for worst-case execution time analysis [4, 8].

At present our framework accurately models assignment statements, branches,
and loop constructs of imperative programming languages. It can easily be ex-
tended to the inter-procedural case (as discussed in [17,6]).

Our approach is more general than existing methods because it can derive
solutions for arbitrary nodes (even within loops) of reducible and irreducible
CFGs.

We proved (cf. also [11]) the correctness of our symbolic analysis method
using a two-step verification based on the MOP-solution for symbolic execution
and path-expression-based symbolic evaluation.

Our approach is based purely on algebra and is fully automated. The detec-
tion of recurrences is decoupled from the process of finding closed forms. This
separation facilitates the extension of our recurrence solver with new classes of
recurrence relations. Our novel representation of program semantics closes the
gap between program analysis and computer algebra systems, which makes su-



percontexts an ideal intermediate representation for all domain-specific static
program analyses.

The experiments conducted with our prototype implementation showed that
the problem sizes of real-world programs such as those from the SPEC95 bench-
mark suite are tractable for our symbolic analysis framework. It has been shown
in [9] that symbolic analysis has a vast improvement potential in the area of
contemporary data-flow based analyses of sequential and concurrent programs.
We are therefore facing two research tiers that we plan to pursue in the future,
namely (1) the extension of our method to incorporate concurrent programming
language constructs, and (2) the application of our method to domain-specific
static program analysis problems.
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