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Abstract. Sreedhar et al. [SGL98, Sre95] have presented an elimination-
based algorithm to solve data flow problems. A thorough analysis of the
algorithm shows that the worst-case performance is at least quadratic in the
number of nodes of the underlying graph. In contrast, Sreedhar reports a
linear time behavior based on some practical applications.

In this paper we prove that for goto-free programs, the average case behav-
ior is indeed linear. As a byproduct our result also applies to the average size
of the so-called dominance frontier.

A thorough average case analysis based on a graph grammar is performed
by studying properties of the j-edges in DJ graphs. It appears that this is
the first time that a graph grammar is used in order to analyze an algorithm.
The average linear time of the algorithm is obtained by classic techniques in
the analysis of algorithms and data structures such as singularity analysis of
generating functions and transfer lemmas.

1. Introduction

Program analysis is a process of estimating properties of programs at each pro-
gram point. The information provided by program analysis is useful in compiler
optimization, code generation, program verification, testing and debugging, and
parallelization. In general, program analysis can be divided into: control flow
analysis and data flow analysis. Both methods are usually performed on a graph
representation of a program called the Control Flow Graph (CFG). The nodes in a
CFG represent basic blocks or statements, while edges of the graph represent flow
of control from one basic block to another.

As an example Figure 2 shows the CFG of the program fragment given in Fig-
ure 1. Node 3 is the if-statement. The edge to Node 4 is the then-branch and is
followed only if c1 is true. The edge 3 → 2 has assigned condition ¬c1∧¬c3 and the
edge 3 → 6 has assigned ¬c1∧ c3. In a similar way edges 5 → 4, 5 → 2, and 5 → 6
have assigned conditions c2, c2∧¬c3, and c2∧ c3, respectively. Edge 1 → 6 is only
present to facilitate algorithms performed on the CFG and has assigned false. All
the other edges have assigned true.

In literature, control flow problems are typically solved using concepts from
graph theory, whereas data flow problems are typically solved using concepts from
set theory (or more precisely, lattice theory).

An example of a control flow analysis is computing the dominance relation. Given
a CFG, a node u is said to dominate another node v if all paths from the start node
to node v always pass through node u, e.g., in Figure 2 Node 2 dominates nodes 3,
4, and 5, but not 1 and 6. The dominance relation can be visualized by a dominator
tree [ASU86]. The dominator tree of our example is shown in Figure 3.

An example of a data flow analysis is the reaching definitions problem. The
reaching definitions problem is to determine which definitions in a program reach
a given point. (A definition of variable a occurs when a is assigned a value.)
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A data flow problem can be represented within a framework, called the data flow
framework. Within this framework we represent data flow information as elements
of a lattice, and the effect of a node (a statement or a basic block) as a data flow
function. The input-output effect of a node can be represented as a data flow
equation, and so we can set up a system of data flow equations, one equation per
node, whose consistent solution gives the desired estimate of the program property.
Figure 4 shows data flow equations of our example. Symbol ⊥ denotes a function
which does not depend on X1, . . . , X6.

The methods for solving the system of equations can broadly be classified into it-
eration methods and elimination methods. Iteration methods are easy to implement
but cannot handle all data flow problems. A prominent example which cannot be
solved by iteration methods is determining the worst-case execution time (WCET)
of a program [Bli02]. Elimination methods are derived from Gaussian elimination
method for solving simultaneous equations [Pau88]. In general, elimination meth-
ods are more complex to implement than iteration methods [RP86].

Sreedhar et al. [SGL98, Sre95] have presented an efficient and easy to implement
elimination-based algorithm to solve data flow problems. The algorithm starts with
a general (reducible) directed CFG G. The union of G and the dominator tree of G
is called a DJ graph. The data flow problem is solved by redirecting and removing
edges in the DJ graph until the remaining graph is the dominator tree of G. Because
the dominator tree is part of the DJ graph, each node can be assigned a certain
level (equal to its distance from the root).

Edges being part of the dominator tree and not being part of G are called d-
edges. Edges being part of the dominator tree and of G are called dj-edges. The
remaining edges are j-edges∗.

Three different operations are performed in a bottom-up fashion on the graph
by the algorithm: Eager1, Eager2a, and Eager2b.

Sreedhar et al. [SGL98, Sre95] give a thorough worst-case performance analysis
of the algorithm showing that the number of Eager (Eager1 + Eager2a + Eager2b)
operations is at most O(e · n) where n denotes the number of nodes and e denotes
the number of edges in G. A more detailed description and analysis of Sreedhar’s
algorithm and how the DJ graph can be used to solve the underlying system of
equations, can be found in Section 2.

In contrast, Sreedhar reports a linear, i.e., O(e), time behavior based on some
practical application programs.

In this paper we prove that for goto-free programs, the average case behavior is
indeed linear. By “goto-free” programs we mean programs written in programming
languages without a goto statement like Modula-2 [Wir83] and Java [AGH00] or
programs not using goto statements or statements with similar effects (cf. [EE00]).
Some programming languages allow to exit loop statements not only at the be-
ginning (while-loops) and at the end (repeat-loops) of loop-statements, but also
at certain points within the loop body. Exit-statements are a form of “tamed”
goto-statements, which while retaining structured programs, give more freedom to
the programmer and often result in more readable and understandable program
code. Our analysis covers such exit-statements, too. As a byproduct our result
also applies to the average size of the so-called dominance frontier [CFR+91]. The
dominance frontier DF (u) of a CFG node u is defined as the set of all CFG nodes
v such that u dominates a predecessor of v but does not strictly dominate v.†

∗Sreedhar et al. [SGL98, Sre95] only introduced d- and j-edges; we have defined dj-edges in
order to facilitate the description of our graph grammar in Section 2.

†Node x strictly dominates y if x dominates y but x 6= y.
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begin -- Node 1
repeat -- Node 2

if c1 then -- Node 3
repeat -- Node 4

. . . -- Node 4
until c2 -- Node 5

endif

until c3 -- Node 5
end -- Node 6

Figure 1. Example: Program Source Code
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Figure 2. Example: Control Flow Graph
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Figure 3. Example: Dominator Tree

Cytron et al. [CFR+91] have proved that if a program contains only straight-
line code, while loops, and if statements, the number of Eager operations is linear.
Their result can easily be reproduced by our approach (cf. end of Section 4).

In Section 2 we present a graph grammar which derives DJ graphs for goto-
free programs. The number of these DJ graphs (or actually the probability of DJ
graphs) with n nodes is determined in Section 3. Finally, the number of Eager2b
operations is studied in Section 4.
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X1 = ⊥

X2 = f(X1, X3, X5)

X3 = f(X2)

X4 = f(X3, X5)

X5 = f(X4)

X6 = f(X1, X3, X5)

Figure 4. Example: Data Flow Equations
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Figure 5. Example: Derivation of DJ Graph

2. A Graph Grammar for DJ Graphs

In this section we define a graph grammar‡ [Roz97] for deriving DJ graphs. A
tabular form of the graph grammar can be found in Appendix A. The context-free
grammar consists of the non-terminal nodes S, T0, and T , of one terminal node
(©), and of one terminal edge (denoted as usual by a directed arrow). Edges are
labeled by d, j, and dj (cf. [SGL98]). In detail, d- and dj-edges form the dominator
tree of the control flow graph; j-edges are part of the control flow graph, but not
contained in the dominator tree; d-edges are not part of the control flow graph, they
are usually generated when the dominator tree is constructed. Our graph grammar
builds the dominator tree concurrently to the control flow graph. This can also be
used to build the dominator tree in linear time while parsing the program source
which otherwise requires sophisticated algorithms (cf. [AHLT99, GT04, Ram02]).

In the second column of Table 1 we give a textual (BNF-like) description of the
production. The third column is the right-hand side (rhs) of the production; the
left-hand side (lhs) is simply S for the first two productions, T0 or T for the third

‡To the author’s knowledge this is the first time that a graph grammar is used for analyzing
an algorithm.
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Figure 6. Sreedhar’s Algorithm Performed on Example Graph

production, and T for the rest. From the non-terminal T0 in the second column
only straight-line code can be derived, i.e., it is mapped to a ©-node in the third
column.
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Since the lhs of the productions consists only of one non-terminal, we use a
special notation for the embedding relation:

(1) If terminals and/or non-terminals of the rhs are labeled by a •, this means
that all edges originating from the lhs non-terminal are adjoined to all
•-nodes on the rhs§, if the production is applied.

(2) All edges pointing to the lhs non-terminal are adjoined to the uppermost
node (root node) of the rhs, which is a ©-node in all cases.

Note that the two cases do not exclude each other, i.e., there exist root nodes which
are labeled by a •.

The number of productions is approximately four times as big as for standard
(non-graph) grammars. There are several reasons for this:

• To avoid chains of single-entry/single-exit ©-nodes, we had to duplicate
and slightly modify certain productions for loop-statements by pre-pending
a ©-node to the root node.

• Most productions have two forms. One for the “normal” case, where other
statements “follow”, and one for the “pathological” case, where no other
statements “follow”. For example, the last production used within the
then-branch of an if-statement (before the else-branch starts) is such a
“pathological” case.

Finally the fourth column contains the counting expressions for the productions,
which are set up in Section 4.

The graph grammar models straight-line code, if-statements, and all possible
loop structures (general, while, and repeat). Each of these loops may be terminated
prematurely by an exit-statement.

It should be possible to model multiple exits per loop without violating the
analysis based on Theorem 3 and still have a linear average number of Eager2b
operations. For space considerations, however, we do not model multiple exit-
statements in this paper.

As an example, consider the program fragment shown in Figure 1. It corresponds
to the graph derivation given in Figure 5, where the number of the production is
written above the =⇒.

To illustrate one derivation step consider the application of production 7: we
have to replace the dotted non-terminal T with the graph sentential number 7
given in Table 1. Both the ©-node and the non-terminal T in this sentential are
dotted. This means that all edges originating in the non-terminal T before the
replacement have to be duplicated and redirected such that they originate at the
dotted nodes after the replacement. In our example these are two j-edges, one
pointing to the node above and one to the node at the left above.

Theorem 1. The graph grammar given in Table 1 correctly generates DJ graphs
for goto-free programs.

Proof. If in Table 1 we consider d- and dj-edges only (thereby ignoring all j-edges),
only trees can be derived. It is easy to see that by adding j-edges in the way it is
done in Table 1, the above mentioned tree is the dominator tree of the resulting
graph. Hence, the graph grammar of Table 1 generates DJ graphs. �

Sreedhar’s algorithm – as exemplified in Figure 6 – performs three different
operations in a bottom-up fashion on the graph:

Eager1: Removes self-loops.

§If several •-nodes exist on the rhs, edges are duplicated accordingly.
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Eager2a: Removes a j-edge if both its source and target (source 6= target)
have the same level¶.

Eager2b: If the source and the target of a j-edge have different levels, the
source of the j-edge is moved up one level to the root along a d- or dj-edge
(the level of the source node is now one less than before).

If it happens as a result of this operation that two j-edges coincide, i.e.,
have the same source and target node, then one of them is removed.

These operations are repeated until no j-edges exist in the remaining graph,
which is the dominator tree of the original CFG.

Note that in our example the DJ graph resulting from the five derivation steps
has 6 nodes and Sreedhar’s algorithm (as shown in Figure 6) performs 2 Eager1, 1
Eager2a, and 7 Eager2b operations on this graph. Note also that the resulting DJ
graph is the union of the CFG (cf. Figure 2) and the dominator tree (cf. Figure 3).

In analyzing Sreedhar’s algorithm it is clear that the number of Eager1 and
Eager2a operations is bounded above by e, the number of edges of the original
CFG, because each edge can be deleted at most once. Therefore the interesting
quantity is the number of Eager2b operations. In the worst case the number of
Eager2b operations performed on one edge is bounded by n, the number of nodes
in the original CFG. Thus the overall number of Eager2b operations is O(n · e).

The rest of this paper is devoted to the proof that for goto-free programs the
average number of Eager2b operations is linear in e.

We conclude this section by noting that the Eager operations determine a se-
quence of operations to solve the underlying system of simultaneous data flow equa-
tions:

• Whenever a j-edge u → v is treated by an Eager2a or Eager2b operation,
equation Xu has to be substituted into equation Xv.

• Whenever an Eager1 operation is performed on an edge r → r, the recursive
equation Xr = f(. . . , Xr, . . . ) has to be solved such that the rhs of the
solution Xr = f ′(. . . ) does not depend on Xr. This is called a loop breaking
operation [Pau88] and is denoted by 6� in this paper.

Our example produces the following sequence of operations: 5 → 6, 5 → 2, 5 → 4,
4 6�, 4 → 6, 4 → 2, 3 → 6, 3 → 2, 2 6�, and 2 → 6.

As a final step equations have to be substituted along the edges of the remaining
dominator tree to obtain the solution of the data flow equations, i.e., in our example
1 → 6, 1 → 2, 2 → 3, 3 → 4, 4 → 5.

3. Enumerating DJ Graphs

In this section and in Section 4 we use a method originally due to Darboux [Dar78],
the singularity analysis of generating functions, to determine the asymptotic be-
havior of coefficients of generating functions. The method is based on the following
theorem:

Theorem 2 (Darboux). Suppose A(z) =
∑

n≥0 anz
n is analytic near 0 and has

only algebraic singularities αk on its circle of convergence |z| = r, i.e., in a neigh-
borhood of αk, then we have

A(z) ∼

(

1 −
z

αk

)−ωk

gk(z),

where ωk 6= 0,−1,−2, . . . and gk(z) denotes a nonzero analytic function near αk.
Let ω = maxk R(ωk) denote the maximum of the real part of ωk and by αj , ωj, and

¶The level of a target of a j-edge is smaller or equal to the level of the source of the j-
edge [SGL98].
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gj denote the values of α, ω, and g such that ωj = ω. Then we have

an =
∑

j

gj(αj)

Γ(ωj)
nωj−1α−n

j + o(nωr−n).

Another well-known tool which allows to determine the asymptotic behavior of
coefficients of generating functions is concerned with functional equations [Ben74,
Can84, MM89].

Suppose that a generating function w = y(z) =
∑∞

1 ynz
n with non-negative

coefficients is a formal solution of the functional relation w = F (z, w), where F (z, w)
is an analytic function of z and w in some neighborhood of the origin. We let D
denote the interior of the set of points (z, w) such that the series defining F (z, w)
converges absolutely. We shall denote by S the set of all points (ρ, τ) with positive
coordinates such that

(ρ, τ) ∈ D

τ = F (ρ, τ),

1 = Fw(ρ, τ)

We cite a theorem from [MM89].

Theorem 3 (Meir and Moon). With the definitions from above, suppose that all
the coefficients of F (z, w) are non-negative and that (ρ, τ) is in S. Then

r = ρ and y(r) = τ,

where r denotes the radius of convergence of y(z).
Moreover, z = ρ is the only singularity of y(z) in the disk |z| ≤ ρ.

We use the graph grammar given in Table 1 to set up a probability generating
function (PGF) for DJ graphs. In particular, this means that if we expand the PGF
into its Taylor series S(z) =

∑

n≥0 snz
n, then sn = [zn]S(z) denotes the probability

that a DJ graph consisting of n©-nodes is derived by the graph grammar of Table 1.
In order to set up S(z) we assign a probability to each production of the graph

grammar. In particular we assign 0 ≤ pi ≤ 1 to the production numbered i and

assume that p1 + p2 = 1 and
∑31

i=3 pi = 1. In addition, we assume that p1 > 0,
p2 > 0, 0 < p3 < 1, and there is at least one 4 ≤ i ≤ 31 such that pi > 0.

Furthermore, we define the following predicate

(1) Branch :=
∑

i∈B

pi > 0

where B = {4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31}. The
branch predicate is true if there appear two non-terminals T on the right hand
side of at least one of the productions. Depending on the value of the branch
predicate we obtain different results both for the enumeration of DJ graphs and for
the average number of Eager2b operations.

In addition, we assume according to [MM89] that

(2) [zi]T (z) · [zj ]T (z) > 0 for some j > i ≥ 1 with g.c.d.(i, j) = 1.

This is no real restriction, because if equation (2) is not fulfilled, there are several
(g.c.d.(i, j) 6= 1) singularities on the radius of convergence of T (z) and our results
can be transfered to this case easily.
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3.1. The Branch Predicate is True. We obtain in a straight-forward manner
(cf. [VF90])

S(z) = p1z
2 + p2z

2T (z),(3)

T (z) = p3z + p4zT
3(z) + p5zT

2(z) + · · · + p30z
2T 2(z) + p31zT

2(z),

i.e., each ©-node is replaced by z (if two ©-nodes appear in one production, they
are replaced by z2) and each appearance of a non-terminal is replaced by its corre-
sponding PGF.

The asymptotic behavior of sn for (n → ∞) can be derived with help of Theo-
rem 3. For notational convenience, we rewrite equation (3)

S(z) = p1z
2 + p2z

2T (z),(4)

T (z) = zϕ1(T (z)) + z2ϕ2(T (z)),

where ϕi(t) =
∑

j qi,j t
j and qi,j =

∑

[zi][T (z)j ]R(z) and R(z) denotes the right

hand side of T (z) in equation (3).
In addition, we define F (z, w) = zϕ1(w)+z2ϕ2(w). In order to derive the radius

of convergence of T (z), which plays a central role in the asymptotic behavior of sn,
we apply Theorem 3. We obtain

w = zϕ1(w) + z2ϕ2(w)(5)

1 = zϕ′
1(w) + z2ϕ′

2(w).(6)

From equation (6) we find that

(7) z =
1 − z2ϕ′

2(w)

ϕ′
1(w)

.

Inserting this into equation (5) we obtain

w =
ϕ1(w)

ϕ′
1(w)

+ z2

(

ϕ2(w) −
ϕ1(w)

ϕ′
1(w)

ϕ′
2(w)

)

.

From this we find

(8) z2 =
wϕ′

1(w) − ϕ1(w)

ϕ′
1(w)ϕ2(w) − ϕ1(w)ϕ′

2(w)
,

which when inserted into equation (7) produces

z =
ϕ2(w) − wϕ′

2(w)

ϕ′
1(w)ϕ2(w) − ϕ1(w)ϕ′

2(w)
.

Inserting this into equation (8) and finally calling the solution (z, w) = (ρ, τ) we
see that τ can be found from the equation

(9) (ϕ2(τ) − τϕ′
2(τ))

2
= (τϕ′

1(τ) − ϕ1(τ)) · (ϕ
′
1(τ)ϕ2(τ) − ϕ1(τ)ϕ

′
2(τ))

and that

(10) ρ =
ϕ2(τ) − τϕ′

2(τ)

ϕ′
1(τ)ϕ2(τ) − ϕ1(τ)ϕ′

2(τ)
.

With the definitions of ρ and τ above and Theorem 3 we see that T (z) has an
algebraic singularity at z = ρ and we can use Theorem 2 to prove the following
lemma:

Lemma 1. The PGF T (z) given in equation (4) fulfills

T (z) = τ −

√

2ρFz(ρ, τ)

Fww(ρ, τ)
(1 − z/ρ)1/2 +O(1 − z/ρ)

for (z → ρ).
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From this it follows that

tn = [zn]T (z) =

√

ρFz(ρ, τ)

2πFww(ρ, τ)
ρ−nn−3/2

(

1 +O

(

1

n

))

, (n→ ∞).

�

Remark 1. From equation (3) and Theorem 2 it follows that similar results hold for
S(z) and sn. In both cases the right hand sides of Lemma 1 have to be multiplied
with p2ρ

2 and the term p1ρ
2 has to be added to the series expansion of S(z).

3.2. The Branch Predicate is False. In this case we have

(11) T (z) = p3 z + p7 z T (z) + p10 z
2 T (z) + p11 z T (z)+

p24 z
2 T (z) + p25 z T (z) + p26 z

2 T (z) + p27 z T (z).

Letting q1 = p7 + p11 + p25 + p27 and q2 = p10 + p24 + p26, we find

(12) T (z) =
p3 z

1 − q1 z − q2 z2
.

If q2 > 0, let σ1 and σ2 denote the (complex) zeros of the denominator of T (z).
By expanding the right hand side of equation (12) we can prove the following
lemma.

Lemma 2. The coefficients of T (z) given in equation (11) fulfill

tn = c1 σ
−n
1 + c2 σ

−n
2

for some (complex) constants c1 and c2. �

If q2 = 0, let σ3 = 1/q1 and by expanding we have the following lemma.

Lemma 3. The coefficients of T (z) given in equation (12) fulfill tn = c3 σ
−n
3 for

some constant c3. �

4. The Average Number of Eager2b-Operations

We introduce the PGF S(x, y, z) such that [xkzn]S(x, x, z) is the probability that
a DJ graph consisting of n ©-nodes requires exactly k Eager2b operations. The
variable y is only used to simplify the setup process of the PGF and is not needed
later on.

In fact, we will not determine S(x, y, z) and its properties; instead we will study
d
dxS(x, y, z) which will enable us to derive the average number of Eager2b operations
En by

En =
[zn] d

dxS(x, x, z)
∣

∣

x=1

sn

where the average is taken over all DJ graphs with n nodes (cf. e.g. [GKP89]). We
will derive asymptotic estimates for the numerator only.

In the following, we assume that the branch predicate (1) is true until Section 4.5.
We start by introducing T (x, y, z), the PGF for the T -productions (number 3

to 31 of Table 1). As already mentioned, z counts the number of ©-nodes and x
counts the number of Eager2b operations. Variable y counts the nesting level of
j-edges.

In order to illustrate the term nesting level fix a node u in an arbitrary DJ graph.
If there exists a node v dominated by u which is a source of a j-edge pointing to
a node w such that the level (in terms of the dominator tree) of w is higher than
or equal to that of u, then node u is in the first nesting level. If there are k such
j-edges, node u is in nesting level k. We call all such j-edges critical in respect to
u.
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The importance of the nesting level stems from the fact that if u is a non-terminal
in a DJ graph sentential which is replaced during a derivation step, then all nodes
dominated by u “gain height” (in terms of the dominator tree). Thus the Eager2b
operations for all the critical j-edges are increased by an amount to be considered
below. Anyway, it is very important to know the number of critical j-edges which is
equal to the nesting level to keep track of the correct number of Eager2b operations.

In order to set up a functional equation for T (x, y, z) based on the graph grammar
given in Table 1, we have to obey the following rules.

• Normally all •T-nodes are replaced with T (x, y, z). These nodes are pre-
sumptive sources for j-edges and the nesting level of j-edges, i.e., the variable
y, is not changed.

• The •T-nodes in productions 16, 17, 20, 21, 24, 25, 26, 27, 30, and 31 are
different in that they are inside a loop local to the production. Thus, the
nesting level of j-edges is increased by one. This is reflected by replacing
the variable y in T (x, y, z) with x y.

• All the other T-nodes are independent from existing j-edges. Thus, they are
replaced with T (x, 1, z), T (x, x, z), or T (x, x2, z) depending on how many
j-edges have their source in the T-node.

For example, consider production 19: the uppermost T-node is not a source of
a j-edge; thus, it is replaced with T (x, 1, z). The left one of the remaining T-nodes
is replaced with T (x, y, z) and the right one with T (x, x, z) because one j-edge has
its source there.

In addition, we have to consider the number of ©-nodes in the productions,
which result in zr if there are r ©-nodes.

Finally, we have to take into account how much the number of Eager2b operations
is increased by the production. Locally this is just the difference s of the levels
between the source and the target of the j-edges and is mapped to xs. Globally we
also have to consider that the current production is nested inside a j-edge structure.
The nesting level is counted in variable y. If there is only one •-node in a certain
production, let h denote the height of the •-node, i.e., the distance to the root in
the production. Then we have to add yh to our counting expression. In general, if
there is more than one •-node in production p, we define a tree Hp in the following
way:

• Hp is a subgraph of production p.
• The root of Hp is the root of production p.
• The leaves of Hp are the •-nodes in p.
• Internal nodes and edges of Hp are found along the shortest paths of d- or

dj-edges in p from the root to the leaves of Hp.

Denoting the number of edges in Hp by h, we have to add yh to our counting
expression.

A proof of the correctness of this construction is straight-forward. Note that this
construction simplifies to the case with only one •-node discussed above.

Note also that our construction correctly takes care of the fact that sometimes
one of two coinciding j-edges is removed. For example, consider production 7: all
j-edges that get duplicated when this production is applied, are removed when their
sources reach the root node of production 7 (cf. also Fig. 6).

Returning to production 19 we get a factor z since there is one ©-node, a factor
x2 because there is one local j-edge spanning two levels, and a factor y2 as the
height of the •T-node equals 2.

An approach similar to our nesting level being counted by y has been followed
by Knuth [Knu73, 2.3.4.5] to determine the average path length of binary trees.
He finds a generating function for the number of binary trees with n nodes and
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internal path length p

B(w, z) =
∑

n,p≥0

bn,pw
pzn = 1 + zB(w,w z)2

where z is used to accumulate the internal path length by appropriate powers of w.
Applying the above rules to all productions we get the fourth column in Table 1.

Hence we obtain the following functional equation

T (x, y, z) = p3 z+

p4 y z T (x, x, z)
2
T (x, y, z)+

p5 y
2 z T (x, y, z)2+

p6 y z T (x, x, z)T (x, y, z)+

p7 y z T (x, y, z)+

p8 x y
2 z2 T (x, x, z)T (x, y, z)+

p9 x y z T (x, x, z)T (x, y, z)+

p10 x y z
2 T (x, x, z)+

p11 x z T (x, x, z)+

p12 x y
2 z2 T (x, x2, z)T (x, y, z)+

p13 x y z T (x, x2, z)T (x, y, z)+

p14 x
2 y2 z2 T (x, 1, z)T (x, x2, z)T (x, y, z)+

p15 x
2 y z T (x, 1, z)T (x, x2, z)T (x, y, z)+

p16 x
2 y3 z2 T (x, x2, z)T (x, x y, z)+

p17 x
2 y z T (x, x2, z)T (x, x y, z)+

p18 x
2 y3 z2 T (x, 1, z)T (x, x, z)T (x, y, z)+

p19 x
2 y2 z T (x, 1, z)T (x, x, z)T (x, y, z)+

p20 x
2 y2 z2 T (x, x, z)T (x, x y, z)+

p21 x
2 y z T (x, x, z)T (x, x y, z)+

p22 x y
3 z2 T (x, x, z)T (x, y, z)+

p23 x y
2 z T (x, x, z)T (x, y, z)+

p24 x y
2 z2 T (x, x y, z)+

p25 x y z T (x, x y, z)+

p26 x y
2 z2 T (x, x y, z)+

p27 x y z T (x, x y, z)+

p28 x
2 y3 z2 T (x, 1, z)T (x, x, z)T (x, y, z)+

p29 x
2 y2 z T (x, 1, z)T (x, x, z)T (x, y, z)+

p30 x
2 y3 z2 T 2(x, x y, z)+

p31 x
2 y2 z T 2(x, x y, z).

(13)

In addition, we clearly have

S(x, x, z) = p1 z
2 + p2 z

2 T (x, x, z).
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Thus,

En =
[zn] d

dxS(x, x, z)
∣

∣

x=1

sn
= p2

[zn] z2
(

d
dyT (x, y, z) + d

dxT (x, y, z)
)∣

∣

∣

x=1,y=1

sn

and we have to deal with derivatives of T (x, y, z).
Returning to our example (Fig. 5) we derive (ignoring the probabilities pi)

S(x, x, z)
2

−→ z2 T (x, x, z)
25
−→ x2 z3 T (x, x2, z)

7
−→

x4 z4 T (x, x2, z)
25
−→ x7 z5 T (x, x3, z)

3
−→ x7 z6

which correctly finds that the number of nodes is 6 (the exponent of z) and the
number of Eager2b operations is 7 (the exponent of x). By denoting Ty(z) =
d
dyT (x, y, z)

∣

∣

∣

x=1,y=1
and T (z) = T (x, y, z)|x=1,y=1, which is equivalent to T (z) in

Section 3, we find by differentiating equation (13) w.r.t. y and letting x = 1 and
y = 1
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Ty(z) = p4 z T (z)3 + p4 z T (z)2 Ty(z)+

2 p5 z T (z)2 + 2 p5 z T (z)Ty(z)+

p6 z T (z)2 + p6 z T (z)Ty(z)+

p7 z T (z) + p7 z Ty(z)+

2 p8 z
2 T (z)2 + p8 z

2 T (z)Ty(z)+

p9 z T (z)2 + p9 z T (z)Ty(z)+

p10 z
2 T (z)+

2 p12 z
2 T (z)2 + p12 z

2 T (z)Ty(z)+

p13 z T (z)2 + p13 z T (z)Ty(z)+

2 p14 z
2 T (z)3 + p14 z

2 T (z)2 Ty(z)+

p15 z T (z)3 + p15 z T (z)2 Ty(z)+

3 p16 z
2 T (z)3 + p16 z

2 T (z)Ty(z)+

p17 z T (z)2 + p17 z T (z)Ty(z)+

3 p18 z
2 T (z)3 + p18 z

2 T (z)2 Ty(z)+

2 p19 z T (z)3 + p19 z T (z)2 Ty(z)+

2 p20 z
2 T (z)2 + p20 z

2 T (z)Ty(z)+

p21 z T (z)2 + p21 z T (z)Ty(z)+

3 p22 z
2 T (z)2 + p22 z

2 T (z)Ty(z)+

2 p23 z T (z)2 + p23 z T (z)Ty(z)+

2 p24 z
2 T (z) + p24 z

2 Ty(z)+

p25 z T (z) + p25 z Ty(z)+

2 p26 z
2 T (z) + p26 z

2 Ty(z)+

p27 z T (z) + p27 z Ty(z)+

3 p28 z
2 T 3(z) + p28 z

2 T 2(z)Ty(z)+

2 p29 z T
3(z) + p29 z

2 T 2(z)Ty(z)+

3 p30 z
2 T 2(z) + 2 p30 z

2 T (z)Ty(z)+

2 p31 z T
2(z) + 2 p31 z T (z)Ty(z).

(14)

We obtain an explicit expression Ty(z) =
Ny(z)
Dy(z) where

Ny(z) = p4 z T (z)3 + 2 p5 z T (z)2 + p6 z T (z)2+

p7 z T (z) + p8 z
2 2T (z)2 + p9 z T (z)2+

p10 z
2 T (z) + 2 p12 z

2 T (z)2 + p13 z T (z)2+

2 p14 z
2 T (z)3 + p15 z T (z)3 + 3 p16 z

2 T (z)2+

p17 z T (z)2 + 3 p18 z
2 T (z)3 + 2 p19 z T (z)3+

2 p20 z
2 T (z)2 + p21 z T (z)2 + 3 p22 z

2 T (z)2+

2 p23 z T (z)2 + 2 p24 z
2 T (z) + p25 z T (z)+

2 p26 z
2 T (z) + p27 z T (z) + 3 p28 z

2 T 3(z)+

2 p29 z T
3(z) + 3 p30 z

2 T 2(z) + 2 p31 z T
2(z)

(15)
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and

Dy(z) =1 − p4 z T (z)2 − 2 p5 z T (z)− p6 z T (z)−

p7 z − p8 z
2 T (z)− p9 z T (z) − p12 z

2 T (z)−

p13 z T (z) − p14 z
2 T (z)2 − p15 z T (z)2−

p16 z
2 T (z) − p17 z T (z)− p18 z

2 T (z)2−

p19 z T (z)2 − p20 z
2 T (z)− p21 z T (z)−

p22 z
2 T (z) − p23 z T (z)− p24 z

2 − p25 z−

p26 z
2 − p27 z − p28 z

2 T 2(z)−

p29 z T
2(z) − 2 p30 z

2 T (z) − 2 p31 z T (z).

(16)
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By denoting Tx(z) = d
dxT (x, y, z)

∣

∣

x=1,y=1
and T (z) = T (x, y, z)|x=1,y=1 we find

by differentiating equation (13) w.r.t. x and letting x = 1 and y = 1

Tx(z) = p4 z T (z)2 Tx(z) + 2 p4 z T (z)2 (Tx(z) + Ty(z)) +

2 p5 z T (z)Tx(z)+

p6 z T (z)Tx(z) + p6 z T (z) (Tx(z) + Ty(z)) +

p7 z Tx(z)+

p8 z
2 T (z)2 + p8 z

2 T (z)Tx(z) + p8 z
2 T (z) (Tx(z) + Ty(z)) +

p9 z T (z)2 + p9 z T (z)Tx(z) + p9 z T (z) (Tx(z) + Ty(z)) +

p10 z
2 T (z) + p10 z

2 (Tx(z) + Ty(z)) +

p11 z T (z) + p11 z (Tx(z) + Ty(z)) +

p12 z
2 T (z)2 + p12 z

2 T (z)Tx(z) + p12 z
2 T (z) (Tx(z) + 2Ty(z)) +

p13 z T (z)2 + p13 z T (z)Tx(z) + p13 z T (z) (Tx(z) + 2Ty(z)) +

2 p14 z
2 T (z)3 + 2 p14 z

2 T (z)2 Tx(z) + p14 z
2 T (z)2 (Tx(z) + 2Ty(z)) +

2 p15 z T (z)3 + 2 p15 z T (z)2 Tx(z) + p15 z T (z)2 (Tx(z) + 2Ty(z)) +

2 p16 z
2 T (z)2 + p16 z

2 T (z) (Tx(z) + Ty(z)) + p16 z
2 T (z) (Tx(z) + 2Ty(z)) +

2 p17 z T (z)2 + p17 z T (z) (Tx(z) + Ty(z)) + p17 z T (z) (Tx(z) + 2Ty(z)) +

p18 z
2 2T (z)3 + p18 z

2 2T (z)2 Tx(z) + p18 z
2 T (z)2 (Tx(z) + Ty(z)) +

p19 z 2T (z)3 + p19 z 2T (z)2 Tx(z) + p19 z T (z)2 (Tx(z) + Ty(z)) +

p20 z
2 2T (z)2 + 2 p20 z

2 T (z) (Tx(z) + Ty(z)) +

p21 z 2T (z)2 + 2 p21 z T (z) (Tx(z) + Ty(z)) +

p22 z
2 T (z)2 + p22 z

2 T (z)Tx(z) + p22 z
2 T (z) (Tx(z) + Ty(z)) +

p23 z T (z)2 + p23 z T (z)Tx(z) + p23 z T (z) (Tx(z) + Ty(z)) +

p24 z
2 T (z) + p24 z

2 (Tx(z) + Ty(z)) +

p25 z T (z) + p25 z (Tx(z) + Ty(z)) +

p26 z
2 T (z) + p26 z

2 (Tx(z) + Ty(z)) +

p27 z
2 T (z) + p27 z (Tx(z) + Ty(z)) +

2 p28 z
2 T 3(z) + 2 p28 z

2 T 2(z)Tx(z) + p28 z
2 T 2(z) (Tx(z) + Ty(z)) +

2 p29 z T
3(z) + 2 p29 z T

2(z)Tx(z) + p29 z T
2(z) (Tx(z) + Ty(z)) +

2 p30 z
2 T 2(z) + 2 p30 z

2 T (z) (Tx(z) + Ty(z)) +

2 p31 z T
2(z) + 2 p31 z T (z) (Tx(z) + Ty(z)) .
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We obtain an explicit expression Tx(z) = Nx(z)
Dx(z) where

Nx(z) =2 p4 z T (z)2 Ty(z)+

p6 z T (z)Ty(z)+

p8 z
2 T (z)2 + p8 z

2 T (z)Ty(z)+

p9 z T (z)2 + p9 z T (z)Ty(z)+

p10 z
2 T (z) + p10 z

2 Ty(z)+

p11 z T (z) + p11 z Ty(z)+

p12 z
2 T (z)2 + p12 z

2 2T (z)Ty(z)+

p13 z T (z)2 + p13 z 2T (z)Ty(z)+

2 p14 z
2 T (z)3 + 2 p14 z

2 T (z)2 Ty(z)+

2 p15 z T (z)3 + 2 p15 z T (z)2 Ty(z)+

2 p16 z
2 T (z)2 + 3 p16 z

2 T (z)Ty(z)+

2 p17 z T (z)2 + 3 p17 z T (z)Ty(z)+

2 p18 z
2 T (z)3 + p18 z

2 T (z)2 Ty(z)+

2 p19 z T (z)3 + p19 z T (z)2 Ty(z)+

2 p20 z
2 T (z)2 + 2 p20 z

2 T (z)Ty(z)+

2 p21 z T (z)2 + 2 p21 z T (z)Ty(z)+

p22 z
2 T (z)2 + p22 z

2 T (z)Ty(z)+

p23 z T (z)2 + p23 z T (z)Ty(z)+

p24 z
2 T (z) + p24 z

2 Ty(z)+

p25 z T (z) + p25 z Ty(z)+

p26 z
2 T (z) + p26 z

2 Ty(z)+

p27 z T (z) + p27 z Ty(z)+

2 p28 z
2 T 3(z) + p28 z

2 T 2(z)Ty(z)+

2 p29 z T
3(z) + p29 z T

2(z)Ty(z)+

2 p30 z
2 T 2(z) + 2 p30 z

2 T (z)Ty(z)+

2 p31 z T
2(z) + 2 p31 z T (z)Ty(z)

(17)

and

Dx(z) = 1 − 3 p4 z T (z)2 − 2 p5 z T (z)−

2 p6 z T (z)− p7 z − 2 p8 z
2 T (z)−

2 p9 z T (z)− p10 z
2 − p11 z − 2 p12 z

2 T (z)−

2 p13 z T (z)− 3 p14 z
2 T (z)2 − 3 p15 z T (z)2−

2 p16 z
2 T (z) − 2 p17 z T (z)− 3 p18 z

2 T (z)2−

3 p19 z T (z)2 − 2 p20 z
2 T (z) − 2 p21 z T (z)−

2 p22 z
2 T (z) − 2 p23 z T (z)− p24 z

2 − p25 z−

p26 z
2 − p27 z − 3 p28 z

2 T 2(z)−

3 p29 z T
2(z) − 2 p30 z

2 T (z) − 2 p31 z T (z).

(18)
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Note that Dx(z) is equivalent to 1 − Fw(z, w) of Section 3 which means that for
(z → ρ) the denominator of Tx(z) approaches zero. Thus, Tx(z) has a pole at z = ρ.

The asymptotic behavior of En is determined by the singularities of Dy(z) and
Dx(z). We have to discriminate two cases: Case (1) is when Dy(z) and Dx(z) have
different singularities and case (2) is when the singularities coincide. Hence, we
define

(19) ∆(z) = Dy(z) −Dx(z) =

z
(

2 p4 T (z)2 + p6 T (z) + p8 z T (z) + p9 T (z) + p10 z + p11 + p12 z T (z)+

p13 T (z) + 2 p14 z T (z)2 + 2 p15 T (z)2 + p16 z T (z) + p17 T (z)+

2 p18 z T (z)2 + 2 p19 T (z)2 + p20 z T (z) + p21 T (z)+

p22 z T (z) + p23 T (z) + 2 p28 z
2 T 2(z) + 2 p29 z T

2(z)
)

.

4.1. The Case ∆(z) 6≡ 0. It is easy to see that the Taylor series expansion of
ψ(z) = 1/Dy(z) at z = 0 has only non-negative coefficients. Thus, the smallest
singularity of ψ(z) is located on the real axis.

On the other hand,Dx(z) has its smallest zero at z = ρ which follows from [MM89].
Now for real argument Dx(z) is monotonically decreasing with Dx(0) = 1 and
Dx(ρ) = 0.

In addition, ∆(z) is monotonically increasing for real argument with ∆(0) = 0
and ∆(ρ) > 0. Hence, Dy(z) = Dx(z) + ∆(z) > 0 for 0 ≤ z ≤ ρ which implies that
the singularity of ψ(z) > ρ.

Letting T (z) = τ − c1u
1/2 +O(u) (see Lemma 1), where u = 1− z/ρ, we obtain

for (z → ρ)

Dy(z) = c2 +O(u)

for some constant c2, and

Sx(z) =
d

dx
S(x, x, z)

∣

∣

∣

∣

x=1

= c3u
−1/2 + c4 +O(u1/2)

for some constants c3 and c4.
Applying Theorem 2, it follows that for some constant c5 and (n→ ∞)

[zn]Sx(z) = c5 n
−1/2 ρ−n

(

1 +O

(

1

n

))

.

Hence, dividing by sn, we obtain

En = c6 · n+O(1)

for some constant c6 and (n→ ∞).

4.2. The Case ∆(z) ≡ 0. In this case p4 = p6 = p8 = p9 = p10 = p11 = p12 =
p13 = p14 = p15 = p16 = p17 = p18 = p19 = p20 = p21 = p22 = p23 = p28 = p29 = 0.

We further discriminate the cases where p5 = 0 and where p5 6= 0.

4.3. The Case ∆(z) ≡ 0 and p5 6= 0. In this case Dx(z) ≡ Dy(z) which implies

that d
dxS(x, x, z)

∣

∣

x=1
has a double pole at z = ρ. Hence, we get for (z → ρ)

Sx(z) =
d

dx
S(x, x, z)

∣

∣

∣

∣

x=1

= c7u
−1 +O(u−1/2)

for some constant c7.
This implies that for some constant c8 and for (n→ ∞)

[zn]Sx(z) = c8 ρ
−n

(

1 +O

(

1

n

))

.
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Dividing by sn we get for some constant c9 and for (n→ ∞)

En = c9 · n
3/2 +O

(

n1/2
)

.

4.4. The Case ∆(z) ≡ 0 and p5 = 0. This case contradicts the branch predicate
and for this reason is treated in Section 4.5.

4.5. The Branch Predicate is False. In this case we obtain

Dy(z) = 1 − p7 z − p24 z
2 − p25 z − p26 z

2 − p27 z

and

Dx(z) = 1 − q1 z − q2 z
2

where q1 and q2 are defined in Section 3.2.
If ∆(z) = Dy(z) −Dx(z) 6≡ 0, it is easy to see from equation (12) that near its

singularities T (z) behaves likeDx(z)−1. Furthermore, we obtain that Ty(z) behaves
like Dx(z)−1 and that both Tx(z) and Sx(z) behave like Dx(z)−2.

Hence we have

En = c10 · n+O(1), (n → ∞)

for some constant c10.
In case of ∆(z) ≡ 0, i.e., p10 = p11 = 0, we find that Ty(z) behaves like Dx(z)−2.

In addition, Tx(z) and Sx(z) behave like Dx(z)−3.
Thus we have

En = c11 · n
2 +O(n), (n→ ∞)

for some constant c11.
Summing up, we have proved the following theorem.

Theorem 4. Let G be a DJ graph with n nodes which can be derived by the graph
grammar depicted in Table 1. Then the average number of Eager2b operations
performed by Sreedhar’s algorithm En can be determined as follows.

If the branch predicate (1) is true, then

(a) if further p4 = p6 = p8 = p9 = p10 = p11 = p12 = p13 = p14 = p15 = p16 =
p17 = p18 = p19 = p20 = p21 = p22 = p23 = 0,

En = c9 · n
3/2 +O

(

n1/2
)

,

(b) otherwise

En = c6 · n+O(1).

If the branch predicate (1) is false and

(c) if further p10 = p11 = 0, we obtain

En = c11 · n
2 +O(n),

(d) otherwise

En = c10 · n+O(1).

�

Taking a closer look at Theorem 4 we find that programming languages of case (c)
consist of repeat-until-loops only. Programming languages of case (a) support only
restricted forms of if-statements and repeat-until-loops. Except for such very un-
common languages, the following corollary holds.

Corollary 1. The average number of Eager2b operations performed by Sreedhar’s
algorithm for goto-free programs is linear in the size of the program. �
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Remark 2. Note that a program P , consisting only of straight-line code and repeat-
until-loops written in a certain programming language L that also supports other
language features like if-statements and while-loops, implies quadratic running time
of Sreedhar’s algorithm for this specific program P .

Since, however, the probabilities for if-statements and while-loops are non-zero,
according to Theorem 4 the average case performance of Sreedhar’s algorithm for
programs written in L is linear.

It is shown in [SGL98] that the number of Eager2b operations corresponds to

the size of the dominance frontier [CFR+91] (which is needed for SSA‖ analysis, a
method common in compiler construction).

Thus, we have also proved the following corollary as a byproduct.

Corollary 2. Under the same assumptions as in Corollary 1, the average size of
the dominance frontier is linear in the program size. �

In the following we prove a theorem originally due to [CFR+91].

Theorem 5 (Cytron et al.). For programs comprised of straight-line code, if-then-
else and while-do constructs, the dominance frontier of any CFG node contains at
most two nodes.

Proof. We prove this theorem by restricting our graph grammar to the produc-
tions 1 to 11. Note that in this case no T (x, x y, z) term appears. Thus, we obtain
the following functional equation for T (x, x, z).

(20) T (x, x, z) = p3 z + p4 x z T (x, x, z)
3

+ p5 x
2 z T (x, x, z)

2
+

p6 x z T (x, x, z)2 + p7 x z T (x, x, z) + p8 x
3 z2 T (x, x, z)2+

p9 x
2 z T (x, x, z)

2
+ p10 x

2 z2 T (x, x, z) + p11 x z T (x, x, z)

Note that [xk ][zn]S(x, x, z) = [xk ][zn]
(

p1 z
2 + p2 z

2 T (x, x, z)
)

denotes the exact
number of DJGs with n nodes and k Eager2b operations. From equation (20) the
theorem is obvious. �

5. Conclusion

First we would like to note that the probability distribution employed in this pa-
per is very general in nature. Although the pi assigned to the productions are con-
sidered independent from each other and from the number of nodes in the graphs,
they can be used to model any particular set of programs for which then the aver-
age case timing behavior can be predicted quite accurately since the constants of
Theorem 4 can be determined exactly if the pi for each production are known.

In this paper we have proved that for goto-free programs written in usual pro-
gramming languages, i.e., languages that provide at least for straight-line code,
if-statements, repeat-until-loops, and while-loops (or semantically equivalent fea-
tures such as general loops with exit-statements), the average number of Eager2b
operations performed by Sreedhar’s algorithm is linear in the size of the input pro-
gram. Our approach employs a graph grammar to specify goto-free programs and
well-known methods for the analysis of algorithms and data-structures to determine
the average number of Eager2b operations.

As a consequence it follows that for goto-free programs the average size of the
dominance frontier [CFR+91] is linear in the size of the underlying program.

An earlier result of Cytron et al. [CFR+91] can be reproduced by our approach.

‖Static Single Assignment
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In terms of solving a system of simultaneous equations our result can be inter-
preted in the following way: If a system of simultaneous equations can be described
in terms of a graph which can be derived by our graph grammar, then, on the
average, a solution of the system of equations can be obtained in linear time. This
also holds for suitable sparse systems of linear equations [Tar76].

It is easy to add productions to our graph grammar that model some kind of
multiple entry loops. Table 2 shows one of the productions required to model such
loops. With help of this extension our result also applies to some irreducible graphs
[ASU86] for which the average number of Eager2b operations is still linear in the
size of the program.

On the other hand, it is still an open question whether the average number
of Eager2b operations is linear for all reducible flow graphs [ASU86] under some
practically useful probability distribution.

Acknowledgments. The author would like to thank the anonymous referees for
their helpful comments.
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Appendix A. The Graph Grammar in Tabular Form

This appendix contains the graph grammar underlying this paper.

Productions count. expr.

No. language graph

1 S → begin end dj p1 z
2

2 S → begin T end
d dj

T

j

p2 z
2 T (x, x, z)

3 T → s, T0 → s
•

p3 z

4 T → if c then T else T endif T T

j

dj

d

dj

•T

T

j

p4 y z T (x, x, z)2

T (x, y, z)

5 T → if c then T else T endif

•T

dj dj

•T

p5 y
2 z T (x, y, z)

2

6 T → if c then T endif T T

j

dj

d

•T

p6 y z T (x, x, z)
T (x, y, z)

7 T → if c then T endif

•T

•

dj p7 y z T (x, y, z)

Table 1. A Graph Grammar for DJ Graphs
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Productions count. expr.

No. language graph

8 T → T0 while c loop T endloop T

•T

dj

dj

dj

T

j

p8 x y
2 z2

T (x, x, z)T (x, y, z)

9 T → while c loop T endloop T

•T

dj

dj

T

j p9 x y z
T (x, x, z)T (x, y, z)

10 T → T0 while c loop T endloop
dj

•

dj

T

j

p10 x y z
2 T (x, x, z)

11 T → while c loop T endloop

•

dj

T

j p11 x z T (x, x, z)

12 T → T0 while c loop
T exit when c endloop T

•T

dj

dj

dj

T

j

j

p12 x y
2 z2

T (x, x2, z)T (x, y, z)

13 T → while c loop
T exit when c endloop T •T

dj

dj

T

j

j

p13 x y z
T (x, x2, z)T (x, y, z)

Table 1. A Graph Grammar for DJ Graphs (cont.)
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Productions count. expr.

No. language graph

14 T → T0 while c loop
T exit when c T endloop T

•T

dj
dj

dj

T

j
dj

T

j

p14 x
2 y2 z2 T (x, 1, z)

T (x, x2, z)T (x, y, z)

15 T → while c loop
T exit when c T endloop T

•T

dj

dj

T

j
dj

T

j p15 x
2 y z T (x, 1, z)

T (x, x2, z)T (x, y, z)

16 T → T0 while c loop
T exit when c T endloop

dj
•

dj

•T

dj

T

j

p16 x
2 y3 z2

T (x, x2, z)T (x, x y, z)

17 T → while c loop
T exit when c T endloop

•

dj

•T

dj

T

j p17 x
2 y z

T (x, x2, z)T (x, x y, z)

Table 1. A Graph Grammar for DJ Graphs (cont.)
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Productions count. expr.

No. language graph

18 T → T0 loop T exit when c
T endloop T

•T

dj

dj

Tdj

dj T

j p18 x
2 y3 z2 T (x, 1, z)

T (x, x, z)T (x, y, z)

19 T → loop T exit when c
T endloop T

•T

dj

Tdj

dj T

j
p19 x

2 y2 z T (x, 1, z)
T (x, x, z)T (x, y, z)

20 T → T0 loop T exit when c
T endloop

dj

dj

•T

dj T

j p20 x
2 y2 z2

T (x, x, z)T (x, x y, z)

21 T → loop T exit when c
T endloop

dj

•T

dj T

j
p21 x

2 y z
T (x, x, z)T (x, x y, z)

Table 1. A Graph Grammar for DJ Graphs (cont.)
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Productions count. expr.

No. language graph

22 T → T0 repeat T until c T

•T

dj

dj

Tdj

j p22 x y
3 z2

T (x, x, z)T (x, y, z)

23 T → repeat T until c T

•T

dj

Tdj

j
p23 x y

2 z
T (x, x, z)T (x, y, z)

24 T → T0 repeat T until c
dj

dj

•T

j

p24 x y
2 z2 T (x, x y, z)

25 T → repeat T until c dj

•T

j p25 x y z T (x, x y, z)

26 T → T0 while c loop
T exit when c endloop

dj
•

dj

•T

j

p26 x y
2 z2 T (x, x y, z)

27 T → while c loop
T exit when c endloop

•

dj

•T

j p27 x y z T (x, x y, z)

Table 1. A Graph Grammar for DJ Graphs (cont.)
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Productions count. expr.

No. language graph

28 T → T0 repeat T exit when c
T until c T

•T

dj

dj

T

dj

dj

T

j

j
p28 x

2 y3 z2 T (x, 1, z)
T (x, x, z)T (x, y, z)

29 T → repeat T exit when c
T until c T

•T

dj

T

dj

dj

T

j

j p29 x
2 y2 z T (x, 1, z)

T (x, x, z)T (x, y, z)

30 T → T0 repeat T exit when c
T until c

dj

dj

•T

dj

•T

j

p30 x
2 y3 z2 T 2(x, x y, z)

31 T → repeat T exit when c
T until c

dj

•T

dj

•T

j p31 x
2 y2 z T 2(x, x y, z)

Table 1. A Graph Grammar for DJ Graphs (cont.)
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Productions

No. description graph

32 multiple entry loop T

dj

j

dj

d

dj

Tj

T
j

•T

T

dj

j

Table 2. Extension of Graph Grammar: Multiple Entry Loop


