
On the Tree Width of Ada Programs

Bernd Burgstaller1, Johann Blieberger1, and Bernhard Scholz2

1 Institute for Computer-Aided Automation, TU Vienna
Treitlstr. 1–3, A-1040 Vienna, Austria
{blieb,bburg}@auto.tuwien.ac.at
2 School of Information Technologies

Madsen Building, F09
University of Sydney NSW 2006, Australia

scholz@it.usyd.edu.au

Abstract. The tree width of a graph G measures how close G is to
being a tree or a series-parallel graph. Many well-known problems that
are otherwise NP-complete can be solved efficiently if the underlying
graph structure is restricted to one of fixed tree width.
In this paper we prove that the tree width of goto-free Ada programs
without labeled loops is ≤ 6. In addition we show that both the use of
gotos and the use of labeled loops can result in unbounded tree widths
of Ada programs.
The latter result suggested to study the tree width of actual Ada pro-
grams. We implemented a tool capable of calculating tight upper bounds
of the tree width of a given Ada program efficiently. The results show
that most existing Ada code has small tree width and thus allows effi-
cient automatic static analysis for many well-known problems and – as
a by-product – most Ada programs are very close to series-parallel pro-
grams.

1 Introduction

The notion tree width has originally been introduced by Robertson and Sey-
mour [RS83]. Intuitively, the tree width of a graph G measures how close G is
to being a tree or a series-parallel graph. In this way the tree width of a tree
equals 1 and the tree width of a series-parallel graph is 2. For more general
graphs the tree width increases more and more.

Many well-known problems that are otherwise NP-complete can be solved
efficiently (i.e. in polynomial time) if the underlying graph structure is restricted
to one of fixed tree width (cf. e.g. [ALS91]). See also [Bod93] for a survey. Our
particular interest in the tree width of Ada programs stems from the fact that a
well-known approach to find the worst-case execution time (WCET) of a program
([PK89]) can be determined in linear time if the underlying control flow-graph
(CFG) has tree width k. This follows easily from [ALS91] where it is proved
that all graph properties definable in monadic second-order logic (MS) with
quantification over vertex and edge sets can be decided in linear time for classes
of graphs of fixed bounded tree width, because the approach to find the WCET
mentioned above is expressible in MS.

In [Tho98] Thorup presents a measure called k-complexity that is equivalent
to the original definition of tree width given by Robertson and Seymour [RS83].
Based on the notion of k-complexity Thorup shows in [Tho98] that goto-free
Algol and Pascal programs have control flow-graphs of tree width ≤ 3, that
Modula-2 programs have control flow-graphs of tree width ≤ 5, and that goto-
free C programs have control flow-graphs of tree width ≤ 6.

In particular, Thorup’s definition can be used for implementing a parser for a
certain programming language in order to compute actual data on the tree width
of existing code. This method has been used by Gustedt, Mæhle, and Telle to
study the tree width of actual Java programs [GMT02]. We discuss this method
in Section 2.

The impact of Ada’s very rich set of language features on the resulting tree
width of programs is described in Section 3. A restricted class of Ada programs
is shown in Section 4 to have tree width ≤ 6. However, in general, Ada programs
turn out to have non-bounded tree width, which is proved in Section 5.

In this way it is of paramount interest to study actual Ada programs to find
statistics on their tree width. Implementation details of our tool are described
in Section 6; the results of the study are given and discussed in Section 7. We
conclude our paper in Section 8.

2 On the k-Complexity of Graphs

The notion of tree width was introduced by Robertson and Seymour [RS83]. It
is based on a tree-decomposition of a graph:

Definition 1. A tree-decomposition of a graph G = (V, E) is defined by a tree
T = (I, F) together with a family {Wi}i∈I of subsets of V such that:

1.
⋃

i∈I Wi is V .
2. for all edges (v, w) ∈ E, there exists an i ∈ I such that {v, w} ⊆Wi.
3. for all i, j, k ∈ I, if j is on the path from i to k then Wi ∩Wk ⊆Wj.

The width of the decomposition is maxi∈I |Wi| − 1 and the tree-width of G is
the minimal width over all tree-decompositions of G.

Thorup [Tho98] introduced k-complexity of a graph and showed that if a
graph is k-complex then the tree width of this graph is k and vice versa. The
k-complexity of a graph uses the notion of a listing L = v1, . . . , vn that is an
ordered set of the vertices.

Definition 2. Given a graph G, a (≤ k)-complex listing is a listing of vertices
of G such that for every vertex v ∈ V , there is a set Sv of at most k of the vertices
preceding v in the listing, whose deletion from G separates v in G from all the
vertices preceding v in the listing. In this case, we say that G is (≤ k)-complex.
The set Sv is referred to as the separator set of v in the listing.

Figure 1 (a) shows a simple program, a corresponding control flow graph (b)
and a listing (c) with its separator sets of the vertices. In the example we have

procedure simple if is
b : boolean := true;

begin

if b then

b := false;
end if ;

end simple if;

l1 begin

l2 if

l3 b

l4 then

l5 b := false

l6 end if

l7 end

i vi Svi

1 l1 {}
2 l7 {l1}
3 l2 {l1, l7}
4 l6 {l7, l2}
5 l3 {l2, l6}
6 l4 {l6, l3}
7 l5 {l6, l4}

(a) (b) (c)

Fig. 1. Example: Simple If-Statement

seven control flow nodes. To demonstrate the separator sets we have chosen
an arbitrary listing. For this given listing the minimal separator sets can be
computed as outlined in Section 4 of Thorup’s work [Tho98]. Note that for
Definition 2 directed arcs in CFGs have to be replaced with undirected edges.

The importance of k-complexity compared to the original definition of tree
width comes from the fact that k-complexity can be computed easily for CFGs
based on the syntax of the underlying programming language. In terms of the
Abstract Syntax Tree (AST) it can be implemented by a simple traversal of the
AST.

Definition 3. Given a graph G, a vertex of the graph and its separator set Sv,
we define a S-path from node v to a node w ∈ Sv to be a path from v to w

which does not contain a node u ∈ Sv (u 6= w). Let Gv be a subgraph of G which
contains v and all nodes lying on S-paths from v to nodes in Sv. The nodes of
Sv themselves are not contained in Gv.

In Figure 1 node l4 has separator set Sl4 = {l6, l3}. Graph Gl4 contains the
nodes l4 and l5. Note that l5 has a greater listing number than l4. It is easy
to check that all nodes of Figure 1 fulfill the condition that Gv only contains
vertices whose listing number is greater than the listing number of v.

For the remainder of this section we use the program shown in Figure 2 (a)
as a running example. For sake of simplicity we address nodes by their listing
number and do not specify the mapping between labels and listing numbers
anymore. This simple example consists of 10 nodes and, therefore, there are
10! = 3628800 different listings according to Definition 2. Generating all possible
listings in order to determine the minimum choice with respect to k-complexity
constitutes a computationally intractable problem for the general case. For this

procedure simple loop is

b : boolean := false;
i : natural := 0;

begin

loop

i := 2 ∗ i;
exit when b;
i := i + 1;

end loop;
end simple loop;

begin1

loop3

i := i * 26

;5

exit when8

b9

;7

i := i + 110

end loop4

end2

begin1

loop3

i := i * 27

;6

exit when9

b4

;8

i := i + 110

end loop5

end2

(a) (b) (c)

Fig. 2. Example: Simple Loop with Exit Statement

reason Thorup [Tho98] proposes a method for calculating the k-complexity based
on the syntax of the underlying programming language. In accordance with
Definition 2 this method consists of two steps, namely the derivation of a listing
from a given CFG, and the generation of the corresponding separator sets. The
following two subsections present an overview of this method. For further details
the reader is referred to [Tho98] Section 2.

Derivation of a Listing from a CFG. Each program expressible in a certain
programming language can be derived from a starting non-terminal symbol by
applying a number of productions. Thorup’s central idea is to assign numbers
to the terminals of a production when it is applied to a sentential. The numbers
are assigned from left to right. It is common to assign numbers also to the
semi-colons which separate statements from each other [Tho98].

To return to our example (Figures 2 (a) and 2 (b)), the terminal begin of the
procedure simple loop gets assigned number 1 and the corresponding terminal
end gets assigned 2. The next production is the one producing the loop state-
ment. Thus the terminal loop gets number 3 and the terminal end loop gets 4.
The next terminal to consider is the semi-colon after the first statement of the
loop body; it gets number 5. The first statement itself, namely i := 2 * i, gets
assigned 6.

It is not necessary to perform this method on a level deeper than that of
“basic” statements such as assignments, null statements, procedure calls and so
on. For this method these basic statements are also considered “terminals” of

a production. However it turns out that boolean expressions of if-statements or
exit statements have to be examined more carefully because the k-complexity is
increased if the boolean expression contains short-circuit operators such as or
else and and then [KP98].

Hence the semi-colon after the exit statements gets assigned 7 and the exit
statement itself gets 8. After that the condition of the exit statement is examined.
Since in our case it consists of an atom only, this atom b gets number 9.

The only remaining statement is the assignment after the exit which gets
number 10.

It is clear that generating a k-complex listing by this method can be done in
time linear in the size of the program.

Generation of Separator Sets. Thorup’s method allows for calculating the
separator sets during the generation of the k-complex listing as described above.
The separator set of a certain statement (node) can be determined from the
CFG predecessors and from the CFG successors of the node. Thorup calls these
nodes potential neighbors. In fact, neighbors are defined for subgraphs the nodes
of which are subtrees of the corresponding AST.

The topmost view of our example consists of the terminal begin, the loop-
statement, and the terminal end. The loop statement consist of nodes 3, 6, 5, 8, 9,
7, 10, and 4 (cf. Figure 2 (b)). The potential neighbors of the loop-statement are
therefore node 1, which is the CFG predecessor of this statement, and node 2, its
CFG successor. Thorup calls neighbors like the first one in-neighbors and those
of the second kind out-neighbors.

In addition there are also exit-neighbors. An exit-neighbor is the target node
of the exit-statement of a loop if the exit-condition evaluates to true.

In the second view of our example (after applying the production that derives
the loop body) we find that the exit-neighbor of the statement sequence between
loop and end loop of the loop body is node 2. The in-neighbor of this statement
sequence is node 3 and its out-neighbor is node 4.

In the third view (after the production that derives the first statement of the
statement sequence) the in-neighbor of node 6 is node 3 and its out-neighbor is
node 5.

Similarly the in-neighbor of the exit-statement (nodes 8 and 9) is node 5 and
its out-neighbor is node 7.

Traversing the exit-statement we find that the in-neighbor of node 8 is
node 5 and its out-neighbor is node 7. The boolean expression in node 9 has
in-neighbor 8 and out-neighbor 7.

Finally, the in-neighbor of node 10 is node 7 and its out-neighbor is node 4.

The separator sets can now be determined based on the type of the statement
and its neighbors. For an assignment statement the separator set contains its in-
and out-neighbors. In this way, node 6 has separator set S6 = {3, 5}.

For an exit-statement the corresponding separator set contains its in-, out-,
and exit-neighbors. Hence S8 = {5, 7, 2} and S9 = {8, 7, 2}.

For a node corresponding to a semi-colon, the separator set contains its in-,
out-, and exit-neighbors. For example S5 = {3, 4, 2}.

Summing up we conclude that the separator sets can also be determined in
linear time by Thorup’s method.

Finally we would like to note that more complex programs require the notion
of stop-neighbors due to the occurrence of return-statements. In terms of the
CFG such a return-statement introduces an edge from the return to the end.

Discussion of Thorup’s Method. Thorup’s method is well fitted to determine
upper bounds of the tree width for certain programming languages. For example
Thorup [Tho98] shows that all Modula-2 programs have tree width ≤ 5 and that
goto-free C programs have tree width ≤ 6.

For our running example (cf. Figure 2) Thorup’s method calculates a tree
width of 3. We did a complete enumeration of all possible listings for this exam-
ple. Of all 3628800 cases 872 produced a tree width of 3 and 3627928 produced
a tree width of 2. So in this case Thorup’s method only finds an upper bound
for the tree-width!

In the following we discuss some other serious drawbacks of Thorup’s method.

1. First, it considers potential neighbors and not actual neighbors. For example
a loop without an exit statement (quite common for non-terminating loops
in server tasks) will have potential exit-neighbors. But since there is no exit-
statement, the statement succeeding the end loop cannot be reached. Thus
there is no path from the start node to this node. Nevertheless Thorup’s
method still lists the start node as an in-neighbor for this “dead” node.

Employing synthesized attributes [ASU88] for the calculation of the neigh-
bors would enable Thorup’s algorithm to derive the actual neighbors from
the potential neighbors. However, the only synthesized attribute used is the
listing number (cf. [Tho98]).

2. Second, Thorup’s method always assumes that all conditions contain short-
circuit expressions. Although he shows how the nodes of CFGs can be renum-
bered if the boolean expressions do not contain short-circuit expressions,
his method silently assumes that conditions consisting of a single atom, are
short-circuit. This renumbering in general produces listings with smaller sep-
arator sets.

However, Thorup performs renumbering only on a small number of nodes
local to the if-statement. In contrast the renumbering below touches almost
all nodes of the loop enclosing the exit statement. This kind of renumbering
is not mentioned in [Tho98] and shows again that Thorup’s method produces
upper bounds only.
If we introduce the renumbering 6 → 7, 5 → 6, 8 → 9, 9 → 4, 7 → 8, and
4 → 5 in our example (cf. Figure 2 (c)), the separator sets change to: S7 =
{3, 6}, S6 = {3, 4}, S9 = {6, 4}, S4 = {3, 2}, S8 = {4, 5}, S10 = {8, 5}, and
S5 = {3, 2}. Hence the tree width decreases from 3 to 2 by this renumbering.

As a side-note we mention that this renumbering also works for more complex
exit conditions but the condition must not contain short-circuit expressions.

A simple work-around to get rid of problem (1) is to generate a k-complex
listing with Thorup’s method, but instead of applying Thorup’s neighbor based
method use a “greedy” algorithm that calculates the separator set for node v by
traversing the paths of graph Gv (Definition 3). This results in a method using
time quadratic in the size of the program.

3 Tree Width of Ada Programs

In [Tho98] Thorup studies the following language features that are known to
increase the tree width:

– short-circuit expressions in conditions of if-statements,
– multiple returns from subroutines, and
– exits from unlabeled loops.

In addition to the language features studied by Thorup, Ada provides the
following features:

– elsif and case statements ,
– both short-circuit expressions and non-short-circuit expressions in a single
boolean expression,

– for-loops and while-loops ,
– multiple exits from labeled loops,
– conditional exits from loops3,
– exceptions and exception handlers , and
– tasks and protected objects .

Thorup’s method can be modified to handle elsif- and case-statements cor-
rectly.

Conditions containing both short-circuit expressions and non-short-circuit
expressions require a delicate treatment but can also be treated correctly.

While-loops that do not interfere with other language features, in general
have a tree width of 3 except when their condition is atomic, i.e., does not
contain any of not, and, or, and then, and or else statements. In this case
their tree width is 2. For-loops also result in a tree width of 2.

Multi-exit loops and their consequences are discussed in Section 5.
Conditional exits are handled as if-statements with an unconditional exit in

the then branch.
Since our primary interest is in static program analysis, we do not model the

exact dynamic semantics of exceptions. Instead we assume that if an exception
is raised, it is handled by the nearest statically enclosing exception handler. Note
also that we only model explicitly raised exceptions. We therefore do not account
for exceptions raised by the runtime system due to faults such as division by zero
or failed subtype range checks.

Nevertheless exceptions give rise to a new kind of neighbors, so-called raise-
neighbors. The raise-neighbor of a certain statement is the node corresponding
to the start of the exception handler of the enclosing block.

3 Thorup uses exit-statements enclosed in if-statements to model conditional exits.

procedure Ada Worst Case is

A, B, C, D, E, F, G, H, I, J: boolean:= true;
begin

if A then return;
end if ;
if not A then raise constraint error; end if ;
loop

if B then

if C or else D then

if E then return;
end if ;
exit when F;
if not A then raise constraint error; end if ;

else

if G then return;
end if ;
exit when H;
if not A then raise constraint error; end if ;

end if ;
end if ;
if I then return;
end if ;
exit when J;
if not A then raise constraint error; end if ;

end loop;
if not A then raise constraint error; end if ;

exception

when others =>

return;
end Ada Worst Case;

Fig. 3. Example: Restricted Ada Program with Largest Possible Tree Width

Tasks and protected objects are handled correctly, including all different
forms of select statements, which are treated like case and if-statements. The
abort statement is treated only partially correct. A fully correct treatment would
imply that every task must be aware of an abort at any time. We assume that
an abort statement is only used to abort the task itself, thus the corresponding
CFG has an additional edge from the abort statement to the CFG’s end node.

4 The Class of (≤ 6)-Complex Ada Programs

Considering Ada programs without gotos and without labeled loops4, we know
that the tree width of such programs is bounded above by 6. The reason for
this is that Ada adds short-circuit expressions, exit statements, multiple return

4 Gotos and labeled loops will be studied in Section 5.

statements and exceptions to series-parallel programs. Since each of these fea-
tures adds 1 to the tree width, we get 6 as an upper bound for the tree width of
these restricted Ada programs. In fact we can construct a program whose tree
width assumes the largest possible value. Such a program is shown in Figure 3.

Program Ada Worst Case is an extension of a program given in [Tho98].
The program studied there contains a 6-clique which is trivially 5-complex. Our
program adds an exception handler and raise-statements which – as can be seen
easily – results in a 7-clique being contained in the corresponding contracted
CFG5.

Thus we have proved the following theorem.

Theorem 1. Ada programs without gotos and without labeled loops are of tree
width ≤ 6. ut

5 The Class of Ada Programs with Non-Bounded Tree
Width

First of all, Ada has a goto statement. Hence it is possible to write Ada programs
whose CFGs contain k-cliques for any k. The tree width of such graphs is k − 1
and thus can be arbitrarily large.

In the following we restrict our interest to goto-free Ada programs. Statis-
tics for the usage of gotos in Ada programs have been given by Gellerich et
al. [GKP96].

Gustedt et al. [GMT02] find that labeled break and continue statements are
responsible for the fact that Java programs result in CFGs of non-bounded tree
width. In contrast Ada supports some form of labeled break statement, the exit
from a labeled loop, but no continue statement. Anyway, we are able to prove
that Ada programs result in CFGs of non-bounded tree width.

Theorem 2. For any value of k ≥ 0 there exists a goto-free Ada program with k

nested loops such that its control flow-graph has tree width ≥ k + 1.

Proof. Figure 4 shows four nested loops with several exits statements which have
been labeled to facilitate the proof.

In the following we again apply Lemma 6 proved in [Tho98] which can be
used to contract nodes of a CFG into one node without increasing the complexity
(tree width).

We will show in the following that the statements I, R, L3, B3, B2, and B1

form a 6-clique, by looking at them in the above order and arguing that each of
them is connected to all the ones following it in the given order.

First, the node I is connected to all the other nodes, as the control flows from
it to R via the last exit-statement, control flows naturally into I from L3, and
for the remaining statements I contains exit-statements targeting that node.

5 A thorough treatment makes use of Lemma 6 of [Tho98] which allows contracting
some nodes of a CFG into one node without increasing the complexity (tree width).

procedure non bounded is

C1, C2, C3, C4 : boolean := true;
begin

L1: loop

L2: loop

L3: loop exit L1 when C1; exit L2 when C2; exit L3 when C3;
¿IÀ loop exit L1 when C1; exit L2 when C2; exit L3 when C3;

exit when C4; end loop;
¿RÀ exit L1 when C1; exit L2 when C2; exit L3 when C3; end loop L3;
¿B3À exit L1 when C1; exit L2 when C2; end loop L2;
¿B2À exit L1 when C1; end loop L1;
¿B1À null;
end non bounded;

Fig. 4. Example: Four Nested Loops

Next, R is connected to L3 as this is the natural flow of control and R contains
exit-statements targeting the statements following it in the given order. The
argument for the remaining statements follows a similar line of reasoning.

Thus the CFG for the example in Figure 4 contains a 6-clique.

It is easy to prove by induction that this is also true for k nested loops. In this
case the statements involved are I, R, L{k-1}, B{k-1}, . . . , B2, and B1. These
form a k + 2-clique and the theorem is proved. ut

Corollary 1. From Theorem 2 it follows that even goto-free Ada programs do
not have bounded tree width.

Because of Corollary 1 it is of paramount interest to study actual Ada pro-
grams to find statistics on their tree width. We have thus decided to implement
a (slightly modified) version of Thorup’s method for Ada and to calculate the
tree width of existing Ada code. As a byproduct our study provides insight into
how close Ada programs are to series-parallel programs.

6 Implementation Details

In order to calculate Thorup’s k-complexity measure, several approaches can be
used:

1. Create the CFG for a given program and use a general purpose algorithm
that builds the node listings and separator sets for a general CFG [Bod93].

2. Build a parser for the programming language that – as a byproduct – pro-
duces node listings and separator sets.

3. Employ dataflow methods to compute node listings and separator sets.

4. Compute node listings and separator sets by use of an AST built by a com-
piler.

Approach 1 would have needed to implement a general purpose algorithm
such as that mentioned in [Bod93] which we considered an error-prone task. So
we did not use this approach.

Approach 2 has been proposed by Thorup [Tho98] and followed by Gust-
edt et al. [GMT02]. Since however Ada’s rich set of language features requires
some sort of semantic information in order to calculate the separator sets as
exactly as possible, we did not employ this approach.

Approach 3 was also considered error-prone. So we did not use it either.
Instead we extended GNAT and used its AST to calculate the node listings.

Because of the semantic information present in the AST we were able to compute
the separator sets as exactly as possible. In fact we implemented the “greedy”
algorithm mentioned in Section 2.

For example consider a simple if statement such as that depicted in Figure 1.
As already pointed out in Section 2, Thorup’s original work assumes “potential
neighbors” for all nodes, which means that many nodes would have separator
sets augmented with the targets of potential exit, return, or raise statements. By
traversing the AST, however, it is easy to find that no such statements exist in
the code. Thus the cardinality of the separator sets turns out to be smaller than
the original Thorup approach suggests, which implies that also the tree width
of the example is smaller than the Thorup approach finds.

We also implemented Thorup’s method of renumbering the nodes if a boolean
expression does not contain short-circuit operators. We did not implement the
renumbering shown to solve problem (2) in Section 2 for general loop and exit
statements; we did, however, implement it for while- and for-loops without exits,
which was much easier to do and covers many practically important cases.

For these reasons we still only compute upper bounds for the tree width of
Ada programs, but we think – and this is supported by our results – that the
calculated tree width is very tight to the actual tree width, which could only
have been found by much more effort, both in time used for implementation and
in running time of our tool6.

Our tool calculates the tree width of so-called units. The Ada language fea-
tures that constitute such units are enumerated below:

– (generic) subroutine bodies,
– task bodies,
– entry bodies,
– declare blocks, and
– (generic) package bodies.

Finally we note that all units containing goto statements are ignored by
our tool. However, the total number of goto statments we encountered was less
than 1000.

7 Results of Study

In the following we describe the Ada projects we have included in our study.

6 In general, calculating the tree width of a given graph is NP-complete [ACP87].

AdaBroker is a set of tools and libraries that can be used to develop CORBA
applications in Ada. AdaCGI is an Ada95 interface to the “Common Gateway
Interface” (CGI). AdaDoc is a tool to create documentation from a specifica-
tion package. AdaGPGME is a thin Ada 95 binding to GNUPG Made Easy.
Aflex is a lexical analyzer written in Ada, ayacc is a compiler-compiler also
written in Ada. ASIS is the GNAT implementation of the Ada Semantic In-
terface Specification. BC is the Ada implementation of the Booch components.
BfdAda provides an Ada API to use the GNU Binutils BFD library. CMA is
a Configuration Management Assistant for Ada. Components is the implemen-
tation of some data-structures. FSFGNAT is the Free Software Foundation’s
version of GNAT. GLADE is ACT’s implementation of the Distributed System
Annex. GNACK is an Ada binding for the ORBit Corba ORB. GNADE is a
project to develop an Ada 95 development environment providing a seamless
integration of SQL-based databases into Ada 95. GNAT is ACT’s Ada Com-
piler. GPS is ACT’s GNAT Programming System, an integrated programming
environment. GtkAda denotes an Ada binding to GTK, the GIMP Toolkit, a
graphical library. GVD is the GNU Visual Debugger, written in Ada. Inter-
vals is an implementation of interval arithmetic in Ada. JGNAT is ACT’s Ada
to Java Byte Code translator. Libra is a general library of data structures for
Ada95 under Unix-like operating systems. MaRTE is the Minimal Real-Time
Operating System for Embedded Applications and MAST is the Modeling and
Analysis Suite for Real-Time Applications. Both are developed by the Real-Time
Group of the Universidad de Cantabria. ORK is the open source implementa-
tion of the Ravenscar profile. PIWG is the Performance Issues Working Group’s
test suite. PPlaner is a Project Planner written in Ada. Rail is a small part of
a project planning tool for electronic railway interlocking systems (a compiler)
implemented by ARC Seibersdorf research. Style is an Ada style checker. Units
is a units of measurement implementation in Ada.

Table 1 shows percentages of how many units have tree widths 2, 3, 4, and 5.
No unit had tree width higher than 5. The last column shows the average tree
width of the software projects.

It is not surprising that bindings such as GtkAda are at the lower end of the
scale because bindings usually only use a small part of Ada’s language features.

It is however remarkable that compilers are at the upper end of the results.

Comparing our results with those of [GMT02] for the tree width of Java
applications, we see that the smallest average tree width for Java is 2.48 and
the largest tree width is 2.94, while the corresponding values for Ada are 2.06
and 2.43, i.e., the largest value for Ada is smaller than the smallest value for
Java.

8 Conclusion

In this paper we have proved that in general Ada programs may result in non-
bounded tree width. On the other hand, a study of existing Ada code showed

Name Version No. % tw % tw % tw % tw Avg.
Units 5 4 3 2 TW

AdaBroker 1.0 5644 0.00 0.53 16.99 82.46 2.18
AdaCGI 1.6 84 0.00 1.19 17.86 80.95 2.20
AdaDoc 2.01 240 0.00 0.42 14.17 85.42 2.15
AdaGPGME 0.4.2 25 0.00 0.00 12.00 88.00 2.12
aflex 1.4a 259 0.00 0.39 17.37 82.24 2.18
ASIS 3.15p 4148 0.00 0.96 16.20 82.84 2.18
ayacc 1.1 440 0.00 2.27 24.09 73.64 2.28
BC 20030815 1464 0.00 0.82 12.09 87.09 2.13
BfdAda 0.9 203 0.00 0.00 7.88 92.12 2.07
CMA — 1129 0.00 3.28 23.29 73.43 2.29
Components 1.2 108 0.00 0.93 23.15 75.93 2.25
FSFGNAT 20020814 9713 0.01 3.12 22.46 74.41 2.28
GLADE 3.15p 4113 0.00 1.09 12.13 86.77 2.14
GNACK 1.1c 733 0.00 0.55 27.56 71.90 2.28
GNADE 1.5.0 1855 0.00 0.11 10.24 89.65 2.10
GNAT 3.15p 9933 0.02 3.16 22.46 74.36 2.28
GPS 1.2.2 10816 0.00 0.92 12.33 86.75 2.14
GtkAda 2.2.0 4574 0.00 0.13 5.79 94.08 2.06
GVD 1.2.5 1408 0.00 1.07 24.43 74.50 2.26
Intervals 1.0 115 0.00 0.00 11.30 88.70 2.11
JGNAT 1.1p 8285 0.01 3.07 21.94 74.98 2.28
Libra 0.2.0 405 0.00 0.25 13.83 85.93 2.14
MaRTE 1.2 1271 0.00 0.55 25.96 73.49 2.27
MAST 1.2.2 1289 0.00 1.32 17.77 80.92 2.20
ORK 2.2b 8021 0.01 3.00 21.61 75.38 2.27
PIWG — 1319 0.00 0.38 6.52 93.10 2.07
PPlanner — 162 0.00 0.00 19.14 80.86 2.19
Rail — 2278 0.00 2.02 28.67 69.32 2.32
Style — 104 0.00 0.96 15.38 83.65 2.17
Units 1.3 157 0.00 0.00 43.95 56.05 2.43

Table 1. Tree Width of Ada Applications

that the actual tree width is quite low. Thus, for example, Ada programs can be
analyzed very efficiently by static analysis tools.

In addition we have introduced renumbering schemes that allow to derive
tighter upper bounds for the tree width of Ada code. This includes for- and
while-loops which have not been treated in [Tho98].

Our results cannot be compared directly to those of [GMT02] because the
Java study has used the approach of building a parser and ignored exceptions
completely. However, on the average Ada programs turned out to have a smaller
tree width than Java programs. This is the case even though Ada programmers
utilize all flow affecting constructs the language provides.

Acknowledgments. We are grateful to ARC Seibersdorf research for handing
over part of their railway code for the study.

References

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski, Complexity of
finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth. 8 (1987), no. 2,
277–284.

[ALS91] Stefan Arnborg, Jens Lagergren, and Detlef Seese, Easy problems for tree-

decomposable graphs, Journal of Algorithms 12 (1991), 308–340.
[ASU88] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers, Principles,

Techniques and Tools, Series in Computer Science, Addison Wesley, 1988.
[Bod93] Hans L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica 11

(1993), 1–21.
[GKP96] Wolfgang Gellerich, Markus Kosiol, and Erhard Ploedereder, Where does

GOTO go to?, Ada-Europe’96 International Conference on Reliable Software
Technologies (Montreux, Switzerland), June 1996, pp. 385–395.

[GMT02] Jens Gustedt, Ole A. Mæhle, and Jan Arne Telle, The treewidth of Java

programs, Proc. ALENEX’02 - 4th Workshop on Algorithm Engineering and
Experiments (San Francisco, CA), LNCS, 2002, pp. 42–51.

[KP98] Sampath Kannan and Todd A. Proebsting, Register allocation in structured

programs, Journal of Algorithms 29 (1998), 223–237.
[PK89] Peter Puschner and Christian Koza, Calculating the maximum execution time

of real-time programs, The Journal of Real-Time Systems 1 (1989), 159–176.
[RS83] Neil Robertson and Paul D. Seymour, Graph minors. I. Excluding a forest,

J. Comb. Theory Series B 35 (1983), 39–61.
[Tho98] Mikkel Thorup, All structured programs have small tree width and good reg-

ister allocation, Information and Computation 142 (1998), no. 2, 159–181.

