
A New Elimination-Based Data Flow Analysis
Framework Using Annotated Decomposition Trees

Bernhard Scholz1 and Johann Blieberger2

1 The University of Sydney
2 Technische Universität Wien

Abstract. We introduce a new framework for elimination-based data flow anal-
ysis. We present a simple algorithm and a delayed algorithm that exhibit a worst-
case complexity of O(n2) and Õ(m). The algorithms use a new compact data
structure for representing reducible flow graphs called Annotated Decomposition
Trees. This data structure extends a binary tree to represent flowgraph informa-
tion, dominance relation of flowgraphs, and the topological order of nodes. The
construction of the annotated decomposition trees runs in O(n + m). Experi-
ments were conducted with reducible flowgraphs of the SPEC2000 benchmark
suite.

1 Introduction
Elimination-based approaches [19] are used for data flow analysis problems [17, 18, 15,
5, 3, 4] that cannot be solved with iterative approaches [12, 8]. There exist other appli-
cations for elimination methods, which go beyond the area of program analysis [24].
For solving data flow analysis problems there are two families of elimination-based
approaches: algebraic methods and methods using path expressions.

Algebraic elimination methods [1, 9, 6, 21] consist of three steps: (1) reducing the
flowgraph to a single node, (2) eliminating variables in the data flow equations by sub-
stitution, and (3) back-propagating the solution to other nodes. Algebraic elimination
methods require two algebraic operations for a set of equations: substitution and loop-
breaking. The substitution transformation is the replacement of the occurrence of a vari-
able by its term whereas loop-breaking eliminates the occurrence of a variable on the
right-hand side. Though not very efficient, Gaussian elimination is a generic algebraic
elimination method to solve data flow equations in cubic time [16].

Path expressions were introduced in [24] to solve data flow equations. The flow-
graph is seen as a deterministic finite state automata [10] whose language consists of all
paths emanating from the start node to a node. The language is represented as a regular
expression whose alphabet is the edge-set of the flowgraph. To find the data flow solu-
tion of a node, a path homomorphism is applied to the path expression. The operators
·, ∪, and ∗ of the regular expressions are re-interpreted. An elimination method using
path expressions comprises two steps: (1) the computation of path expressions for all
nodes in the flowgraph, and (2) the application of the path homomorphism. An ineffi-
cient algorithm for converting flowgraph to path expressions is described in [10] and
runs in O(n3).

In this paper we present a new path expression algorithm using the decomposition
properties of reducible flowgraphs. The contribution of our work is threefold:

1

– a new representation of reducible flowgraphs called Annotated Decomposition Trees
that combines control flow information, dominance relation, and topological order,

– an algorithm for computing annotated decomposition trees in linear time,
– an elimination framework based on annotated decomposition trees that computes

path expressions.

The paper is organized as follows. In Section 2 we describe the basic notions re-
quired to present our approach. In Section 3 we outline the idea behind elimination-
based methods using path expressions and show a motivating example. In Section 4
we present the construction of annotated decomposition trees for reducible flowgraphs.
In Section 5 we show a simple and a delayed algorithm for computing path expres-
sions. In Section 6 we present the results of our experiment. Related work is surveyed
in Section 7. We draw our conclusions in Section 8.

2 Background
Flowgraph and Path Expressions. A flowgraph is a directed graph G(V,E, r) where
V is the set of nodes and E is the set of edges. We refer to n as the number of nodes
andm as the number of edges. A flowgraph is trivial if there is a single node in V. Edge
u → v has source u and destination v. Vertex r is a distinguished root node (aka. start
node). A path π is a sequence of edges 〈(v1 → v2), (v2 → v3), . . . , (vk−1 → vk)〉 such
that two consecutive edges (vi → vi+1) ∈ E and (vi+1 → vi+2) ∈ E share the same
node vi+1. The empty path is denoted by ε. In a flowgraph all nodes are reachable, i.e.,
there is a path from r to every other node in V.

Definition 1. The path set Paths(u, v) is the set of all paths from u to v in the flowgraph.

In a regular expression, ε denotes the empty string, ∅ denotes the empty set, ∪
denotes set union, · denotes concatenation, and ∗ denotes reflexive, transitive closure
under concatenation. Thus each regular expression R over Σ represents a set σ(R) of
strings over an alphabet Σ defined as:

1. σ(ε) = {ε}; σ(∅) = ∅; σ(a) = {a} for a ∈ Σ.
2. σ(R1 ∪R2) = σ(R1) ∪ σ(R2) = {w | w ∈ σ(R1) or w ∈ σ(R2)};
3. σ(R1 ·R2) = σ(R1) · σ(R2) = {w1w2 | w1 ∈ σ(R1) and w2 ∈ σ(R2)};
4. σ(R∗) =

⋃∞
k=0 σ(R)k, where σ(R)0 = {ε} and σ(R)i = σ(R)i−1 · σ(R).

For the algorithms in this paper we implicitely use simplifications for the regular ex-
pression operators: [ε · R] = R, [R · ε] = R, [∅ · R] = ∅, [R · ∅] = ∅, [∅ ∪ R] = R,
[R ∪ ∅] = R, [∅∗] = ε, and [ε∗] = ε.

Definition 2. A path expressionP (u, v) is a regular expression overE whose language
σ(P (u, v)) is the path set Paths(u, v).

A node u dominates a node v if all paths from r to v include node u. All nodes u
that dominate v are also called dominators of v. The immediate dominator u of a node
v is a dominator of v that does not dominate any other dominator of v and u is not v.
The immediate dominator of node v is written as idom (v). The immediate dominators
of nodes form a tree called a dominator tree.

2

A back edge in a flowgraph is an edge whose destination dominates its source. A
flowgraph is reducible if the set of edges E can be partitioned into disjoint sets EF
and EB where EF is the set of forward edges and EB is the set of back edges. The set
of forward edges must form a directed acyclic graph. A graph which is not reducible
is called irreducible. Reducible flowgraphs (RFG) have the property that for each loop
there exists a single entry point.
Binary Leaf Trees. A binary leaf tree3 T (V,E, r) is a rooted binary tree whose inner
nodes always have two children. Set V is the set of nodes, E is the set of edges and r is
the root node of the tree. The left child of a node x is denoted by l(x) and the right child
as r(x). The parent node of a node x is denoted by p(x). A path in the tree is a sequence
of nodes 〈v1, v2, . . . , vk〉 for which vi is the parent of vi+1 for all i, 1 ≤ i < k.
Data Flow Analysis. A monotone data flow analysis problem [8] is a tuple DFAP(L,∧,
F, c, G,M), where L is a bounded semi-lattice with meet operation ∧, F ⊆ L →
L is a monotone function space associated with L, c ∈ L are the “data flow facts”
associated with start node r, G(V,E, r) is a flowgraph, andM : E → F is a map from
G’s edges to data flow functions. We extend function M to map a path π = 〈(u1 →
u2), . . . , (uk−1 → uk)〉 to a function of F .

M(π) =

{
M(uk−1 → uk) ◦ . . . ◦M(u1 → u2), if π 6= ε

ι, otherwise
(1)

where ι is the identity function.

3 Motivation
In program analysis we compute a value for each node in the flowgraph. This value is
called the meet-over-all-paths solution. It is the solution of applying the meet operator
for the analysis result of all paths from the root node to a given node in the program4.

Definition 3. The meet-over-all-path (MOP) solution is defined for a node u ∈ V as

MOP (u) =
∧

π∈Paths(r,u)

M(π)(c) (2)

where c is the initial data flow value associated with the root node.

Elimination methods directly compute the MOP solution. They solve the set of local
data flow equations by either using substitution and elimination (aka. Gaussian Elim-
ination) or by employing a path homomorphism [24]. In this work we focus on the
latter approach. Path expressions represent path sets that are mapped into the function
space of the data flow problem. This mapping is defined by reinterpreting the ∪, ·, and
∗ operators used to construct regular expressions as shown in [23]. The central idea of
elimination methods is that MOP is computed as:

MOP (u) =
∧

π∈Paths(r,u)

M(π)(c) = M(P (r, u))(c), (3)

3 Binary leaf trees are sometimes also called extended binary trees [13].
4 For backward problems we are interested in the set of reverse paths from the end node to a

given node.

3

a

b c

d e f

P (a, a) = (a→ b · (b→ d · d→ d∗ · d→ e∪
b→ e) · e→ a)∗

P (a, b) = P (a, a) · a→ b
P (a, c) = P (a, a) · a→ c
P (a, d) = P (a, b) · b→ d · d→ d∗

P (a, e) = P (a, b) · b→ e ∪ P (a, d) · d→ e
P (a, f) = P (a, c) · c→ f

(a) Flowgraph (b) Regular Expressions

Fig. 1. Running Example.

where P (r, u) is the path expression for path set Paths(r, u). The mapping function is
extended with the following operators of the regular expressions

M(P1 · P2) = M(P2) ◦M(P1)

M(P1 ∪ P2) = M(P1) ∧M(P2)

M(P ∗) = M(P)∗

M(ε) = ι

The operation M(P2) ◦M(P1) is the function composition and M(P)∗ is a fixpoint
operation. For simple data-flow analysis problems the fixpoint operation is quite often
the identity function [19].

The complexity of elimination methods using path expressions depends on the path
expression size. Consider the example depicted in Figure 1. Assume we want to solve
a data flow analysis problem for the flowgraph given in Figure 1(a). An elimination
method using path expressions computes a path expression as given in Figure 1(b).
Then, mapping function M is applied to path expression P (r, u). To improve the per-
formance of such an approach, expressions are reused (such as P (a, a) in the running
example). Without reuse of sub-expressions the memory complexity grows exponen-
tially with the size of the flowgraph [10].

4 Annotated Decomposition Trees
For the elimination framework we introduce a new data structure called an Annotated
Decomposition Tree (ADT) that recursively splits the reducible flowgraph into inter-
vals. An interval is a subgraph of the flowgraph and has the following properties: (1)
every interval has a single entry node, and (2) the single-entry node of the interval dom-
inates all nodes of the interval.

The ADT is a binary leaf tree. An inner node in the ADT represents a composition
operation that composes two disjoint intervals G1 and G2. The leaves of the tree rep-
resent trivial intervals consisting of a single node in the flowgraph5. The composition
operation is a generalisation of work published in [25, 26, 11].

5 Because ADTs are binary leaf trees, there are n−1 inner nodes where n is the num. of leaves.

4

r1

u1

uk

r2

v1

vl

G1 G2

(a) Composition

Dominator
Tree:

r

c1 ck−1 ck

T1 T2

=⇒
ADT: ⊕

T1 T2

(b) Decomposition

Fig. 2. Composition and Decomposition of Reducible Flowgraphs.

Definition 4. Let G1(V1, E1, r1) and G2(V2, E2, r2) be flowgraphs such that V1 and
V2 are disjoint sets. The composition G1 ⊕(F,B) G2 is defined as

(V1 ∪ V2, E1 ∪ E2 ∪ (F × {r2}) ∪ (B × {r1}), r1)

where F ⊆ V1 and B ⊆ V2 denote the sources of the forward and backward edges.
Node r1 becomes the new single-entry node of the composed interval.

The composition of two intervalsG1 andG2 is depicted in Figure 2(a). The single-entry
nodes of the intervals are denoted by r1 and r2. The edge set F×{r2} connects a subset
of nodes in G1 to r2. The edge set B × {r1} connects a subset of nodes in G2 to r1.

By Definition 4, root node r1 dominates all nodes of G1 and G2 because every
node in the composed interval can only be reached via r1. The same holds for r2, i.e.,
r2 dominates all nodes in G2. This implies that the nodes of G1 form a sub-tree in
the dominator tree with r1 as a root-vertex of the sub-tree, and single-entry node r2 is
immediately dominated by r1.

The forward edges of a reducible flow graph form a directed acyclic graph imposing
a topological order< such that for all edges (u, v) ∈ EF , u < v holds. Since the single-
entry node of an interval dominates all nodes in the interval, the single-entry node of the
interval is smaller than the nodes in the interval with respect to the topological order.
The composition implies that r1 < r2. Given a composition G1 ⊕G2, the inequality

∀u ∈ V1 : ∀v ∈ V2 : r1 ≤ u < r2 ≤ v (4)

holds. Assume a total order R of nodes in the flowgraph [u1, . . . , un] such that for
(ui, uj) ∈ EF , i < j. An interval decomposition of the flowgraph partitions the ordered
nodes into two parts. Vertex r1 has index 1 and all the nodes between 1 and r2 − 1 be-
long to the interval G1. The nodes from r2 to n belong to G2. By recursively applying
the decomposition for ordered nodes, we have a range representation of the tree. For ex-
ample a possible total order for the flowgraph in Figure 1(a) is [a, b, d, e, c, f]. The first
composition of the ADT splits the ordered nodes in two halves, i.e., [[a, b, d, e], [c, f]].

5

a

b

d e

c

f

(a) Ordered Dominator Tree

C0

C1

a C3

C4

b d

e

C2

c f

(b) Decomposition Tree

Fig. 3. Dominator and Decomposition Tree of Example.

By recursively splitting intervals, we obtain [[[a], [[b, d], e]], [c, f]] representing the in-
tervals of the flowgraph.

In the following we deal with the problem of finding an ADT for a given flowgraph.
Because there might be several possible topological orders of a flowgraph, we can have
several ADTs for a single flowgraph. However, for a given topological order of a flow-
graph there exists a single ADT. The ADT is constructed by using the dominator tree
and a given topological order.

We observe that the root node r2 is immediately dominated by r1 and therefore is
a child of r1 in the dominator tree. Assume that the children c1, . . . , ck−1, ck of node
r1 in the dominator tree are ordered by the topological order, i.e., ci < cj . Vertex r2

is the child ck (cf. Equation 4) and the nodes of G2 are nodes which are dominated
by r2. A simple decomposition scheme of the ordered dominator tree (as illustrated
in Figure 2(b)) allows the construction of the ADT. Interval G1 is the result of the
decomposition of the dominator tree without subtree ck. Interval G2 is the result of the
decomposition of subtree ck.

The decomposition of the dominator tree results in a simple algorithm for construct-
ing an ADT: (1) order the children of the dominator tree with respect to topological
order of the nodes and (2) recursively traverse the ordered dominator tree and construct
the ADT. The algorithm for constructing the decomposition tree is shown in Figure 4.
For constructing an order among children we use a stack su for each node u in the flow-
graph. Procedure ConstructADT pushes nodes in reverse topological order onto the
stack of its immediate dominator. Before calling Traverse in Procedure ConstructADT,
the stack of a node contains all its children in reverse topological order. The element on
top of the stack is the right-most child of the node and the bottom element of the stack is
the left-most child of the node. The stack allows us to partition the graph as illustrated
in Figure 2(b).

The construction of the ADT is performed in function Traverse. Function Leaf with
parameter u creates a new leaf in the decomposition tree where u is a node of the flow-
graph. Function Node creates an inner node with a left and right child. The construction
is performed recursively beginning with the root node of the dominator tree. Inside the
loop the children of node u are popped from the stack in reverse topological order and
for each child a decomposition operation is created. The function Traverse pops exactly

6

CONSTRUCTADT ()
1 for i← |V | . . . 2 do
2 u← order(i)
3 v ← idom (u)
4 PUSH u onto sv
5 endfor
6 return TRAVERSE(r)

TRAVERSE (u)
1 x← LEAF(u)
2 while stack su is not empty do
3 v ← POP node from su
4 x← NODE(x, TRAVERSE(v))
5 endwhile
6 return x

Fig. 4. Construction of the ADT.

n − 1 elements from the node stacks. We have n function calls of Traverse. Thus, the
space and time complexity of function Traverse is O(n).

For the running exampe the dominator tree is shown in Figure 3(a). The children
of the nodes are ordered with respect to the topological order. The first composition is
the cut between node a and c because c is the right-most children with respect to the
topological order. The resulting two dominator trees are recursively cut and each cut
represents an inner node in the ADT. The resulting decomposition tree is depicted in
Figure 3(b).

So far, we have not discussed how to determine the forward and backward edges of a
composition. To compute F - andB-sets we traverse the set of edges and associate each
edge to a composition in the ADT. The edge is associated to the composition node in
the ADT that is the nearest common ancestor of leaves u and v. An edge is an element
of set F if it is a forward edge, otherwise it is element of set B. Set F is empty for
leaf nodes in the ADT. The algorithm in Figure 5(a) annotates the decomposition tree
with sets F and B. It exhibits a complexity of O(n +m) by using the efficient nearest
common ancestor algorithms [7, 2] with a complexity of O(1) for a single NCA query.

The F - and B-sets are given in Figure 5(b). For example, consider edge a → c.
The nearest common ancestor of leaves a and c is the extended composition C0 in the
decomposition Tree of Figure 3(b). Vertex a is smaller then node c in the topological
order. Therefore, the edge is a forward edge and stored in FC0 . Because the target of an
edge is inherently defined by the composition, i.e. either node r1 or node r2 depending
whether it is a forward or backward edge, we only add the source of an edge to F or B.
This means, that for edge a→ c node a is added to FC0 .

5 Path Expressions
We compute path expressions for nodes using the annotated decomposition tree of a
reducible flowgraph as the underlying data structure. Path expressions are computed by
an inductive scheme. For the inductive step we construct path expressions by using the
properties of the composition (see Def. 4).

Theorem 1. If G(V,E, r) is a trivial flowgraph, then

P (r, r) =

{
(r → r)∗, if (r → r) ∈ E,
ε, otherwise.

(5)

Otherwise the flowgraph is composed andG(V,E, r) = G1(V1, E1, r1)⊕(F,B)G2(V2,
E2, r2). For given path expressions P1(r1, u) of G1 (for all u ∈ V1) and given path

7

COMPUTEFBSETS (ADT)
1 for all u→ v ∈ E do
2 x← NCA(ADT, u, v)
3 if u→ v ∈ EB then
4 Bx ← Bx ∪ {u}
5 else
6 Fx ← Fx ∪ {u}
7 endif
8 endfor

(a) Algorithm

u Fu Bu
C0 {a} {}
C1 {a} {e}
C2 {c} {}
C3 {b, d} {}
C4 {b} {}
a n/a {}
b n/a {}
c n/a {}
d n/a {d}
e n/a {}
f n/a {}

(b) F- and B-sets

Fig. 5. Algorithm and Example for Computing F- and B-Sets.

expressions P2(r2, v) of G2 (for all v ∈ V2), the path expressions of the composed
flowgraph are:

∀u ∈ V1 : P (r, u) = L · P1(r1, u) (6)
∀v ∈ V2 : P (r, v) = R · P2(r2, v) (7)

where6

X =
⋃

u∈F
P1(r1, u) · (u→ r2) (8)

Y =
⋃

v∈B
P2(r2, v) · (v → r1) (9)

L = [X · Y]
∗ (10)

R = L ·X (11)

Proof. See Appendix.

Simple Algorithm: A simple algorithm traverses the ADT in bottom-up fashion and
updates the path expressions for nodes in G1 and G2 according to Theorem 1. The
complexity of the simple algorithm is O(n2) because in the worst case O(n) updates
are performed for a node in the ADT and there are O(n) nodes in the ADT.

Delayed Algorithm: A more efficient algorithm does not update the path expressions
of all nodes in the intervals G1 and G2. Only the nodes in F and B of a composition
are updated and the update of the remaining nodes is deferred to a later stage.

The construction of path expressions implies that a path expression of node u in the
flowgraph is a sequence of L andR prefixes followed by either ε or (u→ u)∗. We store
the path expressionsL andR at the left and right child of an inner node in the ADT and
the path expression ε or (u→ u)∗ at the leaves. Then, a path from the root of the ADT
to node u defines the path expression7 by mapping the nodes of the path to their path
expressions. This observation enables the usage of a path compression scheme [22] to
implement the delayed update.

6 S
x∈X f(x) is the empty set if set X is empty.

7 Without loss of generality we store ε in the root of the ADT.

8

COMPUTEPATHEXPR (w)
1 if w is not a leaf then
2 COMPUTEPATHEXPR(l(w))
3 COMPUTEPATHEXPR(r(w))
4 X ← S

u∈Fw [EVAL(u) · u→ r2]
5 Y ← S

v∈Bw [EVAL(v) · v → r1]
6 L← [X · Y]∗

7 R← L ·X
8 z ← l(w)
9 if z is a leaf and z → z ∈ E then
10 L← L · (z → z)∗

11 endif
12 z ← r(w)
13 if z is a leaf and z → z ∈ E then
14 R← R · (z → z)∗

15 endif
16 LNK UPD(w, r(w), L)
17 LNK UPD(w, l(w), R)
18 endif

LNK UPD (x, y, v)
1 p(y)← x
2 Ry ← v

EVAL (x)
1 if p(x) 6= p(p(x)) then
2 Rx ← [EVAL(p(x)) ·Rx]
3 p(x)← p(p(x))
4 endif
5 return Rx

MAIN ()
1 adt← CONSTRUCTADT()
2 COMPUTEFBSETS(adt)
3 COMPUTEPATHEXPR(adt)
4 if G is not trivial then
5 for u ∈ V do
6 P (r, u)← EVAL(u)
7 endfor
8 else

9 P (r, r)←
(

(r→ r)∗, if (r→ r) ∈ E,
ε, otherwise.

10 endif

Fig. 6. Computing Path Expressions: Delayed Algorithm.

In Figure 6 we outline the algorithm for constructing path expressions with a de-
layed update. The LNK UPD operation assigns a path expression to a node in the ADT
and constructs the tree for path compression. The EVAL operation queries the sequence
of L and R prefixes for a node of the flowgraph. The complexity of the algorithm is
bounded by the number of composition nodes in the decomposition tree (i.e. n − 1)
and the number of leaves (i.e. n). With a simple path compression scheme the de-
layed update is bounded byO(m log n) (as outlined in Figure 6). A more sophisticated
path compression algorithm with O(mα(m,n)) introduced in [22] improves the upper
bound of the overall algorithm. However, in practice the sophisticated path compres-
sion scheme will not be superior to the simple path compression scheme due to small
problem sizes [14].

6 Experimental Results
We have implemented the simple and the delayed algorithm in C and measured the
performance of the algorithms on a 2.6GhZ AMD computer. We also implemented
Sreedhar’s algorithm [21] and compared its performance to the simple and the delayed
algorithm. As a benchmark we used the SPEC2000 benchmark suite. The flowgraphs
were generated by the GCC compiler. In this experiment we are interested in the follow-
ing numbers: (1) the execution time to construct ADTs for SPEC2000, (2) the speed-ups
of the simple and delayed algorithm vs. Sreedhar’s algorithm, and (3) the reduction of
the number of ·, ∪ and ∗ operators by using the delayed algorithm.

The results of the experiment are shown in Table 1. The execution times for con-
structing the ADT and computing the path expressions are given in columns tadt and
tc. Note that all time measurements are in microseconds. The construction of ADTs

9

18
6.

cr
af

ty
20

0.
si

xt
ra

ck
17

7.
m

es
a

17
6.

gc
c

16
8.

w
up

w
is

e
30

0.
tw

ol
f

18
8.

am
m

p
17

3.
ap

pl
u

19
7.

pa
rs

er
25

4.
ga

p
25

3.
pe

rl
bm

k
25

5.
vo

rt
ex

25
6.

bz
ip

2
17

9.
ar

t
17

5.
vp

r
30

1.
ap

si
16

4.
gz

ip
18

3.
eq

ua
ke

17
2.

m
gr

id
18

1.
m

cf
17

1.
sw

im

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Simple vs. Sreedhar
Delayed vs. Sreedhar

Fig. 7. Speed-Ups: Simple and Delayed Algorithm vs. Sreedhar.

is fast but it takes longer than computing path expressions. The computation of ADTs
requires four steps: (1) compute topological order, (2) compute dominator tree, (3) per-
form the pre-processing step for NCAs, and (4) construct the ADT using the dominator
tree, topological order, and NCA relation. Hence, the execution time to construct ADTs
has the same magnitude as computing path expressions with the simple algorithm. The
delayed algorithm has a significantly smaller runtime and is approx. 1.8 times faster
than the simple algorithm.

We compared the runtime of our algorithms8 with the runtime of a C++/STL im-
plementation of Sreedhar’s eager algorithm. For the comparison we measured the time
to construct the DJ-graphs (Column tdj) and the reduction phase (tr). However, we did
not measure the propagation phase which is a simple traversal over the dominator tree.
The speed-ups of the simple and delayed algorithm vs. Sreedhar’s algorithm are shown
for each Spec2000 benchmark in Figure 7. The speed-ups vary depending on the size
of the flowgraphs. For small flowgraphs the execution time of the simple and delayed
algorithm is of the same magnitude. For large flowgraphs the execution time diverges
by up to a factor of 9.3 and 15.6, respectively.

The delayed algorithm has significantly smaller path expressions. The delayed al-
gorithm reduces the number of regular expression operators by 38.1%. We attribute the
more compact path expressions to the re-use of regular expressions. Though the num-
ber of ∗ and ∪ operators is the same for both algorithms, the number of · operators is
reduced by a factor of three. This substantial reduction is due to reusing the same L and
R sub-sequences. The reductions for all benchmarks are shown in Figure 8. The reduc-
tions vary between 24.8% (best case) and 83.0% (worst case) depending on how many

8 Our algorithms are highly-tuned C-algorithms.

10

186.crafty
200.sixtrack

177.mesa
176.gcc

168.wupwise
300.twolf

188.ammp
173.applu
197.parser

254.gap
253.perlbmk

255.vortex
256.bzip2

179.art
175.vpr

301.apsi
164.gzip

183.equake
172.mgrid

181.mcf
171.swim

0 10 20 30 40 50 60 70 80 90 100
Reduction (%)

Fig. 8. Reductions of Operations (%) between 0% and 100%. Benchmarks achieving better re-
ductions are listed first.

sub-sequences of L and R prefixes can be reused. Larger flowgraphs have a greater
potential for reuse of sub-path expressions.

7 Discussion and Related Work

Besides Gaussian elimination with order O(n3) complexity, there are five elimination
algorithms known in literature: (1) Allen-Cocke interval analysis [1], (2) Hecht-Ullman
T1−T2 analysis [9], (3) Graham-Wegman analysis [6], (4) Sreedhar-Gao-Lee DJ graph
based analysis [21], (5) Tarjan interval analysis [23], (see [19] for a comparison of
the first four algorithms). Algorithms (1) to (4) are algebraic elimination-based algo-
rithms using substitution and loop-breaking. Only (5) is an elimination-based approach
using path expressions. Note the approach introduced in [20] is marginally related to
elimination-based algorithms because this approach detects standard structured control-
flow patterns, such as “if-then-else”, “begin-end”, or “while-do”, which is not our con-
cern.

Allen-Cocke interval analysis establishes a natural partition of the variables and a
variable order on each of a sequence of systems that, when used to order the equations,
results in a highly structured coefficient matrix facilitating the equation-reduction pro-
cess. Hecht-Ullman T1 − T2 analysis, Tarjan interval analysis, and Graham-Wegman
analysis avoid repeated calculations of common substitution sequences in the equations
by delaying certain computations. Sreedhar-Gao-Lee DJ graph based analysis employs
structural information of the so-called DJ graph, a union of the CFG and its dominator
tree, to find efficient substitution sequences.

Hecht-Ullman T1−T2 analysis uses a nondeterministic substitution order for terms
in the equations; the substitutions are recorded in a height-balanced 2−3 tree to take ad-
vantage of possible common factors in subsequent calculations. Tarjan interval analysis
establishes a linear variable order and eliminates variables from the system of equations
in that order, delaying some calculations; a path compressed tree is used to remember

11

Problemsize Simple Algo Delayed Algo Sreedhar’s Algo
Bnchm. n m tadt n∗ n∪ n· tc n· tc nE1 nE2a nE2b tdj tr
gzip 1639 2369 2.09 201 613 5723 1.27 3500 1.23 199 636 966 5.36 7.25
wupwise 444 657 0.78 58 175 3031 0.72 1010 0.44 58 148 317 1.58 3.89
swim 109 158 0.16 27 28 280 0.09 223 0.09 27 30 56 0.43 0.39
mgrid 179 269 0.26 51 49 628 0.16 408 0.16 51 46 111 0.64 0.74
applu 590 899 0.78 172 153 3958 0.72 1538 0.52 172 156 567 1.93 4.33
vpr 4227 5973 5.51 498 1509 16672 3.54 9161 3.15 494 1437 2991 13.75 21.57
gcc 60818 96156 88.47 3412 33822 468454 90.28 148878 49.38 3303 24761 58003 203.85 863.93
mesa 21981 31418 32.22 1330 9171 196921 42.15 48257 16.20 1300 8071 17989 72.61 245.83
art 615 924 0.87 130 205 2720 0.68 1462 0.55 125 213 505 2.06 4.61
mcf 449 660 0.59 57 180 1290 0.34 968 0.37 57 173 265 1.53 1.79
equake 309 423 0.43 67 73 1041 0.24 676 0.25 66 66 232 1.10 1.66
crafty 6161 9563 7.69 403 3107 70633 14.13 14941 5.34 401 2359 6619 20.40 183.23
ammp 3773 5754 6.53 431 1725 24543 5.03 9013 3.09 427 1408 3390 12.30 28.53
parser 4967 7428 6.90 655 2099 27705 5.37 11056 3.84 652 1756 3584 16.16 30.65
sixtrack 6998 10576 15.41 947 2844 74721 13.57 16941 5.61 293 694 1619 6.83 13.07
perlbmk 6904 10464 9.11 265 3529 33429 6.89 15495 5.28 254 3004 4892 22.68 46.98
gap 21178 31685 26.78 1490 9847 109902 20.61 47878 15.98 1459 9188 16587 68.75 123.09
vortex 18633 27490 24.82 236 9539 80959 17.02 37950 13.86 235 7630 11138 60.62 96.50
bzip2 1648 2495 2.07 277 642 7563 1.56 3619 1.30 276 590 1024 5.35 9.99
twolf 7294 11216 10.39 875 3227 51216 9.27 17397 5.74 863 2763 5845 23.76 70.05
apsi 2009 2968 2.64 367 688 7782 1.64 4413 1.53 364 696 1257 6.45 9.79
Total 170925 259545 244.50 11949 83225 1189171 235.28 394784 133.91 11076 65825 137957 548.15 1767.87

Table 1. Results of the simple and delayed ADT algorithm, and results of Sreedhar’s algorithm.
Columns n and m are the number of nodes and edges in the flowgraph. Column tADT is the exe-
cution time to construct the ADT. n∗, n∪, and n· are the number of regular expression operators
and tc is the execution time to compute path expressions. Note that the n∗ and n∪ are identical
for the simple and delayed algorithm. For Sreedhar’s algorithm the number of E1, E2a, and E2b
reductions are nE1, nE2a, and nE2b. The execution time to construct the DJ-graph and the time
to perform the reductions are tdj and tr. All execution times are given in µs.

sequences of reduced equations for these delayed calculations. Graham-Wegman anal-
ysis establishes an order of substitutions for each term in the system that avoids dupli-
cation of common substitution sequence calculations. It uses a transformed version of
the original flowgraph to remember previous substitutions. By delaying computations,
Sreedhar-Gao-Lee DJ graph based analysis can be made more efficient. In contrast to
Tarjan interval analysis, the Sreedhar-Gao-Lee algorithm employs simple path com-
pression on the dominator tree.

Among the known elimination algorithms the best in terms of worst-case complex-
ity is Tarjan’s interval analysis algorithm, which balances the path compressed tree in
a preprocessing operation. This algorithm has a runtime of O(m logm) employing a
simple path compression scheme. By using a sophisticated data structure for path com-
pression a better upper bound of O(mα(m,n)) can be achieved. However, the simple
path compression scheme will outperform the sophisticated one for typical problem
sizes in program analysis.

Our algorithm is based on structural information of the decomposition tree. Thus it
is more similar to the Sreedhar-Gao-Lee algorithm than to the other algorithms. It uses
simple path compression employed on the decomposition tree to remember sequences
of reduced equations for delayed calculations. It is, however, easy to use Tarjan’s pre-
processing operation and a separate data structure to achieve a more efficient version of
our algorithm.

12

8 Conclusion
In this paper we introduced a new framework for elimination-based data flow analysis
using path expressions. Elimination-based frameworks are used for program analysis
problems [17, 18, 15, 5, 3, 4] that cannot be solved with iterative solvers. The framework
uses a new data structure called annotated decomposition trees (ADTs) that comprises
topological order, dominance relation, and the control flow. We presented a simple al-
gorithm and a delayed algorithm that employed annotated decomposition trees as a data
structure. The worst-case complexities of both algorithms are O(n2) and Õ(m).

We conducted experiments with the SPEC2000 benchmark suite. The delayed algo-
rithm runs 1.8 times faster than the simple algorithm and has 38.1% of the operators in
comparison with the simple algorithm.

Acknowledgement
We would like to thank Bernd Burgstaller, Shirley Goldrei, and Wei-ying Ho for their
useful comments and for proof-reading the manuscript. This work has been partially
supported by the ARC Discovery Project Grant “Compilation Techniques for Embed-
ded Systems” under Contract DP 0560190.

References

1. F. E. Allen and J. Cocke. A program data flow analysis procedure. Comm. ACM, 19(3):137–
147, 1976.

2. M. Bender and M. Farach-Colton. The lca problem revisited. In Proc. of Latin American
Theoretical Informatics, pages 88–94, 2000.

3. J. Blieberger. Data-flow frameworks for worst-case execution time analysis. Real-Time Syst.,
22(3):183–227, 2002.

4. R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of redundant computations. In
Proc. of PLDI, pages 1–14, 1998.

5. T. Fahringer and B. Scholz. A Unified Symbolic Evaluation Framework for Parallelizing
Compilers. IEEE TPDS, 11(11), November 2000.

6. S. L. Graham and M. Wegman. Fast and usually linear algorithm for global flow analysis. J.
ACM, 23(1):172–202, 1976.

7. D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors. Siam J.
Comput., 13(2):338–355, May 1984.

8. M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland, New York, 1
edition, 1977.

9. M. S. Hecht and J. D. Ullman. A simple algorithm for global data flow analysis problems.
SIAM J. Comput., 4(4):519–532, 1977.

10. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages,
and computation, 2nd edition. SIGACT News, 32(1):60–65, 2001.

11. R. Joshi, U. Khedker, V. Kakade, and M. Trivedi. Some interesting results about applications
of graphs in compilers. CSI J., 31(4), 2002.

12. G. A. Kildall. A unified approach to global program optimization. In Proc. of Symposium
on Principles of Programming Languages, pages 194–206. ACM, ACM Press, 1973.

13. D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.
Addison-Wesley, Reading, Mass., third edition, 1997.

14. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM
Trans. Program. Lang. Syst., 1(1):121–141, 1979.

13

r u r2 v

(a) Paths(r, r), (∀u ∈ F, ∀v ∈ B)

r u r r2 v

(b) Paths(r, u), (∀u ∈ V1) (c) Paths(r, v), (∀v ∈ V2)

u1

r r2

uk

(d) Paths(r, r2)

Fig. 9. Piecewise description of path sets: dotted lines are paths; solid lines are edges.

15. E. Mehofer and B. Scholz. A Novel Probabilistic Data Flow Framework. In Proc. of CC,
pages 37 – 51, Genova, Italy, April 2001. Springer.

16. M. C. Paull. Algorithm design: a recursion transformation framework. Wiley-Interscience,
New York, NY, USA, 1988.

17. G. Ramalingam. Data flow frequency analysis. In Proc. of PLDI, pages 267–277, New York,
NY, USA, 1996. ACM Press.

18. T. Robschink and G. Snelting. Efficient path conditions in dependence graphs. In Proc. of
ICSE ’02, pages 478–488, New York, NY, USA, 2002. ACM Press.

19. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM Computing
Surveys, 18(3):277–315, Sept. 1986.

20. M. Sharir. Structural analysis: A new approach to flow analysis in optimizing compilers.
Computer Languages, 5:141–153, 1980.

21. V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework for elimination-based data flow
analysis using DJ graphs. ACM TOPLAS, 20(2):388–435, 1998.

22. R. Tarjan. Applications of path compression on balanced trees. J. of the ACM, 26(4):690–
715, Oct. 1979.

23. R. E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594–614, 1981.
24. R. E. Tarjan. A unified approach to path programs. J. ACM., 28(3):577–593, 1981.
25. O. Vernet and L. Markenzon. Maximal reducible flowgraphs. Technical Report RT029/DE9,

D. de Engenharia de Sistemas, Instituto Militar de Engenharia, Rio de Janeiro, Brasil, 1998.
26. O. Vernet and L. Markenzon. Solving problems for maximal reducible flowgraphs. Disc.

Appl. Math., 136:341–348, 2004.

A Appendix
Definition 5. Path a = 〈(u1, u2), . . . , (uk−1, uk)〉 is connectable to path b = 〈(v1, v2),
. . . , (vl−1, vl)〉 if uk is equal to v1.

Definition 6.

A · B =

{⋃
a∈A

⋃
b∈B a · b, if a is connectable to b

∅, otherwise
(12)

Proof. (Proof of Theorem 1). Proof by structural induction over the ADT. Each subtree
in the ADT represents a sub-flowgraph of the flowgraph.
Inductive Hypothesis: ∀u ∈ V : σ(P (r, u)) = Paths(r, u)
Basis: Both cases are trivially true by Proposition of Theorem 1.

14

Induction Step: The composition operation ⊕(F,B) (cf. Figure 2 and Def. 4) allows us
to break the paths of the composition into segments, as suggested in Figure 9. Note that
r1 becomes r after the composition. Path set Paths(r, r) is depicted in Figure 9(a). A
path in Paths(r, r) starts in r and uses a path inG1 as a sub-path to reach a node u ∈ F .
From node u ∈ F there exists an edge to node r2 by Def. 4. From node r2 a path in G2

is used as a sub-path to reach a node v ∈ B. By Def. 4 there exists an edge from v ∈ B
to r. Since a path may consist of several cycles we express the path set Paths(r, r) as

Paths(r, r) =
⋃

i≥0

[⋃

u∈F

⋃

v∈B
Paths(r, u) · {〈u→ r2〉} · Paths(r2, v) · {〈v → r〉}

]i

(13)
where the inner term describes for a concrete u ∈ F and v ∈ B all possible simple
cycles. Note that if set B is empty, the path set Paths(r, r) becomes ε because the inner
term reduces to an empty set and Kleene’s closure of the empty set yields ε, i.e. ∅0 = ε.
A node u ∈ V1 is described by path set Paths(r, r) concatenated by path set Paths(r1, u)
that is a path in G1 as illustrated in Figure 9(b). Therefore,

∀u ∈ V1 : Paths(r, u) = Paths(r, r) · Paths(r1, u). (14)

As depicted in Figure 9(c), a node v ∈ V2 can be described by the concatenation of a
path from r to r2 and a path in G2 from r2 to node v:

∀v ∈ V2 : Paths(r, v) = Paths(r, r) · Paths(r, r2) · Paths(r2, v) (15)

The paths of path set Paths(r, r2) are depicted in Figure 9(d). The possible paths from
Paths(r1, u) to r2 are merged:

Paths(r, r2) =
⋃

u∈F
Paths(r1, u) · {〈u, r2〉} (16)

It can be shown by an indirect argument (using Def. 4) that all paths from r to u ∈ V1

are contained in set Paths(r, u) of Equation 14 and that all paths from r to v ∈ V2

are contained in set Paths(r, v) of Equation 15. By using the inductive hypothesis we
transform Equation 13 to the following path expression:

Paths(r, r)=
⋃

i≥0

[(⋃

u∈F
σ(P1(r1, u) · (u→ r2))

)
·
(⋃

v∈B
σ(P2(r2, v) · (v → r1))

)]i

(17)

=σ([X · Y]
∗
) = σ(L) (18)

Equations 14 and 15 are transformed as

∀u ∈ V1 : Paths(r, u) = σ(L) · σ(P1(r1, u)) = σ(L · P1(r1, u)) (19)
∀v ∈ V2 : Paths(r, v) = σ(L) · σ(X) · σ(P2(r2, v)) = σ(R · P2(r2, u)) (20)

where Paths(r, r2) =
⋃
u∈F σ(P1(r1, u) · (u→ r2)) = σ(X).

15

