
A Framework for CFG-based Static Program

Analysis of Ada Programs

Raul Fechete, Georg Kienesberger, and Johann Blieberger

Institute for Computer-Aided Automation, TU Vienna
Treitlstr. 1-3, A-1040 Vienna, Austria

{fechete,kienes,blieb}@auto.tuwien.ac.at

Abstract. The control flow graph is the basis for many code optimi-
sation and analysis techniques. We introduce a new framework for the
construction of powerful CFG-based representations of arbitrary Ada
programs. The generated data holds extensive information about the
original Ada source, such as visibility, package structure and type defini-
tions and provides means for complete interprocedural analysis. We use
ASIS-for-GNAT as an interface to the Ada environment and extract the
needed information in a single traversal of the provided syntax trees. In
addition, further refinement of the resulting data structures is done.

1 Introduction

Many control and data flow analysis approaches [1–6] rely on the representation
of a program in form of a control flow graph (CFG) [7].

We introduce a framework that generates CFG-based data structures holding
comprehensive information about the original Ada source. The packages and
CFGs of the input program are structured in trees according to their hierarchical
organisation. We also use trees to represent complex expressions, allowing an
in-depth analysis of the control flow. Types and variables are saved together
with their complete definitions, thereby providing means to track them over
several inheritance levels. Furthermore, we facilitate interprocedural analysis by
referencing the target CFG in each subprogram call.

During the transformation, we extract the needed information from the ab-
stract syntax trees (AST) [7] provided by ASIS-for-GNAT. Afterwards, in a post
transformation phase, we further refine the resulting structures.

2 The Library

We designed Ast2Cfg as a library that uses ASIS [8] to get the information that
is needed to build the CFG for a given Ada program. In fact we use the ASIS-
for-GNAT implementation of the ASIS standard. Therefore, the so-called tree
files for an Ada program, which are generated by GNAT [9], are used as input.
Then ASIS provides us with the abstract syntax tree of the input program.
During the traversal of this AST, which is done using depth first search (DFS)



2

with Ada.Text IO; use Ada.Text IO; with Ast2Cfg.Pkgs; use Ast2Cfg.Pkgs;
with Ast2Cfg.Control; with Ast2Cfg.Flow World; with Ast2Cfg.Output;

procedure Run is
World: Ast2Cfg.Flow World.World Object Ptr;
Pkgs: Pkg Class Ptr List.Object;
Pkg: Pkg Class Ptr := null;

begin
-- Initialisations
Ast2Cfg.Output.Set Level(Ast2Cfg.Output.Warning);
Ast2Cfg.Control.Init;

-- Fill the World with flow data
World := Ast2Cfg.Control.Generate;

-- Output the name of all top-level packages
Pkgs := Ast2Cfg.Flow World.Get Pkgs(World.all);
Pkg Class Ptr List.Reset(Pkgs);
while Pkg Class Ptr List.Has Next(Pkgs) loop

Pkg Class Ptr List.Get Next(Pkgs, Pkg);
Put Line(Get Name(Pkg.all));

end loop;

-- Finalisation
Ast2Cfg.Control.Final;

end Run;

Fig. 1. A small application using Ast2Cfg.

[10], we simultaneously build the corresponding CFG. Next, right after some
refinement, the control flow information is made available to the library user in
form of a single object, the flow world. Figure 1 shows a small application that
uses Ast2Cfg to output the name of all top-level packages of the adt-files in the
current directory.

We already developed a simple program, called Cfg2Dot, that uses the Ast2Cfg
library to output the CFG for a program in dot graphics format [11]. Ast2Cfg,
Cfg2Dot and additional documentation [12] are available from http://cfg.w3x.org.

2.1 The World Object

All information gathered during the transformation phase is saved in an object
of type World Object. It contains a list of package objects (Pkg Object) that
correspond to the top-level packages of the analysed Ada program.

Pkg Object is derived from the abstract Flow Object. The same applies
to CFG Object, that represents a control flow, and Node Object, which is used
by CFG Object. Also, as described in detail below, each of these types has a
series of subclasses such that a more fine-grained classification is possible. Where
necessary, the derived types are also grouped into specifications and bodies.
Figure 2 shows an overview of the class hierarchy where rectangles with dashed
lines represent abstract types and those with solid lines concrete ones.

Since in Ada subprograms and packages may be declared within each other
we have to keep track of such nesting relationships. Every flow object has a list
of predecessors and successors. While node objects use those lists to build up a



3

Node Object

Flow Object

.

.

.

CFG Object

Body Object Spec Object

.

.

.

.

.

.

Body Object

Pkg Object

Spec Object

.

.

.

.

.

.

Fig. 2. An overview of the class hierarchy for the flow types.

CFG, package and CFG objects use them to represent the nesting structure we
call Pkg/CFG tree. In other words, if B is declared within A, B is a successor of
A and A a predecessor of B.

Another important tree structure is the parameter tree that we generate
whenever an expression is encountered. A parameter tree is saved directly in
the flow object that contains the expression and holds information on the used
variables, functions, etc. and their nesting. As a result a parameter tree is a com-
plete hierarchical representation of an expression, allowing the user to implement
powerful static analysis algorithms.

Figure 3 shows the Cfg2Dot output for the single assignment statement
C(1) := Outer(A, Inner(X => B)); where A and B are variables, C is an array
and Inner and Outer are functions. The CFG consists of a single assignment
node with two parameter trees, highlighted by dashed lines: one for the part to
the left of the assignment operator and one for the right hand side. Every level
in the parameter tree represents a nesting level in the underlying expression.

Flow Object. Every flow object has a unique id which may be tested for
equality. In addition, flow objects have names. However, for node objects which
are derived from flow objects, the name is empty in most cases. Furthermore, lists
of variable declarations, generic formal parameters and renamings are available.
Finally, we also store a list of with, use and use type clauses in every flow
object.

CFG Types. CFG objects use node objects to represent the control flow infor-
mation of different Ada entities like subprograms, blocks, initialisation sequences
etc. Therefore in every CFG object we save a reference to the root node, the
total number of nodes (without those in parameter trees) and, since many CFG
objects represent subprograms, a list of parameters.

CFG Object itself is declared abstract, hence all actual CFG objects have to
be of one of the more specific, concrete subtypes. In the simplest case a subpro-
gram has to be represented, which is done by either creating a Proc Object
for a procedure and, in case of a function, a Func Object. For a block, which



4

Assignment Node 1.3.14:
Idents: C,Outer,Inner

C(1) := Outer(A, Inner(X => B));

Parameter Node 1.3.13:
ASSIGN/LHS

Parameter Node 1.3.16:
ASSIGN/RHS

Parameter Node 1.3.15:
Variable: C
IDX/COMP

Parameter Call Node 1.3.17:
Dest: Outer

FUNC/PARAM/ROOT

Parameter Node 1.3.18:
Variable: A

PARAM/NODE

Parameter Call Node 1.3.20:
Dest: Inner

FUNC/PARAM/ROOT

Parameter Node 1.3.21:
Variable: B
Name: X

PARAM/NODE

Fig. 3. A node with two parameter trees.

is located within some other CFG object, we create a separate Block Object.
Next we insert a call node, which is used to represent a subprogram call, at
the position where the block used to be within the enclosing CFG. So, in fact,
a block is handled like a parameterless procedure, called when the block is de-
clared. We transform an initialisation sequence of a package body into a so-called
Init Object and create an Except Object for every exception handler.

In case we encounter a task body, a Task Object is created where every
accept block is represented separately by an Entry Object. As it was the case
with simple blocks, we link such an Entry Object to its enclosing task by using
a call node. Furthermore, we also map the protected entries of a protected object
to entry objects. To represent the abortable part of a select – then abort
statement we use an Abort Object, which is, again, linked to the enclosing
CFG using a call node.

Finally, there are three CFG objects which actually do not contain any con-
trol flow information. The main reason why we use them is that because of their
position in the Pkg/CFG tree we are able to keep track where they are defined
and can gain visibility information later on. So for a task type declaration we
create a Task Type Object, while a simple task specification is represented by
a Single Task Object. Finally, whenever we encounter a generic procedure
or a generic function specification we create a Generic Object.

Package Types. The Pkg Object, like the CFG Object, is abstract, which is
why variables have to be of a more specific subtype. The main purpose of package



5

objects is to help building the Pkg/CFG tree, and therefore the successor and
predecessor lists are the most important components. Another component every
package object except for the Prot Object and the Def Object has, is a list
of the variables that are declared within.

For uniformity reasons we introduce an artificial default package of type
Def Object which contains CFGs that do not have an enclosing package such
as library level procedures. A Prot Object represents the body of a protected
object or type, which may contain subprograms and entries. We map the speci-
fication that belongs to such a Prot Object to a Prot Type Object in case
of a protected type declaration and to a Single Prot Object otherwise. The
body of a generic package requires no special handling, however, we transform
the corresponding specification into a Gen Object.

Finally, for representing ordinary packages not mentioned above, we use a
Simple Spec Object and, in case there is an accompanying body, a Simple
Body Object.

Node Types. Any node that is not treated specifically as described below
is of type Node Object. If a statement has a label, then the label is saved
as the name of the node representing this statement. Also, for every node we
store a string that holds at least part of the code that this node is repre-
senting. Furthermore, all nodes have a right hand side parameter tree, and the
Assign Node Object, which corresponds to an assignment statement, also has
a left hand side parameter tree for the part to the left of the assignment operator.
Finally, for every node we save the Asis.Element that is the source of this
node. The Asis.Element can be seen as a link back into the ASIS AST. Con-
sequently additional information can be acquired by analysing the AST starting
at the element of an arbitrary node.

As already mentioned, we not only use a Call Node Object for the rep-
resentation of a subprogram call, but also in several situations that are treated
similarly. Clearly, the most important component of a call node is the reference
to its destination CFG. We derived several subtypes from Call Node Object
to convey additional information on the type of the call. So, for example we use
an Accept Node Object to link an Entry Object to its enclosing task body,
while we represent a call of such an entry with an Entry Call Node Object.
Likewise an Abort Node Object links the abortable part of a select – then
abort statement into its CFG. Finally, there is a subtype of Call Node Object
that we exclusively use within parameter trees to represent a function call: the
Param Call Node Object.

Whenever we encounter a goto we use a Goto Jump Node Object to point
to the destination of the goto. Moreover we create an Exit Jump Node Object
for every exit statement within a loop. Note that the target of an exit jump
node is empty in case it exits the innermost enclosing loop. For a return state-
ment, we also create a special node, which is of type Return Node Object.
A Loop Node Object marks the header of a loop, and the two concrete sub-



6

types enable to distinguish between a while or for loop and a simple loop
statement.

A parameter tree is built by nodes of type Param Node Object, Param
Alloc Node Object and the already mentioned parameter call nodes. We use
the Param Node Object to save the name of the variable that was supplied
as a parameter and the name of the parameter itself, in case it is known. The
Param Alloc Node Object, however, represents a dynamic allocation using
the new keyword.

Whenever we encounter an if or case statement, a special header node of
type Branch Node Object is created so that its successors contain the branch-
ing conditions. After such a node with a branching condition the subgraph for
the actual branch follows, until control flow is united again in an end node.

3 Transformation

We obtain the control flow data from the AST by using a two-phase mechanism.
The first step, the transformation, includes extracting information from the tree
and building the raw flow structure. The second one, the post transformation,
further refines the output of the former.

The information retrieval is constructed on an inorder traversal skeleton pro-
vided by ASIS. The program walks the tree one node at a time, generating three
types of events.

1. A PreOp event is triggered when the traversal reaches a node for the first
time, before any other processing is done.

2. A PostOp event is triggered immediately after the traversal has left a node,
as soon as all processing involving it has finished.

3. A CHF (child-has-finished) event provides us with a binary relation between
a parent and a child node and is thereby context-sensitive. The previous two
events, however, are context-insensitive, bearing no information of a node’s
relatives. CHF is triggered for each of a node’s children, right after their
processing has finished.

The event triggering traversal imposes a state-machine-like architecture on
our transformation mechanism. We employ stacks to hold the current traversal
state and three callback functions, one for each event named above. Since each
method must be able to handle any of the ASIS node types, all three have a
symmetrical structure.

One of the strengths of the ASIS abstract syntax trees is that they employ
a relatively small set of node types, to describe any program, regardless of its
complexity. To achieve this goal, ASIS combines the available types to ample
configurations, creating specialised subtrees.

The Ada syntactical constructs can be divided into classes, with the members
of each class sharing a common syntax subtree configuration. Usually, each ASIS
type has its own case branch in the callback functions, but we take advantage
of the tree similarities, by pulling the corresponding branches together.



7

N1

N2

N3

N4

(a)

N1

N2

N3

N4

(b)

Fig. 4. AST path with
associated element stack

C1

P2

C3

P1

C2

(a)

C1

P2

C3

P1

(b)

C1

P2

C3

(c)

Fig. 5. AST path with associated flow tree, flow
stack and node stacks

As an example, let us consider the variable declarations, the component dec-
larations of the aggregate types and the subprogram parameter specifications.
A typical subtree for one of the declarations above holds the name of the new
entity, its type and its initialisation expression. The only node that tells us what
kind of tree this is, is the root. This information, however, is transparent to the
handling mechanism of the tree. The complete information about the new entity
is gathered in an interim storage common to all the declarations of this class,
and only the PostOp handling of the root node decides where the data should
be transferred in the flow world.

The example above is also illustrative for the use of the interim storage,
the transformation data container (TDC). Many ASIS types can, however, be
added to the flow world immediately upon being reached. As an example, let us
consider the handling of statements. Their flow world counterparts are the CFG
nodes, and a statement PreOp triggers automatically the addition of a node to
the current flow entity.

3.1 Element Stack

The element stack is the backbone of the AST traversal. It holds the path from
the tree root to the current node. The stack grows with each PreOp event, as
the search goes deeper, and diminishes with each PostOp event, as it returns.

Figure 4(a) shows an AST with the thicker edges and nodes indicating the
current traversal state. The nodes in the active path are marked N1 to N4 with
no regard to their syntactical value in the original program. Figure 4(b) displays
the corresponding element stack state.

Keeping only a pointer to the current node is not enough, because for each
node in the path we must be able to store additional information. We may need to
access this information repeatedly, as the search keeps returning to this element.
Such information is the count of already visited children, i.e. the number of CHF
events, and the corresponding flow world structure for this node, e.g. a CFG node
for a statement or a package pointer for the root of a package declaration subtree.



8

The element stack also provides us with an additional consistency check. The
flow structure on top must also be the current one in the flow world.

3.2 Flow Stack

Ada allows both the nesting of subprograms in packages and vice versa. This
fact leads to complex nesting hierarchies. We will represent these relationships
in the flow world using a tree structure, that we call the flow tree. Its root is the
outermost package or CFG. The children of a node in the flow tree represent
the structures immediately nested in the construct the parent node stands for.
The tree only describes the nesting of packages and CFGs. No information about
other nesting relationships, like that of loops, is saved in the flow tree.

Due to similar considerations as in the case of the AST, we will also employ
a stack (the flow stack) to keep the active path in the current flow tree.

Figure 5(a) depicts an AST with the thicker edges and nodes indicating the
current traversal state. The nodes P1 and P2 represent packages, whereas C1 to
C3 represent CFGs. We can clearly see, that the AST describes an Ada program
built of a subprogram C1. Immediately nested in this CFG, are the packages P1

and P2 and the CFG C2. Nested in the package P2 is the CFG C3. The purpose
of the empty nodes in the same figure, is to underline the fact, that even though
a package or CFG has to be situated in the AST subtree rooted in the node of
its enclosing structure, it does not, however, from a syntactical point of view,
have to be an immediate child of it.

Figure 5(b) displays the current flow tree and the active path in it. Please
note that the tree does not hold the CFG C2, since the AST traversal has not
reached it yet.

Figure 5(c) shows the current state of the flow stack. Each CFG on the stack
also holds a reference to a node stack (see Sect. 3.3).

3.3 Node Stack

In the vast majority of the cases, an AST statement node undergoes a one-to-one
transformation to a CFG node. Each time the traversal reaches a new statement,
we add a new node at the end of the presently open CFG. As explained earlier,
the current flow structure can be found on top of the flow stack.

We now need a mechanism to keep track of the last node that has been
appended. In the standard scenario, the next node will be saved as successor of
the former. In some cases, on the other hand, we would need information about
several previous nodes, so keeping only one pointer proves to be insufficient. We
opt again for a stack structure, but this time, with slightly different semantics.

The node stack usually holds only one element, maintaining the pointer to
the last node that has been appended. This pointer is replaced each time a new
node is added to the CFG. The stack grows only when explicit information about
nodes handled in the past is necessary. This need arises in two cases:

1. When processing loops, we must not lose track of the loop head. The last
node in the block must be linked back to it.



9

A

B

B

A

A

P

BA

(a) Standard

L

A

B

L L L

L L L L

L

A A

A

B

B

L

BA

(b) Loop statement

IFIF

A

IF

B

IF

EI

A

A

A B

B

IF IF IF

EI EI

EI EI EI

EI

IF

BA

EI

(c) If statement

Fig. 6. CFG construction examples with node stack

2. When processing if statements, we must not lose track of the if head. This
node must be linked to all the decision branches.

Figure 6(a) depicts the standard scenario: an AST describing a subprogram
P with two statements A and B. The nodes are added one after the other to
the graph. In each of the two transformation steps, we see the graph and the
associated node stack. The stack remains one level high in both cases.

Figure 6(b) shows a loop transformation: the AST is composed of a loop L
holding two statements A and B. This time, the node stack holds the loop head
at all times. The inner nodes are being saved on the stack one level higher, so
when the loop finishes, we have the possibility to link B, in this case, back to L.

Figure 6(c) illustrates an if transformation: the AST describes a program
built of an if statement with two alternatives A and B. This time, our stack
must hold two extra nodes: the if head and the endif node. The former must
be linked to each of the alternatives, while each branch must have a link to the
latter. We use the endif node to pull all the branches back together, and thereby
improve the CFG readability without adding alien control flow semantics to it.
At the end of each alternative, we perform the described linking operations, and
restore the if-endif stack structure. When the processing finishes we leave only
the endif node behind. Semantically, this is the last node in the CFG so far.

The standard scenario works only with the stack’s top and is thereby oblivi-
ous of the lower levels. This allows us to perform the special if and loop operations
completely transparent to the rest of the transformation.



10

f(g(i),h(j+k))

g(i) h(j+k)f

g i h j+k

+ j k

(a)

f

g h

+

j k

i

(b)

f

h

+

j

(c)

Fig. 7. AST path with associated parameter tree and stack

Please note that all three ASTs depicted in Fig. 6 have a similar configuration.
Only their head nodes (P, L and IF) identify their type.

3.4 Parameter Stack

The statement is the basic control flow unit in ASIS while the CFG node is
its basic counterpart in the flow world. ASIS has, however, other control flow
relevant structures that cannot be represented as nodes. Such are the function
calls, which are categorised as expressions. For each non-trivial call, i.e. other
than an operation symbol like +, the execution leaves the original control flow
temporarily and passes over to the function’s body. This makes it imperative to
save them in the CFG too.

A function call can also be nested inside another, as parameter of the former.
These compositions can be structured into trees, with the primary called function
in the root, and its parameters as children. The definition is recursive and the
tree grows as the nesting hierarchy becomes deeper. Such parameter trees provide
excellent means for static parameter aliasing, i.e. for determining the parameters
used in function calls, regardless of the nesting depth.

When constructing parameter trees, we need to store the current path in
them. Again, the best way to do so is to employ a stack, the parameter stack.

Figure 7 depicts a possible parameter tree construction scenario [12]. In Fig.
7(a) we can see an abstract syntax subtree describing a complex function call.
The thick edges and nodes mark the current traversal state.

Figure 7(b) shows the corresponding parameter tree generated so far, with
the thick edges standing for the current traversal state. The primary function
f resides in the root. g and h are the functions used as parameters for f. The
nesting, and therefore the tree, ends with the variables i, j and k. The edge
and node for the variable k are dotted, displaying its future position. It has not
been added so far, since the AST traversal has not reached it yet.

Figure 7(c) depicts the present state of the parameter stack. It is clearly
visible that the current path in the tree is saved on the stack.



11

Node 1.1.5:
loop

Node 1.1.8:
Idents: >

exit when I > 3;

Node 1.1.19:
Loop End

Assignment Node 1.1.14:
Idents: I,+
I := I + 1;

(a)

Infinite Loop Node 1.1.5:
loop

Exit Jump Node 1.1.8:
Idents: >

exit when I > 3;

Assignment Node 1.1.14:
Idents: I,+
I := I + 1;

Node 1.1.19:
Loop End

(b)

Fig. 8. Cfg2Dot output for a simple loop before (a) and after (b) loop refinement.

4 Post Transformation

4.1 Loop Refinement

After the transformation phase, for and while loops without exit or return
statements are already represented correctly. However, simple loops and loops
that contain exit or return statements need some refinement. For example
consider the loop in Fig. 8(a). First, there should be no edge from the loop
header to the loop end, since there is no condition in the header. Second, there
should be an edge from the node containing the exit statement to the loop
end. Figure 8(b) shows the refined, correct representation of this loop.

Loop refinement is done after the main transformation phase, when the pre-
liminary CFG has already been built. Consequently, we need to find the loops
first. This has to be done since ASIS provides information only on the loop head-
ers in a convenient way. Also, due to the considerable complexity of the traversal
itself, it is easier to construct a raw version of the graph without extensive con-
trol flow semantics, and to gather this information in the post transformation
phase. For that purpose, we employ Tarjan’s algorithm for constructing the loop
forest as it is presented by Ramalingam [13]. This algorithm needs the set of
backedges of a CFG, which is why we first compute them using a simple DFS.
This is possible since in a reducible CFG every retreating edge is a backedge [7].

The loop refinement is done in the Collapse procedure of Tarjan’s algo-
rithm. Every found loop results in a call of Collapse which takes the loop
header and the body as parameters. After every node in the loop body is col-
lapsed on its header, we collect the exit jump nodes for the current loop and
those for outer loops in two different lists. The list with the exit jump nodes for
outer loops is retained between different calls to Collapse.

Next, we determine the edge to the first statement after the loop which, at
the current stage, is the only edge that points outside the loop. After that, we
connect the exit jump nodes for the current loop and, in case the current loop
has a label, also search the list with the exit jump nodes for outer loops. Note
that Tarjan’s algorithm always finds inner loops first, so that an exit jump node



12

is always found before the corresponding loop. Finally, in case the current loop
is a simple loop statement, we remove the edge from the loop header to the
loop end. Return statements are handled in a similar way.

However, if the loop does not contain an exit statement, and therefore is an
endless loop, there is the chance that some nodes, right after the loop, are not
reachable any more by following only successor links. Apart from the problem
of memory leakage, the fact that they still may be reached by traversing the
CFG backwards, using only predecessor links, makes proper deallocation of those
nodes necessary. So before the edge from loop header to loop end is removed, its
target node is saved and handled later on (see Sect. 4.3).

4.2 Connecting Gotos

During the transformation phase we only stored the target of a goto statement
as a string but did not add an appropriate edge to the CFG. Instead, we con-
nected the goto jump node to the node for the statement right after the goto.
Now we have to remove that edge, and add one correctly representing the jump
to the target of the goto.

Since the labels of a statement were also saved as strings, we basically build
two lists during a DFS: a list of sources containing all found goto jump node
objects and another one containing all nodes with at least one label, that is,
all targets. Note that a goto statement itself may also be a target. Then we
connect each node in the list of sources to the corresponding target and remove
the existing, auxiliary edge.

However, as with endless loops, there may be unreachable statements follow-
ing a goto. We will have to remove and correctly deallocate the nodes repre-
senting these statements later (see Sect. 4.3), which is why we store the target
of the auxiliary edge.

4.3 Removing Dangling Nodes

As stated previously, we have to remove the subgraphs no longer reachable by
only following their successor links. For example consider Fig. 9 where solid lines
represent successor links and dotted lines correspond to predecessor links.

After we connect the goto node to its target as shown in Fig. 9(b) there
now is a subgraph, rooted at Node 2, that is only reachable by following the
predecessor link from Node 6 to Node 5.

We first perform a DFS on the CFG and add all reachable nodes to a set. In
Fig. 9(c) this set is surrounded by a solid edge. Next, at each node that may be
the root of an unreachable subgraph we start another DFS and create a second
set containing all visited nodes. In our example in Fig. 9(c) this set is surrounded
by a dashed edge. Finally we subtract the set with the nodes that are reachable
through normal DFS from the set containing the nodes of unreachable subgraphs
and remove the resulting nodes as shown in Fig. 9(d).



13

target

goto1

2

3 4

5

6

7

(a)

target

goto1

2

3 4

5

6

7

(b)

1

2

3 4

5

6

7

(c)

target

goto1

6

7

(d)

Fig. 9. Removing dangling nodes from the CFG.

5 Performance

To measure the performance of Ast2Cfg, we recorded the execution time of
Cfg2Dot, which introduces only minimal overhead. The test was performed with
the Linux command time on a machine with a single Athlon XP 2800+ processor
and a gigabyte of RAM. We generated the tree files for the contents of the include
directories of a typical GNAT and ASIS-for-GNAT installation. The generation
of the 588 tree files with a total of 426.4MB lasted approximately 91 seconds.
Then we used Cfg2Dot to generate 5472 separate CFGs in 213 seconds.

6 Conclusions and Future Work

We developed a framework for static program analysis, which provides a CFG-
based structure of Ada programs. Since currently, neither GNAT nor ASIS, fully
support the Ada 2005 standard, it was not possible for us to fully implement
it either. However, our work already covers most of the language specification.
Ast2Cfg is therefore still in an early stage, and will be developed further.

Apart from the simple Cfg2Dot utility, there are already two projects in the
field of static control flow analysis that use Ast2Cfg.

The first one aims at the detection of busy waiting. Busy waiting is a form
of synchronisation [14] that is considered bad practice since it results in a severe
overhead and even may be responsible for system failure because of race condi-
tions [15]. Busy waiting occurs whenever a loop is only exited in case the value
of a variable is changed from outside the loop. That is, the loop exit condition
is not influenced from within the loop. To be able to statically detect such oc-
currences the algorithm proposed by Blieberger et al. [15] is implemented and
extended in order to yield more accurate results.

The second project’s goal is to detect access anomalies. They are an issue
concerning multitasking environments employing non-protected shared memory



14

areas. They occur when several concurrent execution threads access (write-write,
or read-write) the same memory area without coordination. [16]

An implementation of the analysis framework proposed by Blieberger et al.
[17] aims at detecting such access anomalies by means of static analysis.

References

1. Allen, F.E.: Control flow analysis. In: Proceedings of a symposium on Compiler
optimization. (1970) 1–19

2. Ryder, B.G., Paull, M.C.: Elimination algorithms for data flow analysis. ACM
Comput. Surv. 18(3) (1986) 277–316

3. Fahringer, T., Scholz, B.: A unified symbolic evaluation framework for parallelizing
compilers. IEEE Trans. Parallel Distrib. Syst. 11(11) (2000) 1105–1125

4. Blieberger, J.: Data-flow frameworks for worst-case execution time analysis. Real-
Time Syst. 22(3) (2002) 183–227

5. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM
19(3) (1976) 137

6. Sreedhar, V.C., Gao, G.R., Lee, Y.F.: A new framework for elimination-based data
flow analysis using dj graphs. ACM TOPLAS 20(2) (1998) 388–435

7. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers. Addison-Wesley, Reading, Mas-
sachusetts (1986)

8. International Organization for Standardization: ISO/IEC 15291:1999: Information
technology — Programming languages — Ada Semantic Interface Specification
(ASIS). ISO, Geneva, Switzerland (1999)

9. AdaCore: ASIS-for-GNAT User’s Guide. (January 2007) Revision 41863.
10. Sedgewick, R.: Algorithms. Second edn. Addison-Wesley, Reading, MA (1988)
11. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-

tions to software engineering. Software — Practice and Experience 30(11) (2000)
1203–1233

12. Fechete, R., Kienesberger, G.: Generating control flow graphs for Ada programs.
Technical Report 183/1-139, Institute for Computer-Aided Automation, TU Vi-
enna, Treitlstr. 1-3, A-1040 Vienna, Austria (September 2007)

13. Ramalingam, G.: Identifying loops in almost linear time. ACM Trans. Program.
Lang. Syst. 21(2) (1999) 175–188

14. Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA (1991)

15. Blieberger, J., Burgstaller, B., Scholz, B.: Busy wait analysis. Reliable Software
Technologies - Ada-Europe (2003) 142–152

16. Schonberg, D.: On-the-fly detection of access anomalies. In: PLDI ’89: Proceedings
of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation, New York, NY, USA, ACM Press (1989) 285–297

17. Burgstaller, B., Blieberger, J., Mittermayr, R.: Static detection of access anomalies
in Ada95. Reliable Software Technologies - Ada-Europe (2006) 40–55


