DISCRETE LOOPS AND WORST CASE PERFORMANCE"*

JOHANN BLIEBERGER

DEPARTMENT OF AUTOMATION (183/1)
TECHNICAL UNIVERSITY VIENNA
TREITLSTR. 3/4
A-1040 VIENNA
AUSTRIA
EMAIL: BLIEB@QAUTO. TUWIEN.AC.AT

ABSTRACT. In this paper so-called discrete loops are introduced which narrow
the gap between general loops (e.g. while- or repeat-loops) and for-loops. Alt-
hough discrete loops can be used for applications that would otherwise require
general loops, discrete loops are known to complete in any case. Furthermore
it is possible to determine the number of iterations of a discrete loop, while
this is trivial to do for for-loops and extremely difficult for general loops. Thus
discrete loops form an ideal frame-work for determining the worst case timing
behavior of a program and they are especially useful in implementing real-time
systems and proving such systems correct.

1. Introduction

The most significant difference between real-time systems and other computer
systems is that the system behavior must not only be correct but the result of a
computation must be available within a predefined deadline. It has turned out
that a major progress in order to guarantee the timeliness of real-time systems can
only be achieved if the scheduling problem is solved accordingly. Most scheduling
algorithms assume that the runtime of a task is known a priori (cf. e.g. [1, 2, 3]).
Thus the worst case performance of a task plays a crucial role.

The most difficult task in estimating the timing behavior of a program is to deter-
mine the number of iterations of a certain loop. Ordinary programming languages
support two different forms of loop-statements:

for-loops: A loop variable assumes all values of a given integer range.
Starting with the smallest value of the range, the loop-body is iterated
until the value of the loop variable is outside the given range.
Some programming languages allow for starting with the largest value
and decrementing the loop variable, others allow for defining a fixed step
by which the loop variable is incremented or decremented.
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2 J. BLIEBERGER

general loops: The other loop-statement is of a very general form and
is considered for implementing those loops that can not be handled by
for-loops. These loops include while-loops, repeat-loops, and loops with
exit-statements (cf. e.g. [4]).

Determining the number of iterations of a for-loop is trivial. For example the
loop-body of the loop
for i in 1..N loop
-=- loop body
end loop;
is performed exactly N times.
Even nested loops do not constitute any problem. For example the innermost
body of the loops
for il in 1..N loop

for i2 in 1..i1 loop
for i3 in 1..i2 loop

for ir in 1..i{r-1} loop
-- innermost loop-body
end loop;

end loop;
end loop;
end loop;

is performed exactly

N i1 ig fr_1 N +r— 1

S IE

: h h : r

i1=1i=1i3=1 i.=1
times.

General loops, however, represent a very difficult task. In order to estimate

the worst case performance of general loops many methods and tools have been
developed, e.g. [2, 5, 6, 7]. In the following we will discuss some of them:

e In [5] language constructs have been introduced in order to let the program-
mer integrate knowledge about the actual behavior of algorithms which can
not be expressed using standard programming language features. These
constructs are scopes, markers, and loop sequences. Markers are used to
define the number of loop iterations if this number can not be estimated
from the program automatically, e.g., if a general loop is used. Nevertheless
all loops are forced to have a constant upper bound.

e In [2] the programming language Real-Time Euclid and a corresponding
schedulability analyzer are described. The estimation of worst case per-
formance is facilitated by restricting language constructs, e.g. constant
loop bounds are required and recursion and dynamic data structures are
forbidden.

o Partial evaluation is used in [6] to estimate the execution time of programs
at compile time. This is done by use of compile time variables, i.e., a
variable whose value is definitely known at compile time. Taking advantage
of these values, programming language constructs can be simplified thereby
speeding up the program in most cases.
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This approach does not need to restrict programming language constructs
such as loops, recursion, or dynamic storage allocation as long as compile
time known values are involved. It can even solve certain simple problems
of concurrent programming and synchronization of concurrent processes at
compile time.

e The idea to estimate worst case performance of programs written in higher-
level languages has been introduced in [8]. So-called schemas are used to
estimate the best and worst case performance of statements of higher-level
languages and an extension of Hoare logic (cf. [9]) is employed to prove
the timeliness (and correctness) of real-time programs. The method is also
able to handle certain real-time language constructs such as delays and
time-outs.

Although Hoare logic is employed, the user has to give constant loop bounds
in order to let the compiler determine upper and lower bounds of the num-
ber of iterations of a loop.

e Continuing and extending [8] best and worst case performance is estimated
by employing static and dynamic program paths analysis in [7]. This is done
by specifying program paths by regular expressions. Since processing this
information sometimes requires exponential time, an interface definition
language is introduced which allows efficient analysis but does not have the
expressive power of regular expressions.

The reported examples (cf. [7]) show that tight bounds can be derived using
this method. On the other hand, the user must specify upper bounds for
general loop statements.

e Determining the execution time of a code segment is also mentioned in [10].
Real-time concurrent C uses a tool which originally is based on [11]. The
code can have loops with user-specified loop bounds.

Summing up, most researchers try to ease the task of estimating the number
of general loop iterations by forbidding general loops, i.e., by forcing the user to
supply constant upper bounds for the number of iterations. Another approach is
to let the user specify a time bound within the loop has to complete (cf. e.g. [12]).
In any case the user, i.e., the programmer, has to react to such exceptional cases.

In this paper we will follow a different approach: We will narrow the gap between
general loops and for-loops by defining discrete loops. These loops are known to
complete and are easy to analyze (especially their number of iterations) and capture
a large part of applications which otherwise would have been implemented by the
use of general loops.

Remark 1.1. In this paper we will use the following notations.

By log N = log, N we denote the natural logarithm of N.

By Id N we denote the binary logarithm of N.

By log, N = %g% we denote the logarithm to the base a.

The greatest integer n < z is denoted by [z].

The smallest integer n > z is denoted by [z].

By Af(z) := f(x + 1) — f(2) we denote the difference operator of finite

calculus.
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4 J. BLIEBERGER

2. Discrete Loops

In this section we give an informal introduction to discrete loops, before we
perform a theoretical treatment, i.e., an exact definition and some mathematical
results.

2.1. Introduction to Discrete Loops. In contrast to for-loops, discrete loops
allow for a more complex dependency between two successive values of the loop-
variable. In fact an arbitrary functional dependency between two successive values
of the loop-variable is admissible, but this dependency must be constrained in order
to ensure that the loop completes and to determine the number of iterations of the
loop. Details of this constraints will follow below.

Like for-loops discrete loops have a loop-variable and an integer range associated
with them?. The fact that the loop is allowed to range over discrete values, coined
the name discrete loop. The major difference to for-loops is that the loop-variable
is not assigned each of the values of the range. Which values are assigned to the
loop-variable, is completely governed by the loop-body. The loop-header, however,
contains a list of all those values that can possibly be assigned to the loop-variable
during the next iteration. In fact each item of this list of values is a function of the
loop-variable.

A simple example is shown in Figure 1. In this example the loop-variable k will

discrete k in 1..N new k := 2%k loop
-=- loop body
end loop;

FiGurE 1. A simple example of a discrete loop

assume the values 1,2,4,8,16,32,64, ... until finally a value greater than N would
be reached. Of course the effect of this example can also be achieved by a simple
for-loop, where the powers of two are computed within the loop body.

A more complex example is depicted in Figure 2. In this example the loop-

discrete k in 1..N new k := 2%k | 2*k+1 loop
-=- loop body
end loop;

FiGURE 2. A more complex example of a discrete loop

variable k can assume the values 1,2,4,9,18,37,75,... until finally a value grea-
ter than N would be reached. But it is also possible that k follows the sequence
1,3,6,13,26,52,105,.... Here the same effect can not be achieved by a for-loop, be-
cause the value of the loop variable can not be determined exactly before the loop
body has been completely elaborated. The reason for this is the indeterminism
involved in discrete loops.

The term ”indeterminism” requires some explanation: Clearly the loop body
determines exactly which of the given alternatives is chosen, thus one can say that
there definitely is no indeterminism involved. On the other hand, from an outside-
view of the loop one can not determine which of the alternatives will be chosen,

{In Section 5 a more general form of discrete loops is introduced which does not need a discrete
range, but we defer a thorough discussion of these loops until then.
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without having a closer look at the loop body or without exactly knowing which
data are processed by the loop. It is this "outside-view” indeterminism we mean
here. Furthermore this indeterminism enables us to estimate the number of loop
iterations quite accurately without having to know all details of the loop body. Thus
discrete loops ease estimating the worst-case performance of real-time programs.

By the way, a loop like that in Figure 2 occurs in a not-recursive implementation
of Heapsort (cf. [13] or [14] for a more readable form in a high-order programming
language). Sections 3.2 and 6.2 will be concerned with algorithms that can profit
from discrete loops; Heapsort will be treated in detail in Section 3.2.1.

There are two main reasons for stating this functional dependency between suc-
cessive values of the loop-variable in the loop-header:

(1) The compiler or, if it can not be done statically at compile-time, the run-
time system should check if the loop-variable does in fact obtain one of the
possible values stated in the loop-header. This will evidently ease debug-
ging and shift some runtime errors to compile-time errors. In fact, if the
information given in the loop-header is incorrect, this results in a program-
ming error, not in a timing error. Of course this programming error could
cause a timing error.

(2) Under some circumstances, the information in the loop-header will make
determining the number of loop iterations feasible.

2.2. Theoretical Treatment. Discrete loops can be defined using a range of any
discrete type, e.g. an enumeration. In our theoretical treatment, however, we will
assume that the range is 1. .N and that the loop-variable starts with k; = s, where
s is the starting value of the loop. This restriction, however, does not inhibit
transferring our results to the cases mentioned above. If s is not in the range 1. .1,
the loop-body is not executed, rather the control-flow of the program is transferred
to the first statement after the loop.

Definition 2.1. A discrete loop is characterized by N € N and a finite number of
functions f; ' N — N 1 <z <e.

Definition 2.2. An iteration sequence (k,) is defined by the recurrence relation

ki:=s, se€]l,N]
ku+1 = fl(kll)

for some 7. The set of all possible iteration sequences is denoted by K = {(k,)}.

Remark 2.1. Note that k, € N for all v € N.

Definition 2.3. An iteration sequence (k,) is said to complete if 1 < k, < N for
all v <w but ky41 < 1or kyy1 > N for some w € N. The number w is denoted by
lenk, and called the length of (k,). It corresponds to the number of iterations of
the discrete loop if the loop variable iterates through (k).

Definition 2.4. A discrete loop is called a completing discrete loop if all (k,) € K
are completing sequences for all N and for all s € [1, N].
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6 J. BLIEBERGER

Definition 2.5. Let a discrete loop be characterized by N and the iteration func-
tions fi(z), 1 < i <e. Let the initial value of the loop variable be s. For 1 <z < N
associating to each function f; a function f, by

0, if fi(z) < 1,
N+1, iffi(z)> N,

we define the corresponding loop digraph L by the set of vertices V = {0,1,..., N, N+
1} and the set of edges F, where F' is defined by

(vw)EE & w=fi(v)
for some i € [1, €].
With these definitions the following lemma is trivially true.

Lemma 2.1. A discrete loop completes if and only if the corresponding loop digraph
s acyclic. [

Each acyclic digraph can be topologically sorted (cf. [15]), i.e., we can find a
mapping ord : V — {0,1,..., N, N 4+ 1} such that for all edges (v, w) € E we have
ord(v) < ord(w). Since we are only interested in completing discrete loops, we
restrict ourselves to discrete loops that result in topologically sorted loop digraphs.
This is certainly the case if fi(z) > z or if fi(x) < @ for all # € N and for all
i € [1,¢]. The next section is devoted to such loops.

3. Monotonical Discrete Loops

Definition 3.1. A sequence (k,) is called strictly monotonically increasing if ky, 41 >
ky, for all v > 1. It is called strictly monotonically decreasing if k,41 < k,, for all
v> 1.

Definition 3.2. A discrete loop is called a monotonically increasing discrete loop if
all (k,) € K are strictly monotonically increasing sequences. It is called a monoto-
nically decreasing discrete loop if all (k,) € K are strictly monotonically decreasing
sequences. A discrete loop is called a monotonical discrete loop if it is either mo-
notonically increasing or monotonically decreasing.

Lemma 3.1. A monotonical discrete loop is completing.

Proof. If all (k,) are strictly monotonically increasing, there certainly must exist
some w > 1 such that k, < N < ky,4+1. Thus the loop completes.

On the other hand, if all (k,) are strictly monotonically decreasing, there cer-
tainly must exist some w > 1 such that k, > 1 > ky41. Thus the loop completes
in this case too. [

Lemma 3.2. Let a monotonically increasing discrete loop be characterized by N

and the functions f;. Then all functions f; fulfill
fi(z) > =
for all z € [1, N].
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Proof. If there would exist some fg such that fg(2) < =z, there would exist an
iteration sequence (k,) such that k,41 = fa(k,) < k, which contradicts Defini-
tion 3.2. O

Lemma 3.3. Let a monotonically decreasing discrete loop be characterized by N

and the functions f;. Then all functions f; fulfill
file) <z
for all z € [1, N].

Proof. If there would exist some f; such that fj(z) > =z, there would exist an
iteration sequence (k,) such that k,41 = fj(k,) > k, which contradicts Defini-
tion 3.2. O

3.1. Syntactical and Semantical Issues of Monotonical Discrete Loops.
Although the syntax of discrete loops is certainly important, we consider the se-
mantical issues more important. In order to be able to demonstrate the advantages
of discrete loops over conventional loops, however, we define an Ada-like syntax
which will be used in the following examples. But it is important to note that an
appropriate syntax can be defined for other languages too.
The syntax of a monotonical discrete loop is given by a notation similar to that
in [4].
loop_statement ::=
[loopsimple_name:]
[iteration_scheme] loop
sequence_of_statements
end loop [loop_simple name];

iteration_scheme ::= while condition
| for for_loop_parameter_specification
| discrete discrete_loop_parameter_specification

for_loop_parameter_specification ::=
identifier in [reverse] discrete_range

discrete_loop_parameter_specification ::=
identifier := initial_value in [reverse] discrete_range
new identifier := list_of_iteration_functions

list_of_iteration_functions ::=
iteration function { | iteration_function }

iteration_function ::= expression

For a loop with a discrete iteration scheme, the loop parameter specification is
the declaration of the loop variable with the given identifier. The loop variable is
an object whose type is the base type of the discrete range. The initial value of
the loop variable is given by initial value. The optional keyword reverse defines
the loop to be monotonically decreasing; if it is missing the loop is considered to
be monotonically increasing. Within the sequence of statements the loop variable

TU Vienna Project WOOP



8 J. BLIEBERGER

behaves like any other variable, i.e., it can be used on both sides of an assignment
statement for example.

Before the sequence of statements is executed, the list of iteration functions is
evaluated. This results in a list of possible successive values. 1t is also checked
whether all of these values are greater than the value of the loop variable if the
keyword reverse is missing, or whether they are smaller than the value of the
loop variable if reverse is present. If one of these checks fails, the exception
monotonic_error is raised.

After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor_error is raised.

If the value of the loop variable is still within the discrete range stated in the
loop header, the loop is iterated (at least) once more. If it is not within the range,
the loop completes.

Remark 3.1. The semantics of monotonical discrete loops ensure that such a loop
will always complete, either because the value of the loop variable is outside the gi-
ven discrete range or because one of the above checks fail, i.e., one of the exceptions
monotonic_error or successor_error is raised.

Remark 3.2. A corresponding compiler is free to perform as many checks as it likes
in order to inhibit one of the runtime exceptions monotonic_error and succes-
sor_error. This can be done by ensuring that the iteration functions are mono-
tonical functions and by performing data-flow analysis to make sure that succes-
sor_error will never be raised. Thus a lot of runtime checks can be avoided.

Moreover the compiler might even detect the number of iterations of the loop,
which is a valuable result for real-time applications. Clearly the number of iterations
depends on the initial value of the loop variable, on the discrete range (especially
the number of elements in the range), and on the iteration functions.

3.2. Some Examples of Monotonical Discrete Loops.

3.2.1. Heapsort. An Ada-like implementation of Heapsort using a monotonical dis-
crete loop is shown in Figure 3. Referring to the code shown in Figure 3, we
easily see that the number of iterations of the discrete loop in procedure siftdown

is bounded above by the length of (h,(,min)), where (h&mi“)) fulfills the recurrence
relation

h(lmln) —k
(3.1) R{T) = gp(min)
since the length of any loop sequence containing two successive elements that fulfill
ky+1 = 2k, + 1 will be smaller than that of (hE,“““)). (How lower and upper bounds
of the number of iterations of discrete loops can be estimated, is investigated in
detail in Section 4.)

Solving (3.1) we arrive at
h}(}min) — k21/—1.

We want to determine the value of w such that

B < NJ2 <R
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1 N: constant positive := 77; -- number of elements to be sorted
2 subtype index is positive range 1 .. H;

3 type sort_array is array(index) of integer;
4

5 procedure heapsort(

6 arr: in out sort_array) is

7

8 N: index := arr’length;

9 t: index;

10

11 procedure siftdown(lN,k:index) is

12 j: index;

13 v: integer;

14 begin

15 v := arr(k);

16 discrete h := k in 1..N/2 new h := 2%h | 2*h+1 loop
17 j = 2%h;

18 if j<N and then arr(j)<arr(j+1) then
19 j = j+1;

20 end if;

21 if v >= arr(j) then

22 arr(h) := v;

23 exit;

24 end if;

25 arr(h) := arr(j);

26 h := j;

27 end loop;

28 end siftdown;

29
30 begin -- heapsort
31 for k in reverse 1..N/2 loop
32 siftdown(l,k) ;
33 end loop;
34 for M in reverse 2..N loop
35 t := arr(1);
36 arr(1) := arr(M);
37 arr(M) := t;
38 siftdown(M,1);

39 end loop;
40 end heapsort;

F1GURE 3. Implementation of Heapsort using a Discrete Loop

TU Vienna Project WOOP



10 J. BLIEBERGER

thus taking logarithms we obtain
w=|ldN —1dk| < [IdN] — [ld k]

for the number of iterations of the discrete loop in procedure siftdown.
The number F' of iterations of the first for-loop in the main procedure is bounded
above by

Lnv/2 LNv/2
F< Y [ANT = [Idk] = [N/2]IANT = > [1dk].
k=1 k=1
Using (cf. [16, problem 3.34])
(3.2) Zn:[ld]ﬂ =n[ldn] —2M" 41
k=1

and noticing that

0 if k£ is a power of 2, and

[ldk]—Uko:{

1 otherwise,
we obtain
(3.3) > lldk] =nfldn] —n— 204" 4 [1dn| + 2.
k=1
Hence
LV/2]

— > [dk] = —[N/2) d|N/2]] + [N/2] + 2MWPIT - 1d | vy2) ] - 2.

Furthermore we have (cf. [16, problem 3.19])
Md[N/2]] > [14[N/2]] = d(N/2)] = [ldN] — 1

and
[Id|N/2]] < [1d|N/2]] +1=[ldN].
Thus

F<|N/2] (AN — 1A N] 4 2) + 204N —j1anv) 1<

3IN/2] + 29N —[ldN] - 1< ENJ —[ldN] —1.

The number L of iterations of the second for-loop in the main procedure is
bounded above by

N
L<) |ldt).
t=2
Using (3.3), L can be estimated by
L<N[IAN] =N —2M4N L [1dN| +2.

In a very similar way a lower bound for the number of iterations can be found.
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These computations are very easy and we think that they can also be performed
by an automated tool during compile-time. Section 4 contains some theoretical
foundations in order to ease the task of these compile-time computations.

Concluding we would like to remark that the purpose of this section was not to
show how to analyze Heapsort. In fact, the worst-case timing behavior (cf. [13])
and even the average timing behavior (cf. [14]) of Heapsort are well understood.
The purpose of this section was to show that monotonical discrete loops can ease
the task of worst-case timing analysis of algorithms significantly. Sometimes the
analysis is so easy that it can be performed by an automated tool. The development
of such a tool is part of Project WOOP which is carried out at the Department of
Automation at the Technical University of Vienna.

3.2.2. Other Ezamples. Other examples showing the advantages of discrete loops
over general while or repeat-loops include the bottom-up version of Mergesort
(cf. [17]), Euclid’s algorithm, and the solution of Josephus’ Problem (cf. [16]).

4. The Number of Iterations of a Monotonical Discrete Loop

Because of the indeterminism involved in the definition of discrete loops, the
number of iterations of such a loop cannot be determined exactly. We can, however,
find lower and upper bounds for the number of iterations. Corresponding theoretical
results are given in the following subsection.

4.1. Lower and Upper Bounds.
Definition 4.1. Let w(K) denote the multi-set of the length of all sequences (k,) €
K of a monotonical discrete loop and let

[=minw(K) and u=maxw(K)

denote the lower and upper bound of the length of the sequences. These represent
lower and upper bounds for the number of iterations of the discrete loop too.

In the rest of this section we will only be concerned with montonically increasing
discrete loops. Of course the following treatment can easily be modified in order to
deal with monotonically decreasing discrete loops. Besides the loop digraph corre-
sponding to a certain loop is very important in this section to prove properties of
discrete loops. Note, however, that the vertex 0 can be avoided since the underlying
loop is monotonically increasing.

In order to calculate u we can use an algorithm given in [15] which determines
the longest path in topologically sorted digraphs. The path is supposed to start at
node s.

for k in 1. .H+1 loop
c(k) := -0
end loop;
c(s) :=0;
for k in s..N loop
for i in 1..e loop
c(f;(k)) := max{c(f;(k)), c(k)+1};
end loop;
end loop;

A similar procedure can be used to determine the shortest path in L.

TU Vienna Project WOOP



12 J. BLIEBERGER

for k in 1..H+1 loop
c(k) := +o0
end loop;
c(s) := 0;
for k in s..N loop
for i in 1..e loop
c(Fi(k) := min{c(f;(k)), c(R)+1};
end loop;
end loop;

Remark 4.1. The shortest and longest path, i.e., the final value of ¢(N + 1), com-
puted by the algorithms above, correspond to [ and u, respectively.

Summing up, we have found algorithms that compute lower and upper bounds of
the number of iterations of monotonical discrete loops in time O(Ne¢). The following
Theorem 4.1 will show that under certain conditions u and [ can be determined much
easier. Before that we need some further definitions and lemmas.

Definition 4.2. Let a monotonically increasing discrete loop be given by the num-
ber N and the iteration functions f;(z). Then we denote by

k3T = min (k™) and by k{35 = max fi(k{™*)

the sequences that always assume the smallest and largest possible values, respec-
tively.

Lemma 4.1. If for all i, f;(1) > 1 and Afi(z) > 1 for all 2 € N, then fi(z) >«

for allz € N, i.e., the corresponding discrete loop completes.
Proof. Lemma 4.1 is easily proved by induction. [

Lemma 4.2. We have Af(z) > 1 for all z € N if and only zfﬂ%/:uiﬂ > 1 for all
z,yeEN, z#£y.

Proof. Setting y = z + 1 clearly implies one part of the proof.
To prove the other part we will in fact show that

(4.1) fl@+k)—f(x) 2k

for all £ > 1,k € N. We prove this by induction.
Setting k£ = 1 gives the starting point of the induction. Assuming that (4.1) is
correct, we have to show that it is correct in the case k£ + 1, too. But we have

fetk+ )= fle)=Ff@+k+1) = fla+k)+(f(z+k) - f(z)) 2 1+k
Thus we have proved the lemma. [

The following lemma is trivially true.
Lemma 4.3. Ify > z and My:uiﬂ > 1, then f(y) > f(z). O

Theorem 4.1. If for all1 <i<e fi(1) > 1 and Afi(z) > 1 for all z € N, then
(1) the corresponding discrete loop completes,
(2) the length of (k) is equal to [, and
(3) the length of (kI"™) is equal to u.

Project WOOP TU Vienna
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Proof. Case (1) follows immediately from Lemma 4.1.

We will only prove case (2), the proof of (3) is very similar.

First we define a path along (k,(,max)), i.e., given a node v of this path we choose
the next node of the path to be max;{f;(v)}.

Now assume that there exists a shorter path from node s to node Q@ = N + 1,
i.e., we must have a situation like that depicted in Figure 4.

Qe
p/ ~.0
@---_.Ug/ \

F1GURE 4. Paths in a Loop Digraph

The ”lower” path (s,...,vg,v1,v2,...,0,2,...,w,..., N+ 1 = Q) is the path
along (k,(,max)) and we want to show that a shorter path like the "upper” path
(8y..., 00,0, .. ,vh,w,...,N+1=Q), v] #v1,...,v. # v, can not exist. Deno-

ting by fmax(2) = max;{fi(z)}, we clearly have

U1 = fmax(vo) > Ull = fil(UO)-
Furthermore
vy = fmax(v1) > fi,(v1) > fi,(v]) = vy
because of Lemma 4.3.

Continuing this procedure we finally arrive at v, > v/ and # > w, which contra-
dicts the fact that £ is topologically sorted, i.e., f;(z) > « for all z € N.

Thus, no shorter path exists than that along (k,(,max)). O
If fmin(z) = min;{fi(2)} and fmax(2z) = max;{fi(z)} can be determined in-

dependently of z, Theorem 4.1 enables us to restrict our interest to two single
functions in estimating lower and upper bounds of the number of iterations of a
discrete loop.

4.2. Some Results on Special Iteration Functions. In this subsection we
prove some theorems which cover many important cases. We study monotonically
increasing discrete loops which are characterized by N € N and the iteration func-
tions fi(z) and we assume that f(z) = fmin(z) can be determined independently
of . The initial value of the loop variable is assumed to be k; = 1, but our results
can easily be generalized.

Theorem 4.2. If f(z) = [az+ 8], « > 1, 8 > 0, then the length of the correspon-
ding loop sequence is bounded above by

Jog, (M=) 1]
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Proof. We clearly have
f(x) =[ax+ 8] > ax+ 5.
Thus

kb, > 14— 3= .
=« + a—1 f=a a—1 a—1

a’t—1 V_1<Oz+ﬁ—1)_ 5

To estimate len k, we must have

au—1<a+ﬁ_1)_ 6 >N

a—1 a—1
which is equivalent to

v—1 > N(a — 1) 6
a+B8—-1 a+p8-1
Taking logarithms we have proved the theorem. [

Theorem 4.3. If f(z) = [az" + (], a > 1, 3> 0, v > 1, then the length of the
corresponding loop sequence is bounded above by

[log,, ((y —1)log, N +1)+1].

@

Proof. We clearly have
fz) = [ax? 4+ 8] > az” + 5.
Thus &k, > [, where

L =1,

Lyi=all +5=2al] <1—|— p )

al)
Taking logarithms and setting m, = logl, we obtain

m1:0,

my41 = YMmy + loga + log (1—1— p )

al)
Since log (1 + a’%) > 0, we have m, > n, where

n) = 0,
Ny+1 = YN, + log a.

Hence
v—1

-1
ﬁloga

n, =

and to estimate len k, we must have

v—1_,

ky Zavv—l > N.

Thus
77> (y—1)log, N + 1

and taking logarithms once more, we have proved the theorem. O
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Theorem 4.4. If f(z) = [q(x) + F], where § > 0 and q(z) = >, a;27%, o; > 1,
vi > 1, then the length of the corresponding loop sequence is bounded above by

llog,,. ((ym — 1)log,, N +1) +1],

where the index m s defined such that v,, = max; ;.

Proof. We clearly have
f(@) > ama™ + 5.

Applying Theorem 4.3 to this we have proved Theorem 4.4. O

By similar methods lower bounds for the number of iterations of monotonically
increasing discrete loops can be derived.

Integrating the results of Theorems 4.2, 4.3, 4.4, and similar theorems into a
compiler, the number of iterations of discrete loops can often be estimated at com-
pile time, thus producing valuable information for a tool estimating the worst case
timing behavior of a real-time program and for a real-time scheduler.

4.3. Nested Monotonical Discrete Loops. In this subsection we consider the
number of iterations of nested monotonical discrete loops, i.e., the question, how
often the innermost loop-body of nested monotonical discrete loops is executed.

In the following we denote by w(N) the upper bound of the number of iterations
of a monotonical discrete loop with the associated range 1..N. With this notation
an upper bound for the number of iterations of r nested monotonical discrete loops
can be estimated by

wi(N)ywalkiy)wa(kiy)  wrlki_y)

IEDIED SRR

i1=1 i5=1 iz=1 i.=1
This general formula can not be presented in a simpler form. It simplifies, however,

if more special cases are considered.

4.3.1. Nested Identical Monotonical Discrete Loops. If all involved discrete loops
are the same or if foin(2z) = min;{f;(z)} can be determined independently of z for
all involved discrete loops and if all these functions are the same, we clearly have

wt(kit—l) = w(kit—l) =1

Thus

and by induction

W(N)w(kn)w(klz) w(k

SV SIS S CLIbie)

i1=1 ix=1 iz=1 i.=1

TU Vienna Project WOOP



16 J. BLIEBERGER

4.3.2. Some Simple Fxamples. Next we study some examples involving a for-loop
and a simple discrete loop.

for i in 1..N loop

discrete j := 1 in 1..i new j := 2%j loop
-- innermost loop body
end loop;
end loop;

Here we have w;(N) = N and w;j(N) = [ldN + 1]. Hence the number of
executions of the innermost loop body is bounded above by

N |ldi+1] N

SN 1=> [di+1]

which by (3.3) is equal to
N[Id N —2M4NT 4 1A N | + 2.

Exchanging the loops of the previous example, we get:

discrete i := 1 in 1..N new i := 2*i loop
for j in 1..i loop
-- innermost loop body
end loop;
end loop;

Here we have w;(N) = [ldN + 1| and w;(N) = N. Hence the number of
executions of the innermost loop body is bounded above by

[ld N+1] 2¢—1 [1d N+1]
Do l= ) 2t=aetrloncan -1
i=1 j=1 i=1

5. Non-Monotonical Discrete Loops

Although monotonical discrete loops are interesting for their own, many appli-
cations rely on discrete loops which are not monotonical. One example is binary
search, where the corresponding loop sequences are non-monotonical, but the num-
ber of iterations is bounded above. An Ada-like implementation using a discrete
loop is shown in Figure 5. Note that we have omitted the range of the discrete
loop since it does not make sense in this connection and that we have used a non-
Ada-like notation for two-dimensional vectors for the loop variable (1,u). Correct
syntactical and semantical considerations of the kind of loop we are discussing in
this section are postponed until Section 6.1.

In studying binary search we will investigate how we can generalize monotonical
discrete loops such that we still can guarantee that the loop completes but the
corresponding loop sequence is not monotonical.
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1 N: constant positive := 77; -- number of elements
2 subtype index is positive range 1 .. N;

3 type sort_array is array(index) of integer;
4

5 function binary_search(

6 item: in integer;

7 arr: in sort_array)

8 return index is

9 1: index := arr’first;

10 u: index := arr’last;

11 m: index;

12 -- sucessful search only

13 begin

14 discrete (1,u) new (1,u) := (1,(1+u)/2-1) | ((1+u)/2+1,u) loop
15 m := (1+u)/2;

16 if item < arr(m) then

17 u :=m-1;

18 elsif item > arr(m) then
19 1 := mt+l;

20 else

21 return m;

22 end if;

23 end loop;
24 end binary_search;

F1GURE 5. Implementation of Binary Search using a Discrete Loop

5.1. Binary Search. The essential property of binary search is a sequence of
intervals which become smaller and smaller with each iteration of the loop. The
starting interval is 41 = [l,u1] = [1, N] and with each iteration the interval i, =
[l,,u,] is changed according to

[, [ 2t = 1]] o

=l ={ i )

depending on which sub-interval contains the element being sought. If the sought
element is equal to L%J, the algorithm terminates. In the worst case this is true
if the interval contains just one element, i.e., if I, = u, for some w > 1.

On one hand this shows a clear relationship to discrete loops, e.g. the indetermi-
nism and the recurrently defined loop variable, on the other hand the corresponding
loop sequences are non-monotonical in general. But a closer inspection shows that
there is a monotonical sequence hidden in the algorithm, namely the length of the
intervals.

We can even determine an upper bound for the number of loop iterations. Let
£, = u, — 1, + 1 denote the length of the interval i,. Then

. _ u, + 1, l u, + 1,
v+1 = Nax ) v, Uy 9 .

I‘UV;—lyJ_IVSUV—FlV_ u, — 1,

We have
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18 J. BLIEBERGER

and
) u, + 1, < Uy+ll/_1_uy_ly+1
U, 5 < uy 5 = 5 .
Thus . Ly
uu_y+ v
b1 K —09¥———— = —.
= 2 2

Mentioning £, 41 € N, we must have ¢, < [£,/2] and the length of the interval
£, 1s bounded above by U, which satisfies the recurrence relation

Uy =N,
(5.1) Ups1 = U /2].
Hence the number of iterations performed by binary search is bounded above by
w which is defined by w = min{v : U, = 0}.
Solving equation (5.1) by applying standard techniques (cf. e.g. [16]) we obtain

Ui
Thus U, = 0if 27! > N, ie., if v > ld N 4+ 1. Hence the number of iterations
performed by binary search is bounded above by

w=|ldN +2].

The ideas we have seen in studying binary search, can be generalized to a new
kind of discrete loop which is treated in the following section.

6. Discrete Loops with a Remainder Function

Definition 6.1. In contrast to the previous sections we now define a loop sequence
of remaining items to be the sequence of the number of data items that remain to
be processed during the remaining iterations of the loop. Such a loop sequence is
denoted by (r,) and the set of all loop sequences by R = {(r,)}. A corresponding
discrete loop is called a discrete loop with a remainder function.

Remark 6.1. Definition 6.1 is justified by the fact that normally each iteration of
a loop excludes a certain number of data items from future processing (within the
same loop statement). Thus the sequence of the number of the remaining items is
responsible for the overall number of loop iterations. This situation is typical for
divide and conguer algorithms. In our example of binary search the number of the
remaining items is equal to the length of the remaining interval.

Definition 6.2. A loop sequence of remaining items is called monotonical if r, 41 <
ry.

Definition 6.3. A discrete loop with a remainder function is called monotonical
if all its loop sequences (r,) € R are monotonical.

Lemma 6.1. A monotonical discrete loop with a remainder function is completing.

Proof. Since a monotonically decreasing discrete function will become smaller than 1
in finitely many steps, the corresponding loop will complete. O

Project WOOP TU Vienna



DiscrRETE LooPrs 19

6.1. Syntactical and Semantical Issues of Discrete Loops with Remainder
Functions. The syntax of a discrete loop with a remainder function is again given
by a notation similar to that in [4]. In fact we add to the syntax definition of
Section 3.1.

loop_statement ::=
[loopsimple_name:]
[iteration_scheme] loop
sequence_of_statements
end loop [loop_simple name];

iteration_scheme ::= while condition
| for for_loop_parameter_specification
| discrete discrete_loop_parameter_specification

for_loop_parameter_specification ::=
identifier in [reverse] discrete_range

discrete_loop_parameter_specification ::=
monotonical discrete_loop_parameter_specification |
discrete_loop_with_remainder_function_parameter_specification

monotonical _discrete_loop_parameter_specification ::=
identifier := initial_value in [reverse] discrete_range

new lidentifier := list_of_iteration_functions

discrete_loop_with_remainder_function_parameter_specification ::=

[identifier := initial _value
new identifier := list_of_iteration_functions]
with rem_dentifier := initial_value new remainder_function

list_of_iteration_functions ::=
iteration function { | iteration_function }

iteration_function ::= expression

remainder_function ::=
rem_identifier = expression |
rem_identifier <= expression [ and rem_identifier >= expression ]

For a discrete loop with a remainder function, the corresponding loop parameter
specification is the optional declaration of the loop variable with the given identi-
fier. The loop variable is an object whose type is the base type of result type of
the iteration functions, which must be the same for all iteration functions. The
initial value of the loop variable is given by initial_value. Within the sequence of
statements the loop variable behaves like any other variable,i.e., it can be used on
both sides of an assignment statement for example.

After the keyword with the remainder loop variable is declared by the given
identifier (rem_identifier). Its type must be a subtype of natural in the cases (1)
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and (2) below or an interval between two natural numbers in the case (3). Its
initial value is given by initial_value. The remainder function itself may have three
different forms:

(1) If the remainder function can be determined exactly, it is given by an
equation.

(2) If only an upper bound of the remainder function is available, it is given
by an inequality (<=).

(3) If in addition to (2) a lower bound of the remainder function is known, it
can be given by an optional inequality (>=). The second inequality must
be separated from the first one by the keyword and.

The base type of the expressions defining the remainder function or its bounds must
be natural.

In case (1) the remainder loop variable behaves like a constant within the se-
quence of statements. In cases (2) and (3) the remainder loop variable behaves like
any other variable within the sequence of statements. If the value of the remainder
loop variable is changed during the execution of the statements, we call the original
value previous value and the new value current value.

Before the sequence of statements is executed, the list of iteration functions is
evaluated if a loop variable is given. This results in a list of possible successive
values.

After the sequence of statements has been executed, it is checked whether the
value of the loop variable is contained in the list of possible successive values. If
this check fails, the exception successor_error is raised.

After the sequence of statements has been executed, the remainder function or
its bounds (depending on which are given by the programmer) are evaluated. In
case (1) the new value of the remainder loop variable is set to the value calculated
by the remainder function if it is smaller than the previous value, otherwise the
exception monotonic_error is raised.

In case (2) the new value of the remainder loop variable is set to the value
calculated by the remainder function if the previous value of the remainder loop
variable is equal to its current value and if the calculated value is smaller than the
current value, otherwise the exception monotonic_error is raised. If the previous
and the current value differ, the remainder loop variable is set to the current value
if it is smaller than or equal to the calculated value, which in turn must be smaller
than the previous value. If this is not true, the exception monotonic_error is
raised.

In case (3) the new value of the remainder loop variable is set to the value
calculated by the remainder function if the current value is equal to the previous
value and if the calculated interval is contained strictly in the previous one. If the
current value and previous value differ, the new value is set to the current value if
the current interval is contained (not necessarily strictly) in the calculated interval,
which in turn must be contained strictly in the previous interval. Otherwise the
exception monotonic_error is raised. This exception is raised too if the interval
does not contain at least one element.

If in cases (1) and (2) the value of the remainder loop variable is zero or if in
case (3) the upper bound is zero, the exception loop_error is raised, otherwise the
loop is continued.
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The regular way to complete a discrete loop with a remainder function is to use
an ezit statement, before the remainder loop variable is equal to zero.

Remark 6.2. The semantics of discrete loops with remainder functions ensure that
such a loop will always complete, either if the loop is terminated by an ezit state-
ment or because one of the above check fails, i.e., one of the exceptions monoto-
nic_error, successor_error, or loop_error is raised.

Remark 6.3. A corresponding compiler is free to perform as many checks as it
likes in order to inhibit one of the runtime exceptions monotonic_error, succes-
sor_error, and loop_error. This can be done by ensuring that the remainder
function or its bounds are monotonical, by performing data-flow analysis to make
sure that successor_error will never be raised, or by ensuring that the loop will
complete before the remainder loop variable is equal to zero. Thus a lot of runtime
checks can be avoided.

Moreover the compiler might even detect bounds of the number of iterations of
the loop, which is a valuable result for real-time applications.

6.2. Some Examples of Monotonical Discrete Loops with Remainder
Functions. One illustrative example, binary search, has already been discussed
in Section 5.1, but one syntactical remark is necessary: Line 14 of Figure 5 must
be replaced with

14a discrete (1,u) new (1,u) := (1,(1+u)/2-1) | ((1+u)/2+1,u)

14b with i := u-1+1 new i <= i/2 loop
Some more runtime checks can be achieved if we insert

22a i := u-1l+1;

between lines 22 and 23.
In the following we will give further examples of discrete loops with remainder
functions.

6.2.1. Traversing Binary Trees. Discrete loops with remainder functions are especi-
ally well-suited for algorithms designed to traverse binary trees. A template showing
such applications is given in Figure 6. In this figure root denotes a pointer to the

1 discrete node_pointer := root

2 new node_pointer := node_pointer.left | node_pointer.right
3 with h := height

4 new h := h-1 loop

5

6 -- loop body:

7 --  Here the node pointed at by node_pointer is processed
8 -- and node_pointer is either set to the left or right

9 - successor.

10 -- The loop is completed if node_pointer = null;

11

12 end loop;

FiGURE 6. Template for Traversing Binary Trees

root of the tree, height denotes the maximum height of the tree, and node pointer
is a pointer to a node of the tree. The actual value of height depends on which
kind of tree is used, e.g. standard binary trees or AVL-trees.
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6.2.2. Weight-Balanced Trees. So-called weight-balanced trees have been introduced
in [18] and are treated in detail in [19] and in [20].
Definition 6.4. We define:

(1) Let T be a binary tree with left subtree 7; and right subtree T,.. Then
p(T) = [L|/|T| =1 - |T;|/|T|

is called the root balance of T. Here |T'| denotes the number of leaves of
tree T
(2) Tree T is of bounded balance « if for every subtree 7" of T"

a<p(T<l—a

(3) BBJa] is the set of all trees of bounded balance «.

If the parameter « satisfies 1/4 < o < 1 — \/5/2, the operations Access, Insert,
Delete, Min, and Deletemin take time O(log N) in BB[a]-trees. Here N is the
number of leaves in the BB[a]-tree. Some of the above operations can move the
root balance of some nodes on the path of search outside the permissible range
[a, 1 —a]. This can be "repaired” by single and double rotations (for details see [19]
and [20]).

BBJ[a]-trees are binary trees with bounded height. In fact it is proved in [19]
that

ldN -1

. < MdN-1
height(7') < — (1= a)

+1

3

where N is the number of leaves in the BB[a]-tree T'.

A template for the above operations is shown in Figure 7, where floor(x) is

1 discrete node_pointer := root

2 new node_pointer := node_pointer.left | node_pointer.right
3 with h := floor(1d(N)/(-1d(1-alpha)))+1

4 new h := h-1 loop

5

6 -- loop body

7

8 end loop;

FIGURE 7. A Template for Operations on BB[a]-trees

supposed to implement |[z]. Since the notion of height defined in [19] is not well-
suited for direct application of discrete loops, the remainder function in Figure 7
has been slightly modified.

A semantically equivalent template for traversing BB[a]-trees is shown in Fi-
gure 8. The remainder function of Figure 8 has the advantage that it does not need
logarithms since it works with the number of leaves instead of the height of the
tree. In addition it does require less mathematical skill from the programmer.
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1 discrete node_pointer := root

2 new node_pointer := node_pointer.left | node_pointer.right
3 with r := N -- N = number of leaves of tree

4 new r := floor((i-alpha)#*r) loop

5

6 -- loop body

7

8 end loop;

F1GURE 8. Another Template for Operations on BB[a]-trees

6.3. The Number of Iterations of a Monotonical Discrete Loop with a
Remainder Function. A special case has already been discussed in Section 5.1,
but these computations can be generalized.

Theorem 6.1. If a loop sequence of remaining items fulfills

rn = fq,
Tv41 = LTV//“LJa

where p > 1, then lenr, s bounded above by
[log, N +2].

Proof. We clearly have
LTV/#J S ru/ﬂ'

Thus
N

uy—l

and to estimate the length of (r,) we must have

ry <

N < p’~h

Taking logarithms the theorem is proved. O

7. Computational Power of Discrete Loops with a Remainder Function

In this section we prove that the computational power of discrete loops with
remainder functions is considerably great if we restrict our interest to applications
which do not loop forever.

Theorem 7.1. If the number of iterations of a general loop can be determined by
an integer-valued computable function [21] ®, a discrete loop with a remainder
function can be used to achieve the same effect.

Proof. We define the remainder function of the discrete loop by

r1 ;= ®, 1i.e., the number of iterations of the general loop

ry41 =71, — L.

Clearly, after @ iterations, r = 0 and thus the loop completes. O
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Remark 7.1. Obviously, in practical applications the remainder function in the
proof of Theorem 7.1 will not always be the best choice with regard to software en-
gineering, but it is the purpose of Theorem 7.1 to show the computational power of
discrete loops with remainder functions and not to set up a style-guide for discrete
loops with remainder functions.

Remark 7.2. If, on the other hand, the number of iterations of a general loop can
only be determined by a partially computable function, the procedure in the proof
of Theorem 7.1 may loop forever in computing r; := ®.

8. Conclusion

In this paper we have introduced discrete loops which narrow the gap between
general loops and for-loops. Since they are well-suited for determining the number
of iterations, they form an ideal frame-work for estimating the worst case timing
behavior of real-time programs.

It remains to compare discrete loops with recent approaches in the domain of
real-time systems. Some of these approaches have already been mentioned in the
introduction.

(1) Assume that the only thing that is known is U € N, an upper bound for
the number of iterations of a general loop. Then we define the remainder
function of a discrete loop by

T’Z'ZU,

ry41 =1, — L.

Obviously this is semantically equivalent to the approaches described in
the introduction (cf. [2, 5, 7, 8, 10]): If the upper bound U is exceeded, the
exception loop_error is raised, which must be caught by an appropriate
exception handler in order to treat this exceptional case.

(2) An upper bound for the amount of time 7' the loop uses can be given by

r; = T,
(8.1) ry4+1 = 1y — time(loop_body),

where time(loop_body) is the time that passed since (8.1) has been elabo-
rated the last time.

Hence the loop completes if the upper bound 7T has been exceeded. But
an unpredictable amount of time may pass, until this fact is recognized,
if the process executing the loop has been set into a waiting state by the
scheduler.

Thus we have shown that discrete loops can simulate all important recent con-
cepts that have been invented to handle general loops in the domain of real-time
systems. It is, however, more important that we have demonstrated in the previous
sections, how to use discrete loops in applications and how easy the timing behavior
of discrete loops can be analyzed.
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