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The purpose of this paper is to show that indirect recursive procedures
can be used for implementing real-time applications without harm, if a few
conditions are met. These conditions ensure that upper bounds for space
and time requirements can be derived at compile time. Moreover they
are simple enough such that many important recursive algorithms can be
implemented.

In addition, our approach allows for concentrating on essential properties
of the parameter space during space and time analysis. This is done by
morphisms that transfer important properties from the original parameter
space to simpler ones, which results in simpler formulas of space and time
estimates.

1. INTRODUCTION

The most significant difference between real-time systems and other computer
systems is that the system behavior must not only be correct but the result of a
computation must be available within a predefined deadline. It has turned out that
a major progress in order to guarantee the timeliness of real-time systems can only
be achieved if the scheduling problem is solved properly. Most scheduling algorithms
assume that the runtime of a task is known a priori (cf. e.g. [LL73, HS91, Mok84]).
Thus the worst-case execution time of a task plays a crucial role.

The most difficult tasks in estimating the timing behavior of a program are
to determine the number of iterations of a certain loop and to handle problems
originating from the use of recursion. A solution to the first problem has been
given in [Bli94], direct recursion has been treated in [BL96], indirect recursion will
be studied in this paper.

If recursive procedures are to be used in implementing real-time applications,
several problems occur:

1. It is not clear, whether a recursive procedure completes or not.

2. If it completes, it must be guaranteed that its result is delivered within a
predefined deadline.
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3. Since most real-time systems are embedded systems with limited storage space,
the result of a recursive procedure must be computed using a limited amount of
stack space.

In view of these problems most designers of real-time programming languages
decide to forbid recursion in their languages, e.g. RT-Euclid (cf. [KS86, HS91]),
PEARL (cf. [DIN82]), Real-Time Concurrent C (cf. [GR9I1]), and the MARS-
approach (cf. [KDK*89, PK89]).

Other so-called real-time languages allow recursions to be used, but do not pro-
vide any help to the programmer in order to estimate time and space behavior of the
recursive procedures, e.g. Ada (cf. [Ada95]) and PORTAL (cf. [Bus85]). Interest-
ingly, a subset of Ada (cf. [For93]) designed for determining the worst-case timing
behavior forbids recursion. The same applies to SPARK ([Bar97]), a subset of Ada
for high integrity systems. PORTAL uses RECURSION resources and terminates
a recursive computation if the resource is exhausted. Although it is not clear from
the description, one can suspect that a RECURSION resource is equivalent to an
area of memory that contains the stack space. Both Ada and PORTAL cannot
handle the time complexity of recursive procedures. The on-going discussion on
RT-Java (cf. e.g. [Nil96]) does not touch recursive procedures, t0o.

Other approaches do not address recursion at all (cf. e.g. [MACT®89, Sha89, Par93,
ITM90]), others (cf. e.g. [PK89]) propose to replace recursive algorithms by iter-
ative ones or to transform them into non-recursive schemes by applying program
transformation rules. Certainly, if a simple iterative version of a recursive algorithm
exists and it is also superior in space and time behavior, it should be used instead
of a recursive implementation. On the other hand there are the following reasons
why recursive algorithms should be implemented by recursive procedures:

e The space and time behavior of transformed programs are by no means easier
to investigate than their recursive counterparts, since the stack has to be simulated
and because they contain while-loops. In general, the number of iterations of these
loops cannot be determined at compile time.

e A recursive algorithm originates from recursiveness in the problem domain.
From the view of software engineering, a program reflecting the problem domain is
considered better than others not doing so (cf. e.g. [Boo91]).

e Often recursive algorithms are easier to understand, to implement, to test, and
to maintain than non-recursive versions.

Our approach is different in that we do not forbid recursion, but instead con-
strain recursive procedures such that their space and time behavior either can be
determined at compile time or can be checked at runtime. Thus timing errors can
be found either at compile time or are shifted to logical errors detected at runtime.
Hence all three problems above are solved by our approach. In particular, prob-
lem (1.) can be tested at runtime (cf. Section 7) and problems (2.) and (3.) can be
solved at compile time or tested at runtime (cf. sections 5 and 4, respectively).

The constraints mentioned above are more or less simple conditions. If they can
be proved to hold, the space and time behavior of the recursive procedure can be
estimated easily.

Compared to the paper on direct recursion ([BL96]) this paper requires a much
more delicate analysis. Even defining the very important concept of recursion
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depth is much more complex than for direct recursion. The results on space and
time effort are much harder to derive than their “direct” counterparts. Although
this paper can be seen as a strict generalization of [BL96], the reader may like to
contact [BL96] as an introduction before going into the details of analyzing indirect
recursion.

The basic idea of our approach is to employ monotonical properties of the re-
cursive procedures in order to determine worst-case space and time behavior. The
major focus is on “local” monotonical properties which means that space and time
behavior can be found (or estimated) without having to analyze the whole recursive
call-chain.

The rest of the paper is structured as follows: Section 2 presents important
definitions and preliminary results. Section 3 defines the computational model and
how space and time are measured. Sections 4 and 5 are concerned with worst-
case space and time behavior, respectively. Section 6 introduces parameter space
morphisms which can be used to abstract from unnecessary details of the parameter
space. Section 7 handles programming language issues.

Within this paper we will use the following notational conventions:

e When we speak of recursive procedures, we mean both recursive procedures and
recursive functions.

e When we speak of space, we mean stack space and not heap space. If dynamic
data structures are used for the internal representation of an object, the space
allocated from the heap is under control of the object/class manager. On the
other hand, the space allocated from the stack originating from the use of recursive
procedures cannot be explicitly controlled by the application. This case requires a
thorough treatment, which will be performed in this paper.

Throughout this paper we will use two examples to illustrate our theoretical
treatment.

ExaMPLE 1.1. We define

0 if n =0,
a(n) =

b(n—1)+1 otherwise,

0 if n =0,
b(n) = 2 .

[a(n —1)] otherwise.

The first few values of a(n) and b(n) are given in Table 1.

ExaMPLE 1.2. This example is of little practical interest but it shows which
complex indirect recursions can be treated by our method:

1 ifn=0.
f(")_{1+g(n)+f(n—1) itn>0,

(n)— 1 ifn=0.
T =N 1)+ S0 gG)  ifn >0,
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Table 2 shows the first few values of f(n) and g(n).
By some manipulations this recurrence relation can be solved and one obtains:

Tom n 3
= — —_ - = >
f(n) 43 + 5~ 1’ forn >0
T 1
g(n) = 53 ~ 5 forn>1

Further examples will be given in the text but those listed above will be our
major references.

Remark. In this paper we will use the following notations.

e By log N =log, N we denote the natural logarithm of N.
e By IdN we denote the binary logarithm of V.
e The greatest integer n < x is denoted by |z].

2. DEFINITIONS AND PRELIMINARY RESULTS

In general a procedure is an algorithmic description which, given some parameters
as input, performs computations to produce its results (output). If such a procedure
p uses another procedure p' to compute its results, we say that p calls p'.

If p calls itself and no other procedure is involved, p is called a direct recursive
procedure. If p calls p' and p' calls p, we call p indirect recursive. Of course p’ is an
indirect recursive procedure too.

In addition, more than two procedures can be involved in such a computation.
Each procedure is allowed to call one of the others or itself. More formally we use
the notation of the following definition.

DEFINITION 2.1. Let P = p™, ... p®) denote a finite number of indirect re-
cursive procedures. P is called an indirect recursive procedure system. By F\9) we
denote the parameter space of pi¥). By F = U§:1 F) we denote the parameter
space of P.

Remark.  We assume that even if ) and F*) (j # k) have elements in
common, they can be discriminated by the index j and k, respectively.

DEFINITION 2.2. We call an indirect recursive procedure p¥) well-defined if
for each element of F() the procedure p'¥) completes correctly, e.g. does not loop
infinitely and does not terminate because of a runtime error (other than those
predefined in this paper).

From now on, when we use the term indirect recursive procedure, we mean well-
defined indirect recursive procedure. We deal with non-well-defined recursive pro-
cedures in Section 7.
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TABLE 1
The first few values of a(n) and b(n)

n a(n) b(n)
0 0 0
1 1 0
2 1 1
3 2 1
4 2 4
5 5 4
6 5 25
7 26 25
8 26 676
9 677 676
TABLE 2
The first few values of f(n) and g(n)
n f(n) g(n)
0 1 1
1 5 3
2 16 10
3 48 31
4 143 94
5 427 283
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Given some input () many calls to several F*) are necessary to compute the
results of F() (f (j)). The term “recursion depth” is frequently used in computer
science to measure the complexity of recursive procedures. Consider a counter
which is incremented each time a recursive call is issued and decremented whenever
a procedure is finished. This counter, plotted over the time axis, gives an impression
how “complex” the computation is. The maximum number which this counter
achieves, is usually called recursion depth.

Recursion depth is also very important for our treatment, thus it is formally
defined in the rest of this section. In particular, p{)-recursion depth is of great
importance. This takes only into account recursive calls to p(9) thereby ignoring
the other procedures of the indirect recursive procedure system.

First we formally define sets of necessary parameter values to compute p¥) (f(1))
(Defs. 2.3 and 2.4). After that we define a multiset of all parameter values of all
recursive procedure calls before a recursive call to p¥) is issued (Def. 2.5).

This enables us to define the p(¥)-successors of f() (Def. 2.6), which is the multiset
of all parameter values f(j) that are used for recursive calls to p() (f(j)) while
computing p'¥) (7)), where we assume that between the call to p) (f)) and the
call to p¥ (7(])) no other call to p¥) is issued. Several other procedures of the
indirect recursive procedure system, however, can be called between the calls to
P9 (£ and p¥) (f(])), respectively.

The p{)-successors can be used to partition the whole parameter space (Def. 2.8
and Lemma 2.1) in such a way that we can define p¥)-recursion depth. It is impor-
tant to note that our approach is not applicable if the “naive” version of recursion
depth is used; p{¥)-recursion depth is unavoidable. A straight-forward generaliza-
tion of [BL96] using “naive” recursion depth simply does not work.

For the rest of the paper some form of monotonical properties is extremely im-
portant. As a basis we define monotonical recursive procedures, a concept which
builds on our definition of p{/)-recursion depth (Def. 2.10).

DEFINITION 2.3. We define a multiset R(P)(f@)) C F, f@ ¢ FO) by fk) ¢
RPI(£G)) iff pk) (f(R)) is directly called in order to compute p@) (f)). RP)(£0))
is called the set of direct successors of f(9). If no p € P is called directly to compute
P9 (f4)), the set RP)(f)) =@, i.e., it is empty.

DEFINITION 2.4. We define a sequence of multisets Rff)( f9) by
RSV (F9) = {19}
RGO = (79[ 79 € R where g € R (50}
and we define the multiset R (£)) by

RP(79) = U R (19).

k>0

We call R{7) () the set of necessary parameter values to compute pl@ (f()).



REAL-TIME PROPERTIES OF INDIRECT RECURSIVE PROCEDURES 7

DEFINITION 2.5. We define a sequence of multisets Q;(f()), f) € FU) by

Qo(f9) = {F}
Qus1(f9) = {g] g € RP(FW)\ F where f#) € Q(s)}

and we define the multiset Q,(f")) by

Q.(f9) = [ Qi(f9).

i>0

Q,(fD) is the multiset of the parameter values of all recursive procedure calls
before a recursive call to p'¥) is issued.

Remark.  Note that Q,(f()) is a finite multiset because p) is well-defined.

DEFINITION 2.6. For some pl9) € P we define a multiset RO (f@)) C FO),
f9 e FO) by ?(j) € RUW(fU)) iff there exists some g € Q.(f) such that
77 e RP)(g).

R (D) is called the set of p{¥)-successors of f(9).

Remark.  Concentrating on p{/), the multiset R (f(9)) contains all parameter
values of recursive calls to p¥) which are issued directly by p') or indirectly after
a recursive call-chain by some other recursive procedure of P.

DEFINITION 2.7. We define a sequence of multisets ’jo) (f9) by

R(()j) (f(j)) — {f(j)}
RY), () = {?m‘ 79 € RO (4©) where g@ € RY)( fm)}

and we define the multiset R (f9) by

/R,ng) (f(]')) — U Rl(cj) (f(j))_

k>0

We call RY (£()) the set of necessary @) -parameter values to compute p@ (f()).

DerFINITION 2.8. We define a sequence of sets ]-',Ej) inductively by
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1. ]—'éj ) contains the values of () which terminate the p(¥)-recursion,! i.e.,
FO = {fu) c ;(j>| RO (f0)) = @}

2. Let féj), e ,.7-',9) be defined. Then we define .7-',5’21 by

k
FI, = { f9 e FON | FD

=0

k
RO(9) c | fim}_
=0

LeEMMA 2.1. We have |J;~, jflgj) = F,

Proof. By definition we clearly have |, }'Igj) c Fl@),

On the other hand assume that there exists some f) € FU) for which f(9) ¢
Usso < holds.

Now R (£)) contains at least one element, say 70), which is not contained in
Uk>o }',Ej ). The same argument applies to R (T(j)) and so on. Thus p¥) is not
well-defined. Hence FU) C |, f,ﬁj)- -

COROLLARY 2.1. By definition and by Lemma 2.1 we see that the sequence f,gj)
partitions the set F9), i.e., for each 9 € FU) holds that there exists exactly one
k € N such that {9 € F and fO ¢ FO for all i # k. Thus the FY are
equivalence classes.

DErFINITION 2.9. Let f) e F(@ and let k be such that f(&) ¢ f,gj), then k
is called the p¥)-recursion depth of pl)(f()). We write k = recdep(f“)). For
9,99 e FO) we write f9) x g9 iff recdep(f¥9)) = recdep(g?) .

DEFINITION 2.10. An indirect recursive procedure pl9) is called monotonical if
for all f,gj) € .7:,&]) and for fi(J) € .7-'1-(]), 0 <i < k, we have fi(’) < f,§”, where 7 <" is
a suitable binary relation that satisfies for all £\, £, féj ) e FU)

L either £ < £ or £ < f7 or £ ~ £ and
2. if fl(J) < fZ(J) and f2(J) < fé])’ then fl(J) < f3(J)‘

We write fl(j) < fz(j) if either fl(j) < fz(j) or fl(j) = f2(j).

Remark. If pl%) is a monotonical indirect recursive procedure, then T(j) < f@

for all 79 € RO ().

TNote that this does not mean that the overall recursion is terminated, rather p{#) can be the
root of a recursive call-chain involving some other recursive procedures of P.
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ExaMPLE 2.1. In the following we use superscripts (® and () to distinguish
between the entities related to procedure a and b. We obtain F(®) = N, F(®) = N
and

Qo(n(a)) — {n(a)}7

Ql(n(“)) {(n (a) _ )(b)}
Q2(n(a)) = Qa

Q*(n(a)) — {n(a) ( (a) _ 1) b)}
Qo(n®) = {n®},

Ql(n(b)) {(n(”) —_ 1)(a)}
QZ(n(b)) = 07

Q*(n(b)) ={n (b)7 (n(b) _ 1)(a)}

for n{® > 1 and n(® > 1 respectively. Furthermore

R@(0@)) = R (1(2)) = ¢,
R (n) = {(n -2},
RO O®) = RO (1)) = ¢,
ROM®) = {(n -2}

for n{® > 2 and n(® > 2 and

FO = (o 1@y,

Fi = {2k@ 2k 4+ 109},
(b) = {o® 1)y
,5’” = (2k®, 2 + 10},

Thus we have

recdep(n(¥) = [n(® /2] and
recdep(n®) = |n®/2].

The “<”-relation for 7(* and F(® is the ” <”-relation for integers. M

ExAMPLE 2.2. In the following we use superscripts () and (9 to distinguish
between the entities related to procedure f and g. We obtain F(f) = N, F(@) =
and

Ry = {n@ (n—-1)}

(nfl)(g)

R = {(n-1)"}u U {i91.

i(9)=0(9)
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Hence
e n(®
R = | DB +n/2p0 [J 9B u{0@[E" - 1)/2]}
(=0 i@=1(9)
(n—1)" (n—1)®
R = |J DB un@u J (@23 upn)
iH=0(h) i9)=1(9)
and
(n—1)®
Q,(ny = {nMMu{n@}u U {i@[2n—i-1]}
i(9)=0(9)
(n—1)H
Q.(n¥) = {(n¥W1y U {1y,
i(f)=0(F)

where the numbers within the square brackets indicate how often the corresponding
element is contained in the multiset.
Furthermore we derive

(n—2)(H
RO 0D) = (nDyu{mn-nVppo J G0R,
i(f)=0(f)
(n—1)®
RO n®)) = (n@}u U (iR U {0}
i(9)=1(9)
and
flgf) — {k(f)}
FO = (9},
Thus we obtain
recdep(n'f)) =n
recdep(n'9) =n

and the “<”-relation for F(f) and F) is the “<”-relation for integers. M

3. COMPUTATIONAL MODEL AND SPACE AND TIME EFFORT

The time effort 7 of an indirect recursive procedure p € P is a recursive function
T:F->R

or

T:F—=N
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If time is measured in integer multiples of say micro-seconds or CPU clock ticks,
one can use an integer valued function 7 instead of a real valued one.
In a similar way S, the space effort of P, is a recursive function

S: F—=N,

where space is measured in multiples of bits or bytes.

Both functions 7 and S are defined recursively depending on the source code of
‘P. How the recurrence relations for 7 and S are derived from the source code and
which statements are allowed in the source code of P, is described in the following
subsection.

3.1. Recurrence Relations for S and 7T
The source code of an indirect recursive procedure is considered to consist of

e simple segments of linear code, the performance of which is known a priori,
e if-statements,

e loops with known upper bounds of the number of iterations which can be
derived at compile time, e.g. for-loops or discrete loops (cf. [Bli94]),% and

e recursive calls.

In terms of a context-free grammar this is stated as follows

code(f) if f € Fy then nonrecursive(f) else recursive(f) end if
recursive(f) == seq(f)
seq(f) == statement(f) {statement(f)}
statement(f) ::= simple(f) | compound(f) | rproc(p(f))
compound(f) == ifs(f) | bloops(f)
ifs(f) == if cond(f) then seq(f) else seq(f) end if
bloops(f) loop <bound(f)> seq(f)

The syntax of nonrecursive(f) is defined exactly the same way but rproc(p(f)) is
not part of statement(f). By p(f) we denote that procedure p € P is called with
parameters f.

We use these definitions to derive a recurrence relation for the time effort 7:

T(f)
T(f)

T[f € Fo] + T[nonrecursive(f)] if f € Fo,
T[f € Fo] + Tlrecursive(f)] if f & Fo,

where the first 7-constant comes from the evaluating the condition whether f be-
longs to the terminating values or not and is known a priori; the nonrecursive term
can be computed using the method described below, but without giving rise to a

$This means that the number of iterations does not depend on the result of one or more recursive
calls.
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recurrence relation, and the recursive term can be determined by

T [recursive(f)] = T[seq(f)]
Tlseq(f)] = Z T [statement(f)]

Tlifs(f)] = Tleond(f)] + Tseqrene(f)]  if the c'ondition evaluates to true,
T [seqra1se(f)] otherwise.

Tlbloops()] = <bound(f)>T1seq(/)]
T [simple(f)] = 7(simple)
Tlrproc(B(f))] = T(f)

where 7(simple) is known a priori.

Note that <bound(f)> may depend on f, e.g. a for-loop with iterations depending
on f.

Since we are dealing with stack space only, space is freed whenever a procedure
call finishes. Thus for example the stack space used by two successive statements
S1 and Sy is the maximum of the stack space of each of them. The recurrence
relation for the stack space effort S is given by:

S(f) = S(decl_part(f)) + max(c[f € Fo], S[nonrecursive(f)]) if f € Fo,
S(f) = S(declpart(f)) + max(c[f € Fo],S[recursive(f)]) if f & Fo,

where the first o-constant is known a priori, the nonrecursive term can be computed
in a similar way as shown below, but without giving rise to a recurrence relation,
and the recursive term is determined by

S[recursive(f)] = S[seq(f)]
S[seq(f)] = max (S[statement(f)])

S[ifs(f)] = max (S[cond(f)], S[seqreue (f)])  if the condition evaluates to true,
| max (S[cond(f)], S[seqraise(f)]) otherwise.

S[bloops(f)] = max(S[seq(f)])
S[simple(f)] = o(simple)
Slzproc((f))] = S(f)

where o(simple) is known a priori and S(decl_part(f)) denotes the space effort of
the declarative part of the recursive function, e.g. space used by locally declared
variables. Note that the space effort of the declarative part may depend on f, since
one can declare arrays of a size depending on f for example.

3.2. Monotonical Space and Time Effort

Given a pi9) € P and some actual parameters f) € F@), T(f@)) and S(f1)
can easily be determined at compile time. This can even be done if only up-
per and lower bounds of fU) exist, e.g. I) < fU) < 4O [Dy() e FO since
MAX) () < £) <) T(f9) and MAax;(j) < () <) S(f9) can be computed effectively.
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DerFINITION 3.1. If fi < fo implies S(f1) < S(f2) and T(f1) < T(f2), we call
the underlying indirect recursive procedure globally space-monotonical and globally
time-monotonical, respectively.

Remark. Note that f1 =~ fo implies S(f1) = S(f2) and T(f1) = T(f2), respec-
tively.

There are two cases:

1. S and T can be shown to be monotonical at compile-time and
2. § and T can be solved at compile-time and the (non-recursive) solution can
be proved to be monotonical.

In both cases we clearly have:

THEOREM 3.1. If p is globally space or time-monotonical, then

and

respectively. W

The difference between case (1.) and (2.) is that in case (2.) Theorem 3.1
can even be applied during runtime, e.g., when generic objects are instantiated
(cf. e.g. [Ada95, ES90]), while in case (1.) for real-time applications Theorem 3.1
can only be applied at compile time, because case (1.) requires one or more recursive
evaluations of S or 7.

If no proofs are available at compile time that p is globally space or time-
monotonical, runtime tests can be performed. Of course this requires some overhead
in computing the result of a recursive call.

In the following sections we will define “local” conditions. If these conditions
hold, the underlying indirect recursive procedure is called locally space or locally
time-monotonical. It will turn out that if an indirect recursive procedure is locally
space (time) monotonical, then it is also globally space (time) monotonical. (It
is worth noting that the converse is not true, i.e., if a certain indirect recursive
procedure is globally space or time monotonical, it need not be locally space or
time monotonical.)

Thus it suffices to prove that a certain indirect recursive procedure is locally
space or time-monotonical, before Theorem 3.1 can be applied. This proof often is
simpler than proving the corresponding global property.

If the local properties can be proved at compile time, Theorem 3.1 can be applied
at compile time. If there is a (non-recursive) solution of S or 7 known and verified
at compile time, Theorem 3.1 can also be applied at runtime.

In addition, the local properties can be checked at runtime, such that it is not
necessary to have proofs at compile time. In this case an appropriate exception is
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raised at runtime when the runtime system finds that the local property does not
hold in a particular case. Thus timing errors are shifted to runtime errors or in
other words timing errors become testable.

The major advantages of local properties are that

e they can easily be proved at compile time and

e they are well-suited for real-time applications.

In the following sections we give several examples of how easy these proofs can be
derived. We think that in many cases they can be found by a (smart) compiler.
In general, proofs of global properties and solving recurrence relations are more
difficult.

4. THE SPACE EFFORT OF INDIRECT RECURSIVE
PROCEDURES

In this section we formally define sets of parameter values which are obtained
during a call-chain from () to 7(j) (Def. 4.2). This together with a measure for
the stack space used by single procedures (Def. 4.1) allows to define the overall
stack space (Defs. 4.3, 4.5, and 4.6).

Introducing a suitable recursion digraph and the term locally space-monotonical
procedure, we can prove our main results on the space effort of indirect recursive
procedures.

DEFINITION 4.1. Let p € P be an indirect recursive procedure. We define the
function D : F — N such that D(f) denotes the space being part of the declarative
part of p if p is called with parameter f.

DEFINITION 4.2. For all f(j) € RY(£Y9)) we define the following sequence of sets
(not multisets!)

Oo(f9, 79y = {(#9)},
61(f(J)77(])) = {(507517 B 751'*1762') | (507617 .- 751'*1) € 61’*1(.10(].)77(]))7
5 e RP G )\ F9 and 79 e RP)(5,)}, for i > 1.

Depending on these sets we define
Oi(f9,77) = {00, .., 0) € D(f9, T | T € RP (o)}
and

0.(f9, 77 = | J 0:(s9, 77

i>0
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In addition we define

Oo(f9, 1) ={(f9))},

0i(f9, 1) ={(@0,---,0:) | (0o, .--,0i-1) € Os_1(f9, 1),
5; € RP)(5;_1) \ FD}, for i > 1,

Oi(f9, 1) ={(00,--.,0:) € Os(f9, 1) | R (0;) = 0},

and

i>0

Remark.  O.(f (j),f(j)) contains all recursive call-chains from f¢) to f(j). If

there is a call-chain which does not include some 7(j) e F9) it is in O, (f9), 1).

DEFINITION 4.3. We define

G) o)) = .
(f9), g4y max(f(j),g(j))ZD(oz)-

(00,01,...)60* i>1

Note that the sum is over ¢ > 1 only, such that op = f¢) is not taken into
account.

With these definitions S(f)) fulfils
S(f9) = D(FD) + max ((£9, 1), ¥(fD, F) + SF). ..,
B(9D,F) + SF))

where RU)(f(9)) = {fgj), - ?ETJL)}

Remark.  Evaluating S(f) for recursive functions increases the height of the
stack if the recursive call is part of an expression, because both the recursive call
and evaluating the expression use stack space. This, however, can be avoided by
introducing temporary variables in the declarative part of the recursive function®.
These temporary variables are assigned the results of the recursive calls and are
used inside the expression instead of the recursive calls themselves.

DEFINITION 4.4. For each f @) € F9) the recursion digraph G(f)) is defined by
the set of vertices V = R&J)(f(j)) and the set of edges E = {(g¥),g") | ¢, 5\ €

§Note that this can be done at compile time!
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V and g9 € RYW (g9)}. Each vertex g/ is weighted by D(g\)) and each edge
from ¢ to g\¥) is weighted by ¥(g(),g)).

Remark. Let M denote the path from f) to some féj ) € féj ), féj ) €
R (£9)) with maximum weight W (f()) = >4 DA +E (i 50 U(g,g9),
where g() runs through all vertices of M and e runs through all edges of M. Then
W(f9) is equal to S(f@).

Remark.  Using G(f)), for fixed f(9) the quantity S(f)) can be computed
off-line at compile time in O(||V|| + ||E||) time (cf. e.g. [Meh84a]).

DEFINITION 4.5. We define B(f(9)) by

B9 = max  DF)+u(s9, 7).
FerRG (F6))

Remark. In terms of the recursion digraph G(f()), B(f)) is the maximum of
weights of all edges leaving vertex f() plus the weight of the successor.

DEFINITION 4.6. Let p¥) be a monotonical indirect recursive procedure. We
define NU) : FG) — F© to be a function such that N (f0)) = fY9)  where
). is such that f& € RO (FD), DY) + B(FD, f95) = B(FD), ie., it is
maximized, and recdep(f),) = recdep(f¥)) — 1.

Remark.  This means that N (f()) is that successor of /) in the recursion
digraph G(f()) which needs maximum space.

Remark.  Note that V') may be not defined for some f(/) € F(), e.g. compare
Example 1.2 below.

DEFINITION 4.7. We call a monotonical indirect recursive procedure p'%) locally
space-monotonical if N'9) gf(j)) is defined for all £ € ) and if for all £\ € FU),
£ < £ implies B(f{) < B(f{?) and, if £ ~ £ and B(f{") < B(f{")
implies BV (1)) < BV (f7).
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THEOREM 4.1. If p9) is a locally space-monotonical indirect recursive procedure,
then we have for all f(9)

S(f9) = 0o + Z BN @ E (£,

0<k<recdep(f(#))

where N ) s the kth iterate of N (NGO *+D (£ = NN R)(£))) for
k> 0) and for simplicity N9 O (f0)y = f0),

Proof. Theorem 4.1 is proved if we can show that in G(f)) no path M’ exists
such that W(M') > W(M).

Assume on the contrary that M’ exists. This means we must have a situation like
that depicted in Figure 1. The path along (£, ..., ve,v1,...,vpw,..., f),

féj) € féj) is identical to M. The path along (f&,... v, 21,...,Zsw,... ,T(()J)),

—(()j) c féj) is denoted by M'.

By definition we have B(v1) > B(z1). Thus
BN (v1)) = B(vs) > BN (21)) > B(x2).

Continuing this procedure, we get B(vs) > B(z3), and so on.
Because of Definition 4.6 we must have r > s since recdep(v;) = recdep(vit1)+ 1.

Hence we obviously have a contradiction. M

The following lemma is needed in order to prove our main result on the space
effort of recursive procedures, which is given in Theorem 4.2.

LEMMA 4.1. Ifp9) is locally space-monotonical and fl(j) < f2(j), fj),féj) e F),
then

S(f9) < 8.

Proof. Clearly we have for all £) and for all 0 < k < recdep(f)
NO® (@) f9)y 4 A (5G), 1)),
Hence we also have
B(f @D, ND®) (5G) Yy < B0 N DK (§G) | £l

for all 0 < k < recdep(f9).
Thus we obtain

S < S
and the lemma is proved. MW

THEOREM 4.2. If pU9) is locally space-monotonical, then

(@) @y = My = €]
S, u) l(j)jr;](-%};u(j)‘g(f ) g(gﬁﬁj)s(g )
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Proof. By virtue of Lemma 4.1,
S(F9D) < Sy for all 1) < fU) < 4,0,
It remains to take into account all ¢/} ~ u(9). Thus the theorem is proved. M

Remark. Note that this section is a non-trivial generalization of the corre-
sponding section in [BL96]. Specifically B simplifies to D for direct recursion.

Moreover, Theorem 4.1 correctly mirrors programming languages that allow
block-statements which contain local declarations (cf. e.g. [Ada95]).

ExaMPLE 4.1. For this example we will assume that D(0(®)) = D(0®)) = g
and D(n() = D(n®) = gy for n{® > 1 and n®) > 1 respectively. We clearly have

(1(a) 1) = {(1(a) 0(”))}
O0.(n', (n —2)) = {(n(®, (n(» - 1)®))}
(1(5) 1) = {(1(b) 0(@))}
0.(n®, (n =2)®) = {n®, (1" — 1))}
Hence
T(1, 1) =0y
T(nl, (n-2)") =0
T(1®), 1) =0
U(n, (n-2)®) =0y
and

B(n) = oy + (0@, (n —2)) =20y
B(n®) = 20,.

Thus both a(n) and b(n) are locally space-monotonical procedures.
However we can show more. Since

N@ @@y =pl@ _2 and
NOR®)=n® —2 forn > 2,

we obtain

SN =8n®)=0y+n-0,. ®

EXAMPLE 4.2. We assume that D(n(")) = ¢{) and D(n@) = ¢! for n(" > 1
and n(9) > 1, respectively, and D(0()) = a(()f), D(09) = a(()g). We clearly have for
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some a; > 0

O (D 7)) = {(n) 0@ — 1,0 —a; 09 — (a1 + ay),...,79 +1)},
O0.(n® 79y = {(n@, 0D —1,0 —2 .. 7P 41)},
0.(n', 1) = {(n'P) (n—al)("’%(n—(a1+a2))‘9’,---,0(9))}, and
0.9, 1) ={n9,(n - 1) (n-2)D, ... .0} forall n® >1.

Thus
] n(f)7ﬁ(f) = ma. D(o;
( ) (00,01,-~~)EO*)E"(”’H(H)DZI ( l)
=o{” (n—m),

T(n® 7)) =P (tn—m—1),
T, 1)y=n- U(g)+0(g)
T(n@ 1)=(n-1) ,U£f) + a(()f).

and we obtain

B(nf)) = max D@ + T(nH) 7lh)
AlH) eRF) (n(H)

— 7 @D 7
ﬁ(f)e%ggi(n(f))p(n ) +or(n—m)

= max(a(()f) + U§g) -n, 0'§f) + a§g) (n—-1))

:U§9)_( —1) + max(o (f)-l-a( 9) (f))
(9)) = (9) (9) 7(9)
B(n'*) ﬁ<g)er7rzlg))((n(g)) D) + ¥(n'e, m7)

= max D@ + a%f) m—m—-1)

ﬁ(g)eR(g)(n(g))
= max(off) + 01" - (n = 1), 01 +017 - (n —2))
_ UY) (TL _ 2) + max(a((]g) + aff),a?)).

However, since recdep (NF)(n($))) = n—1 s fulfilled only for N (n()) = n(f) —
and B(n{)) is maximized for 0(), N#) is not defined for all n{f). The same applies
to N9, Hence neither f nor g are locally space-monotonical.

The reason why Example 1.2 is not locally space-monotonical is very similar
to the reason why Quicksort is not locally time-monotonical (cf. [BL96]). Such
cases occur if the maximum space is not encountered on the path containing the
parameter value(s) with recursion depth decremented by one, which means that one
cannot decide “locally” on which path the maximum space effort can be expected.
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Nevertheless the recurrence relations

S(n(f)) =(7§f) + max(o g)( )+S(0(f)),---,

o (n—k-1)+SED),...),
Sn®) = ¢'? + max(e(n - 1) + S(09), ...,
oD (n—k—1)+SE?),...),

can be solved directly to obtain the linear space behavior of f and g. One gets

Sy =n-ot? +n-0{" + max(oy”, 03",
Sn9)=(n-1) -a%f) +n- 0(9) + max(o (f)7g(()g))_ -

5. THE TIME EFFORT OF INDIRECT RECURSIVE
PROCEDURES

Denoting by 7(f), f@ € FU) the time used to perform p()(f(¥)) without
taking into account the (recursive) calls to some p € P, we have

TN =r(fN+ > Tl (1)

gER(P) (F1))

DEFINITION 5.1. For f() € FU) we define

Y= > (9.

9€Q.(F)

By Definitions 2.5 and 5.1, equation (1) can be written

TN =2+ > TEY). (2)

9@ ERG) (F1))

DEFINITION 5.2. For all fl(j), fQ(j) € FU9) we write fl(j) C fz(j) (or equivalently
£ 3 i £ 2 1) and TP < X (7).

DEFINITION 5.3. Let f(]) 9 e 7o, RO (F9) = {fz(’l), . z(’rzh} i=1,2,
such that f(j) J f(J) J...0 ff’%l | f(J) i=1,2.

If for all f, D = f(]), we have m; < ms and f(J) C f(J), r=1,...,my, then the
underlying indirect recursive procedure is called locally time- monotom'cal.

LEMMA 5.1.  If a monotonical indirect recursive procedure p9) s locally time-
monotonical, then £ C £ implies T(f) < T(£{).
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Proof. Let fl(j ) e }"i(j ) and féj ) e f,gj ), i < k. We prove the theorem by double
induction on the recursion depth.

e At first let ¢ = 0. We prove by induction on k that our claim is correct.

— If £ =0, we have
T =1 <Y = T,
— If £ > 0, we obtain

T(UD) =117 < 157
T+ S TE) =TU).

79 erG (£5)

IN

e Next we consider 7 > 0.

For k > ¢ we derive

TN =10+ Y TF)  and 3)
T er) (1)
T =1+ Y TG, (@)

T erG (557

By induction hypothesis the sum in (3) is smaller than or equal to the sum in (4).
Since Y(£9) < T(£9), we get

T < T(D).

Hence the lemma is proved. ®

Lemma 5.1 enables us to find upper and lower bounds of the timing behavior if
a range of parameter values is given.

THEOREM 5.1. If pl9) is locally time-monotonical, then

T(19) @)y = 1y = )Y, m
(7, u) 1) ;ﬁ?ﬁ;u(n TU g(gl o) 77
Remark. Note that this section is a non-trivial generalization of the corre-

sponding section in [BL96]. Specifically Y simplifies to 7 for direct recursion.

In the following examples the constants 79, 71, 72, 73, and 74 are derived from
the (source) code of the recursive procedures.
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ExAMPLE 5.1. We assume that a(n) and b(n) take 74 and 7 computation time
if n > 0, and both take 7g if n = 0. Thus we obtain

Tn)=r+n and

T(?’L(b)) = T2+ T1.

Hence both a(n) and b(n) are locally time monotonical procedures. However we
can derive more. We have

T0@) =7
TA@) =1+
’T(n(“)) =1+ 7+ T(n(“) - 2)

and

T(O®) =1
TA®) =7 + 19
Ta®) =1+ +T (0" -2).

Hence we get

T(n() = (1 +m)[n{”/2] + 10+ 72(n” mod 2) and
T®) = (1 + 1) [n® /2] + 70 + 1 (n™® mod 2). m

EXAMPLE 5.2. We assume

(09 = 7o,
r(n) =7 forn > 1,
7(09) = 1,
T(n(g)) =73-n+7 forn>1
Thus we obtain
n—1 .
YY) =m+7-n+7m+ 2(7'3@' +74)20
=0
n—1
Y(n'?) =T3+n'7'4+z7'1 + 70
i=1

The sums in both formulas can be simplified easily. One obtains

T(nW) =7 +2" 7+ (2" = 1) - 73,
T =m+n-mu+@n—-1)-1 +70.
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It is easy to see that both Y-functions are monotonically increasing. Thus f and g
are locally time-monotonical.

The exact timing behavior can be derived by solving appropriate recurrence re-
lations. These computations are left to the reader. W

6. PARAMETER SPACE MORPHISMS

The theoretical results of the previous sections are impressive in that they are
valid for recursive procedures with very general parameter space. For many ap-
plications, however, only a small “part” of the parameter space is responsible for
the space and time behavior of the recursive procedure. In this section we are
concerned with the problem how to “abstract” from unnecessary details of the
parameter space.

For example consider some recursively traversed tree-structure. Here the param-
eter space is the set of all possible trees. For determining the worst-case behavior,
however, it often suffices to know how many nodes are contained in the traversed
tree.

Commonly, data structures are analyzed by informally introducing some sort of
complezity measure (cf. [VF90]) or size (cf. [Meh84c, AHU74]) of the data structure.
We prefer a more formal approach.

DEFINITION 6.1. A parameter space morphism is a mapping H : F) — F'(7)
such that for all f0) € FU) the set

M) = max{g® : H(TD) = H(gD)},

where the elements of the max-term are ordered by the “<”-relation of F(), and
the target recursion depth

recdepy (f'9) := recdep(g™)) where g € M(fU)) and /9 = H(f0),

are well-defined and recdepy (f'(9)) < oo for all f'() € F'(9),

Remark.  Note that || M(fD)|| > 1, but recdep(gy)) = recdep(ggj)) if ggj) €
M(fD) and g5 € M(fD).

Remark.  Note that recdepy implies a (trivial) “<”-relation upon F'(), namely
9 < gD o recdepy(f'Y)) < recdepy (') (5)

for f'9), ¢'@) ¢ F'()). We will assume in the following that a “<”-relation exists
which is consistent with equation (5) and denote it by “<4”.

DEFINITION 6.2. In the following we will frequently apply H to subsets of ().
Let G C FU) denote such a subset. Then we write H(G/)) to denote the multiset
G'0) = H(GD) = {H(g) | ¢ € GO},
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In order to estimate space and timing properties of recursive procedures, we
define how space and time will be measured in F'(%).

DEFINITION 6.3. The functions Sy and Ty are defined in the following way:

13y = ()
Su(F™) g(j);f’(rgi)g-{(g(j)) S(g77) and
Tulf )= = max - T(g")

9@ 1 =1 (g@))

where f’(j) e F'@ and g(j) e F),

DEFINITION 6.4. If f’gj) =u f’gj) implies SH(f’gj)) < SH(f’gj)) and TH(f’gj)) <
Tu(f' gj )), we call the underlying recursive procedure globally H-space-monotonical
and globally H-time-monotonical, respectively.

DEFINITION 6.5. In addition, we need the following definitions:

Dy(f'W) = max D(gV) (6)
FrE=H(g@)
1)y — ()
Bu(f) f,(jg%?g(j))li’(g ) (7)
1)y — ()
Ty (f") f,(j)rgg(cg(j))?f(g ) (8)
RO = | {H(R(j) (g(j)))} (9)
1O =H(g)
NPT = £ (10)
where
T(f'9)) = {g'D | max recdepy f @) = recdepy g’ )},

TOeR'G), RGO eRrY) (5@
['Rax €T(f'), and

Bu(f') = | max ~ B(g'?).
g’ @D ern(f))

Let
Ou(f'D, F'D) = {(0o,---,0i) | /' =H(oo),
0041 € RY (o), for 0 < £ < i, T(” =H(o;)}

and

Ou(f'D,0) = {(00; - -,0:) | /' = H(op),
0ir1 € RY (o), for 0 < € < i, H(o;) € Fy®) for some k # j},
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then we define

7—1
WFOTN - e 5 o
(00,--,04) €O (£ ,F' ) =4

for 1) € RZ’ (FD)or T = .

Remark.  Note that H(RY)(g\))) is a multiset and Rg) (f'D) is a set of
multisets.

DEFINITION 6.6. A recursive procedure p is called H-monotonical if for all
¢’ € R’ and for all ") € RY)(£'(@)) it holds that ¢’ <4, f/0).

With these definitions it is easy to prove the following results.

LEMMA 6.1. If p is H-monotonical, the following relation holds:

Tu(f'9) < Ty (F D)+ max > Tu@Y)

RIGDERY (1'D) 1) err i)
Proof. By definition

@) = | max (r<g<ﬂ‘>)+ > T@m))

160 =H (@)
FrO=He) 7D ERG) (g())

which can be estimated by

<Y (f D) + ff(j)ril%}((g(:')) Z T (g
) ERG) (g0
< ) A e ()
< Ty (f )+f,(]‘):?a-[(g(j))gl(j)eﬂ(%j)(g(j)))g’(j):%(k(j))T(k )
=Yu(f N+ ma X Tu@)
=) 6 enmrin (4600)
=Tu(f'Y)+  max > Tu@).

R eRY) (£1(9)) 5 err)

Thus the lemma is proved. MW

LEMMA 6.2. If p is H-monotonical, the following relation holds:
Su(f'P) < Du(f'9)

+ max lI”;.t(_]‘ll(j),@), max max lI”H(fl(j),gl(j)) + S,H(g’(.?))
R/(j)eR(#‘)(f,(j)) g' ) er @)
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Proof. The proof is suppressed since it is very similar to the proof of Lemma 6.1. H

DEFINITION 6.7. A H-monotonical recursive procedure p is called locally H-
space-monotonical if f’gj) <H f’gj) implies BH(f’gj)) < By(f'g])), f’§“ ey f’é’)
. li N(j) 1(7) < N(j) () d. if 1(3) o o) d B () <B ()
mplies NNy (f1 )_'H Y (f's )',a,nl,l 77 = f'57 and By (f'y) < Bu(f's’)
implies Bu(NG7 (f'1")) < Bu(i) (£'5).

DEFINITION 6.8. For all ', £/ € 70 we write £/ Ty #/§ (or equiva-
lently flgj) dy f/gj)) if flgj) <y f/é]) and T”H(flgj)) < T’H(flgj))-

DEFINITION 6.9. Let p be a H-monotonical recursive procedure and let

; ; : . ; . ; . 4 e =
PO e f/(]))_??,;j)(flgl_)l) e Rgi)(f’?)_); R§?)(f’§’))_ = 79T
i=1,2suchthat fV, 279, 0. 2FY, aF9 =12

Jiri,mi—1 = Jii,mg

If for all ng) cC ?Igj), we have mj, 1 < mj, 2 and ?Ig)’l’r cC 7’%22’” r =

1,...,mj, 1, for all ji,j2 such that ’Rg-f)(f’gj)) € Rgi)(f’gj)), then p is called lo-
cally H-time-monotonical.

By slightly modifying the proofs of Theorem 4.1 and Lemmas 4.1 and 5.1, H-
versions of Theorems 4.2 and 5.1 can easily be proved.

It is worth noting that a globally (#-)time-monotonical recursive procedure does
not need to be locally (#-)time-monotonical. A prominent example, Quicksort, has
been studied in [BL96).

Finally, we would like to repeat (cf. [BL96]) that in most cases a morphism
H : F9) — N will be used. This can be supported by the following arguments:

e Parameter space morphisms are useful only if By and Y4 (cf. Definition 6.5)
can be found easily. In most cases this can be obtained if already B and Y do
depend on some f') € F') and not on some f) € FU). Thus we are left with
determining how the functions B and Y will look.

e The function B will usually depend on the size of locally declared objects.
Typical “sizes” originate in the length of arrays or the size of two-dimensional
arrays, and so on. Hence we can expect B to be a polynomial function from N to
N.

e The function YT will usually depend on the number of iterations of the loops
within the code of the underlying recursive procedure. Again, we expect T to be a
function from N to N (or R) since the number of iterations can usually be expressed
in terms of n* and (Idn)* for for-loops and discrete loops (cf. [Bli94]), respectively.

Summing up, usually B and T are functions from N to N (or R). Thus one can
suspect that a morphism from F() to N will be helpful in determining the space
and time behavior.

7. PROGRAMMING LANGUAGE ISSUES
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Before we discuss details of how (real-time) programming languages are influ-
enced by our previous results, we restate Theorems 4.2 and 5.1 in a way more
suitable to programming language issues.

DEFINITION 7.1. If an additional ordering on F() by fl(j )4 fQ(j) exists such that
for all £, 1) € FO, £ a9 (£ # £9)) implies

LA <,

2. the underlying recursive procedure is locally space-monotonical w.r.t. <, and

3. the underlying recursive procedure is locally time-monotonical w.r.t. <,

we call FU) totally ordered.

The advantage of the “<”-relation is that it can be used to compare elements with
the same recursion depth in a useful manner. We are able to show the following
theorems.

THEOREM 7.1. If the parameter space of a recursive procedure is totally ordered,
then
(1) o,y = Dy = ().
&Y, u") l(j)ﬂr;lgﬁu(j)s(f ) =Su')

Proof. In conjunction with Theorem 4.2 it remains to show that

max S(gW) = S(u).

90 rould)
Because of Definition 7.1, however, we have D(g\9)) < D(u)) for all g qul. A
slight modification of Lemma 4.1 shows that in this case S(¢¢) < S(u() too. Thus

the theorem is proved. W

THEOREM 7.2. If the parameter space of a recursive procedure is totally ordered,
then
TAD )= max  TUD) =T (u9).
1) qf ) qu)

Proof. In conjunction with Theorem 5.1 it remains to show that

max T (g%) = T (u?).

9@ ruld)

Because of Definition 7.1, however, we have 7(¢() < 7(u() for all g/ qu(9.
A slight modification of Lemma 5.1 shows that in this case 7T (¢()) < T (u) too.

Thus the theorem is proved. H

Obviously H-versions of these theorems can also be proved.

If F(9) is totally ordered, we assume that there exists a programming language
defined function pred, which given some f(9) € F() computes pred(f¥)) such that
pred(f)) a f9) and there is no g\9) € FU) such that pred(f()) < gt « f0).
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7.1. The recursion depth
Let p be a locally time- and space-monotonical recursive procedure system with
parameter space F. In order to perform a time and space analysis of p, the program-
mer has to supply for all pi%) non-recursive functions without while loops recdep:
F) N that for all f&) € FU) compute recdep(f9).
This implies that we can decide effectively (at runtime) whether

19 <9, 19 <19 o 49 g9

for all fl(j),féj) € FU).

If no “«<”-relation exists, the recursion depth must be bounded by a programmer
supplied constant R(). If a “4”-relation exists, a bound of the recursion depth can
be derived from a programmer supplied upper bound of the parameter values, say
uld).

Since it is extremely difficult to verify some function recdep supplied by the pro-
grammer at compile time¥, the correctness of recdep is checked at runtime. Note
that it is these checks that enforce the well-definedness of the recursive procedure
system. To be more specific, the following conditions must be met:

1. recdep(f¥)) can be computed for each f) € FU9) without a runtime error

2. for all 77 € RO (1)), recdep(F”) < recaep(F”)
3. if no parameter space morphism is used, at least one 7(9)

exist such that recdep(f(j)) = recdep(f() — 1
4. for all fU) € FU) recdep(f¥) < RU)

€ RU(f9)) has to

All these conditions can be checked at runtime with little effort. If one of them is
violated the exception recursion depth_error is raised.

7.2. Checking Space Properties
If B(f1)) is constant or if there is a simple connection between B(f()) and
recdep(f)), the compiler can derive that the underlying recursive procedure is
locally space-monotonical. Thus no runtime checks are necessary.

Checking of global space properties without a “<”-relation
In this case the programmer must supply a function maxspacearg: N — F(),

which given some k = recdep(f)) returns 7(J) such that f() ~ 7(j) and S (7(j)) =
max?(j)wg(j) S(g(]))

At runtime for each f() ¢ FU) it is checked whether S(f()) < 8 (ug )} where
k = recdep(f¥)) and u,(cj) = maxspacearg(k). If this condition is violated, the

exception space monotonic_error is raised.

Checking of local space properties with help of a “«”-relation

Here we can perform an exhaustive enumeration of all parameter values with
help of the function pred at compile time. For each pair of these values it can be
checked whether Definition 7.1 is valid.

Y1n fact it is undecidable, whether two given Turing machines accept the same language.
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Hence we do not need any runtime checks except testing the recursion depth in
order to guarantee the upper bound of the space behavior (cf. Theorem 7.1).

7.3. Space behavior and morphisms

Everything is still valid if we take into account parameter space morphisms. The
only exception is that we can perform an exhaustive enumeration of all parameter
values with help of a “<”-relation only if the morphism is a function from F) to
N. This, however, as already noted at the end of Section 6, covers most important
cases.

It is, however, crucial in this context to perform checks of local properties since
global properties can only be checked for f) € FU) and not for f') ¢ F')
(i.e. for f'U) € N).

7.4. Checking Time Properties
If there is a simple connection between Y(f/)) and recdep(f)) and if

[RW (fD)] <1,

it can be derived at compile time that the underlying recursive procedure is locally
time-monotonical. Thus no runtime checks are necessary.

“q 0
<

Checking of global time properties without a -relation

In this case the programmer must supply a function maxtimearg: N — F(),
which given some k = recdep(f#)) returns 7(j) such that f¢¥) ~ 70) and T(f(j)) =
maX?(j)zg(j) T(g(j))-

At runtime for each ) € FU) it is checked whether T (f(?)) < T(ug )) where
k = recdep(f)) and ugﬂj) = maxtimearg(k). If this condition is violated, the
exception time monotonic_error is raised.

Checking of local time properties with help of a “<”-relation

Here we can perform an exhaustive enumeration of all parameter values with
help of the function pred at compile time. For each pair of these values it can be
checked whether Definition 7.1 is valid.

Hence we do not need any runtime checks except testing the recursion depth in
order to guarantee the upper bound of the space behavior (cf. Theorem 7.1).

7.5. Time behavior and morphisms
Here the same arguments are valid as in Section 7.3.

EXAMPLE 7.1. Two-dimensional trees are dynamic, adaptable data structures
that are very similar to binary trees but divide up a geometric space in a manner
convenient for use in range searching and other problems. The idea is to build
binary search trees with points in the nodes, using y and z coordinates of the
points as keys in a strictly alternating sequence.

The same algorithm is used to insert points into two-dimensional trees as in
normal binary search trees, but at the root we use the y coordinate (if the point to
be inserted has a smaller y coordinate than the point at the root, go left; otherwise
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FIG. 1. Paths in a Recursion Digraph

FIG. 2. Specification of the Color Operation for Two-Dimensional Trees

package Two_Dim_Tree is
type two_dim_tree is limited private;
function Color(

x,y: integer; -- the coordinates
into: two_dim_tree)

return integer;
- retrieves color of point (z,y)
— assumes that point is present in the tree
— other operations suppressed

private

type two_dim_tree_t;
type two_dim_tree is access two_dim_tree_t;

type two_dim_tree_t is

record
x,y: integer;
n: integer; -- number of nodes in this subtree
color: integer; -- number describing the color of the point

left,right: two_dim_tree;
end record;

end Two_Dim_Tree;
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FIG. 3. Recursive Implementation of the Color Operation for Two-Dimensional Trees
(fragment)

package body Two_Dim_Tree is

recursive function Color_y(
x,y: integer;
into: two_dim_tree)
return integer;

recursive function Color x(
x,y: integer;
into: two_dim_tree)
return integer;

function Color(
x,y: integer; -- the coordinates
into: two_dim_tree)
return integer
is
begin
return Color_y(x,y,into);
end Color;

recursive function Color_y(
x,y: integer;
into: two_dim_tree)
return integer

with function morphism(t: two_dim_tree)
return integer is

begin
return t.n;

end morphism;

with function recdep(current_size: integer)
return natural is
begin
return floor(Cxlog(current_size)*+2);
end recdep;

is
begin
if y<into.y then
return Color_x(x,y,into.left);
else
return Color x(x,y,into.right);
end if;
end Color_y;
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FIG. 3. Recursive Implementation of the Color Operation for Two-Dimensional Trees
(continued)

recursive function Color x(
x,y: integer;
into: two_dim_tree)
return integer

with function morphism(t: two_dim_tree)
return integer is

begin
return t.n;

end morphism;

with function recdep(current_size: integer)
return natural is
begin
return floor(Cxlog(current_size)*2);
end recdep;

is
begin
if x=into.x and then y=into.y then
return into.color;
elsif x<into.x then
return Color_y(x,y,into.left);
else
return Color_y(x,y,into.right);
end if;
end Color x;

— other operations suppressed

end Two_Dim_Tree;
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go right), then at the next level we use the z coordinate, then at the next level the
y coordinate, etc., alternating until an external node is encountered.

By use of dynamization (cf. [Meh84b]) two-dimensional trees (or trees of higher
dimension) can be “balanced” such that the worst-case timing behavior for an insert
and other critical operations is O((logn)?).

Obviously the operations for two-dimensional trees can be implemented by two
indirect recursive procedures. Figure 2 shows the specification of a procedure for
retrieving the color of a point. In Figure 3 the recursive implementation of this
operation is depicted. For our space and time analysis we assume that the tree is
balanced, i.e., the recursion depth is bounded by |2C log® n| where n denotes the
current size of the tree and C' is some constant. The current size of the tree is used
as morphism .

Thus the formulas for recdep follow immediately. In addition, we have

Dy (n'?)) = 915
Dy(n) = 01",
Bu(nt) = of” + "),
Bu(n®) = of” + 01",
TH(n(w)) =@ 4 T(y)’
Ty (n®) = Tl(y) + 7

where we have used superscripts () and ) to denote entities related to Color_x
and Color_y respectively.

Clearly Color x and Color_y are H-monotonical. Thus they are also locally
H-space-monotonical and locally ‘H-time-monotonical.

The required function pred is given by the predefined function integer’PRED.
Thus compile time checks of local space and time properties can be performed with
help of pred. The functions recdep in conjunction with morphism are checked
during runtime.

Since Color calls Color_y and Color x is not called by any other procedure than
Color._y, we can restrict our analysis to Color_y. The space and time behavior can
be estimated by

Sn(n™) = |2Clog> n)(o{” + ()
and
Tu(n®) = [2CTog” ] (r{*) + ("),

respectively. W

8. CONCLUSION

Note that Theorems 4.2 and 5.1 are valid although we do not study static bounds
of space and time behavior. This is in strict contrast to [PK89], where the execution
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time of code blocks is estimated statically without taking into account that the
execution time may depend on certain parameters (or global data). Anyway, the
MARS approach [PK89] excludes recursions.

In [Par93] such information on data influencing execution time can be incorpo-
rated into the program by means of program path analysis, but [Par93] does not
address recursion at all.

Our results are impressive in that they assume very general parameter spaces,
and are very useful together with parameter space morphisms. These morphisms
allow for concentrating on the essential properties of the recursive procedure while
estimating time and space behavior.

Note that this paper generalizes [BL96]. The results of [BL96] are strictly con-
tained in the results of this paper as special cases. This paper, however, requires a
much more delicate analysis.

e Defining the very important concept of recursion depth is much more complex
than for direct recursion.

e The results on space and time effort are much harder to derive.

e The morphisms of Section 6 are more complex than in [BL96]

e Theorem 4.1 correctly mirrors programming languages that allow block-statements
which contain local declarations (cf. e.g. [Ada95]). This was considered a useful
generalization of direct recursions too (cf. [BL96]).

Summing up this paper and [BL96], there are no more reasons to exclude recursive
procedures from real-time programming languages. However some research has to
be done in order to extract the necessary information out of the source code of
a recursive procedure system. Symbolic evaluation described in [CHT79, Plo80,
Sch96, Bli00, FS97] can be used to build automated tools for handling the analysis
described in this paper. We are currently implementing a tool based on symbolic
evaluation for symbolic use/def analysis ([BB98]), which is planned to be extended
in this direction.
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