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Abstract. A data-flow framework for symbolic reaching definitions anal-
ysis is presented. It produces a more accurate solution of the reaching
definitions problem than can be achieved with “classic” data-flow anal-
ysis. This is crucial for applications in the area of real-time, embedded,
and safety-related systems.

1 Introduction

The Reaching Definitions Problem is a data-flow problem used to answer the
following questions: Which definitions of a variable X reach a given use of X in
an expression? Is X used anywhere before it is defined?

The underlying program presentation with data-flow problems is usually the
control flow graph (CFG), a directed labelled graph. Its nodes are the program’s
basic blocks (a basic block is a single entry, single exit, sequence of statements),
whereas its edges represent transfers of control between basic blocks. Entry and
Ezit are distinguished nodes used to denote start and terminal node.

Traditional treatments of the Reaching Definitions Problem (confer [9]) utilise
a set-based approach that aims at determining the set Reach(B) of variable def-
initions that reach a given CFG node B. We have the following equations:

Reach(B) = U [(Reach(B') N Pres(B')) U Gen(B')]
B'€Preds(B)
Reach(p) = 0,

where Reach(B) is the set of definitions reaching the top of B, Preds(B) is the

set of predecessors of B, Pres(B) is the set of definitions preserved through B
(that is, not superseded by more recent definitions), and Gen(B) is the set of
definitions generated in B.

Figure 2 shows the CFG for the program fragment given in Figure 1. The
comments added at statements in Figure 1 indicate in which node of the control
flow graph they are contained. Note that an extraneous edge from node Entry to
node Ezit has been inserted which has no correspondence to the actual data-flow
in procedure Aha, it is only present to simplify algorithms based on the CFG.

The set of equations for the reaching definitions problem of the example
program is shown in Table 1 where we have written X; instead of Reach(B;).



procedure Aha is

h,j : integer; -- Node 1
begin
if false then -- Node 1
j =0 -- Node 2
end if;
foriin1 .. 10 loop -- Node 8 and 4
h:=h + i -- Node 5
end loop;
end Aha;

Fig. 1. Simple Example Procedure

We will use this set of equations in the following to solve the reaching def-
initions problem with an iteration algorithm (confer [1]), i.e., we initialise the
variables to ), insert these values on the right side of the equations and use the
new values for the same purpose until the process stabilises.

The results are shown in Table 2. As can be seen the algorithm “converges”
very fast, which is a great advantage of iteration algorithms. However, it is too
optimistic in its assumptions:

— The definition of j at node 2 never occurs.
— Variable h is undefined at the beginning. Thus its value after executing
procedure Aha is undefined too.

Both cases represent serious programming errors which cannot be detected with
present data-flow algorithms. The reason for this is that “classic” data-flow anal-
ysis assumes that each edge of the CFG definitely is followed during execution
of the program.

For this reason we define a data-flow framework that incorporates more in-
formation in order to allow more precise program analysis. Our data-flow frame-
work is superior to standard techniques (compare [9]) as well as to the more
involved information-flow analysis incorporated in SPADE (see [2]). Approaches
like ANNA and that of [4] cannot be directly compared to ours since they are pri-
marily based on annotations. In contrast our approach extracts all information
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Fig. 2. Control Flow Graph of Simple Example Procedure



XEntry = @

X1 = (Xenuy N{h,jH U0

X =(Xin{h,jHUD

Xs  =((X1n{h,j})ub) U (X2n{h})U{j})

Xa = ((Xsn{h,j}) U{i}) U((Xs N {j}) U{h,i})
Xs =(Xan{h,i,jHHuUbd

Xexit = (Xan{h,jHUD

Table 1. Equations for Reaching Definitions Problem of Simple Example Program

from the source code alone. Note also that [4] is based on SPARK (i.e. SPADE)
too.

Our approach can easily be incorporated in existing Ada compilers. In fact
we have integrated a prototype into GNAT for our purposes.

2 Symbolic Evaluation

Symbolic evaluation is a form of static program analysis in which symbolic ex-
pressions are used to denote the values of program variables and computations
(cf. e.g. [5]). In addition a path condition describes the impact of the program’s
control flow onto the values of variables and the condition under which control
flow reaches a given program point.

Conditions and the Control Flow Graph

An edge e = (B, B) of the CFG has assigned a condition Cond(B’, B) which
must evaluate to true for the control flow to follow this edge (e.g. in case of the
then-branch of an if-statement Cond is the condition of the if-statement).

Program State and Context

The state S of a program is described by a set of pairs {(v1,€1),..., (Vm,€m)}
where v; is a program variable and e; is a symbolic expression describing the

XEntry 0 @

X1 0|0

X2 0|0

Xz |0|{s}

X4 0{h,, 5}
Xs  |0|{n,i,}
Xbxit 0 {ha]}

Table 2. Results of Reaching Definitions Problem of Simple Example Program



value of v; for 1 < i < m. For each variable v; there exists exactly one pair
(’Ui, ei) in S.

A program consists of a sequence of statements that may change S.

A path condition specifies a condition that is valid at a certain program point.
If conditional statements are present, there may be several different valid pro-
gram states at the same program point. A different path condition is associated
with each of them.

States S and path conditions C specify a program context which is defined
by

k
U[Si,Ci]

where k£ denotes the number of different program states valid at a certain pro-
gram point. (The U and |J-operators are used to enumerate different program
states.) A program context completely describes the variable bindings at a spe-
cific program point together with the associated path conditions.

3 A Data-Flow Framework for Symbolic Evaluation

We define the following set of equations for the symbolic evaluation framework:
SymEval (BEntry) = [S(), Co],

where Sp denotes the initial state containing all variables which are assigned
their initial values, and Cy is true,

SymEval(B) = Up:cpreas(s) PrrgtCond(B’, B, SymEval(B')) | LocalEval(B),

where LocalEval(B) = {(v;,,€i,),---, (vi,,,€i,, )} denotes the symbolic evalua-

tion local to basic block B. The variables that get a new value assigned in the
basic block are denoted by wv;,,...,v;,,. The new symbolic values are given by
€iyse - - 5€in, - The propagated conditions are defined by

Cond(B',B) ® PC, if B’ has > 1 successors,

PrpgtCond(B’, B,PC) = {PC otherwise.

Denoting by PC a program context, the operation © is defined as follows:

Cond(B',B) ® PC = Cond(B', B) ® [S1,p1] U ... U [Sk,pk] =
[S1,Cond(B', B) Ap1]U...U[Sk, Cond(B', B) A pi],

i.e., the ®-operator is used as a placeholder for path conditions of currently
unknown program contexts.
In the following we state certain rules which have to be applied to perform
symbolic evaluationt:

t Rules 1, 2, and 3 constitute an informal definition of the |-operator used in the
SymEval equations.



1. If a situation like

{...,(v,e1),...}|{ .., (v,e2),...},

is encountered during symbolic evaluation, we replace it with

{-..,(v,e2),...}.

The pair (v, e1) is not contained in the new set.
2. If a situation like

{...,(vl,el),...} | {...,(7}2,62(1}1)),...},

where e(v) denotes an expression involving variable v, is encountered during
symbolic evaluation, we replace it with

(oo (@1,e1),e o (vasea(en)), o}

3. If a situation like

{..;(v,€),..}|{.-., (v,v(L,w)),...}

is encountered during symbolic evaluation, we replace it with

{..., (v,v(e,w)),...}.

The pair (v, e) is not contained in the new set.
The notation v(vg,w) is defined in Section 4.
For the situations discussed above it is important to apply the rules in the
correct order, which is to elaborate the elements of the right set from left to
right.
4. If a situation like
{...,(v,e),...},C(...,v,...)]
is encountered during symbolic evaluation, we replace it with

..., (w,e),..},Cl .. e,..)l.

5. If a situation like

{-..,(v,v(v,w)),...},C(...,v,...)]

is encountered during symbolic evaluation, we replace it with

..., (wv(v,w)),...},C(..,v0,...)].

6. If a situation like

{...,(v,v(vo,w)),...},C(...,v(L,w),...)]

is encountered during symbolic evaluation, we replace it with

[{...,(w,v(v,w)),...},C(...,v(v0,w),...)]

This data-flow framework has been introduced in [3].



4 Solving the Symbolic Evaluation Data-Flow Framework

Unfortunately the definition of PrpgtCond(...) prevents the symbolic evaluation
framework from being bounded. Thus it cannot be solved by iteration algorithms
(compare [9, 7, 8]).

Nevertheless we can solve symbolic evaluation frameworks with help of elim-
ination algorithms (see [11, 10]). Note that the set of equations (i = 1,...,n)

{Ez' 1T =Wi($i17---amini)} (1)

implies a dependency relation on the variables x;. We say that z; on the left
side depends on all variables on the right side. If the corresponding dependency
graph is acyclic, set (1) can be solved by simple insertions, thereby eliminating
one variable after the other. If it contains cycles, insertions alone are not enough
to obtain a solution. However, if a rule is available for replacing such an equation
with one in which the left variable does not appear on the right, with a guarantee
that any solution to this new equation set will satisfy the original, then it becomes
possible to move the elimination process forward. Such a rule is called loop-
breaking rule.

The loop-breaking rule for SymEval equations is defined as follows ([3]): As-
sume we have the following equation (we use X; for SymEval(B;) as a shorthand)

Ei:Xi= |J (CjoX){(vi, ), (v e5)} U

1<5<r

U (Ck®Xm)|{(Ukueh)i'"a(vkuaeku)}u

1<k<t, 1<m<n, m#i
then we replace it with
e; : X; = —LoopEntryCond; ®
U (Cr © X)) | {(Vky,€ky )5 - -5 (VE, €8y )} U

1<k<t, 1<m<n, m#i
LoopEntryCond; ®

U ((Ck © Xm)l {(Uk1 ) ek1)a LR (Uku ) eku)})l LoopExit,
1<k<t, 1<m<n, m#i

where LoopEntryCond; denotes the condition which has to be true to enter the
loop body starting at basic block B;, and

LoopExit = {(U-h y Uy (J-7 wl))a R (UJt ) Uy (J-a wl))}
for all variables v, being contained in
U (i€, (060}
1<5<r

Note that the first term of e; mirrors the case when the loop body is not
executed at all, and the second term treats the case when the loop body is
executed at least one times.



The purpose of our loop-breaking rule is to replace a loop by a set of re-
currence relations. Each induction variable (cf. [1]) gives raise to an (indirect)
recursion. Let v be such a variable, then v(vg,w;) denotes the symbolic solution
of the recursion, where vy is a suitable initial value and w, denotes the number of
iterations of loop #}. If no initial value is known or the initial value is irrelevant
to the solution, we write v(L,wy).

Setting up recurrence relations during loop-breaking is described in the fol-
lowing. If there are nested loops in the source code of interest, we start by setting
up recurrence relations from the innermost loop and proceed to the outermost$.

Let v denote a variable, then we call v(k) its recursive counterpart, where k
is a variable that does not occur in the program being evaluated..

According to the notation above we set up a recurrence relation for all 1 <
j<r,1<qg<sandfor k>0by

v, (k+1) =ej, (k) if C; (k) evaluates to true,

where e;, (k) and Cj;(k) means that all variables contained in e;, and C; are
replaced with their recursive counterparts.

Note that we have not specified initial values for the recursion; these are
supposed to be supplied by situations handled by the rules given in Section 3.

We have used and implemented an algorithm described in [12] for solving
symbolic evaluation frameworks. It solves data-flow equations in O(log|N|- |E|)
insertions and loop-breaking operations, where |N| denotes the number of nodes
in the CFG and |E| is the number of edges of the CFG. The CFG is supposed to
be reducible, which is true for all Ada programs. Because of the undecidability
of the halting problem, however, we cannot give time bounds for solving the
recurrence relations produced by the loop-breaking rule.

5 Symbolic Evaluation of the Simple Example

According to the algorithm given in [12] we now solve the equations given in
Table 3. We write “a — b” for indicating that equation E, is inserted into Ej
and we write “c (#” for loop-breaking equation E..

We denote an undefined value by “_L”. Furthermore we assume that an unde-
fined value involved in an operation such as “4” or “—” results in an undefined
value again. Assigning an undefined value to variable v results in v being unde-
fined.

The equations of Table 3 are derived in a straight-forward manner. We would
only like to mention that variable i is implicitly declared in the for-loop and thus
does only appear at nodes 3 and 5.

In the following derivation terms with path conditions equal to false can be
ignored, which we do sometimes without further notice.

1 Each loop gets assigned a unique number £ € N.
§ This is guaranteed by the algorithm described in [12].



XEntry = [{(ha J—): (.71 J-)}1 true]

X, = XEntry

X5 = false ® X1 | {(5,0)}

X3 =true ©® X1 | {(4,1)} Utrue © X2 | {(4,1)}
X4 =X3UX5s

Xs =(01<L10)0Xs|{(h,h+1),(,i+1)}
XExit = true ® X4

Table 3. Set of SymEval Equations for Simple Example Program

5—4
X4 =X3U(1<10)0 Xy | {(h,h+19),(,i+1)}
49
X;=-(1<1000X3U(1<10)0 X3 | {(h,h(L,w))}
4 — Exit

Xpxit = (1 <10) © X3 U (1 < 10) © X3 | {(h, h(L,w))}
3 — Exit, 1 —» Exit, Entry — Exit
Xexit = (1 €10) © [{(h, L), (j, L)}, true] U
(1 <10) © [{(h, h(L,w)), (4, L)}, true]
=[{(h, 1), (G, )}, false] U [{(h, h(L,w)), (5, L)}, true]
Next we solve the recurrence relation for variable ¢. The recursion is
i(1) =1,
i(k+1)=i(k)+1.

Clearly its solution is

i(k) =k
for k > 1.
The recurrence relation for variable h reads
h(1) = L,

h(k+1) = h(k) +i(k) = h(k) + k
Its solution is
h(k) =L
for k > 1.
Hence we finally get

XExit = [{ (h7 J—): (.77 J—)}a tTU@]

which correctly mirrors the fact that both j and h are undefined after procedure
Aha has been executed.

Performing further insertions more detailed information can be derived. For
example inserting Entry — 1, 1 — 3, and 3 — 4, we see that variable h is used
before it is defined in Node 4.



procedure Foo (E : in Integer; Y : out Integer) is

Index, I, R : Integer; -- Node 1
begin
Index := E; -- Node 1
while Index > 0 loop -- Node 2
if Index mod 2 = 0 then -- Node 3
I:=E+ 1; -- Node 4
end if;
Index := Index - 1; -- Node 5
R :=1 + Index; -- Node &
end loop;
Y: =R+ 1; -- Node 6
end Foo;

Fig. 3. Hypothetical Example Procedure

6 A More Complicated Example

Figure 4 shows the CFG for the program fragment given in Figure 3.

The SymEval equations for this hypothetical example are shown in Table 4.
Note that we can restrict our interest to the variables Indez, I, R, and Y because
E cannot be overwritten within procedure foo (compare [6] for semantic details).

Again we solve this set of equations according to the algorithm given in [12].

45

X5 = (((Index mod 2 =0) ® X3) |
{(I,E +1),(Index,Index — 1), (R, I + Index — 1)})
U((=(Indexr mod 2 = 0) ® X3) |
{(Indez, Index — 1), (R,I + Index — 1)})

£0°ZA DU

Fig. 4. Control Flow Graph of Hypothetical Example Procedure



XEntry = [{(Indez, L), (I, 1), (R, 1), (Y, 1)}, true]

X1 = Xentry | {(Index, E)}

X =X UXj5

X3 = ((Indezx > 0) © X3)

X+ = (Undexmod2=0)0X3)|{([,E+1)}

X5 = (X4 | {(Index,Index — 1), (R, I + Index — 1)}) U

(=(Index mod 2 = 0) @ X3 | {(Index, Index — 1),
(R, I + Index —1)})
Xe = (=(Index > 0) V =(Index(L,w) > 0)) © X2 | {Y,R+ 1}
Xexit = X6

Table 4. Set of SymEval Equations for Hypothetical Example Program

5— 2

Xy = X; U (((Index mod 2 = 0) ® X3) |
{(I, E+1),(Index, Index — 1), (R,I + Index — 1)})
U((=(Indexr mod 2 = 0) ® X3) |
{(Index,Index — 1), (R,I + Index — 1)})

3—2

Xy = X1 U (((Index mod 2 = 0) A (Index > 0)) © Xz) |
{(I, E+1),(Index, Index — 1), (R, I + Index — 1)}) U
((=(Index mod 2 = 0) A (Indezx > 0)) © X5) |
{(Indez, Index — 1), (R, I + Index — 1)})

6 — Exit
Xexit = ((Indez > 0) V =(Index(L,w) >0)) ® Xo | {Y,R+ 1}
29
Xo = ~(Index > 0) ® X1 U
(Index > 0) ® X; | {(Index, Indez(L,w)), (I,I(L,w)), (R, R(L,w))}
2 — Exit, 1 — Exit, Entry — Exit
XEm't = [{(Indema E)a (Ia J—)a (Ra J—): (Ya J—)}a _'(E > 0)] U
[{(Index, Index(E,w)), (I,I(L,w)), (R, R(L1,w)),
Y, R(L,w) + 1)}, (E > 0)]

We now set up the recurrence relations involved (k > 0). For Indez we obtain:

Index(0) = E,
Index(k + 1) = Index(k) — 1 if Index(k) > 0



which has the closed form
Index(k) = E —k for0<k<E,

from which we conclude that w = E.
For variable I we get the following recurrence relation:

1(0) = L,

| E+1if (Index(k) > 0 A (Indez(k) mod 2 = 0),
Ik +1) = {I(k) otherwise.

Its solution is:

I01) = E+1if (E>0)A(E mod2=0),
Tl otherwise, (2)
I(k) =E+1  fork>2.
For variable R we derive

R(0) = L,

R(1) = I(1) + Index(1)

2E if (E > 0) A (E mod 2 =0),
1 otherwise,

R(k) =1(k) + Index(k) = (E+ 1)+ (E—-k)=2E—-k+1 for k > 2.
This implies

L ifE=1,
R(“’)_{E+1ifE22. (3)

Finally, we derive
1 ifE=1,
E+2if E>2. ()

Inserting these results into equation Xgyit we obtain the following context

Y=R(w)+1:{

XE'm't = [{(Indea:, E)a (Ia J—)a (Ra J—)a (Ya J—)}a _'(E > 0)] U
[{(Index,0), (1, (2)), (R, (3)), (Y, (4))}, (E > 0)],

where the results from equations (2), (3), and (4) are incorporated at the indi-
cated places.

From this we see that

1. I, R, and Y are undefined if —(E > 0), which means that the loop body has
not been executed at all,

2. I, R, and Y are undefined if £ =1 and

3. I is undefined if —(E mod 2 = 0) during the first iteration of the loop.

Note that case (3) is a transient fault which is propagated to Y only if E = 1.
If for example E = 3, I and R are undefined during the first iteration. However

this is “repaired” during the second iteration where I and R are assigned proper
values.



7 Conclusion

Employing symbolic evaluation for reaching definitions analysis produces more
accurate solutions than can be achieved with “classic” data-flow algorithms.
We are currently investigating the implications of the interprocedural reaching
definitions problem on our approach.

Symbolic evaluation can also be used for detecting dead paths and for improv-
ing other important data-flow properties of programs. It can also be employed
for determining the worst-case execution time of (real-time) programs (see [3]).
These properties are crucial for applications in the area of real-time, embedded,
and safety related systems.

We have implemented the algorithm presented in [12] for almost all control
flow affecting language features of Ada. At the current stage our implementa-
tion does not support exceptions and tasking. An implementation of the sym-
bolic evaluation data-flow framework is under way. As already mentioned our
prototype implementation is integrated into GNAT.
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