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Abstract. In this paper we present algorithms to statically detect live-
locks in Ada multitasking programs. Although the algorithms’ worst-case
execution time is exponential, they can be expected to run in polyno-
mial time. Since the problem is strongly connected to finding infinite
loops, which is undecidable in general, our algorithms compute only an
approximation to the real solution of the problem. As a consequence our
algorithms may compute false positives.

1 Introduction

Concurrent programming is a complex task. One reason is that scheduling expo-
nentially increases the possible program states. Thus a dynamic execution order
of the statements executed in parallel is introduced. In general this leads to dif-
ferent behavior between different runs of a program, even on the same input.
Because of the nondeterministic behavior, faults are difficult to detect. Static
program analysis, which has been used since the beginning of software, can be
a valuable aid for the detection of such faults.

One of the problems with concurrent programming are livelocks, sometimes
also called infinite internal chatter. In the context of process calculi, e.g. CSP [15],
the term divergence is frequently used to denote infinite internal actions. Live-
locks are sometimes also referred to as spinning. From “outside”, a deadlocked
and a livelocked system look like no progress is made. In the case of a deadlock
this is true, but in the case of a livelock computation still goes on.

The literature contains different definitions for livelock; [14] classifies livelock
by three categories: starvation (e.g. [26]), infinite execution (e.g. [33]), and breach
of safety properties (e.g. [27]). Our approach addresses programs in the second
category. In [32], a livelock is defined as

“. . . a situation in which two or more processes continuously change their
state in response to changes in the other process(es) without doing any
useful work.”

This and other definitions indicate that in contrast to deadlocks, livelocked sys-
tems still do some (although not useful) work.
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The above definition of livelock is dynamic in its nature. To devise a static
analysis method, we need static program properties that imply a (potential)
livelock at run-time.

To distinguish “useful” computations from “purposeless” computations which
might be going on during a livelock, we require “useful” computations to have an
externally observable effect. Externally observable effect can manifest itself in a
multitude of ways in the source code of a program: it can be as simple as writing
output to a terminal, or more involved as with memory-mapped I/O or messages
sent on a communication channel. In this paper, we model the external observer
by task τext, which can be envisioned as an additional task that is external to
the tasks of the system under consideration. We assume that communication
statements to this external observer task are marked by a suitable pragma in the
source code of the program.

Intuitively, a set T of tasks is livelocking, if each task τ ∈ T contains an
infinite loop within which it communicates with another task from T , and no
communication with the external task τext takes place. (NB: this precludes in-
direct communication with τext via further tasks τ ′ 6∈ T as well.)

Definition 1 A task τ is said to communicate with task τ , if
1. τ calls an entry of τ , or
2. τ contains an accept statement which is called by τ , or
3. τ writes a protected object or a shared variable, which is read by τ (or vice

versa), or
4. τ and τ perform memory mapped I/O on the same memory cells.

To detect livelocks, we have to find all infinite loops in a set of tasks and deter-
mine those tasks with which they communicate. In this paper we restrict our-
selves to communication patterns (1) and (2). An analysis including the other
patterns as well is possible, but requires more technicalities such as a relation
modeling tasks which execute concurrently (cf. [3]). We construct the control
flow graphs (CFGs) of tasks and determine extended regular expressions (EREs)
that contain loop properties (i.e., finite vs. infinite, executed at least zero times
vs. executed at least once). Morphisms on EREs allow us to determine the com-
munication behavior of tasks. Because finding infinite loops is undecidable in
general, our approach has to find a conservative approximation of the problem.
As a consequence our approach delivers false positives, but we present strategies
to reduce the number of false positives.

The remainder of the paper is organized as follows. In Section 2 we give
definitions and preliminary results. In Section 3 we describe our approach algo-
rithmically. In Section 4 we survey related work, before we conclude the paper
and describe future work in Section 5.

2 Definitions and Preliminaries

Definition 2 A control flow graph (CFG) G〈N, E, r, x〉 is a directed graph with
node set N , edge set E ⊆ N ×N , and a root node r such that there exists a path
from r to every other node in N . Node x denotes the exit node of G.



CFGs are used to represent programs. In this case nodes represent basic blocks
and edges represent the control flow between nodes. Note that CFGs for Ada
programs can be generated as for any other program written in different lan-
guages. For example, select statements which are not present in other languages
can be handled like case statements.

Definition 3 An extended regular expression (ERE) is a regular expression
(RE) (see e.g. [34]) with additional iteration schemes. In more detail, an ERE
has operators ∪, · and the iteration schemes ⊕,

�
, +, and ∗; the empty word is

denoted by ε. The iteration schemes are defined by the following table.

⊕ finite loop with at least one iteration�
finite loop with at least zero iterations

+ infinite loop with at least one iteration
∗ infinite loop with at least zero iterations

Examples of ⊕- and
�

-loops are for-loops,

for i in a..b loop ... end loop;

where b≥a in case of a ⊕-loop. A simple example of a +-loop is

loop ... end loop;

A simple example of a ∗-loop is

while cond loop ... end loop;

where the value of cond does not change inside the loop. Note that if cond

evaluates to false, the loop body is not executed.

Definition 4 Let χ be a standard RE or an ERE. If for each n ∈ N, n ≥ 1
there exists a path πn(r, x) such that πn(r, x) contains χ n times, then we say
that the CFG G contains an infinite χ+-path. In addition, if there exists a path
π0(r, x) such that π0(r, x) does not contain χ, then we say that G contains an
infinite χ∗-path.

Our next step is to define rewrite rules on EREs that determine whether a
given task τ communicates with task τ ′ (cf. Definition 1). We consider extended
regular expressions over the alphabet {ρ}, where ρ denotes a communication
statement. An example for such an ERE is given by (ρ ∪ ρ · (ε ∪ ρ∗)) · ρ⊕.
The rewrite rules are constructed in a way such that the information that ρ is
contained in a +-loop is conserved.

If we use the conventions ρ0 = ε and ρ1 = ρ, we can define the rewrite rules
“in terms of the exponents”. For example ((ρ1) ∧ +) ∧ �

= ρ+ ∧ �
= (ρ+) � = ρ∗

corresponds to (1 ∧ +) ∧ �
= + ∧ �

= ∗.
Let 4 = {0, 1,⊕,

�
, +, ∗} be the set of exponents. The rules are given in

Tables 1(a), 1(b), and 1(c). Left operands can be found on the left of the tables,
right operands on the top. For example ∗ · 1 = + and 1 · ∗ = +.

The “∧”-table is set up as follows: We consider nested loops such that the
behavior of the inner loop (the left operand) is described by x ∈ 4 and that
of the outer loop (the right operand) is described by y ∈ 4. In order to find a
description of (ρx)y we have to determine the behavior of the nested loops.



∧ 0 1 ⊕ � + ∗

0 0 0 0 0 0 0
1 0 1 ⊕ � + ∗
⊕ 0 ⊕ ⊕ � + ∗
� 0 ����� ∗ ∗
+ 0 + + ∗ + ∗
∗ 0 ∗ ∗ ∗ ∗ ∗

(a) Operator “∧”

· 0 1 ⊕ � + ∗

0 0 1 ⊕ � + ∗
1 1 ⊕ ⊕ ⊕ + +
⊕ ⊕ ⊕ ⊕ ⊕ + +
� � ⊕ ⊕ � + ∗
+ + + + + + +
∗ ∗ + + ∗ + ∗

(b) Operator “·”

∪ 0 1 ⊕ � + ∗

0 0 0 0 0 0 0
1 0 1 ⊕ � + ∗
⊕ 0 ⊕ ⊕ � + ∗
� 0 ����� ∗ ∗
+ 0 + + ∗ + ∗
∗ 0 ∗ ∗ ∗ ∗ ∗

(c) Operator “∪”

Γ

0 false
1 false
⊕ false
� false
+ true
∗ false

(d) Function Γ

Fig. 1. Operators and Function Γ

For example consider (ρ � )+. In this case the inner loop can be executed zero
times which means that even when the outer loop is executed more than once,
the overall behavior can only be either ρ � or ρ∗. On the other hand, if the inner
loop is executed at least once, and since the outer loop allows for an arbitrary
number of iterations, the overall number of iterations cannot be bounded. Thus
we get (ρ � )+ = ρ∗ or given in terms of the exponents

� ∧ + = ∗.
By similar observations the contents of the “∧”-table can be completed. Sur-

prisingly, the “∧”-operator commutes.
For the “·”-table we consider concatenation of loops. For example ρ ·ρ∗ gives

ρ+ or for short 1 · ∗ = +. For simplicity we assume 1 · 1 = ⊕. Note that also the
“·”-operator does commute.

For the “∪”-table we have to consider the effects of if, case, and select state-
ments. For example ρ∪ρ⊕ means that on both branches there exists at least one
ρ. Hence 1 ∪ ⊕ = ⊕. On the other hand, ρ ∪ ρ � contains a path without a ρ on
the right side. Thus 1∪

�
=

�
. By symmetry, the “∪”-operator has to commute.

Assume that an extended regular expression is represented by an expression
tree. Then the rules given in Tables 1(a), 1(b), and 1(c) can be applied to the
operators in the tree from bottom up. Thus after a finite number of rewrites we
arrive at an expression of the form ρx, where x ∈ 4. Obviously, the number of
rewrites is equal to the number of operators in the extended regular expression.

Definition 5 Let B = {false, true} be the set of boolean truth values. Then we
define a function Γ : 4 → B by enumeration in Table 1(d).

If function Γ is applied to the simplified result of an ERE, it delivers true if
and only if the underlying CFG contains an infinite ρ+-path. If this is not the
case, Γ returns false.

In [35] Tarjan presents a fast algorithm to determine a regular expression for
a given CFG. These regular expressions describe all paths in the CFG from the
start node to the exit node compactly. Tarjan’s or any other algorithm suitable
for this problem can easily be adapted to extended regular expressions.

Theorem 1 Let G〈N, E, r, x〉 be a CFG. By α[[ρ|E ′]] we denote the extended
regular expression which we get from α by replacing each occurrence of e ∈ E ′ ⊆
E with ρ and by replacing each occurrence of all the other e′ ∈ E \ E′ with ε.

As noted above, by successively applying the rules given in Tables 1(a), 1(b),
and 1(c) to α[[ρ|E′]] we finally get a result σ = σ(α, E ′) = ρx, x ∈ 4. Now,

Γ (x) =

{

true, if G contains an infinite ρ+-path,

false, otherwise. ut



Compute C (τ )
1 C(τ ) := {}
2 for all a ∈ R(τ ) do

3 Compute α[[ρ | E′
τ
(a)]]

4 Apply rules to get ρx, x ∈ 4
5 Let Ca(τ ) be the set of tasks with which τ communicates via a.
6 if Γ (x) = true then

7 C(τ ) := C(τ ) ∪ Ca(τ )
8 endif

9 endfor

Fig. 2. Algorithm to Compute C(τ )

3 Algorithm

Let R(τ) be the union of all entry calls performed by task τ and of all accept
statements being part of τ . If τ = τext, then R(τ) = R(τext) contains all com-
munication statements to this external observer task that, as stated above are
marked by a suitable pragma in the source code of the program.

Each statement a ∈ R(τ) can appear in several places in the source code,
and thus it can appear in several nodes of the corresponding CFG. Let Nτ (a)
be the set of nodes of the CFG where a appears, or more formally: Let a ∈ R(τ)
and Nτ (a) be the set of nodes of the CFG G〈V, E, r〉 of τ where a appears in
the basic block mapped to Nτ (a).

Let E′
τ (a) = {(u → v) ∈ E | v ∈ Nτ (a)} be the set of all edges targeting the

nodes Nτ (a).
Let C(τ) denote the set of tasks with which task τ communicates. Set C(τ)

is computed by the algorithm given in Figure 2.
The algorithm proceeds as follows:

1. For each task (type) τ and for each communicating statement a, it computes
EREs.

2. The result of simplifying the ERE determines whether τ communicates to
some task via a.

3. In C(τ) the tasks with which τ communicates are aggregated.
4. Upon completion, C(τ) contains all tasks with which τ communicates.

Concerning interprocedural analysis we assume that inlining is performed.
This works well as long as there are no recursive subroutines. For recursive
subroutines we apply the following solution: If there exist paths (from the start to
the exit node of the CFG of the recursive subroutine) not containing a recursive
call which can be described by some ERE β and which simplifies to ρx, x 6= 0
by applying our rules from above then we replace all recursive calls with ρx.
Otherwise we replace all recursive calls with ε. Obviously, this construction is
correct.

It is possible that a task calls an entry of the same task type (e.g. consider
an array of tasks where each task communicates with its neighbors). Such “re-
cursive” entry calls are handled correctly by our algorithm in that C(τ) simply
contains τ itself.



1 procedure Main is

2 task Server is

3 entry E;
4 end Server;
5 task Client is

6 end Client;

7 task body Server is

8 begin

9 loop

10 select

11 accept E;
12 or

13 terminate;
14 end select;
15 end loop;
16 end Server;

17 task body Client is

18 begin

19 loop

20 Server.E;
21 end loop;
22 end Client;
23 begin

24 Server.E;
25 end Main;

Fig. 3. A Simple Livelocking Example

Definition 6 We define the communication graph CG〈T, EC〉 where T is the
set of all task types including the environment task, i.e., the main program and
the external observer task τext in the analyzed program and

EC = {(τ1 → τ2) | τ2 ∈ C(τ1)}.

Theorem 2 If the communication graph CG〈T, EC of a program is not weakly
connected (cf. [29]), then the program contains a livelock.

Proof. By construction of CG〈T, EC〉, the algorithm to compute C(τ) (see Fig-
ure 3), and Theorem 1.

3.1 Example

Figure 3 shows the Ada source code of a simple livelocking task set. The CFGs
of tasks Server and Client are shown in Figures 4(a) and 4(b). The CFG of
the environment task (Main) is very simple and is not depicted.

The accept statement in Server is situated on edge (1 → 2). Node 3 is the
terminate statement. Hence we obtain the ERE α[[ρ|{(1 → 2)}]] = (ρ ·ε)+ ·ε for
Server. Applying the simplification rules we get α[[ρ|{(1 → 2)}]] = ρ+. Hence
C(Server) = {Client}.

The entry call in Client is performed on edge (4 → 5). Thus we obtain
the ERE α[[ρ|{(4 → 5)}]] = (ρ · ε)+. Applying the simplification rules we get
α[[ρ|{(1 → 2)}]] = ρ+. Hence C(Client) = {Server}.

For Main we get ERE ρ and C(Main) = {}.
The communication graph CG is depicted in Figure 4(c). Note that one single

entry call in Main does not generate an arc in CG from Main to Server. Since
thus CG is not weakly connected, the example contains a livelock by Theorem 2.

3.2 Notes on Time and Space Behavior

Generating CFGs for programs is straight-forward and can be done in linear
time. Determining (extended) regular expressions for a given CFG can be done in

(a) CFG of Task
Server

(b) CFG of Task Client

Client

ServerMain

τ �����

(c) Communication
Graph CG of Example

Fig. 4. Graphs for Example



almost linear time (cf. [35]). In addition there exist linear algorithms to determine
whether a graph is weakly connected (see e.g. [11]).

Detecting the correct iteration scheme of loops requires heuristics for non-
trivial cases like loops with exit statements. However, we assume that such
heuristics can be implemented efficiently.

Applying the rules given in Tables 1(a), 1(b), and 1(c) needs time and space
linear in the number of operators in α, which is denoted by ‖α‖ in the following.

Different algorithms used to solve the path problem produce different values
for ‖α‖. In the worst-case ‖α‖ = O(an) for some a > 1, where n denotes the
number of nodes of the underlying CFG.

We have observed that Tarjan’s algorithm [35] applied to the SPEC2000
benchmark suite produces regular expressions both of polynomial and of expo-
nential sizes. However, we are unable to spot a pattern in the CFGs that would
make it possible to predict whether Tarjan’s RE size is polynomial or exponen-
tial.

In contrast, an algorithm [30] based on decomposition properties of reducible
CFGs delivered only polynomial sizes for the SPEC2000 benchmark suite. This
algorithm is known to produce exponential RE sizes only if the number of
backedges (i.e., loops) is large compared to the overall number of edges in the
CFG. Since this is rarely the case in practical applications, this algorithm seems
to be a good candidate for producing the extended regular expressions for the
purposes of this paper.

3.3 False Positives

First we would like to note that dead code can lead to false negatives in our live
lock analysis. In addition, performing dead code analysis before our algorithm
significantly reduces the number of false positives.

As already mentioned above, detecting livelocks requires the detection of
infinite loops in programs. Since this problem is undecidable, we cannot solve
the livelock problem in the general case, i.e., we have to live with false positives.

Although Ada has the loop ... end loop; kind of statement that allows
to explicitly‡ program infinite loops, general loop statements with exits make it
necessary to develop heuristics to determine the iteration schemes needed by our
approach. These heuristics are the primary source for false positives. We give an
example for such a case below.

If +- and ⊕-loops are treated as ∗- and
�

-loops, respectively, false positives
may arise. For example consider the ERE (ρx)+ which simplifies to ρ+ if x ∈
{+,⊕} and ρ∗ if x ∈ {∗,

�
}.

It should however be noted that most Ada multitasking programs are sup-
posed to use the loop ... end loop;-construct for infinite loops which is easy
to spot. In addition, we do not expect complex loop structures (exit, . . . ) in
safety related or embedded programs.

‡ In contrast to the while true loop ... end loop; style of other programming
languages.



1 procedure Main is

2 X : Boolean;
3 task body T is

4 begin

5 Write Ln();
6 end;
7 begin

8 if X then

9 l: loop

10 Write Ln(); -- Path p

11 end loop;
12 end if ;
13 end Main;

τ �����
����
	 �

(a) Example CG

Fig. 5. Example: False Positive

3.4 Reducing the Number of False Positives

Theorem 2 is a conservative approximation of the set of programs that may
produce a livelock. It requires the CG of a program to be weakly connected,
which holds if every task τ (including the program’s environment task) meets
the following constraints.

1. Every task τ must contain a loop l with a “+” iteration scheme,
2. on every path through the body of l task τ must communicate with the

external task τext (or with a task that communicates with τext and so on...),
and

3. every path through the CFG of τ must contain loop l.

The above constraints are so strict that many non-livelocking programs occur-
ring in practice fail to meet them. (i.e., their CGs are disconnected despite the
programs being non-livelocking). Fig. 5 contains a program with two tasks that
fail to produce a weakly connected CG (the CG is depicted in Fig. 5 (a)). Task T
communicates with the external task τext, but not within a “+” iteration scheme,
and the environment task (corresponding to the body of “Main”) contains a pro-
gram path that does not contain the “+” iteration scheme (i.e., if variable X is
false).

To reduce the number of false positives, we lower the abstraction level of our
analysis from tasks to loop bodies. Informally, livelocks are caused by infinite
loops. Lowering the abstraction level from tasks to loops allows for a more fine-
grained analysis and excludes tasks without loops altogether. Deviating from
Def. 2, we move the basic blocks of the CFG to the CFG edges (cf. [2]). We defer
discussion of nested loops to a latter part of this section and focus our analysis
on acyclic program paths through loops. In what follows, the term “loop” de-
notes the ERE corresponding to the argument of a “∗” or “+” ERE operator.
Exhaustive application of the rewrite rules

(R1 |R2) ·R3 ⇒ (R1 ·R3) |(R2 ·R3) (1)

R1 ·(R2 |R3) ⇒ (R1 ·R2) |(R1 ·R3) (2)

to a loop l results in an ERE p1 | · · · | p3 where each pi denotes an acyclic program
path through the body of l (recall that the discussion of nested loops is deferred).



τ3, l3 �

c1

c3

c5

c2

p3

τ1, l1 �

c6

p8

p5

p4

p2

p1

p7

τ2, l2 �

c4

p6τ �����

Fig. 6. Example: Communication Behavior of Three Loops l1, . . . , l3

Predicate Comτext : ERE → {true, false} is true iff every path through the ERE
provided as argument contains a communication with the external task τext

(e.g., a read/write operation on memory mapped I/O, etc.). Predicate Com :
ERE × ERE → {true, false} is true iff a synchronous communication (i.e., a
rendezvous) between the two argument EREs R1 and R2 occurs on every path
through R1 and R2. Note that for the sake of exposition the above predicates
are defined on EREs; for our analysis we will apply them only to single acyclic
program paths.

Our analysis is based on the observation that not all paths through a loop
need to generate communication patterns that contribute to a livelock. As an
example, consider Fig. 6. It depicts three loops l1 · · · l3. For each loop the acyclic
program paths pi are depicted (a single post-body node collects acyclic program
paths; a single back edge connects the post-body node with the loop header;
back edges are depicted with dashed arrows). Lines connecting paths pi and pj

denote intertask communication, i.e., Com(pi, pj) = true. Loops l1 and l3 livelock
at runtime only iff l1 enters an infinite execution sequence along path p3, and l3
enters an infinite execution sequence along path p7. Path p8 of loop l3 contains
communication with itself, which is possible with task types. Two tasks entering
an infinite execution sequence along path p8 constitute another livelock. No other
paths across loops l1 · · · l3 can contribute to a livelock.

Eq. (3) defines a predicate to determine paths that cannot contribute to a
livelock. Informally, a path p1 cannot contribute to a livelock if no communication
occurs on p1, or if p1 communicates with the external task τext or with another
path that communicates with τext. A path that cannot contribute to a livelock
is called a safe path, otherwise the path is unsafe.

Safe(p1) ⇔
(

∀p2 : ¬Com(p1, p2)
)

∨ Comτext(p1) ∨
(

∃p3 : Com(p1, p3) ∧ Safe(p3)
) (3)

Returning to the example in Fig. 6, all paths except p3, p7 and p8 are safe.
Fig. 7 depicts the algorithm that we use to detect unsafe paths. The algorithm

proceeds in two steps: (1) across all CFGs of all task (types) it computes the



Input:

set G of CFGs of the input program’s task (types)
Output:

set U containing sets of acyclic paths across loops that generate livelocks
Algorithm:

Compute unsafe paths (G)
1 U := {}, L := {}
2 for all CFGs g ∈ G do

3 compute ERE R = R(g)
4 L := L∪Rewrite(Slice(R))
5 endfor

6 for all loops l ∈ L do

7 for all paths p ∈ Pathset(l) do

8 if ¬ Safe(p) then

9 U := U ∪Com*(p)
10 endif

11 endfor

12 endfor

Fig. 7. Detection Algorithm for Unsafe Paths

set L of loops, and (2) determines if the paths through those loops are safe.
Procedure Slice uses a pattern matching algorithm to determine EREs that
constitute loops (see [4]). Procedure Rewrite applies the rewrite rules of Eq. (1)
and Eq. (2). Procedure Com*(p) uses the transitive closure on predicate Com
and returns a set containing all paths that path p communicates with. Each such
set constitutes a set of unsafe paths that may produce a livelock at run-time.

Nested Loops. Consider a loop l with path expression R. Assume that R1 =
(a|b)∗ is a subexpression of R. To determine the communication behavior of l,
a conservative approximation of communication with τext assumes that R1 is
executed zero times or once. For a loop with a “+” iteration scheme, the con-
servative approximation is to assume one iteration. The following rewrite rules
replace nested loops with their conservative approximations.

R∗ ⇒ (ε |R) R
�

⇒ (ε |R) R+ ⇒ (R) R⊕ ⇒ (R) (4)

These rules are added to procedure Rewrite. Procedure Slice returns a loop body
for every “∗” and “+” operator across all loop nesting levels (cf. [4]). These loop
bodies contain possible nested loops. As an example, consider a loop l with path
expression a ·((b∗ |((c ·(d)∗)∗). The sliced loop bodies are {b, c ·(d)∗, d}.

Implementation Considerations. The practicality of the path-based ap-
proach depends critically on the number of acyclic paths across loops. This
number grows exponentially in the number of if- and case statements and nested
loops. In [4] we conducted a study on the complete SPEC95 benchmark suite
with over 5000 CFGs. The purpose of this study was to determine the number
of acyclic paths across loops for large real-world applications. For 90% of all
surveyed CFGs this number was below 4000, which means that our approach is
tractable for real-world applications.



4 Related Work

There is a vast amount of work about the detection of deadlocks, but surprisingly
few publications to livelock detection in concurrent programming languages like
Ada and Java. Livelocks are mostly mentioned as a sideline while treating dead-
locks. A variety of work has been done for detecting or avoiding livelocks in
routing algorithms and client/server architectures. In this section we focus on
the related work concerning detection of livelocks in concurrent non-distributed
software.

Examples for early work on livelock and liveness properties in general are [20,
21, 27]. Recent work on liveness and fairness we are aware of include [36].

Techniques for the detection of livelocks in concurrent software are based on
petri-nets, model-checking, or CSP.

Petri-Nets. Cheng and Ushijima use extended Petri nets to represent Ada
multitasking programs [9]. This representation of a program is analyzed with
linear algebra methods to statically detect deadlocks and livelocks. The model
includes no cycles and therefore is not strongly connected which is a convenient
property for their livelock analysis. If an infinite firing sequence in the Petri net
exists a livelock is detected. The existence of a tasking deadlock and/or livelock
is shown when a matrix equation has a positive integer solution. The approach
cannot handle dynamic creation of tasks, abort statements, and exception han-
dling. Like our approach it also detects some spurious livelocks. Because this
method is based on an extended Petri net, it is fundamentally different to our
work. It can only detect the effect not its cause. The authors state that much
work has to be done to establish a practical static analysis for livelock detection.

Model Checking. The abstraction imposed by models derived from the ac-
tual source code generally results in differences between the model and the real
program implementation. Thus results given by model checking are in general
non-transferable to the real program. Static analysis like our approach do not
have this drawback because the application source code is used directly.

In the model-checking tool Spin [17, 16] the models are build in a language
called Process Meta Language (Promela). Spin enables analyzing liveness prop-
erties like non-progress cycles (i.e. livelocks). The detection of livelocks relies on
special labels. Therefore such labels have to be placed by the user. Thus it is
not fully automated. Both, Java PathFinder (JPF) [37] and Bandera [10], act
as a front-end enabling model checking concurrent Java software (e.g. livelock
checking).

Model checking approaches addressing livelock detection we are aware of
include [1, 24, 22, 12, 8].

The indirect approach in [19] addresses generally starvation in Ada programs
and is based on the finite delay property of [21].

CSP. The following tools use CSP [15] as a basis to enable the detection of race
hazards, deadlock, starvation and especially livelock. All these approaches have
similar flaws like in model checking i.e. design specifications or (the other way
round) abstractions may have differences to the actual software.



Deadlock Checker is a tool which performs various checks on parallel pro-
grams written in CSP in order to prove freedom from deadlock and livelock [25].
It acts as a design workbench for designers of safety-critical distributed systems.
The approach is efficient because of certain simplifications and is thus incom-
plete.

Joël Ouaknine’s Slap [18] is a conservative livelock checker for processes writ-
ten in a subset of CSP. If Slap outputs “LIVELOCK-FREE” then the CSP model
is livelock free. If the tool outputs “POTENTIAL LIVELOCK” then no defi-
nite conclusion can be made. Slap is currently in beta stadium and its source is
available.

Failures-Divergence Refinement (FDR) [23, 28] is a model-checking tool which
enables CSP based proofs and analysis. FDR uses the so called “failures-diver-
gences model” of CSP for detection of a set of traces after which a process
may livelock. At present it is limited to analyzing systems of up to one hundred
million global states.

Communicating Sequential Processes for Java (JCSP) [38], Communicating
Threads for Java (CTJ) [13], and Java2CSP [31] can be used to enable a CSP-
like verification of Java programs. Also C++CSP and JCSP.net for C++ and
.net, respectively, are available.

An example using CSP for detecting livelocks in real applications is the work
of Buth [6, 7]. occam code from the International Space Station (ISS) is being
converted to CSP using abstraction techniques. The resulting CSP model is
checked using FDR. Nevertheless the presented technique needs some manual
steps and knowledge. Thus it is far from being fully automated.

5 Conclusion

We have presented simple algorithms for detecting livelocks in Ada multitasking
programs. Although their worst-case execution time is exponential, the algo-
rithms can be expected to run in time O(|V |2), where |V | denotes the number
of nodes of the CFG of the analyzed program.

Since the problem is strongly connected to finding infinite loops, which is
undecidable, our algorithms compute only an approximation to the real solution
of the problem. As a consequence our algorithms compute false positives.

A future direction of our work will be to include data-flow in our approach
which might result in a more fine-grained analysis.

Another future direction of our work will be to set up a symbolic framework
(e.g., based on [5]) for livelock detection. Such a framework can be expected to
use more resources (time and space) than the approach presented in this paper,
but will be less amenable to false positives.
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