Interprocedural Symbolic Evaluation of Ada
Programs with Aliases

J. Blieberger!, B. Burgstaller!, and B. Scholz?

! Tnstitute for Computer-Aided Automation (183/1),
Technical University Vienna,
Treitlstr. 1/4, A-1040 Vienna, Austria
{blieb,bburg}@auto.tuwien.ac.at
% TInstitute for Software Technology and Parallel Systems,
University of Vienna,
Leichtensteinerst. 22, A-1090 Vienna, Austria
scholz@par.univie.ac.at

Abstract. Symbolic Evaluation is a technique aimed at determining
dynamic properties of programs. We extend our intraprocedural data-
flow framework introduced in [3] to support interprocedural symbolic
evaluation. Our data-flow framework utilizes a novel approach based on
an array algebra to handle aliases induced by procedure calls. It serves
as as a basis for static program analysis (e.g. reaching definitions-, alias
analysis, worst-case performance estimations, cache analysis). Examples
for reaching definitions- as well as alias analysis are presented.

1 Symbolic Evaluation

In this section we introduce the basics of interprocedural symbolic evaluation
as it is used throughout the paper. We abstract from intraprocedural evalua-
tion details such as conditional or repetitive statements in order to be concise.
Treatment of intraprocedural symbolic analysis of Ada programs can be found
in [3].

Symbolic evaluation is a form of static program analysis in which symbolic
expressions are used to denote the values of program variables and computations
(cf. e.g. [5]). In addition a path condition describes the impact of the program’s
control flow onto the values of variables and the condition under which control
flow reaches a given program point. The underlying program representation for
symbolic evaluation is usually the control flow graph (CFG), a directed labelled
graph. Its nodes are the program’s basic blocks (a basic block is a single entry,
single exit, sequence of statements), whereas its edges represent transfers of
control between basic blocks. Each edge of the CFG is assigned a condition
which must evaluate to true for the program’s control flow to follow this edge.
Entry and Ezit are distinguished nodes used to denote start and terminal node.

Program State and Context

The state S of a program is described by a set of pairs {(vi,e1),..., (Um,em)}
where v; is a program variable, and e; is a symbolic expression describing the
value of v; for 1 < ¢ < m. For each variable v; there exists exactly one pair
(Ui, ei) in S.

A program consists of a sequence of statements that may change S.

A state condition specifies a condition that is valid at a certain program point.
It directly relates to the conditions of the CFG edges. If conditional statements
are present, there may be several different valid program states at the same
program point. A different state condition is associated with each of them.

States S and state conditions C specify a program context which is defined
by

k
Uisicilec
i=1

where k denotes the number of different program states valid at a certain pro-
gram point, and C represents the set of all possible contexts. A program context
completely describes the variable bindings at a specific program point together
with the associated state conditions.

Arrays

Besides being an efficient and well-established compound data structure arrays
lend themselves nicely to the modelling of memory space (e.g. caches, virtual
memory, cf. [4]). In the latter way they can be used to track the adverse effects
of aliasing on interprocedural analysis.

An array is represented as an element of an array algebra A. For sake of
simplicity we describe only one-dimensional arrays with it!.

The array algebra A is defined inductively as follows:

1. If n is a symbolic expression, then 1, in A.
2. If a € A and a, 8 are symbolic expressions then a @ (a, 8) is in A.
3. Nothing else is in A.

In the state of a context an array variable is associated to an element of the
array algebra A. Undefined array states are denoted by L,,, were n is the size of
the array and reflects the number of array elements. A write access to an array
is defined by @-function. The semantics of ®-function is given as follows

ad (Oé,,B) = (Ula"'7Uﬂ*17a7vﬂ+la"'7vn)a

where 3 denotes the index where the value « is written.

An element o in A with at least one @-function is a @-chain. Every &-chain
can be written as L, @}, (ak,Bk). The length of a chain (also written as |a|)
is the number of @-functions in the chain.

! Extending the algebra to the multi-dimensional case is left to the reader.

Simplification Intuitively, a simplification is needed to keep the symbolic de-
scription of an array as short as possible. Although the equivalence of two sym-
bolic expressions is undecidable in general [7], a wide class of equivalence rela-
tions can be solved in practice.

A partial simplification operator 6 is introduced to simplify @®-chains. It is
defined as follows

o L@ (e, B), 31 < i< j<m: i = B
0 <a @(m,ﬂz)) = {Ln @2 (a,B), otherwise

=1
The partial simplification operator § seeks for two equal (-expressions in a @®-
chain. If a pair exists, the result of 8 will be the initial ©-chain without the
@-function, which refers to the B-expression with the smaller index. If no pair
exists, the operator returns the initial @-chain; the argument could not be sim-
plified. Semantically, the outer -expression relates to the later assignment; if a
previous assignment exists and the index of the previous statement is equal to
the current one, the inner @-function can be reduced. The value of the array
element is overwritten by the outer assignment statement. The partial simpli-
fication operator 6 can only reduce one redundant @-function. Moreover, each
@-function in the chain is a potentially redundant one. Therefore, the chain
can be potentially simplified in less than |a| applications of 8. A complete sim-
plification is an iterated application of the partial simplification operator and
it is written as 6*(a). If 6*(a) is applied to a further application of a partial
simplification operator € will not simplify a anymore: (6*(a)) = 6*(a).
Please note that for ease of readability we have presented array simplification
as this iterated application of the 8 operator. However, in practice more efficient
algorithms to do this exist.

Array access The p operator accesses an element of an array a, which is
described as an element of the array algebra A.
Ifa= 1, @ (u,) is element of A, then

p(l m(a ﬁ)i)_{O‘l,ifﬂl:max{”lSlsml\ﬁl:i}
n 1,M1), -
l

f 1, otherwise

If index ¢ cannot be found in the ®-chain, p yields the undefined value L
— this means that either the element was never written or that we have failed
to prove the equality of index ¢ with some J inside a @®-function. If a is not
completely simplified, more than one 8 can be found in the ®-chain. The § with
the highest index is taken.

A Data-Flow Framework for Symbolic Evaluation

We define the following set of equations for the symbolic evaluation framework:

SyrnEval(Bemry) = [So 5 Co]

where Sy denotes the initial state containing all variables which are assigned
their initial values, and Cy is true,

SymEval(B) = U PrpgtCond(B’', B,SymEval(B')) | LocalEval(B)
B’ €Preds(B)
(1)

where LocalEval(B) = {(vi,,€4),-- -, (Vi,,,€i,.)} denotes the symbolic evalua-
tion local to basic block B. The variables that get a new value assigned in the
basic block are denoted by v;,,...,v;, . The new symbolic values are given by
€iy s - - 5€in, - The propagated conditions are defined by

PrpgtCond(B', B,PC) = Cond(B’, B) ® PC
Denoting by PC a program context, the operation ® is defined as follows:
Cond(B', B) ® PC = Cond(B',B) ® [S1,p1] U ... U [Sk, Pk]
= [81,Cond(B', B) Ap1]U...U[Sk, Cond(B', B) A pi]
Definition 1. The semantics of the | operator is as follows:

1. We replace
{-..,(v,e1),...}{---,(v,e2),...}

by
{...,(v,e2),...}.

The pair (v,e1) is not contained in the new set.

2. Furthermore
{. ‘e (?}1,61), .. }|{ “ey (U2,€2(1}1)), .. .},

where e(v) denotes an expression involving variable v, is replaced with

{. . (’1}1,61), ceey (Ug,eg(’ul)), .- }

For the situations discussed above it is tmportant to apply the rules in the
correct order, which is to elaborate the elements of the right set from left to
right.

3. If a situation like

{...,(v,e),...},C(...,v,...)]
is encountered during symbolic evaluation, we replace it with
{...,(v,e),...},C(...,e,...)].
4. For arrays A € A
{-@E L0, 3 (AAS (e 0),.- .}

is replaced by
{4 Le(ep),-- -}

And for the general case,

{"'7(A7A@(aluﬁh)a'"}l{"'7(A7A @(alzaﬂlz)r"}

I1=1 lo=1

is replaced by

(o @ (A,Aeém,ﬂh) é(alwﬁh)> Y

l1=1 lo=1

This data-flow framework has been introduced in [2], cf. also [3]. The array
algebra has been introduced in [4].

2 Aliasing

Call-by-Reference parameter passing between procedures introduces aliases, an
effect where two or more l-values (cf. [1]) refer to the same storage location
at the same program point. [10] shows that solving the may-alias problem for
k > 1 level pointers is undecideable. However, from this proof it follows that
determining £ = 1 (aka single) level pointers is almost trivial - [9] solves this
problem with polynomial effort whereas the algorithm we use (cf. [11]) is almost
linear w.r.t. time.

Aliases and Ada95

In [8] (6.2) it is stated that parameters in Ada95 are either passed by-copy or
by-reference. If a parameter is passed by-copy, any information transfer between
formal and actual parameter occurs only before and after execution of the sub-
program. By-copy parameter types are elementary types, or descendants of a
private type whose full type is a by-copy type.

All other types (e.g. tagged types) are either passed by reference (in which
case reads and updates of the formal parameter directly reference the actual
parameter object) or the parameter passing mechanism is undefined.

Access types also contribute to the generation of aliases. Line 10 of our Main
example procedure (cf. Fig. 3) generates a second access path to variable V from
within procedure Do_It. For this particular invocation of Do_It the updates of
both V and P.all refer to the same storage location.

Treatment

We model the semantics of access values by treating the memory space in which
the program is symbolically evaluated as an array A, element of the array algebra
A. The address of a given variable V is denoted by $V. The example given in
Section 4 utilizes this notation. For the ease of reading we not only give the
address and the corresponding symbolic value of an access of A, but also the

variable affected by that access. Only for that reason we introduce the ” operator
used for dereferencing access values. Note that “$V = V. This translates to a
slightly modified use of the @ function as

ad (a;ﬁ;’Y) = (1)1:---;U,B—la%vﬁ-i—l;---,vn),

where a denotes the entity being updated, § denotes the corresponding address,
and + represents the update value.

3 Interprocedural Analysis

Each procedure call may change a symbolic context in two ways:

1. By passing back values from the callee to the caller (e.g. by means of out
parameters).

2. Through side effects within the callee (e.g. by assigning values to variables
not local to the callee).

Topic 1 is achieved by devoting a CFG node to each procedure call. Within this
node, parameter passing between caller and callee is handled.

Moreover, the effect of the callee on the current symbolic context (Topic 2) is
incorporated at this node. This requires intraprocedural symbolic evaluation of
the callee (for details cf. [2]). It is denoted as LocalEval(B) = Proc(aps, .., apn)
(cf. Equation 1, Section 1) in our data-flow framework (ap,, denoting the actual
procedure parameters). Intraprocedural symbolic evaluation of the callee utilizes
the callee’s formal parameters, it results in a functional description of the callee’s
effects on the symbolic context that is then appended to the callers context under
consideration of the parameter passing mechanism. Since we restrict ourselves
to acyclic procedure call graphs?, it is possible to evaluate every callee before its
callers (post order traversal of the procedure call graph).

The parameter passing mechanism is modelled as it is specified in [8]. A
parameter that is passed by-copy is treated as follows:

— Mode in: This entity is not allowed to be used as an l-value. Thus it is
sufficient to replace such a formal parameter by the corresponding actual
parameter (or default_expression) at the CFG node representing the call site
(cf. the example in Section 4).

— Mode out: A formal parameter of mode out introduces a new l-value in the
program context of the callee. [8] (6.4.1(13)-(15)) defines how such an entity
is initialized. For elementary types we have considered so far this is L (they
are uninitialized).

To pass back the value of the formal parameter to the actual parameter at
the call site we replace the l-value occurrences of the formal parameter in the
symbolic description of the callee by the corresponding actual parameter.

2 Thus excluding recursive calls.

1 package Pl is

N

type Int_Pointer is access all Integer;
V: aliased Integer := 1;

w

4 procedure Do_It(P : Int_Pointer);

5 end Pl;

Fig. 1. Package Spec P1
1 package body P1 is
2 I: Integer := 0;

3 procedure Do It(P : Int_Pointer) is
4 begin

5 P.all := P.all + 1;

6 V=V 41

7 I:=1+4+1;

8 P.all :=P.all + V + [;

9 end Do Tt;

10 end P1;

Fig. 2. Package Body P1

— Mode in out: Basically the sum of the two modes given above: l-value oc-
currences as well as occurrences within (right-hand side) expressions of the
formal parameter are replaced by the actual parameter.

A parameter that is passed by-reference involves a single-level pointer to the
entity of the parameter itself. This can be treated by the approach introduced
in Section 2.

4 Example

XEgit of procedure Do_It contains the functional description in terms of the
formal parameter on the symbolic context. For procedure Main we give the
SymEval equations for each of its CFG nodes. X; corresponds to the entry to
the program where all entities are assigned their initial value. X5 corresponds to
lines 6 to 8 of Main. X3 calculates the effect of the first procedure call (line 9),
X4 of the second call. The solution of this set of equations is depicted in X gy
of Main. Note that Y stays initialised to null throughout this program due to

[asy

with P1, Text 10;

procedure Main is
X: P1.Int_Pointer := new Integer’(1);
Y: Pl.Int_Pointer;
begin
if False then
Y =X
end if;
P1.Do_Tt(X);
P1.Do_It(P1.V'access);
end Main;

== O 00O O kWi

= o

Fig. 3. Procedure Body Main

the False condition® in line 6. This fact is handled correctly by our data-flow
framework. For that reason we differ from e.g. [6] where the above case would
introduce a so-called may-alias.

It is shown in [3] how our framework can be exploited for reaching definition
analysis where we can detect if Y was referenced somewhere in the code.

Do_It
XEzit = X1
= Xgntry | {(4,A® ("P,P,p(A,P)+ 1) ® (V,$V, p(A,$V) + 1)),
(I,I+1),(A,Aa ("P,P,p(A,P) + p(A,8V) + 1)}
Main
X1 = Xpniry | {(4, LV, 8V, 1) & ("X, X, 1) ® ("Y,Y, 1)),(1,0)}

X2 = False ® X1 | {(A;AEB (Ya $Y7X))}

X3 = (True ® X1 U False ® X5) | P1.Do_It(X) = X; | P1.Do_It(X) =
=X1 [{(4, 48 ("X, X, p(4, X) + 1) & (V, 8V, p(4,8V) + 1)),
(I,I+1),(4, A0 ("X, X, p(4,X) +p(4,8V) + 1)}

X4 = X3 | Pl.Do It($V)
=X3 | {(A4, A ("$V,8V,p(A,$V) + 1) & (V,$V, p(4,8V) + 1)),
(I,I+1),(A, A ("$V,$V,p(A,8V) + p(A,8V) + 1)}
3 Contrary to Dead Code Elimination, Symbolic Evaluation can handle arbitrary com-

plex expressions as conditions. Only to keep the example simple and expressive we
chose False.

XEntry, X1, X2, X3, X4 = XEzu

XEeit = XEntry | {4, LBV, 8V,))& ("X, X,1)® ("Y,Y, 1)), (1,0)}
[{4, A0 ("X, X, p(A, X))+ 1)@ (V,$V, p(A,$V) + 1)), (I,I + 1),
(A, A0 ("X, X, p(A, X))+ p(A,8V) + 1)}
| {(A,A® ("$V,8V,p(A,$V) + 1) & (V,$V, p(4,8V) + 1)),
(I,T+1),(A, A ("$V,$V, p(A,$V) + p(A,$V) + 1)}
= Xgntry | {(1,2), (4, L ®("X, X,5) & (V,$V,10) & ("Y,Y, 1))}

By solving these SymEval equations according to the algorithm presented
in [11] we derive for X g, the program context valid after executing procedure
Main. Note that this corresponds exactly to the result obtained by executing
Main on a real CPU.

5 Conclusion

We have presented an extension of the intraprocedural data-flow framework in-
troduced in [2] to support interprocedural symbolic evaluation. Aliases due to
by-reference parameter passing are handled by using an array that models the
underlying memory. At present we are investigating the use of this concept for
general pointers. A prototype implementation of the framework presented is un-
der way.

References

1. A. V. Aho, R. Seti, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

2. J. Blieberger. Data-flow Frameworks for Worst-Case Execution Time Analysis.
(submitted), 1997.

3. J. Blieberger and B. Burgstaller. Symbolic Reaching Definitions Analysis of Ada
Programs. Proceedings of the Ada-Europe International Conference on Reliable
Software Technologies, 238-250, June 1998.

4. J. Blieberger, T. Fahringer, and B. Scholz. An Accurate Cache Prediction for
C-Programs with Symbolic Evaluation. (submitted), 1999.

5. T. E. Cheatham, G. H. Holloway, and J. A. Townley. Symbolic Evaluation and the
Analysis of Programs. IEEE Trans. on Software Engineering, 5(4):403-417, July
1979.

6. J. D. Choi, M. Burke, and P. Carini. Efficient Flow-Sensitive Interprocedural
Computation of Pointer-Induced Aliases and Side Effects. ACM PoPL, 1/93:232-
245, 1993.

7. M. Haghighat, C. Polychronopoulos. Symbolic Analysis for Parallelizing Compilers.
ACM Trans. Prog. Lang. Sys., 18(4):477-518, July 1996.

8. ISO/IEC 8652. Ada Reference manual, 1995.

9. W. Landi, and B. G. Ryder. Pointer-induced Aliasing: A Problem Classification.
Conference Record of the Fighteenth Annual ACM Symposium on Principles of
Programming Languages, 235-248, 1992

10. G. Ramalingam. The Undecidability of Aliasing. ACM Trans. Prog. Lang. Sys.,
16(5):1467-1471, 1994.

11. V. C. Sreedhar. Efficient Program Analysis Using DJ Graphs. PhD thesis, School
of Computer Science, McGill University, Montréal, Québec, Canada, 1995.

