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We investigate some real time behaviour of a (discrete time) single server system
with nonpreemptive LCFS task scheduling . The main results deal with the proba-
bility distribution of a random variable SRD(T), which describes the time the
system operates without any violation of a fixed task service time deadline T . A
tree approach, similar to those already used for the derivation of the same
quantities for other scheduling disciplines (e .g., FCFS) is suitable here again,
establishing the power of such techniques once more . Relying on a simple general
probability model, asymptotic formulas concerning all moments of SRD(T) are
determined; for example, the expectation of SRD(T) is proved to grow exponen-
tially in T, i .e ., E[SRD(T)] - CT3 / 2PT for some p > 1 . Our computations rely on
a multivariate (asymptotic) coefficient extraction technique which we call asymp-
totic separation . © 1995 Academic Press, Inc.

1 . BASICS

In this paper we shall study some aspects concerning the real time
behavior of a discrete time single server system with nonpreemptive LCFS
task scheduling . Instead of using queueing theory, we apply a special tree
approach already used for the derivation of similar results in the case of
FCFS and preemptive LCFS scheduling ; see [2, 81 . Both papers contain a
very detailed introduction to the model, as well .

The outline of the paper is as follows: After a short description of the
underlying model and some questions of interest, we provide the tree
approach suitable for the combinatorial and asymptotic computations in
Section 3 and 4. Section 5 is devoted to our final results . Finally, some
conclusions are appended in Section 6 .

* We are grateful to Michael Drmota (TU Vienna) and Philippe Flajolet (INRIA Rocquen-
court) for some fruitful discussions and comments concerning the subject .
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We consider a system containing a task scheduler, a task list, and a
single server. Tasks arriving at the system are taken by the scheduler and
placed into the task list according to the scheduling strategy . The server
always executes the task at the head of the list ; thus scheduling is done by
rearranging the task list . A dummy task will be generated by the scheduler
if the list becomes empty . If the server executes a dummy task the system
is called idle, otherwise busy .

Rearranging the task list is assumed to occur at discrete points on the
time axis only, without any overhead . The (constant) time interval between
two such points is called a cycle . Due to this assumption we are able to
model tasks formed by indivisible (atomic) actions with duration of 1 cycle .
The task execution time of a task is the number of cycles necessary for
processing the task to completion if it might occupy the server exclusively .
A "regular" task may have an arbitrary task execution time; a dummy task
as mentioned above is supposed to consist of a single no-operation action
(one cycle) . The service time of a task is the time (measured in cycles) from
the beginning of the cycle in which the corresponding task arrives at the
system to the end of the last cycle of that task .

Obviously, the time axis is covered by busy periods, which are supposed
to include the initial idle cycle, too . Note that this definition implies the
correspondence between an idle cycle and a busy period with duration of
I cycle . A sequence of busy periods without any violation of any task's
service deadline, followed by a busy period containing at least one dead-
line violation, is called a run ; the sequence without the last (violating) busy
period is referred to as a successful run .

In order to investigate real time performance, we shall study the
successful run duration SRD(T), which is the time interval from the
beginning of the initial idle cycle to the beginning of the (idle) cycle
initiating the busy period containing the first violation of a task's dead-
line T.

We assume an arrival process which provides an arbitrarily distributed
number of task arrivals within a cycle, independent of the arrivals in the
preceding cycles, and independent of the arbitrary distributed task execu-
tion times, as well .

The probability generating function (PGF) for the number of task
arrivals during a cycle is denoted by

A(Z) _ L a k Z k

	

(I .I)
k>_0

and should meet the constraint ao = A(0) > 0 ; i .e., the probability of no
arrivals during a cycle should be greater than zero . This ensures the
existence of idle cycles .
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The PGF of the task execution time (measured in cycles) is denoted by

L(z) _ E lkzk

	

(1 .2)

k>O

with the additional assumption L(0) = 0; i .e ., the task execution time
should be greater than or equal to one cycle . Note that we assume an
a priori knowledge of the task execution time at the time the task arrives .

For technical reasons we shall need some additional conditions concern-
ing the behavior of P(z) =A(L(z)), which are summarized in Section 4 .

We should mention that the number of probability distributions meeting
our constraints is quite limited due to the required independence . An
example of a suitable model is based on an interarrival distribution with
the so-called memoryless property, i.e ., an exponential or geometric distri-
bution, leading to (well-thumbed) Poisson- or Bernoulli-type arrivals within
a cycle, respectively .

2 . TREE APPROACH

In this section we will establish a one-to-one mapping between busy
periods and a family of (labeled) planted planar trees, which provides a
straightforward correspondence between deadline constraints and limited
label sums of some subtrees . Due to this fact, we may relate the original
problem of investigating the random variable SRD(T) to a counting
problem regarding a special (sub)family ~W T of trees .

Consider the following diagram, which represents an example busy
period :

T4 TS _

	

T9 Tio
T3

	

k k i TS

	

T7

	

k k i Tio
T2i T3 (7)

	

T4 ;

	

Ts Tel Ts (4)

	

Ty 1

	

Til Ti2
Tli

	

T2 (4)1 1, 1

	

.7 1 kl
ki

	

(till~f Í4 )
0123

busy subperiod 1

	

busy subperiod 2

busy period

FiG . 1 .

T12 (12) 1
IFIIIIIIIIII Tt~ ~iFlll

busy subperiod 3

According to our discrete time model, the horizontal axis is divided into
equidistant cycles. Those cycles forming the busy period of interest are
numbered consecutively ; cycle 0 denotes the initial (idle) cycle . Task



arrivals are shown by small lightnings with task-names above . The execu-
tion of a task is displayed by a horizontal line whose length equals the task
execution time. The vertical level of a line, i .e ., its vertical distance to the
horizontal axis, represents the number of tasks not processed to comple-
tion at the beginning of that task. For the sake of readability, each such
line is marked with the name of the corresponding task (and, sometimes,
its task execution time) .

There is an important relation between deadline constraints and the
length of the so-called busy subperiods. A busy subperiod is the epoch
from the arrival of the first (new) task during the execution of a level 1 (or
level 0) task to the end of the last cycle of the new task. For instance,
looking at the cycle 0 in our example, one obtains the arrival of task T, .
Due to the nonpreemptive LCFS scheduling discipline, this task is badly
off, because all tasks arriving before the beginning of the execution of Tl ,
are preferred! Hence, if the length of a busy subperiod is less or equal to
T, all processed tasks are guaranteed to meet a service time deadline of T
cycles. Conversely, if the length of a busy subperiod is larger than T, at
least the task having arrived first will miss its deadline .

0040 o
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Consider the tree corresponding to the diagram above . To obtain this
tree, a task is represented by an elliptical node which is labeled according
to its task execution time ; i .e ., the label of a node is the number of cycles
necessary for processing the task to completion . Equivalently, this labeling
may be done by drawing the corresponding number of circles (each
describing a cycle, of course) within the node .
The number of successors of a node equals the number of arrivals

during the execution of the corresponding task . If a task has a task
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execution time of l cycles and will be scheduled to start at the ith cycle
(i >- 0) of the busy period, the execution will be completed at the end of
the (i + l - 1)th cycle, since we are dealing with nonpreemptive LCFS
scheduling. Thus, with t i , i >- 0, denoting the number of task arrivals
during the ith cycle of the busy period, the number of successors of the
node is t i + ti+I + • • • +ti+ , I . Successors are drawn from the left to the
right, according to their arrival sequence .

Due to our construction, the outer leftmost (elliptical) nodes in the tree
correspond to those tasks which both complete a busy subperiod and start
a new one, too. They are displayed in the equivalent labeling style
mentioned above. If such a node has no successors, it indicates the end of
the whole busy period ; at least one idle cycle follows .

Note that the reconstruction of the busy period from a given tree is
done by a right-to-left preorder traversal of all (elliptical) nodes of the
tree .

Deadline constraints are reflected by suitable limits on the number of
cycles. More precisely, the sum of the labels of nodes belonging to a busy
subperiod has to be less than the deadline T, for all busy subperiods, of
course . In our example tree above, those nodes belonging to a specific
busy subperiod are fenced in by a dotted line .

Unfortunately, the fact that consecutive busy subperiods overlap one
another introduces unpleasant difficulties . Since two consecutive busy
subperiods are pasted together at an outer leftmost node, (some of) its
cycles have to be taken into account in both . On the other hand, to obtain
the total number of cycles of a whole busy period, each cycle has to be
counted exactly once . Hence, we are forced to investigate trees represent-
ing busy subperiods first, and paste them together in order to obtain whole
busy periods .

3 . COMBINATORICS

As mentioned in Section 1, a run denotes a sequence of busy periods
not violating any task's deadline, followed by a busy period with at least
one deadline violation . Let

bk T = prob(Length of a nonviolating busy period equals k cycles

and let

BT(u)

	

bk , T U k

	

(3 .1)
k>_O

be the corresponding PGF . The PGF of the random variable SRD(T), i.e.,
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the length of a successful run, is given by

1-B 1
ST(u) ~Sk ' TUk

	

1 - BT(u)

	

(3 .2)

This follows from the fact that the PGF of the length of an arbitrary
number of nonviolating busy periods is Lrn , OBT(U) n , and that the proba-
bility of the occurrence of the terminating violation busy periods equals
1 - B

T(' ) *

As promised, we start our treatment concerning BT(u) with studying the
family _~V j of trees which correspond to busy subperiods starting with a
label i node and finishing with a label j node (i >_ 1, j >- 1) . We shall use
symbolic equations for the description of classes of combinatorial struc-
tures (i .e ., families of trees); cf . [3] for an overview. To keep the notation
simple, we defer attaching the necessary weights to the translation into
generating functions .

We have the following decomposition :

`~di,J -

	

-1 +

	

-2 + ~z

	

-3 + . . . + ~i-2 y + ei-I p

(3 .3)

The combinatorial objects used for building blocks have straightforward
meanings . 6' denotes a single cycle with no task arrivals ; denotes a
single cycle with at least one arrival, leading to the leftmost label j node .

Ilk denotes a sequence of k >- 1 consecutive cycles with an arbitrary
number of arrivals. To start with the most important one, we have the
symbolic equation

With Y* = F-Ak . In order to translate the symbolic equation into an
appropriate ordinary generating function (OGF), we have to attach suit-
able sizes and weights to each combinatorial object . If we attach sizes by
"multiplying" each elementary object (i .e ., a node with label l) by z I , the
size of a (composed) object (i .e ., a tree) is the sum of its labels . Addition-
ally, providing suitable probability weights leads to an equivalent of the
OGF of a class of combinatorial structures (i.e ., a family of trees), namely
the PGF of the random variable to which it corresponds .
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For example, recalling Definition (1 .2), the OGF of Y* reads

V* (Z) - E lkVk(Z) ,
k>_1

Due to the definition of the PGF of task arrivals within a cycle, we have

qn, k = prob{ n task arrivals during k (consecutive) cycles} _ [ z n ]A( Z) k

for n >_ 0, k >_ 1 . Obviously, [ Z n ]f(z) denotes the coefficient of Z n in the
power series expansion of f(z) . Thus, the OGF of Ilk reads

Vk(Z) = gO,kZ k + g1,kZkv*(Z) + . . .
+gn,k ZkV*( Z )n + . . .

=Z k Y, qn kV* (Z) n .
n>_O

Introducing the bivariate generating function

G(z, u) _ E l kVk (Z)Uk ,
k>_O

one obtains V* (z) = G(z, 1) . Multiplying the above equation for Vk(z) by
10k and summing up for k >_ 1 yields

Because

we find that

G(Z,u) _ L lk(ZU)k L qn kG(Z,1) n
k>O

	

n>O

_ L G(Z, 1)n[Wn] V~) ZU)
k

n>_O

	

k?1

=L(ZUA(G(z,1))) .

V,(z) _ [ hu l ] G(z, u) = zA(G(z, 1)),

~, lkVk(Z)Uk = G(Z, u) = L(uVI(Z))

	

~, VI( Z)kUk ,

hence Vk(Z) = VI(Z)k and V* (z) = G(z, 1) = L(V1(z)). Substituting the
latter in the equation for V,(z) above, we obtain

VI (z) =zA(L(VI(z))) =zP(VI(z)) .

As we might have expected, this is the generating function of a family of
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simply generated trees, cf. [6] . This function appeared in our investigations
concerning preemptive LCFS scheduling (B(z), see [8]) also .

At next, we look at

	

, j >_ 1 . The symbolic equation reads

O

	

OO

	

01
_ + / \ + +

	

+

with .97 denoting a label j node. Obviously, the corresponding OGF is
T(z) = hz'.

Since each combinatorial object in Aj corresponds to an object in 7;,
where the leftmost successor Y * (at the top level) is replaced by T, we
may omit the detailed translation of the symbolic equation and write down
the result immediately :

H,(z) = hz'
V,(z) - ao z
L(VI(z))

Note that the term a oz corresponds to the "smallest" tree in Y,, which
consists of the root only (no arrivals during the corresponding cycle) .
The OGF for 6' is straightforward; mentioning Definition (1 .2), we have

E(z) = a a z .

We summarize the results in the following lemma .

LEMMA 3.1 . With the notations above, the ordinary generating functions
of Yk , Aj, and 6, respectively, are given by

Vk(z) =B(z) k

	

fork >- 1,

HJz) = hz'B(z) - )z

	

for, >_ 1,

E(z) = a oz,

where B(z) denotes the solution of

B(z) =M(L(B(z))) =zP(B(z)) .

Now we are able to translate the symbolic equation (3.3) into the
appropriate PGF . For reasons which will become more clear when pasting
busy subperiods together, we shall attach two different sizes to a structure
from that class . Roughly speaking, the size represented by z is responsible
for counting the length of the corresponding busy subperiod w .r.t . dead-
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line properties . A different size is represented by the variable u . It counts
the contributions of the corresponding busy subperiod to the overall
length of the whole busy period ; remember our remarks at the end of
Section 2. We find that

i-1
Bj,j(z,u) _ L,E(1)` 1 IHj (zu)B(zu) 1u -1-1

1=o

Note that we should have no contributions from 6, for either deadline
counting or the overall size ; thus E(1) is used . The last term a -1-1 makes
the difference in the size counted by z and u . The l + 1 cycles within the
initial label i node, i .e ., the "roots" of and ', must be counted in z
only (deadlines), not in u . The latter is done in the preceding busy
subperiod!

That is, for a busy subperiod starting with a label i and terminating with
a label j node, [z'][u"]B j(z, u) is the probability that all tasks meet a
deadline of t cycles (and no smaller one), contributing n cycles to the
length of the whole busy period .

Simplifying the expression above yields
J-1

Bi,j(z,u) = B(zu) -aozulj(zu)'

	

ao- 1-rB( zU )1u -1-!
L(B(zu))

	

1=0

((B(zu) ) 1

	

B(zu) -a o zu

	

1

u

	

- a0

	

L(B(zu))

	

B(zu) - uaa
l' (zu)' .

Mi?j

	

Lr `~Oi,kMk,i ;
k>>-1

the corresponding (multivariate) generating function reads

B,JZ21Z1 ;u ) -

	

Bi,k(Z21 u )Bk,j( Z 1' u)*

k>_1

To keep notations simple, we introduce the abbreviations

Bi, j(z, u) = Sj(z, u)I(z, u)T(z,u),

(3 .4)

Now, we shall try to paste busy subperiods together . In order to allow
deadline counting in each busy subperiod, we are forced to use different
counting variables zk instead of z. Let ,Wikj denote the family of trees,
which are formed by pasting together exactly k >- 1 busy subperiods. For
example, we have
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cf. Equation (3.4). Using these, we obtain

Bi?j(Z2 , Z1+ U ) -Si( Z2 ,U ) I( Z2 ,U ) ` Tk(Z2 ,U) S (

	

U)I(ZI , U)T(Z1 , U)
k>_1

~

	

B(zu)
= Si( Z2 ,U ) I( Z 2 ,U ) Lr UZ2U)k ~ (	

I )k -ao
k>_1

	

U

. (Z„ u)T ( z l u)

=S;(z z ,u)1(z z , u)[L(z 2 B(z l u))

-L(a, z2u) 1 ( Z 1, u)T(z l , u) .

Note that overlapping of busy subperiods is reflected by the "connecting
function" within the brackets . The starting and trailing functions S;( •, u)
and T(-, u) appear in the expression again ; thus we may use this tech-
nique repeatedly to construct the general term :

B;kj(lk, . . .,Z1,U) - Si(Zk , U)I(Zk , U)

(L(ZkB(Zk-lU )) - L(aOZkU))I( Zk-I ,U )

'(L(Z2 B(Z 1 U)) - L(ao Z 2 U))I(Z 1 , U)

'T(Z1 , U)

To construct a whole busy period consisting of exactly k busy subperiods,
we have to deal with the decomposition

,ek= ok 1: .~k
1,j Iei .

j>_1

Ii/ denotes a single cycle forming the initial cycle of the first busy
subperiod ; its OGF is U(z) = z . (Sj is a label j node with no arrivals ;
according to Lemma 3 .1, we obtain the OGF Ej(z) = E(z)j = (a o z)' .
Translating the symbolic equation above, we find

~k(Zk, . . ., z, ; U) = U E B~ j(Zk, . . ., Z 1 ; U) E(1)' .
j>_1

Note that we do not count cycles resulting from the terminating idle
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period, i .e ., 4. We easily obtain

Ck(Zk, . . .,Z1 ;U)

	

US1( z k ,U ) I ( zk9 U )

(L(ZkB(Zk -IU)) - L(aOZkU)) I(Zk-l1 U)

	 ( L(z2B(z,u)) - L(a 0 Z2u))I(z 1 ,u)

L(aozlu)

- u
(B(ZkU)

	

B(Zk U) - a oZ kU

	

1
U

	

- ao

	

L(B(Zku))

	

B(Zk u) - ua o

( L (Zk^Zk-1U))

-L(aoZkU)) B ( Z k-IU) - aoZk-IU

L(B(Zk-IU))

B(Zk-IU) - Ua 0
1

'(L(z2B(zlu)) - L(aoz2u))

1
B(z,u) - uao

L(aozlu)

Obviously, a busy period with no busy subperiods, that is, an idle cycle, has
the symbolic equation 44, The corresponding OGF is very simple :

C'(u) = a ou .

Since a whole busy period may consist of an arbitrary number of busy
subperiods not exceeding T cycles (for deadline counting, of course), we
are forced to study

BT(u) = aou + L [ZT . . . [Z' ]	1
k>1

	

1 -Z k
1

	

1
1 - Zk-1

	

1 - Z,

B(z,u) - a oz lu
L(B(z,u))

C k ( Zk, -- Z 1 ; U),

which is the PGF of the length of an arbitrary busy period containing no



deadline violation. Introducing the abbreviations Yk = zku and
k~ (Yk, . . .,Y1 ;u)

we find

1 - Yk/u 1 - Yk-1/u

	

1 - YI/u

1

	

B(Yk) - aoyk
1 - Yk/U

1
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l

	

1

	

1

1 - Yk-11U

B (Yk-I) - aoyk-1
L(B(Yk-l»

L(B(Yk»

L((Yk/u)B(Yk-l»- L(aoYk)

B(Yk-I) - ua o

1

	

L((yz/u)B(y,»- L(aoyz)
1 - YI/u

	

B(YI) - ua o
B(YI) - aoYl

L(B(y,»

L(aoyl)

kC (Yk/u, . . .,YI/u;u)

BT(u) =a o u + 1: ukT[Yk ] . . . [Y1I Dk( Yk, . . .,YI ;U) .

	

(3 .6)
k>>-1

4 . ASYMPTOTICS

Looking more closely at the (delicate) expression for BT(u), one obtains
nontrivial interdependencies among the coefficients [ yk], . . . . [Y i ], result-
ing from the "connecting functions" L((y;/u)B(y,_ 1 )) . Hence, a direct
extraction of the desired coefficients yields terribly complicated expres-
sions, at first (and possibly second) sight far away from tractability . Thus,
we shall use the powerful tool of singularity analysis of generating func-
tions instead ; see [3] for a survey.

Such techniques are based on the fact that the asymptotic behavior of a
Taylor coefficient [z"]f(z) of an analytic function largely depends on the
behavior of f(z) near its dominant singularities, i .e ., the ones of smallest
modulus . In fact, restricting ourselves to functions having only one singu-
larity z = ~ on their circle of convergence, it is possible to deal with local
expansions of f(z) near ~. For instance, if f(z) = O(g(z)) for z - ~, we
have [zn]f(z) = O([z"]g(z)) for n - -, under fairly general conditions ;
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consider [4] for a rigorous treatment concerning suitable "scales" of
functions g(z) and appropriate transfer lemmas . An example is the
following

LEMMA 4.1 (Transfer Lemma) . Assume that, with the sole exception of
the (real and positive) singularity z = I > 0, the function f(z) is analytic in
the indented disk O t(7, cp) _ (z : jzj < 1 + 77, Jarg(z - 1)j >_ cp, z 0 ~),
where 71 > 0 and 0 < cp < Tr/2. Assume further that as z tends to ~ in
o ß (77, 1p),

f(z) = O((1 - z/0")

for some real number a . Then the nth Taylor coefficient of f(z) satisfies

[z"]f(z) = O(n`1 -n) .

Note that this lemma requires analytic continuation of f(z) beyond its
circle of convergence, but only order of growth information (and no side
conditions á la Tauber or Darboux). The proof is based on estimations of
Cauchy's formula using a suitable contour in cp) ; see [4] for details .
Using Lemma 4.1, we shall establish the (well-known, cf. [6]) asymptotic

behavior of the nth Taylor coefficient of

B(z) _ L b"z ",
n>o

which denotes the (nonnegative, that is, b" >_ 0) solution of the functional
equation B(z) = zP(B(z)) with P(w) = A(L(w)), cf. Lemma 3.1 . The
following conditions are to be met :

(i) A(O) > 0, cf. Section 2 .
GO L(0) = 0, cf. Section 2 .

(iii) P"(1) > 0, which implies that for some l >_ 2

P(w) _

	

p"w" = pO + p,w + p,w l + O(w[+ 1 )

	

for w --> 0,
n>_o

where po = ao > 0 and p, > 0 .
(iv) The equation P(w) - wP'(w) = 0 has a real solution w = T > 1 .

Note that this forces P'(1) < 1, as can be shown by simple geometric
arguments .

(v) P(w) has a radius of convergence larger than T .

(vi) L(w) has a radius of convergence larger than Tz/P(T). This
condition will become meaningful later in this section .



Providing this, we are able to state the following

LEMMA 4.2 (Expansion of B(z)) . With the notations and conditions
above, the function B(z) is analytic in a domain Op(-q, cp) with some 77 > 0
and 0 < ~o < Tr/2 . There is only one algebraic singularity z = p on its circle
of convergence, in whose neighborhood

B(z) = r - b • (1 - ZIP) 1/2 + O(1 - z/p)

	

for z - p, z E o p ( 77, co)

with b = V2P(T)/P"(T) . The asymptotic expansion of b„ _ [ zn]B(z) reads

Proof. Let
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b
bn -

2
n -3/2P -n + 0(n -2p`)

	

for n + ~.
Tr

F(z, w)=

	

fij z`w'=zP(w) .

The following facts are easily established :
(1) All fib (and bn , of course) are nonnegative and condition (iii)

implies fij > 0 for some j >- 2. In addition, foo > 0 by condition (i) and
fm =0*-1 .

(2) Let

We have 1 < p < T . The lower bound follows from the fact that f(x) _
x/P(x) is strictly monotonic for x < T and f(1) = 1 ; the upper bound is
obvious since P(T) > 1 . It is clear from condition (v) that the point (p, T)
lies within the region where F(z, w) converges (absolutely) and that

F(p, T) = T

Fti„(P,T) = 1 ;

remember condition (iv) .
(3) There is some j > i >- 1 with gcd(i, j) = 1 such that bibs > 0 .

Provided that B(z) exists, we have bo = B(O) = 0 • P(B(0)) = 0, hence
B(z) = O(z) for z - 0. Bootstrapping yields

B(z) = zP(O(z)) = zpo + O(z'n +i )

	

for z - 0
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with m >_ 1 by virtue of condition (iii) . A second step establishes

B(z) = zP(zp o + O(zm+I)) = zp o + pmp~zm+I + O(zm+2)

fort-0 .

Hence, i = 1 and j = m + 1 >- 2 provide the required result .
At this point, all conditions necessary for the application of Theorem 2

of [7] are established. This provides the conclusion that B(z) is analytic
and has an algebraic singularity z = p on its circle of convergence (but no
others) and B(p) = T . The required expansion for z - p follows from
Theorem 5 of [1] . Since B(z) may be continued analytically beyond its
circle of convergence for all z = ~ with I~j = p but ~ 0 p, as can be
shown using the Implicit Function Theorem, B(z) is analytic in a domain
AP(?7, cp) with 77 > 0 and 0 < cp < 7r/2 . The same is true for g(z) _
-(1 - z/p) I/ 2 , whose nth Taylor coefficient gn has the well-known
expansion

1
gn =

2

	

n - 3/zp-n + 0(n -512P-n)

	

for n

	

~.
Tr

Thus, we are permitted to apply Lemma 4 .1 to B(z) - T + b • (1 -
z/p)'/2 , which establishes the asymptotic expansion of bn as asserted . ∎

Keep in mind that the remainder O(1 - z/p) in the expansion of B(z)
represents a function which is analytic in AP (,Y7, cp)! By the way, it is easy to
improve this remainder term to O((1 - z/p) 3/ 2 ) by using the more accu-
rate expansion B(z) = T - b • (1 - z/p) I / 2 + c . (1 - z/p) + O((1 -
z/p)3/ 2 ) for z - p, z E APOq, cp) . The linear term contributes nothing to
the nth Taylor coefficient, hence

bn =	b2	 n-3/2p-n + O(n -5/zp -n)

	

for n

	

~ .

	

(4 .1)

After this preliminary discussion we shall give a short and informal
overview of how to proceed with the investigation of BT(U)' Since we are
interested in (factorial) moments of SRD(T), that is, derivatives of ST(u)
at u = 1 (cf. Eq. (3 .2)), we have to deal with derivatives of BT(u)
evaluated at u = 1 . Thus, in what follows, we assume u to be a complex
parameter in the closed disk D(l, v) _ (z : Iz - 1 1 < v) for some arbitrary
small v > 0.
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Looking more closely at y,-related terms in B,.(u), that is,

1

	

L((Yz/u)B(Y,))-L(aOYz) B(Y,) - a0Y,

1 - Y,/u

	

B(Y,) - uaO

	

L(B(y,))

L(aOY,),

	

(4.2)

our task is the determination of the Tth Taylor coefficient [yi ] in this
multivariate function, which is analytic for y„ y Z in a neighborhood of 0
and u E D(1, v) . Due to general theorems (Cauchy's formula for multi-
variate analytic functions), [yi ]f( y z , y„ u) is an analytic function of y z
and u, also . In addition, it is not hard to prove that the statement of
Lemma 4.1 remains valid for a multivariate analytic function . For exam-
ple, if

f(z, w) = O(g(w)(1 - z/~)a)

	

for z p

uniformly w .r.t . w, it follows that

[z"]f(z, w) = O(g(w)n-,-a `)

	

for n

uniformly in w, also . Again, keep in mind that the latter O( •) represents a
function which is analytic in w!

Returning to our original function, we obtain three "sources" of singu-
larities,

(1) a (removeable) simple pole at y, _ ~(u) < 1, resulting from
B(~(u)) = a0 u,

(2) a simple pole at y, = u,

(3) an algebraic singularity at y, = p resulting from functions involv-
ing B(Y,) .

The fact that y, = Z(u) is a removeable singularity, i .e ., that there is no
singularity at all, is easily established by taking into account the zero of
L((Y2/u)B(Y,)) - L(aOY2) at y, _ ~(u) .

Remembering p > 1 it follows that y, = u is the singularity with the
smallest modulus ; in fact we choose v small enough, i.e ., 1 + v < p . The
appropriate contribution to [y;] is easily determined via subtracted singu-
larities :

L((Y2/u)B(u))-L(aOY2)
L(a0u)

u -T
L(B(u))

Investigating the behavior of (4.2) near the "next" singularity y, = p it
turns out that B(y,) - a 0y, and L(B(y,)) obey expansions similar to
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B(y,). The fuction L(ao y,) has a radius of convergence larger than p by
virtue of condition (vi), i .e ., is well behaved in a neighborhood of y, = p .
Hence, the only remaining difficulty concerns the term containing the
"connecting function," i .e .,

B(YI) - ua,

+ 0(1 - y,/p)
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L«y2/u)B(y,»- L(aoy2)
B(YI) - uao

But, using the mentioned extension of our devices, it is possible to attack
this multivariate analytic function, too . Since y, comes up with B(y,), one
feels that L((y2/u)B(y,) should have an algebraic singularity at y, = p,
independent of y 2 ! Due to the fact that, at our next "stage," y2 will play
the role of y, and Y3 that of y2 , it is obvious to ask for the behavior in a
neighborhood of y 2 = p (and y 2 = u, resulting from the subtracted singu-
larity term for y2 , too). However, since y 2 appears in conjunction with the
well-behaved function L( •) only, we may expect inferior influences here .
To make a long story short, we assert that it is possible to determine a
uniform expansion

L((Y2/u)B(Y,» - L(aoy2) /P) I/ z= b(y2 , u) + CU2> u)( 1 - Y,

for y, - p,

where b(y 2 , u) and C(y 2 , u) denote well-behaved analytic functions of
both y 2 and u . The remainder 0(1 - y,/p) represents a multivariate
analytic function, too, and the implied constant is independent of yl, Y2
and u .

Note that although it is impossible to separate the "connecting function"
directly, i .e., to split up L((y2/u)B(y,)) into a product f(y,)g(y2), an
asymptotic separation succeeded!

Putting all terms together, we obtain a uniform expansion for (4.2) at
y, = p, similar to the expansion above :

P(Y2 , u)L(aop) + Y(Y2, u)L(aop)( 1 -Y,/P)1/2 + 0(1 - y,/P)

for y, --> p .

Note that the terms L(aop) represent the contribution resulting from the
terminating function L(aoy,) .
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The subtracted term resulting from the simple pole y, = u is meaning-
less for the analysis of the singularity y, = p since (1 - y,/u)- ' is analytic
for all y, u . Using transfer lemmas, the desired coefficient [ yi] finally
yields

1
a(y21 u)L(aou)u

T
-

2 1
Y(y21 u)L(aop)T-312p-T + O(T-2p -T )

BT(u) = B(u) - R(u)UTT-312P -T + O(U TT-2p -T )

L(v) _ L, L(n) ( W ~) (V - W7
) n

,
n>_0

	

nI

for T

with both a(y2 , u) and y(y 2 , u) analytic at y 2 = p; the "elimination" of y,
is complete .

Now, the same procedure may be used for the extraction of [yZ ] (hence
for all [ yiT]), since the related terms are almost the same . In fact, the only
difference springs from replacing L(aoy,) by a(y 2 , u) and y(y2 , u), re-
spectively! Using this simple iterative scheme (leading to a recurrence
relation) it is possible to compute an asymptotic expansion

uniformly valid for u E D(1, v) . By virtue of a general theorem concerning
uniform expansions we may differentiate this expansion in order to derive
BT)(1) for an arbitrary but fixed m .

We start our detailed treatment with providing some "building blocks,"
that is, asymptotic expansions of the functions involved . At first we look
at C(z) = L(B(z)), which obviously denotes the (positive) solution of
C(z) = L(zA(C(z))) . Thus, the same procedure as in the proof of Lemma
4.2 might be used . This would establish that C(z) has exactly one algebraic
singularity z = p on its circle of convergence and C(p) = L( ,r), i .e .,
provides an asymptotic expansion similar to B(z) .

But, since we need the uniform asymptotic expansion of C(z, w) _
L(IvB(z)) for an arbitrary complex value w E Op(77, co), too (which covers
C(z) above), we shall use another idea . Note, however, that C(z, w) is a
solution of C(z, w) = L(wzPW - II(C(z, w))/w)) which (formally) leads to
an algebraic singularity z = p and C(p, w) = L(wr) .

Our alternative approach is based on condition (vi), which guarantees
that v = w r lies within the radius of convergence of L( •) for all w E
D(0, p + e) for some E > 0 sufficiently small . Using the Taylor expansion
at w7, i.e .,
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valid for u E D(wT, s), and substituting

u = wB(z) = wT - wb(1 - ZIP) 1/2(l + r(z))

with r(z) = O(1 - ZIP )1/2 (analytic for z (=- D I,(1, c0), we have for z
sufficiently close to p

L I " 1 ( W T )
L(IvB(z)) _ T

	

n1
	 ( -wb(1 - z/p) 1/2(l + r(z)))

n

n>-0

= L(wT) - bwV (wT)(1 - z/p) 1/2 + O(1 - z/p)

for z - p, z E 0p (rJ, cp),

where the O( •)-term is uniformly valid for w E D(0, p + s) (and denotes
an analytic function of both z and w, of course)! Using this result, we find
that for Yk-I

	

p I

L ( B (Yk-1»

	

L(T) - bU(T)(1 Yk-I/P) 1/2( 1 + 0« 1 Yk-1/P)
1/2»

1 +
bL(T)

	

-Yk-I/P)1/2 + O(1 - Yk-I/P)L(,r

	

L(T) 2 (l

and

L ( ukB(Yk-I)) = L(uk T) - buk L, ( ukT)(1 - Yk-I/P)

+ O(1 - Yk-I/P)

1/2

uniformly for Yk E D(0, p + e) and u E D(1, v) . The latter and Lemma
4.2 yield the asserted expansion for

Q(Yk,Yk-I,U) = L((Yk/U)B(Yk-I)1- L ( a oYk)

B(Yk-1) - Ua0

I In what follows we use the notation Y k- I -> p as an abbreviation for Y k- I - p, where

Yk-I C- A,01 , 0-



as Yk-I - p, and

L(aoYk) = L(a0P) + O(1 - Yk/P),

L( y 7) =L(P T) +O(1 - Yk/P)u

	

u

as Yk tends to p, uniformly for u E D(l, v) .
Thus, all building blocks for the expansion of the expressions a la

(4.2) are present. Let t k - 1(y, u, T) denote a function analytic for y c
D(0, p + E) and u E D(1, v) with

tkAy , u, T) = tk-I(P, u, T)(1 + O(1 - y/P))

	

for y - p (4.3)

uniformly for u E D(1, v), k >- 1, and T -j ~ . Starting with t,(y, u, T) _
L(ao y) we shall investigate Fk(yk, Yk-1) = Fk(Yk , Yk-1, u, T) for k >- 2,
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namely

W yk, Yk-1 , U)

L((Yk/u)T) - L(aoyk) - b(Yk/u)LU((Yk/u)T)( 1 Yk-I/P)
1/2

+O(1 - Yk-1/P)
T - aou - b(1 -Yk-1/P)1 /2 + O(, - Yk-I/P)

L((Yk/u)T) - L ( aoYk)
T - a o u

+ I b(L((Yk/u)T) - L(aoYk))
(T - aou) 2

b(yk/u)L/((Yk/u)T) ~(1

	

Yk-1/P) 1/2
T - ao u

+ O(1 -Yk-1/P)

	

for Yk-I M P,

uniformly valid for Y k E D(0, p + E) and u E D(1, v) . Remember our
remarks in the preceding overview, especially concerning the functions
b(Y2 , u) and C(Y 2 , u)!

For the sake of completeness we mention the trivial expansions

1

	

1

1 - Yk_ I/u

	

1 - p/u
+ O(1 - Yk-I/P),

B(Yk-1) - aoYk-1 = T - aop - b(1 -Yk-1/P)1/2 + O(1 - Yk-I/P)
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which reads

1

	

L((Yk/u)B(Yk-1))-L(aoYk)
Fk(Yk9 Yk-1) 1 - Yk-I/u

	

B(Yk-I) - uao

B(Yk-I) - aoYk-1

(B(Yk-I))

	

tk-1(Yk-l u, T)
L

Yk u)Tk-I(P , u , T) +Y(Yk1 u ) tk-I(P,u,T )

( 1 - Yk-I/p)
I/2

+ 0 (tk-1(PIu,T)( 1 Yk-IM)

	

as Yk-l ---~ p

uniformly for Yk E D(0, p + e), u (=- D(1, v), k >- 1, and T

	

~.
over, the functions ß(y k , u) and Y(y k , u) are analytic and

ß(Yk u) -

	

1

	

L((Yk/u)T) - L(aoyk) T - app
1 - p/u

	

T - uao

	

L(T)
and

1
Y(Yk, u) = 1 _ p/u

b (
L«Yk/u )T) -L( aoyk) - (Yk/u ) v «Yk/u ) T )

T-(T - uao)

	

a o u

T - aop

T - ua o

	

L(T)

+ L((Yk/u)T)- L(aoYk)
(T - aop)

bU(,r)
T - uao

	

L(T)

b

L(T)

L((Yk/u)T)- L(aoYk)	b

T - aop
1 - p/u T - ao u

1

	

L((Yk/u)T)- L( a oYk)

L(T)

	

T - uao

- YkE(YkT) - L((Yk/u)T)- L(aoYk)

u

	

u

	

T - aop

More-

+
L(T)

(L(
u

T) - L(aoyk )) I .

	

(4.4)
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The contributions resulting from the simple pole at yk _ 1 = u are easily
determined via subtracted singularities, as already mentioned . The sub-
tracted function is

1

where

Sk(Yk,Yk-I,u,T) =
1 - Yk-11u a(yk

, u)tk-I( u,u,T) ,

a(Yk, u) =
L((Yklu)B(u))- L(aoYk)

.

	

(4.5)
L(B(u))

Its Tth Taylor coefficient is an analytic function for Yk E D(0, p + E) and
u E D(1, v) and reads

[Yk-11SAYkIYk-I ,u,T ) = a(yk,u)tk-I(u,u,T)u-T .

	

(4.6)

Obviously, Sk(yk, Yk-1, u, T) is analytic at Yk-1 = p ; hence

1
Sk(Yk,Yk-1,u,T) - 1 -p/u a(Yk ,u ) tk-I( u,u,T)

+O(tk-1(u,u,T)(1 Yk-IM)

for Yk-I p, uniformly for Yk E D(0, p + s), u E D(1, v), k >_ 1 and
T oc. Thus, the function Gk(Yk, Yk-1, u, T) = Fk(Yk, Yk-v u, T) -
Sk(Yk,Yk-I,u,T) has no singularity at yk_ I = u but the same singularity

Yk-1 = p as Fk(Yk , Yk-1, u, T) . For y k - I -> p we obtain the expansion

Gk(Yk , Yk-1 ,u,T) - P(Yk , u) tk-I(p ,u,T )

1

1 - p/u a(yk, u)tk-1(u, u , T )

•

	

Y(Yk,u)tk-I(p,u,T)(1
Yk-1/p) 1/2

•

	

G(tk-1(u,u,T)(1 - Yk-IIP))

•

	

o(tk-1(p,u,T)(I - Yk-1/p)),

uniformly valid for Yk E D(0, p + s), u c= D(1, v), k >- 1 and T ~. This
finally establishes the asymptotic expansion of [ yk-I]Fk(Yk , Yk-1, u, T) ;
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using our Transfer Lemma, we obtain (that is, define) for k >- 2

tk(Yk ,U,T ) - [ Yk
T
-1 Fk(Yk , Yk-1 ,U,T )

=a( Yk~ U)tk-1(U, u,T)u -T
12

	

Y(Yk, u)tk-I(P, u, T)T-312p -T
2v'

+ O(tk-I(u, u, T)T-2p -T) + O(tk-i(P, u,T)T-2p -T )
(4 .7)

as T tends to infinity. Obviously, the first term springs up from the
subtracted singularity term, cf . (4.6) . Keep in mind that the (uniform)
remainder terms represent bivariate analytic functions, say Rk(yk , u, T)
and R k(yk ) u, T), both analytic for Yk E D(0, p + E) and u E D(1, v) . As
already mentioned, we have

ZI(YI,u,T) = L(aoyl) .

This iterative scheme defines a sequence of analytic functions which are
consistent with Eq . (4.3). To show this, we shall provide suitable lemmas ;
prior to those technical details we should establish the connection between
BT(u) and the above . This relation is straightforward, cf. Eq . (3.6) :

BT(u) =al,u +
Y_IUkT

Yk] 1 - Yk/u . B L(B(yk ))yktk(Yk,U,T)
.

Since tk(yk , u, T) is analytic for Yk E D(O, p + E), the desired coefficient
[yk] is easily evaluated. Providing the expansion

B(Yk) - ao yk

	

T - aop
L(B(yk))

	

L(T)
+ bE(T)(T - ao p)

	

b
)(1 - YkIP)

1/2

L(T) 2

	

L(T)
+ O(1 - Yk/P)

for yk - p, we easily obtain

BT(U) =aou +
BL(B(U))uU

T 1: tk(UIu , T)ukT

b

	

(T - a0p)L' (T) - L(T) T_3/2p-T(1 + O(T-I/2 ))
2V

	

(1 - p/u)L(T) 2

Lr tk(P,u,T)ukT .

	

(4 .8)
k>>-1
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Obviously, the first sum results from a subtracted singularity term for
yk

	

u.
This is why we are interested in infinite sums involving t k ; in order to

justify our manipulations, we provide the lemmas promised . Instead of
investigating t k directly, we look at h k _ 1(y, u, T) = t k(y, u, T)u(k-1)T in a
somewhat generalized manner :

LEMMA 4.3 (Solution of a Recurrence Relation) . Consider

My,u,T) =f(y,u)h"-1(u,u,T) +g(y,u,T)+,Th"-,(p,u,T)
+ r(y, u, T)gf Thn-1(1.4, u, T)

for n >_ 1, p > 1 and T - oo . In addition,

ho( y, u, T) = h(y)=

f(y,u) # 0, g(y,u,T), r(y,u,T) and h(y) denote (multivariate) analytic
functions for y E D(0, p + E), 1 + E > p and u E D(1, v), 1 + v < p .
qi is an abbreviation for u/p < 1 . If maxuED(I.v)If(u, u)I = r < 1,
g(y, u, T) = O(T'"), and r(y, u, T) = O(T1) uniformly for some arbitrary
but foxed real m, l, we have the uniform bound

I h"( y, u, T) I < CR"

for all n >_ 0, y E D(0, p + E), r < R < 1, and T sufficiently large .

Proof. (By Simultaneous Induction) . Let r < R < 1 arbitrary,

C, = max ~h(u)J,
u CD(1, v)

and C = maxueD(I,v), y ED(o,p+JIh(y)I, C,Iffy, u)I/r1) . The implied con-
stants of the O( •)-terms concerning g(y, u, T), and r(y, u, T) are denoted
by M and L, respectively. We shall show that

The case n = 0 is trivial; investigating the case n > 0 yields

hn(u,u,T)I < rC,Rn -I +MT'"I0I TCR " - ' +LT'I I TC,Rn -1

(
CMT ' )

= C 1rRN-I + C1

	

C

	

+ LT1 101 TR" -I
1

< CIRn

~ h"(u , u, T) ~ < C, R",

~h,,(y,u,T)~ < CR" .
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since (CMT'IC, + LT1 )10I T can be made less than R - r > 0 provided
that T is sufficiently large . Similarly,

~h"(y,u,T)~ :!~ 1f(y,u)1 C, R" - ' +MT' 1ip1 TCR " - ' +LVIqj1 TC,R " -1

(

	

)
< CrR" - ' + C MT' +

C,CLT1
I~

T
R" -t

< CR",

since (MT' + C,LTI/C)IIpI T < R - r for T sufficiently large . ∎

The following lemma justifies Eq . (4 .3) :

LEMMA 4.4 (Expansion of the Solution of a Recurrence Relation) .
With the notations and conditions of Lemma 4.3 and the further suppositions
f(u, u) * 0, f(p, u) 0 0, and h(u) * 0 for u E D(1, v), we obtain

hn(y , u , T) =hn(p,u,T)(1 +O(1 - y/p))

	

fort' -p

uniformly for u E D(1, v), n >- 0, and T - ~.

Proof. By virtue of the Taylor expansion at y = p we may write
f(y, u) = f(p, u) + f+ (y, u)(1 - y/p) (and similar for g and r) and obtain

hn(y , u, T )
hn(p, u, T )

f+ (y,u) +g+(y,u,T)`1Thn-1(p,u,T)/hn-t(u,u,T)
+r + (Y, u, T ) 0 T

= 1 + f(p,u) + g(p,u,T)0Thn-1(p, u, T)/h,-(u, u, T) ( 1 - y/p)

+r(p, u, T)q, T

= 1 + f+(y, u)+ o(A T) ( 1 - y/p) = 1 + O(1 - y/p)
f(p,u) + o(qfT)

for y - p,

uniformly for u e DO, v) and T ~. To justify the last step we show (by
induction) that for all n >- 0

hn(p,u,T) -O(1)
h,, (u, u, T)

uniformly for u e D(1, v) and T - - . The case n = 0 is trivial ; for n > 0
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f(P,u) +g(P,u,T)WThn-,(P,u,T)/hn-I(u,u,T)
hn(P, u, T)

	

+r(p, u, T)~1 T

hn(u , u , T )

	

f(u,u ) + g(u,u,T)4'Thn-I(P,u,T)/hn-,(u,u,T)
+r(u, u, T) O T

f(P,u) + O( T) = O(1) .
f(u,u) + O( T )

This completes the proof of Lemma 4 .4 . ∎

For y = u and y = p let

Hju,T) _ Y_ h u (y,u,T),
n>0

Both infinite sums of analytic functions obey a uniform bound
KY, , ORn = K/(1 - R) according to Lemma 4 .3 . Hence, each one repre-
sents the limit of a uniformly convergent sequence of analytic functions for
u c D(1, P), i .e ., is an analytic function itself by virtue of the Theorem of
Weierstrass. They are easily evaluated by summing up the recurrence
relation for n >- 1,

where

Hy(u,T) -h(y) = f(y,u)H,,(u,T) +g(y,u,T)q, THP(u,T)

+ r(y, u, T)~fTH,,(u, T)

= v(y,u,T)Hu(u,T) + w(y, u, T)HP(u, T),

We obtain

v(y) = v(y,u,T) = f(y,u) + r(y, u, T) 1pT,

w(y) = w(y , u , T) = g(y,u,T)~1T,

w ( u)H,(u,T) +h(u)
Hu = Hu (u,T) _

	

,1 - v(u)

v(p)Hu (u , T) +h(p)
Hp = Hp(u,T) =

	

1 - w(P)
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and finally

Hu

and also
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(1 - v(u))H,, =	
()Hu + ()+ h(u)1u w(P)

	

1uw(p)

w(u)h(p) + h(u)(1 - w(p))
(1 - v(u))(' - w(p)) - w(u)v(p)

h(p)w(u) + h(u) - h(u)w(p)
1 - v(u) - w(P) + v(u)w(P) - v(P)w(u)

	h(P)g(u) ' + h(u) -h( u)g(P) T
1 - f(u) - r(u» T- g(P)~p T +f(u)g(P) T

_f(p)g(u) T + O(~1 zT )

h(u) + h(u)	h(P)g(u) + r(u) +f(P)g(u) P T
1 - f(u)

	

1 -f(u) ( h(u)

	

1 - f(u)

+0 WT)

as T - -, uniformly for u E D(1, v). To keep the notation simple, we
have used the abbreviations f(y) = f(y, u), g(y) = g(y, u, T), r(y) _
r(y, u, T), and 0 = u/p as usual. Similarly, we find

(1 - w(p))Hp = v(P)w(u) HP + v(p)h(u) + h(P)1 - v(u)

	

1 - v(u)

HP =
h(u)v(p) + h(p) - h( p)v(u)

1 - v(u) - w(p) + v(u)w(p) - v(p)w(u)

= h(p) + 1(u)f( )
+ O( T)

	

as T -

uniformly for u E D(1, v), also. Note that we need a weaker asymptotic
expansion for Hp only, cf. Eq . (4 .8) . Substituting

(hk(yk,Ll,T) -tk+llyk+lIu,T)Ll kT

00



for k < 0 and
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f(yk , U) =a(yk ,U ) ,

g(yklu,T) _ -i (yk,U) T-3/2+O(T-2)
2~

r(yklu,T) = O(T-2 ),

h(y1) = L(aoyl)
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into the recurrence relation of Lemma 4 .3 yields (4.7) times u(k I)T of
course, and establishes the connection between (4.8) and H., Hp :

E tk(Ulu,T)UkT = UTHu
k>1

L tk (p,u,T)u kT = UTHP .
k>1

It is worth mentioning that, strictly speaking, both remainder terms
O(T-2) in the substitution above denote different functions for different
indices k; cf. our remark following Eq . (4.7). Thus, we rather should have
defined functions gk(y k , u, T) and r k(y k , u, T) in our previous treatment .
However, all (algebraic) operations required are justified for our simplify-
ing assumption due to the uniform estimations, too .
We obtain

. uTT-3/2p-T + O(uT T-2p -T)

HP = L(aap) + Llaou)((pU))
+ O(u TT-3/2p -T ) .

Mentioning (4.4) and (4.5), it is easy to obtain

1

	

L(B(u)) - L(a ou)

	

I

	

L(B(u))
1 - a(u,u) - (1

	

L(B(u))

	

)

	

L(ao u)

L(au) L(a ou)y(u,u) L(aop) a(p,u)
Hu

1 - a(u,u) 2~(1 - a(u,u)) L(aou) + 1 - a(u,u)
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L(aop)

	

a(p,u) _ L(aop)

	

L((p/u)B(u))- L(aop)
L(aou) + 1 - a(u,u)

	

L(a ou) +

	

L(B(u))

L(B(u))

	

L((p/u)B(u))
L(aou) =

	

L(a ou)

In addition, we have

b(T - aop)
y(u, u) - (1 - plu)(r - a ou)L(T)

and

and ultimately

(

L(T) - L(aou) - L (7) - L(T) - L(a ou)

T - a o u

	

r - a o p

+ L (
T)

(L(T) - L(a o u)))

b
(1 - plu)(T - aou)L(T)

( (L(T) - L(aou)) ao( u p)

	

(T	- a op )V(T)L(a ou)

T - a ou

	

L(?)

H = L(B(u)) - L(B(u))y(u, u)L((p/u)B(u))
UTT-3/2p-T

2~L(a ou)

+0(uTT-2p -T )

Hp =L (
P
B(u)) + O (uT T-3/2p -T)

U

Substituting the above in Eq . (4.8) while mentioning (4.9) yields the
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desired asymptotic expression for BT(U) :

BT (u) = a ou + B(u) - aou

- (B(u) - aou) y(u, u)L((p1u)B(u)) uTT-3/2p -T
2FL(aou)

b((T-aop)LU (T) - L(T))L((p/u)B(u))
uTT 3/2p T

2F(1 - p/u) L( T) 2

+0 (uTT-2p -T )

= B(u)

bL((p/u)B(u))

2~_7r (1 - plu)(T - aou)L(T)

( (B(u) - aou)(L(T) - L(ao u))aou(l - plu)

L(a ou)(T - aou)

+ (T - B(u)) ( T - aop)L,(T)
- ,r+ aou uTT-3/2p -T

L(r)

+0 (u TT-2p -T ) .

THEOREM 4.5 (Asymptotic Expansion of BT)(1)) . With the notations
above, the first few factorial moments of B T(u) have the asymptotic expan-
sions for T - oc

bL(p)
BT(1) = 1 -

2~(p - 1)(T - ao)L(T)

( (1 - ao)(L( 7 )- L(ao))ao(p- 1)

L(ao)(T - ao)

(T - 1)(T - aop)LU(-r)

)L(T)

T-3/2p -T + O(T-2p -T)

1

BT(1)

	

1 - P,(1)
+ O(T-l/2p-T),

BT)(1) = O(1)

	

form arbitrary but fixed,
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where B(z) denotes the solution of B(z) = zP(B(z)) and

P(z) =A(L(z))

b=
2P(T)
P"(-r)

Proof. The expression for BT(1) is straightforward . Since, roughly
speaking, the derivation of an asymptotic expression is permitted if its
domain of validity lies within the complex plane, the necessary derivatives
of BT(u) are most easily obtained : As frequently mentioned, we have a
remainder term which represents a function analytic for u (E D(1, V) .

The result for B'T(1) = B'(1) + O(T -I /2P -T) follows by differentiating
B(z) = zP(B(z)) w.r .t . z. ∎

Note that the remainder in the asymptotic expressions of BT(1) and
B'T(1) might be improved to O(T-s/2P -T) and O(T-3/2P-T), respectively,
due to our remark on equation (4 .1)!

5. FINAL RESULTS

Now we are able to return to the PGF of SRD(T), which has been
evaluated as

1-BT(')
ST(U)

	

k>0Sk'TUk

	

1 - BT (U)

cf. Eq . (3 .2) . We shall investigate the moments of this distribution, i .e ., the
quantities

E"(T) = E[SRD(T ) n ] _ E k"sk T
k>_o

In addition, we define the nth factorial moment by

F"(T) _

	

[ k]"sk,T=ST~(1),
k>O

where [ k] n = k(1 - 1) . . . (k - n + 1) denotes the falling factorial . Note
that n is assumed to be fixed ; all O( )-terms are uniform in T only. Since
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[k]n = kn + O(kn -l), we obtain

Fn(T) = En (T) +O(En-I(T))

If we could provide Fn-I(T) = O(Fn(T)), a simple induction argument
shows that

En(T) = Fn(T) + O(Fn-'(T)) ;

	

(5 .1)

hence it seems reasonable to investigate the factorial moments . We have

ST(z) = g(BT(z))

for g(z) _ (1 - BT(1WO - z) . An easy computation shows that

j!
g(j)(z)lz=Br(') = g(j)(BT(1)) _

(1 - BT( 1)) '

for all j >- 0 . Using the formula of Faá di Bruno (cf. [5, p . 50]),

(b(a(z)))(n)=-r

nE b(j)(a(t))

	

t

k,
j=0

	

k,+k2+ . . . + k =j k l 1(1!)

	

kn !
k,+2k z +

	

+nkn =n
k,>_0

.(a(')(t»k, . . . (a(n)(t))kn'

we are able to express S
T
(n)(1) in terms of g(j)(B,.(1)) and BT)(1) ; setting

b(z) = g(z), a(z) = BT(z), and t = 1, we find that

n

	

1
ST )(1) = Y

	

j

	

L.r

	

ci,n,k1,k2, . . . . k n
j=o (1 - BT( 1)) k,+ . . . +k n =j

k, +

	

+nkn =n
k,>_0

(BT()
(1»k, . . . (BT ) ( 1)) kn
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n!
CJ,n,k,,kz, . . . . k„ -~! k1i(11)k, . . . kn!(n!)k"

.

Using the fact that BT(' ) (1) = O(1) for m >- 0 from Theorem 4.5, an
overall contribution of the inner sum of O(l) may be found . Because

1 - BT(l) = O(T-3/2p-T),

the major contributions come from 0 - BT(1))- ' with j = n . Hence, we
may discard all terms of the outer sum concerning ST" ) (1) except for j = n ;
i .e ., we obtain

ST)(1) -

		

Cn,n, kI,kz, . . .,k"(BT( 1)) k, . . . (BT ) (1) )kn
k,+ . . . +k n =n (1 - BT (1))
k,+ • • +nkn =n

k ; >- 0

+ O(T3(n-1)/ 2p(n-1)T)

= n!( BT(1) 	
)n

+ O(T3(n-1)/2p(n-1)T),

	

(5 .2)
1 - BT(l)

since the conditions concerning the inner sum hold for k, = n only .
Substituting the expansion above, we find

F"(T) = ST ) ( 1) = O ( T 3n12p nT) .

Since F" - '(T) = O(F"(T)), the condition for Eq . (5 .1) is justified and we
may conclude that

En(T) = Fn( T) + O(Fn-1(T))

The remainder above disappears within the remainder term established
for ST) ( 1); hence our final result follows :

THEOREM 5 .1 . With the conditions (i)-(vi) from Section 4 and the
notations above, the nth moment (n arbitrary but fixed) of SRD(T) fulfills

E"(T) = n!µ(T) n (, + O(T-1/2 ))
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2~(p - 1)(T - a o)L(T)
µ(T) =

	

bL(p)(1 - P'( 1 ))
( (1 - ao)(L(T)- L(ao»ao(p- 1 )

L(ao)(T - ao)

+T - a

	

(T - 1)(T - a op)E(T)

	

IT3/2pT
° -
	

L(T)

where P(z) = MUM, p = rlP(,r), and b = V2P(T)/P"(T) .

Note that the remainder 1 + O(T- '/ 2 ) springs from (B'T(1)/(1 -
BT(1)))n ; it causes the remainder of (5.2) to disappear.

CONCLUSIONS

This paper contains a detailed analysis of the successful run duration
SRD(T) of a discrete time single server system with nonpreemptive LCFS
task scheduling . SRD(T) is closely related to the ability of this system to
meet the fixed deadlines T of all tasks arriving at the system, from the
time it is turned on to the year 9999, for example . It extends our analysis
of preemptive LCFS scheduling (cf . [2]) and FCFS scheduling (cf . [8]) to
the case of the nonpreemptive LCFS scheduling discipline . Again, we have
found impressive results concerning the expectation of SRD(T), unfortu-
nately weakened by a large standard deviation ; see [9] for a more detailed
discussion .

Comparing nonpreemptive LCFS to FCFS scheduling shows signifi-
cantly better deadline meeting behavior of the latter . On the other hand,
nonpreemptive LCFS and preemptive LCFS are more difficult to com-
pare; it is devoted to a forthcoming paper . Note, however, that those
results are the same for L(z) = z, i .e., constant task execution times of 1
cycle .

To establish our results we have used a coefficient extraction technique
for multivariate functions which we call asymptotic separation : using a
slight extension of well-known asymptotic techniques it is possible to
separate multivariate analytic functions . We feel that this method is of
independent interest and should be useful in the case of investigating
sequences of random variables Xk, which are in some sense "weakly
dependent ." In our case, we had to deal with random variables having a
Markov-like property, but asymptotic separation is not restricted to this
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case. Note however, that queueing theory provides no solution to our
problem, because we are forced to study nonequilibrium behavior in order
to obtain our desired quantities .
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