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Consider a rooted tree structure the nodes of which have been labelled monotonically by
elements of {1,2,..., k}, which means that any sequence connecting the root of the tree with a
leaf is weakly monotone.

For fixed & asymptotic equivalents of the form Cygy "n 2 (n— ) 10 the numbers of such
tree structures with # nodes are obtained for the family of extended unary-binary trees (i.e.,
Motzkin trees) and for the family of extended unary-z-ary trees. Furthermore the numbers of (not
extended) monotonically labelled binary and unary-binary trees are studied.

For each of these families the asymptotic behaviour of g as k — o= is determined. This is done
by investigating a non-linear function sequence. The roots of the functions of this function se-
quence equal gp. Thus one finds for instance ¢y ~ (log 2)/k (kK — =) for the family of extended
unary-binary trees, and g, ~ a/2k (k— =) for the family of binary trees.

1. Introduction

A large number of recent papers deal with the investigation of generalized classes
of tree structures. Compare e.g. [6], [7], [8], [9], [11]. Consider the nodes of a tree
labelled by elements of {1, 2,...,k} in such a way that any sequence connecting the
root of the tree with a leaf is weakly monotone.

These tree structures are of special interest e.g. in connection with some kind of
order preserving maps (cf. [11]) or in the enumeration of expression trees.

Let us study the latter case in some detail:

It is well-known that an arithmetic expression can be transformed to a correspon-
ding expression tree. The connection between formulas and trees is very important
in computer science. It occurs in a number of contexts in compiling, symbolic
manipulation systems, and related areas.

In most cases only the mapping of formulas to expression trees is of interest.
Sometimes, however, it is necessary to construct an al/gorithm that given an expres-
sion tree produces a corresponding expression. Since in this case usually many dif-
ferent expressions can be constructed from the same tree, it is convenient to reduce
the number of parentheses as much as possible. This is done by providing the
operators with distinct priorities.

We call expressions that do not involve parentheses or that do involve parentheses
only because some operators are not associative, canonical expressions. (For in-
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10 JA. Blieberger

stance a +b+c=d or a" *b"+ ¢+ d" + e would be such expressions, while & = (b+ ¢)
or (¢+5)" would not be.)

Given a fixed set of operators (with priorities) and an algorithm like the one men-
tioned above, the question arises how often the algorithm will produce canonical ex-
pressions.

If we consider the priorities to be labels of an expression tree, canonical expres-
sions can only occur if the labeling is weakly monotone. Hence the question can be
answered by counting monotonically labelled trees.

_In [11] Prodinger and Urbanek have considered the problem of finding asymp-
totic equivalents to the numbers of monotonically labelled tree structures with n
nodes in the case of some special families such as extended binary trees, extended
t-ary trees, and ordered trees. For fixed k they obtained asymptotic equivalents of
the form C,q; "n >*(n— o) to the numbers of these families of trees. Prodinger
and Urbanek additionally showed that the sequence ¢, obeys a simple nonlinear
recurrence relation.

In the present paper we want to investigate the number of monotonically labelled
extended Motzkin trees (i.e., unary-binary trees) and the number of monotonically
labelled (not extended) binary trees. The methods developed in this paper easily
generalize to families such as extended unary-t-ary trees and (not extended) unary-
binary trees with weights attached to their nodes. In all these cases asymptotic
equivalents of the form C,q;"n > (n— o) to the numbers of these families of
trees are obtained. The essential difference to the paper of Prodinger and Urbanek
is that the sequence g, does not obey a simple recurrence relation, but appears as
the roots of the functions of a certain function sequence which satisfies a nonlinear
recurrence relation.

A detailed investigation of this function sequence allows to establish the asymp-
totic behaviour of ¢ as k — oo. Thus the following results are obtained for

Extended Motzkin Trees. The number M, , of Moizkin trees with n internal nodes
which are monotonically labelled by elements of {1, 2,...,k} fulfills as n— oo

My n~Crgi "n= 2
Here g, is the only root of p(z)—z in (0, 1), where p;(2) is defined by (k=0)

=
2

Fa ]

Polz) = . Pi 1@ =p 2N —z2=pi(2),

and Cy. is a constant. Moreover, q, fulfills as k — o

log 2 logk)
=——+0 ==
2 k ( s

Binary Trees. The number B, , of binary trees with n nodes which are monotoni-
cally labelled by elements of {1, 2,...,k} fulfills as n— oo
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By ,=0 : Jor n=0 (2),
B ,~Crai"n~Y* for n=1(2).

Here q, is the only root of py(z) in (0, 1), where p,(z) is defined by (k=0)

P =%  Pri 1@ =P - pe)-72%,

and C, is a constant. Mareover, q, fulfills as k — o

n log k
== O =],
%= 3% ( k> )

Similar, but more complicated asymptotic formulas can be obtained for the more
general tree structures mentioned above.

Properties of monotonically labelled tree structures have been studied extensively
in literature. In [8] Kirschenhofer and Prodinger have treated the problem of the
average height of monotonically labelled binary trees, in [6] and [7] Kirschenhofer
has studied the average shape, and in [9] Kirschenhofer and Prodinger have con-
sidered the average oscillation of the contour of monotonically labelled ordered
trees.

Remark. We will frequently use the symbol (y(z), z") for the coefficient of z” in
the power series y(z).

2. Monotonically labelled Motzkin trees

A Motzkin tree or unary-binary tree is either a single leave or it is build up by
an internal node () with either one or two (ordered) subtrees. This can be illustrated
by the following symbolic equation:

MS+E+M/O\M

Let M, denote the family of Motzkin trees the internal nodes of which are labell-
ed monotonically by elements of {1, 2,...,k}. Let (¥, z") be the number of trees
in M, with n internal nodes, and let

=Y on@, z2H" (2.1
n=l

‘be a corresponding generating function.
Furthermore let M, be the family of Motzkin trees the internal nodes of which
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are labelled monotonically by elements of {2, 3,...,k+1}. Then the M, fulfill the
following system of symbolic equations:

Kot iy o

M, M, M,
Mk=Mk..|+ CF = fD\ (2.2)
M, M, M,

This system of symbolic equations can be translated into a system of recurrence
relations for the generating functions vy, (cf. [3]):

@ =yi_1@+@+ik) *k=1), =1 (2.3)

To determine the asymptotic behaviour of {y;, z") we use a method originally
due to Darboux [2] which is described in Harary/Palmer [3, pp. 211f] and in [1].
Let g, denote the positive singularity of y, of smallest modulus. We define:

F(z, W)=y @) + (2= 1) w+zw’. (2.4)
The singularity g, must now fulfill (cf. [5], [1])
Gy, wi) = Filgy, we) =0 with wy = ye(gy).
The solution of F,=0is w=(1-2)/2z.
Substituting this into (2.4) we see that g, is the smallest positive root of
- 1(@)=(1-2)°/4. @.5)

Moreover, g, is the only singularity with smallest modulus:
To see this consider z=4g, to be a root of (2.5) with §; # ¢y, but |G;| =g, . Since
the coefficients of y; _,(z) are nonnegative, we have

1-g0)° _[1-a®

@ Vi 1@ = G| v U@ =aqp v -1 (@) = 2 3

which is obviously a contradiction.
By the method described in Harary/Palmer [5] we get

R
1 (n— oo).

(@), 2" ~Crge "n
Since (¥4(2), 2" = (¥ (@), 2"), it is clear that

0<q=q,=3-2V2<1. (2.6)
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We proceed to show that g is the only root of p,(z) =z in (0,1), where p(z) is
a function sequence that satisfies a nonlinear recurrence relation.

Definition 2.1. Let the function sequence p,(z) be defined by

p(](Z) =% 3 P |(Z}:pn(Z)(l _z_'pn(z”- (2?}

From this definition it follows that g, v, (gx) =p(qp).
From (2.3) we have for O0<i<k—1

Wi = Wi =T Vk—i— T Vi—is (2.8)
so that g, v (qi)=pi(gy) for 1=i=<k. In particular we have
@ Yolax) = qx = Pildys)-

Since g, lies in (0,1) by (2.6), g, is a root of p,(z)=z in (0,1).
Our next step will be to prove that g, is the only root of p,(z)=z in (0,1).

Definition 2.2. 4,(2): =p,(2)/(1 - z2).

From this definition the following recurrence relation for A, can easily be
derived:

ho() =+, By (R=1~2h, (1 - h,(2)).
Using this recurrence relation we will show by induction that
Osh, (2)<h(z)<} forO<z<land n=1.

The case n=1 holds true, and if we assume 0<l-z<1,0=<#h, (7)<}, and
1<1-h,(z)=<1, it is an easy consequence that

O0=(1-2)h ()1 —h () =h,; . (D <h(2) <5

We proceed to prove that A,(z)<0 for 0<z<1 and n=1: We have h{(z)= —+<0
and for n=1

hy 1 (2) = = () =k, (2)) + ()1 = 2)(1 —2h,(2)).
Since A, (1 —h,)=0 and (1 —z)(1 —2h,)>0 (see above), we have h,(z)<0 for n=0.
From these results and from the definition of £, it follows that
(1) 0=p, (@=p,(2)<3(1 —2)=py(z) for 0<z<land n=1, and

(2) pi(2)<0 for 0<z<1 and n=0.
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Remark. Let g, (8) be the smallest positive singularity of the generating function of

the monotonically labelled extended binary trees. Then the following hold (cf. [11]):
(i) i 1(B)=q(B)1 —qu(B)), qu(B) =1,

log k
kZ

(i) q,c(B):-ij +0( ) (krob),

Observing p,(0)=g(8) we conclude from this remark and the considerations
above that g, is the only root of p(z)=z in (0,1).

Theorem 2.3. The number {y., 2"y of Motzkin trees which are monotonically
labelled by elements of {1, 2,...,k} fulfills as n— o

<y.h Z”) L quk u" =372
Here qy is the only root of p(z)—z in (0,1), where p,(z) is defined by (k=0)

[u——

—%

Po(z)= s Pen1@=p(@ —2=p(2)),

N ‘

and

o 1 J k=1 N 172
ck—zm ((1 = pilay) fIJI (1 =qx—2p(ay)) ) :

Proof. It remains to show the formula for Cj.
Using Theorem 5 stated in [1] we see that

| 1/2
Q=i | il :
g = ( (aqy J’k(Qk)})
so that, since
F(z, W)=yi_+w+w?,

we only have to investigate y; .
Differentiating (2.8) we get the recurrence relation

Pl =2=220 1) =Vk—i—1 +.Vk—:'+y}¢z—-:-
Observing
Ye—ilqi) =pi(qr)/ qx

we get at z=g¢,
—1i

k—i k=i
Yi-dan=ai’ L (@ep-ta I1 (= ax=2pi (i)

Jj= =/
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Hence
Jk=1 - J =
FAqe vilae) =qy - 'Eo (Gr i) +0j () ;H| (L —gx—2p(qs)) -
J= =

This reduces to the form stated in the proposition if we observe (2.7) and the deriva-
tion of (2.7). O

To determine the asymptotic behaviour of ¢, as k — oo, we establish an asymp-
totic form of p.(z).

The following lemma is inspired by Lemma 5 in [4], where a similar function se-
quence plays a central role in determining the average height of binary trees.

Lemma 2.4. For 0<z<1 we have

z(1 —z}"“ ( €,(2)- 2 &
— I ;
Pu(2) I-(l-2) & 1-(1—z)")
where
n-1 hi(2)
=2+ =gt
£4(2) ki—-:ﬂ( 2 1 —h(z2)

Proof. We start from the recurrence

hjp 1) =1 = 2)h(2)(1 - hy(z))

and we take out the (1-z) factor present in hj(z). Let r;=h;(2)/(1 —z), then we
have
r),-ﬂ-':rj(l _h.fl)'

Since we have 7,>0 for 0<z<1, we can define sjt =r:,'1 and get

hi hi(1-2z)/
5}'+1=$j(]—k_,-)_lzsf_,-(l+kj+ : )=SJ-+(1—Z)J+LE)—.

1-h, 1 —h
If we sum up these identities for j=0,...,n—1 and use s,=r; '=h; '=2 we get
n—1 . n-1 vl | =l =z}
sp= Y (1-2)'+2+ ¥ (1-2/ ——= L=2 +&,(2).
i=0 J=0 1—k; z

From this the lemma follows. [

Lemma 2.5. For 0=sz<g,(B)=1/n+O((log n)/n’) the Jollowing holds uniformly:

_zZ(l-3)"! logn’
p,,{z)—l_“_z),,(lJrO( n ))
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Proof. Since x/(1—x) is monotone increasing in (0,1), and /,(z) is monotone
decreasing in (0,1), we have

hy =, (0) = q,(B)

and n—1 =1
0<¢,()<2+ ¥ I <24 5 —9uB)
k=0 1—hy k=01 —gu(B)

=0(log n). (2.9)

A simple argument shows that f(z) =z/(1 — (1 — 2)") is monotone increasing in (0,1).
Hence

' SR =fq,(B)=0(1/n).
Combining these results we get the desired estimate. [

Lemma 2.5 enables us to determine the asymptotic behaviour of the root of
Pa(2)—z in (0,1).

Lemma 2.6. Let z, be the root of p,(z)=z in (0,1). Then

log 2 logn
z,,=~’gr—+0( ngz )

Proof. If we observe z,>0,
z(l —z,)""! ( (IOgn'
[ 1+0| — ) )=
1-(I-z,) n ) i

(1-2,)" @~z =1+(1-z,)" IO(M) .
n

implies

Since z, =0(1/n) in (0, q,(B)),
1/(2—z,)=4+0(1/n).

(1 —z,,}”=%(l +0(I°§”)).

So we get (z,€R™):

1 —zn:exp(— L Iog2)(l +0( log1n ))
n n-

log 2 1
_ . log +O(0g’n)’
n n-

Hence

and the lemma is proved. [
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So we have shown the following

Theorem 2.7. The smallest positive singularities g, of the generating functions y;
Julfill as k — o

Qk=%+0([08k).

k k2

It is possible to derive more precise estimates by iteration of this process, e.g.:

Theorem 2.8. The smallest positive singularities q; of the generating functions y;
Sulfill as k — oo

1 logk 1%
=log2{ — — +0Ol —= 1.
artos?(f; - 5 +0(33))

Numerical results corresponding to Theorem 2.7 are displayed in Table 1.

Table 1

k i gik/log2

1 0.171572875 0.248

2 0.129158910 0.373

3 0.105115939 0.455

4 0.089186654 0.515

5 0.077717283 0.561

6 0.069007052 0.597

7 0.062139224 0.628

8 0.056570040 0.653

9 0.051954174 0.675

10 0.048060707 0.693

50 0.012421752 0.896

100 0.006511413 0.939

200 0.003346614 0.966

300 0.002254027 0.976

400 0.001699733 0.981

500 0.001364415 0.984

600 0.001139674 0.987

700 0.000978537 0.988

800 0.000857343 0.990

900 0.000762874 0.991

1000 0.000687166 0.991

The method developed in this section may be generalized to unary-t-ary trees with
weights attached to their nodes.

Such a tree consists of leaves and of internal nodes which have either one or ¢
ordered subtrees. The internal nodes with one successor are weighted with ¢, >0,
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those with 7 successors are weighted with ¢,>0. So the family of weighted unary-t-
ary trees T may be defined by the formal equation:

Q
T=D+c,?+q /\
T y T

I Sl

f times

Let T, be the family of weighted unary-f-ary trees which are monotonically
labelled by elements of {1,...,k}. Furthermore let (y.(z), z") be the number of
trees of T with exactly n internal nodes.

Then one can show the following

Theorem 2.9. The number of the monotonically labelled unary-t-ary trees with

weights attached to their nodes in the manner described above fulfills as n — o
<.Pk9 zﬂ) =1 C‘. q‘; fr"—3f’2.

Here q is the only root of py(z)—z in (0, 1/¢,), where p(z) is defined by (k=0)

1 il 1 1 A
Ic,

1A4r=1)
Pu(Z):( ) F ; Pes i@ =D =c;2-¢, 0t (D)),

and Cy is a constant. Moreover, q; fulfills as k — o

log(1 +¢;/¢c;) 1 (Iogk)
=B OV © o DT
B="et=1) &k N\ &

Remark. If we set ¢,=1 and let ¢, — 0, we formally obtain the results of Prodinger
and Urbanek [11] concerning the family of f-ary trees.

3. Monotonically labelled binary trees

In this section we illustrate how to apply the method developed in the previous
section to the case of not extended binary trees.

The family of not extended binary trees consists of trees the internal nodes of
which have two ordered successors.

Let the family of monotonically labelled (not extended) binary trees be defined
by the following symbolic equations (in this case the leaves are also considered to
be labelled):

)

By B, @)
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Bk=gﬁ'—l+®+ f\
B B,

k

Here B) denotes the family of binary trees the nodes of which are labelled by
elements of {1,...,k}, and B, denotes the same family except that the nodes are
labelled by {2, 3,...,k+1}. Let {»:(z), z") be the number of trees in B, with n
nodes (it is clear that {y(z), z*") =0) and let y(2)= ¥ ,=0 (¥x(2), 2")z" be a cor-
responding generating function. Then (3.1) can be translated into the following
system of recurrence relations:

y@=y 1@D+z+2@),  »(2)=0. (3.2)

From this we see that y, has two singularities, namely +g¢;, g,>0.
If we define the function sequence p,(z) by

D=4  Puri@=p,0 =p, @) ~2 (3.3)

it is easy to show that the two singularities +¢; and — g, of the generating func-
tion y; are roots of p.(z)=0.
In the following we will show that g, is the only root of pi(z)=0in 0<z<1.

Remark. Since p,(z) is an even function for all n, it suffices to study p,(z) for
0<z<lI.

We will show by induction that p, , (2)<p,(z)<?% for 0<z=<1,n=1. We have
PR =4-z’<4
and

Prsi@=p,(1=-p,)~2*<p,-Pi=D,.

Thus the proposition follows.
We proceed to prove that p,(2)<0 for 0<z<1,n>=1. We have p;(z)= —2z<0
and using induction we see that

Pn+1=Pp(1 —2p,) — 22<p,(1-2p,)<0.

The last estimate holds, because of the assumption p, <0 and because p, <}, which
was shown above.

From these two estimates we see that ¢, is the only root of p,(z) in (0,1). Hence
we have shown

Theorem 3.1. The number (y(z), ") fulfills as n— o

{m(z), 7"y=0 _ Jor n=0(2),
D@, 2D ~Cegi"n "% for n=1 ).
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Here g, is the only root of p(z) in (0,1), where p,(z) is defined by (k=0)
P =4  Pini@=p@(1 = p(2) -7,

and Cy is a constant.

We are now going to establish the asymptotic behaviour of g, as k — co.
We define A, (z) by

pu(z)+iz
=t ——
n(2) 1+ 2iz
where i denotes the imaginary unit, i.e., i’= —1.

Thus h,(z) fulfills the following recurrence relation for n=0;

ho(2) =1, hy o 1(2) =(142i2)h,(2)(1 = £,(2)).

Lemma 3.2. For 0<z<1 we have

2iz(1 4 2iz)"*! g2z \' |
% n (l + P | ) —IZ:
(1+2iz)"—1 (1+2iz)"—1

pn{Z) =

where

#—1 o
E2)=2+ Y (1+2igy —L-.
Jj=0 l"h}

Proof. Very similar to the proof of Lemma 2.4. []

Before we continue, we need a crude estimate for g;.

Lemma 3.3, We have 0<q,<C/k for a C>0 and q,<2/k for k—co.

Proof. Let B,, ,, ; denote the family of binary trees where all (2r+ 1) nodes (even
the leaves) are monotonically labelled by {1,2,...,k}; let a5, , ; be the number of

different trees in B,, ;. Then we have (cf. Theorem 3.1)

—(2n+1),,~3/2
@y 1.6~ Cr i a (n— o).

Let B, ; be the family of binary trees with n internal nodes (and 7+ 1 leaves) the
internal nodes of which are monotonically labelled by {1,2,...,[k/2]}, and the

leaves of which are labelled by {[k/2]+1,...,k}, where k=2 and

if k=02
[k/2]=[k/2 ff 2),
(k+1)/2 if k=1(Q).

Let b, be the number of different trees in B, ;. Then we have [11]

bk~ Cilarin(B) "k —[k/27)" 'n 32 (n—>o0),
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where ¢;(B) denotes like in the previous section the singularities of the generating
functions of the monotonically labelled extended binary trees.
Since for sufficiently large n we have a,,, | =D, , we get

ar=k—[k/21) arpn(B) ~4/7k%,

because of g.(B)~1/k, which has been shown by Prodinger and Urbanek
A} i

Lemima 3.4. For 0<z=gq, we have

_ 2iz(1 +2ig)"! logn\\ .
P = iy -1 (HO( n ))*’“'

Proof. For 0<z=gq, we have |h,(z)|<p,(0)+z, because of

Viz)+2°

i1z <pp(R)+z=p,(0)+z.

|hy| =
" 144z

Since |1+ 2iz|/=0(1) for 0<z=g, and because of the estimate above, we get

n

n—1 [ ;
lea@] <2+ T |1+2iz]/ -4
i=0 |1—

£2+0( Yy (pj(0}+z)).

| =0

Since

1 log j [
P, (0) =~ +o(%) and 0<z<—,
J J n

we have &,(z) =0O(log n) for 0<z=gq,.
The lemma follows now if we observe

iz

e 1) for pz<Z . '
‘(l+2iz)"—l‘_ (n T

Lemma 3.5, If z, is the root of p,(z)=0 in (0, 1), then we have as n—oo
n 1
%= +0(57)
2n n-

Proof. Lemma 3.4 implies

: . log n
(1+2iz,)"(1 +4iz,)=—1 +0( )
n

Since

1 C
- =l+0(—) for D=z < — ;
1 +4iz, n n
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this equals

: log n
(1 +2:z,,)"=(—l)(l +O(T)).

Thus we get

: 1 log ny
I+212,,:exp(; Iog(—l))(H-O( = ))

Since log(—1)=in(2/+ 1), /e Z, we find that for (1/n)in(2/+ 1), /= 1, we would have
2,>2/n, which would contradict Lemma 3.3. Hence

. 1, log n i log n
l+21zn=*xp(— m)(l+0(—2))=l+—+0( 5 ) I
n n n n-

So we can state

Theorem 3.6. The smallest positive singularities g, of the generating functions y,(z)
Sulfill as k— oo

i log k
T TP L LA
2% ( K2 )

Numerical results corresponding to Theorem 3.6 are displayed in Table 2.

Table 2

k i quk2/n

1 0.500000000 0.318

2 0.340625019 0.434

3 0.265821288 0.508

4 0.220330088 0.561

5 0.189147001 0.602

6 0.166208351 0.635

7 0.148520885 0.662

8 0.134412536 0.685

9 0.122866540 0.704

10 0.113224938 0.721

50 0.028398195 0.904

100 0.014822830 0.944

200 0.007601486 0.968

300 0.005115922 0.977

400 0.003856380 0.982

500 0.003094894 0.985

600 0.002584716 0.987

700 0.002219022 0.989

800 0.001944030 0.990

900 0.001729710 0.991

1000 0.001557971 0.992




Monotonically labelled Morzkin irees 23

Theorem 3.6 can be generalized in the following way. The family M of the
weighted unary-binary trees may be defined in the following manner:

A unary-binary tree with weights attached to its nodes consists of a node with
either one or two ordered subtrees, where the weight ¢, >0 is attached to the nodes
with one successor and the weight ¢;>0 is attached to the nodes with two suc-
cessors. This is a special case of the so-called simply generated families of trees in-
troduced by Meir and Moon [10].

The family M fulfills the following symbolic equation:

Q
G Tt
M M M

If the nodes (even the leaves) are labelled monotonically by {1,..., k}, one gets
the family M, the family of weighted monotonically labelled unary-binary trees.

Let {y;,2") be the number of trees in M, with n nodes. Then one can show the
following

Theorem 3.7. The number {y.,z") fulfills as n— oo
") ~Crgy"n 7,
where qy. is the only root of p,(z) in (0,1/c,). Here p,(z) is defined by (k =0)
1 =&z
2¢,
Moreover, q; fulfills as k— oo

gy log((c, +ﬁ2/(fl -B) % +0(10g1k)’

A..'.
where f§= Vc,z - 4&'3.

Remark. The results of Theorem 3.7 are formally still valid, if ¢, 0.

Po(z) = N Pis 1R =p@ —¢\z2— e pp(2)) — 2%
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