Busy Wait Analysis

Johann Blieberger!, Bernd Burgstaller!, and Bernhard Scholz?

! Institute for Computer-Aided Automation, TU Vienna
Treitlstr. 1-3, A-1040 Vienna, Austria
{blieb,bburg}@auto.tuwien.ac.at
% Institute of Computer Languages, TU Vienna
Argentinierstr. 8/4, A-1040 Vienna, Austria
scholz@complang.tuwien.ac.at

Abstract. A busy wait loop is a loop which repeatedly checks whether
an event occurs. Busy wait loops for process synchronization and com-
munication are considered bad practice because (1) system failures may
occur due to race conditions and (2) system resources are wasted by busy
wait loops. In general finding a busy wait loop is an undecidable prob-
lem. To get a handle on the problem, we introduce a decidable predicate
for loops that will spot most important classes of busy waiting although
false alarms may occur. The loop predicate for detecting busy wait loops
is based on control flow graph properties (such as loops) and program
analysis techniques.

1 Introduction

Although for efficiency reasons busy waiting is employed in operating system
kernels for process synchronization (“spin locks”), it is considered bad practice to
use it for task synchronization and task communication in application programs.
Busy waiting results in a waste of system resources. Programs, that actively wait
for an event, may cause a severe overhead in a multi-tasking environment and
can cause system failure due to race conditions. Therefore, programmers should
use higher communication facilities such as semaphores, monitors, rendezvous,
etc. [Hoa85,Ada95).

However, it is hard to detect busy waiting in existent code and therefore it
is of great importance to have a static analysis tool that targets the detection of
busy waiting. Such a tool significantly improves the quality of software in order
to prevent programs that use busy waiting.

Before we discuss busy waiting, we have to note that this term is extremely
vague. In fact, there is no definition of busy waiting, everybody agrees upon. For
example in [And91] it is defined as

“..a form of synchronization in which a process repeatedly checks a
condition until it becomes true. .. ”.

We start by defining what we mean by busy waiting: A program that within
a loop constantly reads a value from a certain variable, where the loop exit

condition is dependent on this value, imposes busy waiting and we say that the
loop is a busy wait loop. We assume that only another thread/task can terminate
the loop by altering the value of the variable. A variable being responsible for
busy waiting is called a wait variable.

Since busy wait loops may loop forever, the general problem of spotting them
is equivalent to the halting problem and thus undecidable. Hence we cannot find
all busy wait loops automatically. On the other hand, our analysis will raise
false alarms in certain cases (e.g. with blocking assignments described below).
However, we believe that our analysis will find a large class of busy wait loops
and even false alarms may stimulate the programmer to improve the program
code.

The paper is structured as follows. In Section 2 we give definitions used
throughout the paper. In Section 3 we motivate our analysis. In Section 4 we
describe the algorithm for detecting busy wait loops. Finally we draw our con-
clusions in Section 6.

2 Background

A control flow graph G <N, E, e, x> is a directed graph [ASU86] with node set
N and edge set E C N x N. Nodes n € N represent basic blocks consisting of a
linear sequence of statements. Edges (u,v) € FE represent the non-deterministic
branching structure of G, and e and = denote the unique start and end node of G,
respectively. Moreover, succ(u) = {v | (u,v) € E} and pred(u) = {v | (v,u) € E}
represent the immediate successor and predecessor of node u. A finite path of G
is a sequence T =< U1, Us,...,ur > of nodes such that u;y1 € succ(u;) for all
1 < < k. Symbol ¢ denotes the empty path.

A path m =< wy,...,u > is said to be a member of a node set X (7 € X),
if all nodes in the path are members of X.

Let node u dominate [Muc00] node v, written u dom v, if every possible path
from the start node e to node v includes u. The domination relation u dom v is re-
flexive (u domu), transitive (u dom v Avdomw = u domw), and anti-symmetric
(udomv Avdomu = u =v).

For every node u € N\ {e} there exists an immediate dominator v, written as
v = idom(w) such that there exists no dominator w # v of 4 which is dominated
by v. The immediate dominators construct a tree also known as the domina-
tor tree. The dominator tree is a compressed representation of the domination
relation.

A back edge (m,n) € E in a control flow graph G is defined to be an edge
whose target dominates its source. The set of back edges is defined to be B =
{(m,n) € E | ndomm}.

3 Motivation

Our intuition of a busy wait loop is based on the notion of loops and the
read /write semantics of program variables inside the loop. According to [ASU86]

1 Turn : Integer := 1,
2 Flag0 : Boolean := False;
3 Flagl : Boolean := False;

4 procedure P0 is

5 begin

6 -- Claim Critical Section:

7 Flag0 := True; -- Node 1
8 while Flagl = True loop -- Node 2
9 if Turn = 1 then -- Node 8
10 Flag0 := False; -- Node 4
11 while Turn = 1 loop -- Node &
12 null; -- Node 6
13 end loop;

14 Flag0 := True; -- Node 7
15 end if;

16 end loop;

17 -~ Clritical Section:

18 null; -- Node 8
19 -- Leave Critical Section:

20 Turn := 1; -- Node 8
21 Flag0 := False; -- Node 8
22 end PO;

Fig. 1. Running Example: Dekker’s Algorithm

a definition of a variable z is a statement that assigns x a value. Contrary, a vari-
able declaration is a syntactic constructs which associates information (e.g. type
information) with a given name. A variable declaration usually implies also an
initial definition for the variable itself.

With our analysis we are interested in program variables which determine
whether the loop is terminated or iterated again. We assume that we find these
program variables in the exit-condition of loops. If such a variable is only read,
without employing higher communication facilities or being defined inside the
loop, this variable might be responsible for inducing busy waiting and we call
this variable a wait variable.

We illustrate these terms by the mutual exclusion algorithm given in Fig-
ure 1. Dijkstra [Dij68] attributes this algorithm to the Dutch mathematician
T. Dekker, and it is in fact the first known solution to the mutual exclusion
problem for two processes that does not require strict alternation. It is worth
noting that this algorithm only assumes mutual exclusion at the memory access
level which means that simultaneous memory access is serialized by a memory
arbiter. Beyond this, no further support from the hardware (e.g. atomic test and
set instructions), operating system, or programming language is required. Since,
for this reason, the algorithm solely relies on global variables (cf. lines 1...3)
that are written and read for synchronization purposes, we have found it to be

an instructive example of busy waiting behavior. Note that we have omitted the
code for the second process (P1), as it is dual to PO.

In order to demonstrate the overhead in CPU processing time induced by
busy waiting we have implemented Dijkstra’s N-way generalization [Dij65] of
Dekker’s 2-way mutual exclusion algorithm for the RTAI [M*00] real-time Linux
executive run on a uni-processor platform. Our investigation focused on the
average execution time of a busy waiting real-time task that has to enter the
critical section a constant number of times in the presence of N — 1 busy waiting
competitors with the same assignment. In Figure 2 these results are compared
to an implementation utilizing a semaphore to ensure mutual exclusion between
tasks. Due to the blocking nature of the semaphore the measured execution times
show only linear growth in terms of an increasing number of participating tasks.
This behavior is clearly exceeded by the busy waiting task ensemble that spends
most of its execution time polling to gain access to the critical section.

It is clear that our example contains busy waiting and our objective is to
design an algorithm that detects this busy waiting behavior just by inspecting
the loops of the program and the read/write semantics of program variables
inside the loop.

Non-dangerous statements are statements which prevent a variable from be-
ing a wait variable. We call non-dangerous assignment statements blocking as-
signments. If a variable is defined by some of these statements, we assume that
busy waiting is improbable to occur. Statements which are not non-dangerous
are called dangerous. We discriminate between tasking statements of Ada and
other statements.

1. All calls to a (guarded?®) entry of a task or protected object are considered
non-dangerous.

2. Timed entry calls are non-dangerous iff the expiration time does not equal
Zero.

3. Asynchronous transfer of control (ATC) is non-dangerous if the triggering
statement is an entry call (to a guarded entry).

4. A timeout realized by ATC is considered non-dangerous.

5. Conditional entry calls are generally considered dangerous.

6. In general we assume that file operations are non-dangerous; the same applies
to Terminal I/O0. We do not consider cases such as a file actually being a
named pipe which is fed by a program providing output in an infinite loop.

7. Read/Write attributes may or may not block depending on the actual im-
plementation. For this reason we consider read/write attributes dangerous.

8. Assignments via function or procedure calls are dangerous even if inside
the subprogram there is a blocking assignment (we do not perform inter-
procedural analysis).

3 A call to a guarded entry is a non-dangerous statement with high probability except
if the guard equals true; a call to a task entry without a guard has high probability
to be dangerous, except if the corresponding accept statement is located in a part
different from the main “select” loop in the task body (which makes sense for task
initialization and finalization).

ns

2-10° .
9 &
1.5-10 Pé -4~ Busy Wit
1-10° “ - Semaphor e
A
5. 108 A
A5 46 8 101214 16 185KS

Fig. 2. Task Execution Times: Busy Waiting vs. High-Level Synchronization

4 Algorithm

For detecting busy wait loops we analyze loops of a program. We use the control
flow graph as an underlying data structure for the detection. Based on control
flow properties and semantic properties of statements, we decide whether a loop
is a busy wait loop or not.

In general it is not easy to find loops in control flow graphs [Ram99]. However,
if those graphs are reducible (cf. [ASU86]), loops are simple to define [Muc00]. In
the following we introduce natural loops, which are defined by their back-edges®.

A natural loop of a back-edge (m,n) is the sub-graph consisting of the set
of nodes containing n and all the nodes which can reach m without passing n.
Let L(p,n) denote the set of nodes which induce the sub-graph that forms the
natural loop of back-edge (m,n). Then,

Ly ={u|3In=<u,....m>ngn}U{n}. (1)

Node n is said to be the loop header of loop Ly,) because the loop is entered
through n. Therefore, the loop header dominates all nodes in the loop.

The algorithm for computing L(,, ,) can be found in Figure 4. It is a simple
work-list algorithm. It computes the immediate and intermediate successors of
node m. The algorithm stops after all successors of m excluding the successors
of n have been found. The immediate and intermediate successors excluding the
successor of n represent the set of nodes for the loop.

Recall our example of Figure 1. The control flow graph of our running ex-
ample is given in Figure 3(a). In addition the dominator tree is depicted in
Figure 3(b). To compute the dominator tree several algorithms have been pro-

4 Note that this definition is only valid for reducible control flow graphs. However,
Ada programs result in reducible control flow graphs only, and this is no restriction
for the analysis.

True

True

False

®

Not[Flagl = True] Flagl = True Not[Turn = 1]

Turn=1

Not[Turn=1]

@

(a) Control Flow Graph (b) Dominator Tree

Fig. 3. Running Example: Dekker’s Algorithm

posed in literature [Muc00,LT79,AHLT99]. The complexity of the algorithms
varies from cubic to linear®.

For finding the loops of our example we determine the back edges occurring
in the control flow graph of Figure 3(a). The set B of back edges consists of the

following edges:
B ={(3,2),(6,5),(7,2)} (2)

Based on the set of back edges we compute the set of nodes of each natural
loop as given in the algorithm shown in Figure 4.

(ma n) L(m,n)
(3,2) {2,3}
(6,5) {5,6}
(77 2) {273747 5767 7}

5 It seems to be the case that if a lower complexity is desired more effort has to be
put into implementing the algorithm.

W= {m};
L(m,n) = {n}’
repeat
select u € W;
Lim,n) := Lmn) U{u};
W = (W U succ(u)) \ Lim,n));
until W =0

Fig. 4. Algorithm for Computing L,).

Fig. 5. Loop Forest of Running Example.

For detecting busy waiting behavior of a program we are interested in the
innermost loops containing one or more wait variables to focus the programmer
on the smallest portion of code which may induce a busy wait loop. For finding
the innermost loops we construct a loop forest [Ram99]. Nodes in the forest
represent loops and an edge denotes a nesting relation. For our example the
loop forest is depicted in Figure 5. It shows that loop L7y contains the two
inner loops, i.e., L5 and L3 7). Note that the loop forest represents the set-
relationship Ly C Ly between two loops L1 and Ly. In the example the following
holds: L(6,5) C L(7’2) and L(372) - L(7,2).

For locating the busy wait loop we will analyze the loops in reverse topological
order of the loop forest, i.e. from the inner-most loops to the top-level loops of a
program. The reverse topological order guarantees that the busy wait behavior
of the program can be localized quite precisely.

Now, we want to deduce the set of statements, which influence the termi-
nation of a loop. These are statements inside the loop, which have at least one
immediate successor that is outside the loop. For example an exit when ...
statement might terminate the loop.

The statements that influence the termination of the loop are given by the
following set of edges:

T(m,n) = {(U,U) €E | u € L(m,n) Av ¢ L(m,n)} (3)

The definition establishes those edges whose sources but not its destinations
are part of the loop L,). Note that a statement in loop L,) must have

at least two successors for its out-going edges to contribute to the set T,)
Therefore, the statement must be a branching node and there must be a branch
predicate that decides whether to stay in the loop or to exit the loop. The branch
predicate consists of program variables and we call these variables candidates
for wait variables. These wait variables might cause a busy wait loop and must
be checked.

The set of candidates, which might be wait variables, are given as follows,

‘/(m,n) = {var € bp(u) | (’LL,’U) € T(m,n)} (4)

where bp(u) denotes the branch predicate of branching node v and var is a
candidate for a wait variable and hence needs to be added to the set V,,). For
our example given in Figure 1 the T-sets and V-sets are as follows:

(m,n) T(m,n) V(m,n)

(3,2) |{(3,4),(2,8)}|{Turn, Flagl}
(6,5) {(5,7)} {Turn}
(7,2) {(2,8)} {Flagl}

In the example we have three branching nodes which might cause a busy wait
loop, i.e. nodes 2, 3, and 5. For example the branch predicate of branching node
2 is given as Flagl = true. Variable Flagl occurs in the branch predicate and,
therefore, it is candidate for a busy wait variable, i.e. Flagl € V(35 and Flagl
€ Viz,2)-

Now, we have to check if a candidate for a busy wait variable might be a
wait variable and might cause the loop to loop forever without any interaction
from another thread/task. This might happen if there is a path in the (natural)
loop that does not contain a definition for a canditate.

For a basic block u we introduce a local predicate definedyay(u). The pred-
icate holds for a blocking assignment for variable var in basic block u. For
example statement Flag0:=False; in node 4 of our running example contains
a blocking assignment for variable Flag0. Therefore, predicate definedg,,g(4)
holds.

We extend the definition of definedyqr for paths. If in a path 7 there exists
at least one blocking assignment for variable var, the predicate definedyar(m)
holds. The extension is obtained as follows:

definedyar (< u1,us,. .., u >) = \/ definedvyar (u;) (5)
1<i<k

Definition 1. If for a variable var the busy-var-predicate
busy-var (L), var) =gefs Im =< n,...,n >€ L(p) : ~definedvar(r) (6)
holds in loop Ly,), the loop is supposed to be a busy wait loop.

For each program variable var € V|,) we construct the induced subgraph of
the nodes in the loop where definedqp (1) is false. If m is reachable from n in this

induced sub-graph, it is simple to show that the predicate busy-var (L,), var)
holds. The check boils down to a reachability check in the induced subgraph of
the node set L,) \ {u | definedyay(u)}. In graph theory there are very efficient
algorithms for doing so [Meh84,Sed88].

If we consider our example, the loop L s) is such a loop. For both variables
Turn and Flagl in V(3 5) there is no blocking assignment in nodes 2 and 3. There-
fore, node 3 is reachable from node 2 and the predicate busy-var(Ly,), Turn)
and busy-var (L, n),Flagl) is true. Similar accounts for the other loops and
their variables of our running example, which implies that all loops of our run-
ning example are busy wait loops.

Finally, we put together our detection algorithm in Figure 6. In the pre-phase
we build the dominator tree and determine the back-edges. Then, we compute
the loop forest which tells us the loop order of the analysis. In reverse topological
order of the loop forest, we check loop by loop. For each loop we compute the
set of nodes which terminate the loop (7{;, ,)) and the variables inside the loop
exit condition (V). For every variable in V{,,) we compute the busy wait
predicate and if it is true, we output a warning for this particular loop.

1: compute dominator tree

2: determine back edges

3: compute loop forest

4: for (m,n) in reverse topological order of loop forest do
5: compute T(m n)

6: compute Vim n)

7 for var € V,,) do

8: determine busy-var (L,), var)

9: if busy-var(L,,), var) then

10: output warning for var and loop L n)
11: end if

12: end for

13: end for

Fig. 6. Algorithm for Detecting Busy Waiting

5 Refinement

By a slight modification we can improve (sharpen) our analysis, i.e., we can
detect more busy wait loops.

Consider the code fragment given in Figure 7. In this case our algorithm finds
an assignment to the variable ¢ within the loop body and concludes that there
is no busy waiting, which is plainly wrong.

This behavior can be improved by considering all variables appearing on the
right hand side of assignments to candidate variables to be candidates as well.

i,j: integer := 0;
loop

L=

exit when i=1;
end loop;

Fig. 7. Example: Indirect Busy Wait Variable

Formally we have to redefine V(,,) in the following way:

Vv((:n,n) = {var € bp(u) | (u,v) € T(m,n)}

(’::,i) = {var € rhs of assignments in L,) to var € V(’ﬁn’n)}
_ k
‘/(m’n) - U ‘/(mvn)

k>0

This refinement of our analysis sharpens its results in that more busy wait
loops are detected, but on the other hand more false alarms can be raised. For
example replace the assignment i := j; with i := j+i-j+1; in Figure 7. In
this case busy waiting will be reported by our refined algorithm although this is
not true.

6 Conclusion and Future Work

We have presented an algorithm for detecting busy waiting that can be used
either for program comprehension or for assuring code quality criteria of pro-
grams. Specifically, if processes or threads are part of a high level language (as
with Ada or Java), the programmer should be aware of synchronization mecha-
nisms. A tool that detects busy waiting is of great importance for saving system
resources and making a program more reliable.

Symbolic methods such as those introduced in [CHT79] will certainly improve
analysis in that less false alarms will be raised and more busy wait loops can be
found. We will consider symbolic busy wait analysis in a forthcoming paper.

Acknowledgments

One of the authors (JB) wants to thank Manfred Gronau for pointing him to
the subject of busy wait loops and the fact of missing computer-aided analysis.

References

[Ada95]

ISO/IEC 8652. Ada Reference Manual, 1995.

[AHLT99] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear

[And91]
[ASUS6]

[CHT79]

[Dij65]

[Dij68]

[Hoa85]

[LT79]

[M*00]

[Mehs4]
[Muc00]
[Ram99]

[Sed88]

time. SIAM Journal on Computing, 28(6):2117-2132, 1999.

G. R. Andrews. Concurrent Programming, Principles €& Practice. Ben-
jamin/Cummings, Redwood City, California, 1991.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Addison-Wesley, Reading,
Massachusetts, 1986.

T. E. Cheatham, G. H. Holloway, and J. A. Townley. Symbolic Evalua-
tion and the Analysis of Programs. IEEE Trans. on Software Engineering,
5(4):403-417, July 1979.

E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, 1965.

E. W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages: NATO Advanced Study Institute, pages 43-112.
Academic Press, 1968.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Engle-
wood Cliffs, NJ, 1985.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in
a flow graph. ACM Transactions on Programming Languages and Systems,
1(1):121-141, July 1979.

P. Mantegazza et al. DIAPM RTAI Programming Guide 1.0. Lineo, Inc.,
Lindon, Utah 84042, US, 2000. http://www.rtai.org.

K. Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of Data
Structures and Algorithms. Springer-Verlag, Berlin, 1984.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, San Francisco, 2000.

G. Ramalingam. Identifying loops in almost linear time. ACM Transactions
on Programming Languages and Systems, 21(2):175-188, March 1999.

R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 29 edition, 1988.

