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Abstract. In this paper we present data flow frameworks that are able
to detect access anomalies in Ada multi-tasking programs. In partic-
ular, our approach finds all possible non-sequential accesses to shared
non-protected variables. The algorithms employed are very efficient. Our
approach is conservative and may find false positives.

1 Introduction

Concurrent programming is a complex task. One reason for this is that scheduling
exponentially increases the possible program states. Thus a dynamic execution
order of the statements executed in parallel is introduced. In general this leads to
different behavior between different runs of a program, even on the same input.
Because of the nondeterministic behavior, faults are difficult to detect. Static
program analysis, which has been used since the beginning of software, can be
a valuable aid for the detection of such faults.

One of the major problems with concurrent programming are access anoma-
lies, also called data races. In this paper we study the problem of detecting
non-sequential access to global shared variables. We employ data flow frame-
works in order to solve sub-problems of this general problem. In detail, we set
up a data flow framework to find all tasks which potentially run in parallel and
we set up a second data flow framework to handle the interprocedural problems
of determining variables being “global” to a certain entity. In joining the solu-
tions of these data flow problems, we are able to detect access anomalies in a
conservative manner, i.e., if there actually is a non-sequential access to a shared
non-protected variable, our approach will detect it. On the other hand, we may
also detect false positives.

The remainder of the paper is organized as follows. In Section 2 our data flow
frameworks to find tasks running in parallel and to determine the set of variables
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“global” to a program entity are presented. Examples are used to illustrate our
framework. In Section 3 we survey related work, before we conclude the paper
and describe future work in Section 4.

2 Data Flow Framework

In the following we first define a data flow framework to determine which task
objects run in parallel to other task objects. This information is used later on
to determine if tasks running in parallel access the same global variables.

2.1 Setting up Data Flow Equations for Relation ‖

We define a relation ‖ on task objects such that for task objects t1 and t2:
t1 ‖ t2 if task objects t1 and t2 run in parallel. Note that ‖ commutes, i.e.,
t1 ‖ t2 ⇐⇒ t2 ‖ t1.

A control flow graph (CFG) G = (N,E, r) consists of a set N of nodes, and
a set E ⊆ N × N of edges. Node r is the designated root node of the CFG.

Given a CFG(t) = (N,E, r) of a task body t, the basis for the data flow
framework are standard equations [21] of the form

Sout(n) = Gen(n) ∪ (Sin(n) \ Kill(n))

Sin(n) =
⋃

n′∈Pred(n)

Sout(n
′),

where n denotes a node of a CFG, Gen(n) is the set of task objects generated
(declared or allocated via a new-statement) in node n, and Kill(n) denotes the set
of task objects terminating in node n. All Gen and Kill sets can be empty. Note
that Gen sets also include task objects generated indirectly via subprogram or
entry calls and via calls of protected operations. Note also that we only take into
account the static structure of the underlying multi-tasking program. Thus a task
object t is considered to be generated in unit u if there is a statement contained in
u that allocates t or u starts with the begin-statement that immediately follows
the declarative part containing the declaration of t.

The execution of a handled sequence of statements of a package body is
considered to be part of the activation of its master task [14]. Thus the CFG
of such code is prepended to the CFG of its master task. If there are several
such code pieces the corresponding CFGs can be prepended in arbitrary order
because if task are generated in these code pieces, their order of activation does
not affect the ‖-relation.

Since these are sets a compiler has to determine in order to guarantee that a
multi-tasking program is executed correctly, we assume that both Gen and Kill
sets can be found automatically (and are available for our analysis).

A detailed description of sets Sout(n) is as follows: If a task object t is gener-
ated, it is part of the Gen set, i.e., t ∈ Gen(n). If an array of task objects of type
tt is declared, several task objects of type tt may run in parallel. We model this
by writing t∗ ∈ Gen(n). In addition, we extend the usual set operations such
that {t∗} ∪ {t} = {t∗}. A similar notation is used for the Kill sets.



We propose to use elimination methods to solve this data flow framework
(see e.g. [21] for a survey of elimination methods). As a preliminary step we
need a normal form for our equations. We note that the equation for Sin(n) can
be eliminated by inserting it into Sout(n). From here on we write S(n) instead
of Sout(n) to keep notation short.

Let A,B,C be sets. For set operations ”∪” and ”\” we have

(A ∪ B) \ C = (A \ C) ∪ (B \ C) (1)

and
(A \ B) \ C = A \ (B ∪ C). (2)

Let I ⊆ N be a subset of the set of nodes. We define the following normal
form for our equations:

S(n) =
⋃

i∈I

((

S(i) \ Kill′(i)
)

∪ Gen′(i)
)

.

Elimination methods require two rules:

Insertion Rule. One equation has to be substituted into another one. This is
straight-forward to do and by repeated application of Eq. (1) and (2) the
resulting equation can be brought to normal form again.

Loop Breaking Rule. Given an equation

S(n) =
⋃

i∈I

((

S(i) \ Kill′(i)
)

∪ Gen′(i)
)

,

where n ∈ I, the task of loop breaking is to find an equivalent equation [20]

S′(n) =
⋃

i∈I′

((

S(i) \ Kill′′(i)
)

∪ Gen′′(i)
)

(3)

such that n 6∈ I ′.
We define our loop breaking rule as follows. Let

S(n) =
⋃

i∈I\{n}

((

S(i) \ Kill′(i)
)

∪ Gen′(i)
)

∪
((

S(n) \ Kill′(n)
)

∪ Gen′(n)
)

.

Then

S′(n) =









⋃

i∈I\{n}

((

S(i) \ Kill′(i)
)

∪ Gen′(i)
)



 \ Kill′(n)



 ∪ Gen′′′(n)

(4)
where Gen′′′(n) = {t∗ | t ∈ Gen′(n) or t∗ ∈ Gen′(n)}. The definition of
Gen′′′ ensures that t∗ is present in the set if task objects t are generated
in the loop body. This implies that task objects of this type are running in
parallel if the loop body is executed at least two times. If the loop is iterated
less than two times, this is not the case. Since however we do not know the
number of loop iterations statically, we assume that the loop is iterated more
than once.
Bringing Eq. (4) into normal form yields Eq. (3).



We would like to note that it is not possible to solve our data flow framework
via iterative methods [15] because iterative methods require a too simple loop
breaking rule.

In order to determine the ‖-relation from the solution of the data flow frame-
work, we use the following algorithm.

construct‖ ()
1 for each task CFG do

2 for each node n do

3 for each t∗ ∈ S(n) do

4 define t ‖ t

5 endfor

6 for each pair t1, t2 ∈ S(n) do

7 define t1 ‖ t2

8 endfor

9 endfor

10 endfor

Since our data flow framework is defined on CFGs, and since a multi-tasking
program consists of several CFGs (one for each task body), the data flow frame-
work has to be applied to all of them. This, however, has to be done in a certain
order because CFG(t) can only be processed if all task bodies corresponding to
task objects generated in t have been processed before. This order on task ob-
jects can be modeled by a directed acyclic graph (DAG). Thus we apply our data
flow framework in reverse topological order (cf. e.g. [19]) to this DAG. The last
CFG to be analyzed is that of the environment task (main procedure). Hence,
we do not handle mutual task declarations such as those depicted in Fig. 1, even
if the declaration is performed only conditionally.

1 procedure Mutual is

2 task type B is end B;

3 task type C is end C;

4 task body B is

5 T Var : C;
6 begin null; end B;

7 task body C is

8 T Var : B;
9 begin null; end C;

10 The Task : B;

11 begin null; end Mutual;

Fig. 1. Example: Unconditional Mutual Task Declarations

2.2 Determining Sets of Used and Modified Variables

In this section we develop a method to determine the global variables read and
written by a task. For this we need the notion of a variable being global to a



given entity, according to the scoping rules of Ada95. For a declared entity the
scope of the declaration denotes those places in the code where it is legal to
refer to it. The Ada95 programming language is based on static scoping (cf. [22,
p. 176]), which means that visibility of entities at a given program point follows
solely from the lexical structure of the program, and not from dynamic aspects
(such as the point of invocation of a procedure). Section 8.2 of the language
reference manual [14] defines the scope of a declaration; a crucial aspect of these
scoping rules is that the scope of a declaration that occurs immediately within
the visible part of an outer declaration extends to the end of the scope of the
outer declaration.

1 with G; use G;

2 procedure Main is

3 Local : Integer := 0;
4 begin

5 P (Global);
6 declare

7 task B is end B;
8 task body B is

9 Another : Integer := 0;
10 begin

11 Global := Global + 1;
12 end B;
13 begin null; end;
14 end Main;

1 package G is

2 Global : Integer;
3 procedure P (X : in out Integer);
4 end G;

1 package body G is

2 U : Integer;
3 procedure P (X : in out Integer) is

4 begin

5 X := X + 1;
6 declare

7 task C is end C;
8 task body C is

9 begin

10 X := X + 1; U := U + 1;
11 end C;
12 begin null; end;
13 end P;
14 end G;

Fig. 2. Example Demonstrating Global and Owned Variables

With Ada95, the following constructs act as scopes: blocks, class subtypes
and types, entries, functions, loops, packages, subprograms, protected objects,
record types and subtypes, private types, task types and subtypes.

Definition 1. A declaration is local to a declarative region if the declaration oc-
curs immediately within the declarative region. An entity is local to a declarative
region if the entity is declared by a declaration that is local to the declarative
region [14, Section 8.1(14)].

Definition 2. Given a subprogram, task body, a protected entry, procedure or
function, or a dispatching operation u (in the following termed unit u), we say
that u owns an entity e, if e is local to the declarative region of u. In addi-
tion, task entries constitute units; they own the union of the entities owned by
their corresponding accept statements. The ownership relation is reflexive and
transitive. Moreover, we extend it to the dynamic case in the sense that u owns
all entities owned by entities called by u. Entities which are visible to an en-
tity owned by u, but which are not owned by u, are said to be global to u. We
write O(u) to denote the set of entities owned by u, and G(u) to denote the set
of entities that are global to u.



It should be noted that our definition of “globalness” is related to up-level ad-
dressing, under incorporation of call-chains.

As an example, consider Fig. 2. Variables Local and Another are owned by
procedure Main, variable Another is also owned by task B, and variables Global
and U are global to Main, B, C, and P. In this example the formal parameter X

of procedure P is an alias for variable Global; we will treat aliasing in the latter
part of this section.

For every unit u that is a task body, and for the subprogram body corre-
sponding to the environment task (the “main” program), our analysis determines

1. the sets Or and Ow of read/written variables owned by u,
2. the sets Gr and Gw of read/written variables global to u, and
3. the sets σr = Or ∪ Gr, σw = Ow ∪ Gw, σG = Gr ∪ Gw, and σrw = σr ∪ σw.

Given now two task objects t1 and t2 with their corresponding task bodies B1

and B2. If t1 ‖ t2, and the intersection of the corresponding sets σrw(B1) ∩
σrw(B2) is non-empty, then we are facing a potential conflict. If an entity e

from the intersection is global to at least one of the participating task bodies B1

and B2, and if e is modified in at least one of the participating task bodies (as
opposed to just being used), then the conflict is “real”. (We will formalize this
condition in Section 2.3.)

We are now faced with the problem of determining for each unit u the cor-
responding quadruple 〈Or,Ow,Gr,Gw〉. This can be related to interprocedural
data flow analysis which is concerned with the determination of a conservative
approximation of how a program manipulates data at the level of its call graph.
In our case we are interested in the owned and global variables read and written
by a given unit. Our problem is flow-insensitive as we currently do not incorpo-
rate control flow information encountered in a unit; as a consequence, a single
read or update operation on a given variable v in a unit u is already sufficient
to place v in the respective set of u’s quadruple.

It is shown in [8] how alias-free flow-insensitive side-effect analysis can be
carried out for procedure call graphs and call-by-reference parameter passing.
In [9] it is shown how interprocedural flow-insensitive may-alias information can
be factored into this result to account for aliases due to call-by-reference pa-
rameter passing, for procedures of arbitrary lexical nesting level. This approach
assumes however the absence of pointer aliases. In the following we investigate
to what extent [8, 9] apply to Ada95 and how those approaches can be adapted
to determine the sought quadruples.

Parameter passing: Ada95 employs two types of parameter passing, namely
by copy (aka copy-in/copy-out), and by reference. When a parameter is passed
by copy, any information transfer between formal and actual parameter occurs
only before and after execution of the subprogram (cf. [12], [14, 6.2]). From the
point of view of our analysis method both parameter passing mechanisms are
equivalent, because we screen the source code only at the granularity of whole
tasks (and subprograms).
Pointer aliases: [8, 9] does not include pointer aliases. Moreover, the may-alias
problem for k > 1 level pointers is undecidable (cf. e.g., [5]). Hence we chose



a conservative analysis strategy with respect to pointer aliasing which assumes
that every entity possibly targeted by a pointer is modified during a procedure
call. Due to the induced complexity we had to exclude access to subprogram
types altogether from our analysis.
Calculation of 〈Or,Ow,Gr,Gw〉: The only statement aggregation in [8] are
procedures. In the following we write GMOD(p) to denote the set of all vari-
ables that may be modified by an invocation of procedure p. Furthermore, we
write IMOD(p) to denote those variables that may be modified by executing
procedure p without executing any calls within it.

In order to compute GMOD(p), [8] sets up a data flow problem that is based
on the procedure call graph and consists of equations of the form

GMOD(p) = IMOD(p) ∪
[

⋃

e=(p,q)

be

(

GMOD(q) ∩ Nonlocals(q)
)

]

. (5)

Therein function be maps names from procedure q into names from procedure p

according to the name and parameter binding at the call site e = (p, q). Specif-
ically, be maps the formal parameters of q to the actual parameters at the call
site. The intersection of GMOD(q) with the set of nonlocal variables Nonlocals(q)
ensures that variables local to q are factored out beforehand.

To compute our sought quadruples for Ada95, we can set up a system of
equations similar to Eq. (5). Doing so we split the set GMOD into the sets
of owned and global variables, and we move from procedures to units in terms
of statement aggregation. (Hence the procedure call graph becomes a unit call
graph.) In this way, IMOD(u) denotes those variables that may be modified by
executing unit u without executing any calls to subprograms or entries within
it, and without executing any task objects owned by it. We do not count a
modification that is due to an initialization expression of a declaration in the
declarative part (cf. [14, 3.11]) of unit u; this is a measure to reduce false positives
and will be explained in Section 2.5.

G′
w(u) =

⋃

e=(u,u′)

be

(

Gw(u′)
)

(6)

Gw(u) =
[

IMOD(u) ∩ G(u)
]

∪
[

G′
w(u) \ O(u)

]

(7)

Ow(u) =
[

IMOD(u) ∩ O(u)
]

∪
[

⋃

e=(u,u′)

Ow(u′)
]

∪
(

G′
w(u) ∩ O(u)

)

(8)

Eq. (6) denotes the set of variables which are modified by called units of u

and which are global to those called units. In Eq. (7) we determine the set Gw

of unit u, which consists of the locally modified global variables of u and those
variables of Eq. (6), which are global to u. Finally, the set Ow of u consists of the
locally modified owned variables of u as well as the modified variables owned by
called units and those modified global variables of called units which are owned
by u. In replacing IMOD by IUSE as the set of used variables, a system of
equations similar to Eq. (6)–(8) can be defined to determine the sets Gr and Or.



The sets IMOD(u) and IUSE(u) themselves can be computed by a single
linear scan of the statements of u. Therein we do not consider variables which
are marked by pragmas Atomic or Volatile, or protected variables, as none of
them can give raise to access anomalies. In addition we treat accesses to array
components as accesses to the whole array. The same applies to records and their
components.

Dispatching operations of tagged types require additional thinking — if we
cannot determine the target of a dispatching call (cf. [14, 3.9.2]) at compile-time,
we have to assume calls to all dispatching operations that might be the target
of the dispatching call at run-time.

A further source of complication are generic packages, for which we defer
analysis to the point of instantiation.

Factor In (ALIAS, U)
1 for each u ∈ U do

2 Factor Set(u, ALIAS,Or)
3 Factor Set(u, ALIAS,Ow)
4 Factor Set(u, ALIAS,Gr)
5 Factor Set(u, ALIAS,Gw)
6 endfor

Factor Set (u, ALIAS, in out Sin)
1 Sout : : = Sin

2 -- add formal parameter aliases:
3 for each v ∈ Ext Formals (u) do

4 if v ∈ Sin then

5 Sout : : = Sout ∪ALIAS(v, u)
6 endif

7 endfor

8 -- add global variable aliases:
9 for each v ∈ Nonlocals(u) ∩ Sin do

10 Sout : : = Sout ∪ALIAS(v, u)
11 endfor

12 Sin : : = Sout

Fig. 3. Algorithm to Factor In Aliasing Information

The data flow problem defined above computes alias-free data flow infor-
mation. Regarding the example given in Fig. 2, this means that e.g., with task
body C, we are not aware that the formal parameter X of procedure P is an alias
for variable Global4. To factor in aliasing information, we employ the interpro-
cedural may-alias analysis method from [9]. Let ALIAS(v, u) denote the set of
aliases for variable v within unit u. Due to [9] we can compute ALIAS(v, u),
for each formal parameter v and for each global variable v for a unit u. We
depict in Fig. 3 how this aliasing information can be factored into our alias-
free quadruple-based data flow information; this algorithm is an adaption of an
algorithm from [9] to our data flow problem at hand.

We assume that the driver algorithm Factor In receives as arguments the
sets of aliases (ALIAS) and the units (U) of the program under consideration.
For each unit u and each set of its associated quadruple 〈Or,Ow,Gr,Gw〉, Fac-

tor In calls the factoring algorithm Factor Set in order to factor in aliasing
information. This algorithm proceeds in two steps. The first loop addresses the

4 An alias from the perspective of our analysis method, which is by necessity insensitive
to the copy-in/copy-out parameter passing mechanism of Ada95.



set Ext Formals of extended formal parameters of u, which consists of all formal
parameters visible within u, including those of units that u is nested in, that
are not rendered invisible by intervening declarations5. In the second loop we
add the aliases of variables that are non-local to u. Note that Factor Set only
adds aliases to variables that are contained in its input-set Sin.

In the following section we define operations on our quadruple-based data
flow information which allows us to record information on program variables
being read or updated non-sequentially.

2.3 Potential Non-Sequential Variable Access

We have shown in Section 2.1 how we can compute relation ‖ in order to de-
termine task objects that may execute in parallel. Moreover, in Section 2.2 we
have devised an algorithm to compute the sets of global and owned variables
used/modified by a task body.

Let B(t) denote the task body of a task object t; with this notation we regard
the environment task also as a task object, with its task body being the main
procedure of the program. A variable v is used by a task object t, if v is in the
set6 of read variables of the task body of t, that is, use(v, t) ⇔ v ∈ σr(B(t)).
Likewise for modifications of v by t, written as mod(v, t) ⇔ v ∈ σw(B(t)). We
have now everything in place to formulate the condition for a potential non-
sequential variable access between two task objects t1 and t2 which may execute
in parallel, that is, t1 ‖ t2.

Definition 3. Predicate σ(t1, t2) is true if some variable v is non-sequentially
accessed by task objects t1 and t2, false otherwise. It is formally defined as

σ(t1, t2) =
∧

v∈S

[

[

(

use(v, t1) ∧ mod(v, t2)
)

(9)

∨
(

mod(v, t1) ∧ use(v, t2)
)

(10)

∨
(

mod(v, t1) ∧ mod(v, t2)
)

]

(11)

∧
(

v ∈ σG(B(t1)) ∪ σG(B(t2))
)

]

, (12)

where S = σrw(B(t1)) ∩ σrw(B(t2)) are the variables accessed by both, B(t1)
and B(t2), and (12) ensures that variable v is global to at least one of the involved
task bodies.

Note that t1 = t2 is not excluded by this definition. In order to see that this
is useful consider two tasks of the same task type tt being allocated via new
statements (e.g. in a loop-body). Thus we have t1 = t2, say, and t1 ‖ t2. Now, if
both t1 and t2 modify variable v which is locally declared in tt, σ(t1, t2) evaluates
to false only because Eq. (12) becomes false in this case.
5 It is shown in [9] how Ext Formals can be computed from the so-called binding graph

of procedure parameters.
6 Cf. Section 2.2 for the definition of these sets.



2.4 Complexity Issues

The data flow problem described in Section 2.1 can be solved via elimination
methods in O(|E| · log |N |) time [25], where |N | denotes the number of nodes in
a CFG and |E| the number of edges in a CFG.

As shown in [8, 9], the data flow problem stated in Section 2.2 can be solved
in O(|E| · |N | + |N |2), with |N | and |E| being the number of call graph nodes
and edges.

Summing up, our method performs very efficiently in analyzing Ada multi-
tasking programs for detecting access anomalies.

2.5 A Simple Example

For purposes of demonstration we have chosen a simple concurrent Ada program
without aliasing effects. It is the well know Producer/Consumer pattern, with
its source code depicted in Figure 4. In procedure Erroneous (which is also the
main subprogram of this example), variable a and two tasks, Producer p and
Consumer c, are declared. Both of them are using variable a (the producer is
even modifying it) ten times in an unsynchronized way.

procedure Erroneous is

a : Integer := 0; -- Node 1

task type Producer(Count : Natural) is -- Node 1

end Producer; -- Node 1

task type Consumer(Count : Natural) is -- Node 1

end Consumer; -- Node 1

task body Producer (Count : Natural) is

begin

for i in 1..Count loop -- Node 2

a := i; -- Node 3

-- do something else in the meantime - Node 3

end loop;
end Producer;
task body Consumer (Count : Natural) is

begin

for j in 1..Count loop -- Node 4

-- read global variable a -- Node 5

end loop;
end Consumer;
p : Producer(10); -- Node 1

c : Consumer(10); -- Node 1

begin

null; -- Node 1

end Erroneous;

Fig. 4. Example: Source Code

The data flow equations for the example shown in Figure 5 are set up as
follows (for simplicity we abbreviate Erroneous by “e”):

S(Start) = {e},

S(1) = (S(Start)\Kill(1)) ∪ Gen(1) = ({e}\∅) ∪ {p, c} = {e, p, c},

S(2) = ((S(1) ∪ S(3))\Kill(2)) ∪ Gen(2) = S(1) ∪ S(2),

S(3) = (S(2)\Kill(3)) ∪ Gen(3) = S(2),

S(4) = ((S(1) ∪ S(5))\Kill(4)) ∪ Gen(4) = S(1) ∪ S(5),

S(5) = (S(4)\Kill(5)) ∪ Gen(5) = S(4),



Level 0

Level 1

Level 2

Level 3

1

2

D

4

D

End
J

3

D

J

J

5

D

J

J

Start

D D

Fig. 5. Example: DJ-Graph

e p c

Fig. 6. Example: Unit Call Graph

S(End) = ((S(Start) ∪ S(1) ∪ S(2) ∪ S(4))\Kill(End)) ∪ Gen(End)

= S(Start) ∪ S(1) ∪ S(2) ∪ S(4).

We employ the eager elimination method due to [25] to solve the data flow
equations of our example. This method is based on DJ graphs, the union of a
CFG and its dominator tree (cf. [25]). It requires to distinguish between d- and
j-edges (cf. Fig. 5). For details the reader is referred to [25]. First the bottom-
up join edge elimination phase (and simultaneous insertion in the data flow
equations) of the eager elimination method is started at level 3: 5 → 4: S(4) =
S(1) ∪ S(4); 3 → 2: S(2) = S(1) ∪ S(2).
At level 2 loop breaking is necessary: 6� 4: S(4) = S(1), 6� 2: S(2) = S(1). During
the second phase of the eager elimination method the solution is propagated
along d-edges in a top down manner: S(2) = S(3) = S(4) = S(5) = {e, p, c};
S(End) = {e, p, c}\{e, p, c} = ∅.

According to the algorithm for constructing the ‖-relation from Section 2.1,
we get e ‖ p, e ‖ c, and p ‖ c.

In the following e, p, and c denote the nodes of the unit call graph of our
example, which is depicted in Fig. 6. (Note that since our simple example does
not contain any calls, the unit call graph is in fact trivial). According to the data
flow framework given in Section 2.2 we obtain the sets

O(p) = {i},

O(c) = {j},

O(e) = {a, i, j, p, c}.

G′
w(p) = ∅,

Gw(p) =
[

IMOD(p) ∩ G(p)
]

∪
[

G′
w(p) \ O(p)

]

=
[

{a, i} ∩ {a}
]

∪ ∅ = {a},



Ow(p) =
[

IMOD(p) ∩ O(p)
]

∪ ∅ ∪ (G′
w(p) ∩ O(p))

=
[

{a, i} ∩ {i}
]

∪ ∅ ∪ (∅ ∩ {i}) = {i},

G′
w(c) = ∅,

Gw(c) =
[

IMOD(c) ∩ G(c)
]

∪
[

G′
w(c) \ O(c)

]

=
[

{j} ∩ {a}
]

∪ ∅ = ∅,

Ow(c) =
[

IMOD(c) ∩ O(c)
]

∪ ∅ ∪ (G′
w(c) ∩ O(c)) =

[

{j} ∩ {j}
]

∪ ∅ = {j},

G′
w(e) = ∅,

Gw(e) =
[

IMOD(e) ∩ G(e)
]

∪
[

G′
w(e) \ O(e)

]

=
[

∅ ∩ ∅
]

∪
[

∅ \ {a, i, j, p, c}
]

= ∅,

Ow(e) =
[

IMOD(e) ∩ O(e)
]

∪ (G′
w(e) ∩ O(e))

=
[

∅ ∩ {a, i, j, p, c}
]

∪ (∅ ∩ {a}) = ∅.

G′
r(p) = ∅,

Gr(p) = [IUSE(p) ∩ G(p)] ∪ [G′
r(p) \ O(p)] = [{i} ∩ {a}] ∪ ∅ = ∅,

Or(p) = [IUSE(p) ∩ O(p)] ∪ ∅ ∪ (G ′
r(p) ∩ O(p)) = [{i} ∩ {i}] ∪ (∅ ∩ {i}) = {i},

G′
r(c) = ∅,

Gr(c) = [IUSE(c) ∩ G(c)] ∪ [G ′
r(c) \ O(c)] = [{a, j} ∩ {a}] ∪ ∅ = {a},

Or(c) = [IUSE(c) ∩ O(c)] ∪ ∅ ∪ (G ′
r(c) ∩ O(c))

=[{a, j} ∩ {j}] ∪ (∅ ∩ {j}) = {j},

G′
r(e) = ∅,

Gr(e) = [IUSE(e) ∩ G(e)] ∪ [G′
r(e) \ O(e)] = ∅ ∪ [∅ \ {a, i, j, p, c}] = ∅, and

Or(e) = [IUSE(e) ∩ O(e)] ∪ (G ′
r(e) ∩ O(e)) = ∅ ∪ (∅ ∩ {a, i, j, p, c}) = ∅.

As already mentioned in Section 2.2, we do not count a modification that
is due to an initialization expression of a declaration in the declarative part of
unit u. This is justified by the fact that declarations in declarative part D are
(1) not visible/accessible outside the scope of this task, and (2) the elaboration
order ensures that tasks declared in D are activated after the declaration and
initialization of the variables in D. This effectively serializes the modifications
due to initialization with possible accesses from within child tasks. Thus in our
example variable a is not a member of IMOD(e).

Furthermore we get σrw(e) = ∅, σrw(p) = {a, i}, and σrw(c) = {a, j}. We
have now σrw(e)∩σrw(p) = ∅, and σ(e, p) = false. Because of σrw(e)∩σrw(c) = ∅
and σ(e, c) = false, the same applies to tasks e and c. From σrw(p)∩σrw(c) = {a}
and σ(p, c) = true we conclude that there is an access anomaly concerning tasks
c and p with respect to variable a.

3 Related Work

In [10, 18, 17] a detailed survey of possible erroneous executions in Ada (espe-
cially unsynchronized accesses to unprotected variables and how unpredictable
the results are) is presented. Although there are protected types in Ada 95, un-
protected variables can be and are used. “. . . we do not wish to jump to the simple
conclusion that unprotected non-local variables should not be used. . . . although
the need for them has now been greatly reduced . . . perform a mechanical verifi-
cation of the fact that they are used correctly” [17].



One way to cope with unpredictability is to allow just a strict (safe) sub-
set of the Ada programming language [7, 4]. The Ravenscar Profile [6] removes
non-deterministic tasking features from Ada and thus provides a statically an-
alyzable subset of tasking facilities of Ada 95. This enables the development of
high-integrity systems even in conjunction with tasks. “The avoidance of un-
protected shared variables is generally a requirement of high integrity systems,
although detection of this erroneous case is not mandated by the Ravenscar Pro-
file definition” [7]. Thus, even in combination with the Ravenscar Profile, an
additional check is needed to make sure that unprotected data is never shared
between tasks. The Ravenscar Profile is an opportunity to allow concurrency
within SPARK [4, 1].

A variety of approaches dealing with the detection of tasking anomalies in
multi-tasking (Ada) programs have been proposed. These approaches include
static analysis, post-mortem trace analysis, on-the-fly monitoring, and combina-
tions. In [13] an overview of available techniques is presented. The goal of static
analysis is to detect access anomalies prior to execution. On-the-fly monitoring is
a dynamic approach and usually combined with a debugging tool. Post-mortem
methods include all techniques used to discover errors in an execution following
its termination.

Static Concurrency Analysis, presented in [26], is a method for determining
concurrency errors in parallel programs. The class of detectable errors includes
infinite waits, deadlocks, and concurrent updates of shared variables. Potentially
concurrent sections of code are identified. Shared variable operations in these
sections are potential anomalies. The algorithm is however exponential in the
number of tasks in the program.

Detecting access anomalies by monitoring program execution is proposed
in [23]. A general on-the-fly algorithm is presented, which can be applied to pro-
grams containing both nested fork-join and synchronization operations. In [11]
the dynamic approach is further explored, nested parallel loops are considered,
and experimental results are given. The retrospective in [24] gives a good survey
of on-the-fly techniques. In general these techniques are fundamentally different
to our static analysis approach. To reduce the amount of run-time checking,
static program analysis can be used in combination with an on-the-fly approach
(cf. e.g., [13]).

AdaWise [3] is a set of program analysis tools that performs automatic checks
to verify the absence of common run-time errors affecting correctness or porta-
bility of Ada code. AdaWise checks at compile-time for potential errors such
as incorrect order dependence or erroneous execution due to improper aliasing.
Like our approach, it operates in a conservative way. That is, the absence of a
warning guarantees the absence of a problem. If AdaWise produces a warning,
there is a potential error that should be investigated by the developer.

A good survey of available tools detecting races in Java (e.g. rccjava, Java
Pathfinder, ESC/Java, Bandera) or C (e.g. Warlock and RacerX) can be found
in [27].



4 Conclusion and Future Work

In this paper we have presented data flow analysis frameworks for detecting non-
sequential access of shared non-protected variables, so-called access anomalies.
Our framework can handle most programs of practical importance. It is compu-
tationally efficient and easy to implement by modifying the source code of an
existing compiler like GNAT. Toolkits for constructing data flow analyzers [16]
can also be employed. Our method is conservative and may therefore raise false
positives. It should be easily adaptable for the Ravenscar profile [6, 7].

Our approach is also well-suited for other programming languages like Java
[2], although a Java program is not even termed erroneous if it accesses global
shared variables in a non-sequential way.

In the future we plan to develop a symbolic analysis framework that is aimed
at the detection of non-sequential global shared variable access. Symbolic analy-
sis is capable of incorporating flow-sensitive side-effects of a program, which will
make it less susceptible to the detection of false positives. A refinement of rela-
tion ‖ to model parallelism in a more fine-grained (i.e., intra-task) manner is an
orthogonal measure to reduce the number of false positives. At the moment our
analysis considers parallelism only on a per-task basis, which is a safe approxi-
mation of the actual potential for parallelism between variable accesses. There
are however many cases where task objects executing in parallel access a com-
mon variable, but the intra-task structure of the program reveals that the actual
access operations cannot occur in parallel (e.g., due to involved synchronization
primitives).
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