Symbolic Pointer Analysis for Detecting Memory Leaks

Bernhard Scholz
Institute for Computer
Languages
Vienna University of
Technology, Austria

scholz@complang.tuwien.ac.at

ABSTRACT

It is well accepted that pointers are a common source of
memory anomalies such as loosing references to dynamic
records without deallocating them (also known as memory
leaks). This paper presents a novel pointer analysis frame-
work that detects memory leaks by statically analyzing the
behavior of programs.

Our approach is based on symbolic evaluation of programs.
Symbolic evaluation is an advanced static symbolic analysis
that is centered around symbolic variable values, assump-
tions about and constraints between variable values, and
control flow information (path conditions). As part of sym-
bolic evaluation we introduce a new symbolic heap algebra
for modeling heap operations. Predicates — defined over the
program’s input — are derived which allow to detect mem-
ory leaks. Our approach goes beyond previous work in the
field of statically detecting memory leaks by considering also
path conditions which increases the accuracy of our results,
symbolically modeling heap data structures and heap oper-
ations. Examples are used to illustrate the effectiveness of
our approach.

1. INTRODUCTION

Many important programming languages support explicit
dynamic memory management by pointer manipulations.
Supporting pointers considerably increases the expressive-
ness of such languages. However, it is widely agreed that
programming with pointers is a tedious task and can cause
a large number of memory errors. Such errors are particu-
larly hard to detect as it is usually very difficult to reproduce
them and to identify the source of the error in the program
[1]. Clearly, it is of paramount importance to detect memory
errors at compile time as compared to exhaustively testing
programs at runtime. A static analysis tool that targets the
detection of memory anomalies therefore greatly alleviates
program development and testing.

Memory leaks cause severe problems in modern software de-
velopment. A memory leak occurs if references to dynamic

Johann Blieberger
Department of
Computer-Aided Automation
Vienna University of
Technology, Austria

blieb@auto.tuwien.ac.at

Thomas Fahringer
Institute for
Softwaretechnology and
Parallel Systems
University of Vienna, Austria

tf@par.univie.ac.at

records are lost. A program that leaks memory consumes
more memory than expected. E.g. for server applications
that run for a long period of time memory leaks can be a
potential threat. Applications may slow down (caused by
memory swapping) and eventually may even crash due to
lack of available memory. An important observation is that
memory leaks cannot be eliminated by any subsequent op-
eration in the program.

‘We present a novel static analysis for pointer programs based
on symbolic evaluation that detects and localizes these kinds
of memory leaks. Symbolic evaluation is a powerful data
and control flow analysis that determines runtime proper-
ties of a given program without executing it. Symbolic ex-
pressions and recurrences are used to maintain the relation-
ship between input data and resulting values. For symbolic
evaluation a new data representation (program contest) is
employed to describe the semantics of program statements.
Program contexts comprise symbolic variable values, as-
sumptions about and constraints between variable values,
and path conditions (the conditions under which the con-
trol flow reaches a program point). A symbolic heap alge-
bra for describing the heap operations of a program — based
on symbolic evaluation — is introduced. Recurrences over
the heap algebra accurately express the dynamic behavior
of heap operations inside of loops.

In order to detect memory leaks we introduce the notion of
a pointer graph. We show that a memory leak occurs if and
only if the graph is disconnected. Based on this observation
we can derive a predicate that reports a memory leak.

Our method goes beyond previous work in the following
points:

e QOur analysis is more accurate due to highly sophisti-
cated symbolic evaluation that models both data and
control flow.

o We statically detect and localize memory leaks.

o We symbolically describe heap operation based on sym-
bolic evaluation and a novel heap algebra.

Although we have examined our framework for a subset of
Ada-like programs the underlying techniques are equally ap-
plicable to any similar imperative programming language.

The remainder of the article is organized as follows. In Sec-
tion 2 we introduce the notions of symbolic evaluation. Sec-
tion 3 presents a novel heap algebra for modeling a heap and
shows how the heap operations are symbolically evaluated.
In the next section we describe how to statically detect and
localize memory leaks. In Section 5 we survey related work.

Finally, in Section 6 we give our conclusion and describe
future work.

2. SYMBOLIC EVALUATION

A symbolic evaluation function [12; 13] F is a constructive
description of the semantics of a program. Moreover, sym-
bolic evaluation is not merely an arbitrary alternative se-
mantic description of a program. As in the relationship be-
tween arithmetic and algebra the specific (arithmetic) com-
putations dictated by the program operators are generalized
and “delayed” using the appropriate formulas. The dynamic
behavior is represented by symbolic equations. Symbolic
evaluation satisfies a commutativity property.

 (Symb. Evaluation) .

(Sconclp], 1) > (FIp, 1)
Set param. Substitute i
to i into result

Seonclpli (Conv. Execut10n2 F ol

If a program p is conventionally executed with the stan-
dard semantics Sconc[p] over a given input i the result of
the symbolically evaluated program F[p] instantiated by i
is the same. Clearly, symbolic evaluation can be seen as a
compiler that translates a program into a different language.
Here, we use as a target language symbolic expressions and
recurrences to model the semantics of a program.

Symbolic evaluation of a program is done based on a novel
representation called program context. Every statement is
associated with a program context ¢ that describes the vari-
able values, assumptions regarding and constraints between
variable values and a path condition. The path condition
specifies whether the control flow reaches a given program
point. In this paper we use an improved context represen-
tation [13]. Formally, a context c in the set of contexts C
associated with a statement ¢ is defined by a triple [s, t, p].
A state s is a finite set of pairs (V x E)" where V is the
set of variables, n the number of variables in the program,
and F is the set of symbolic expressions. A state condition
t € E and a path condition p € E are symbolic expressions.

e The state s is described by a set of variable/symbolic
expression pairs {vi = ei1,...,vn = en} where v; is
a program variable and e; a symbolic expression de-
scribing the symbolic value of v; for 1 < i < n. For
all program variables v; there exists exactly one pair
v; = e; in state s.

e The state condition contains constraints on variable
values such as those implied by loops, variable decla-
rations, and user assertions.

e Path condition is a predicate, which is true if and only
if statement £ is reached.

Note that all components of a context — including state
information — are expressed as symbolic expressions and
recurrences. All program contexts are automatically gener-
ated at compile-time (see algorithm in [13]).

E.g. an unconditional sequence of statements ¢; (1 < j <
r) is symbolically evaluated by [so,to,po] £1 [s1,t1,p1] ---
4. [$r,tr,pr]. The initial context [so,%o,po] represents the
context before ¢, is executed and [s,, t,, pr] the context after
£.. If ¢; in the sequence ... [si,ti, pi] & [Sit+1,tit1,Dit1] - ..

does not contain any side effects (implying a change of a
variable value) then s; = si41.

Furthermore, a context ¢ = [s, t,p] is a logical assertion ¢ =
s At A p where € is a predicate over the set of program
variables and the program input which are free variables. If
for all input values ¢;_1 holds before executing the statement
£; then ¢; is the strongest post condition [6] and the program
variables are in a state satisfying ¢; after executing ¢;.
Note that the algorithm introduced by the authors handle
control flow (IFs, GOTOs, etc.). For further technical de-
tails we refer the reader to [12; 13]. In the following we
apply this approach to evaluate dynamic data structures.

3. DYNAMIC DATA STRUCTURES

Dynamically allocated records are data items stored on the
heap. Heap operations allocate and deallocate records and
allow reading and writing values from/to record fields. In
our symbolic evaluation framework the heap is described by
a heap algebra, which is based on symbolic expressions and
recurrences. The symbolic heap of a program point symbol-
ically represents the current state of the heap and comprises
all modifying operations performed on the heap. Moreover,
in the semantic domain of symbolic evaluation we use sym-
bolic pointers to refer to dynamic records. Therefore, we
tag all dynamically created records with a unique symbolic
number. In the symbolic domain nil is represented as L.
In order to ease the readability of this paper we impose the
following restrictions:

e The language is strongly typed.

e We only allow (1) basic types, (2) records (no vari-
ants), and (3) pointer to records. We assume that all
records have a type declaration <t>. The type dec-
laration defines the fields of <t>. A field is uniquely
identified by a qualifier <q>.

o Pointers are either allowed to point to dynamically al-
located records or to nil.

e A pointer variable is assigned a value from other pointer
variables, from a new operation or it is set to nil.

e There is no memory overlap — every field is stored in
a unique storage location”.

The third and forth restriction are important to avoid alias
effects of program variables [2] which goes beyond the scope
of this paper. In the following we introduce heap algebra H,
which is a formal vehicle to symbolically describe the heap.
Then, we give the notions of symbolic evaluation for heap
operations. Finally, we conclude this section with examples.

3.1 Heap Algebra

In the semantic domain of symbolic evaluation the heap is a
symbolic chain consisting of three functions new, free and
put. Semantically, a function new(r, <t>) allocates a new
element with symbolic pointer r and type <t>. A function
free(r) denotes a free operation where dynamic record r
is freed. The put(r,<g>,e) assigns a new symbolic value
of e to dynamic field <gq> of dynamic record r. Pointer
r of pointer variable v is stored on the symbolic heap by
put(v, L,r). Note that this information is kept in the state

*E.g. two dynamic records share the same storage location.

as well. Nevertheless, the additional heap function facili-
tates the detection of memory leaks. The following table
informally describes the heap functions by relating them to
the constructs of the language.

[Heap operation | Language Example |

new(r, <t>) new t;
free(r) delete r;
put(r,<g>,e) | r.q := e;
put(v, L, r) v = e;

More formally, the heap is modeled as a heap algebra IH.
The algebra is inductively defined as follows.

1. 1L isin H.

2. If h € H, r € E is a symbolic pointer, and <t> is a
type, then h @ new(r,<t>) € H.

3. If h € H and r € E is a symbolic pointer then h @
free(r) e L

4. If h € H, r is a symbolic pointer, <q> is a qualifier, and
e is a symbolic expression then h@® put(r, <g>,e) € H

5. If h € H, v is pointer variable, and r is a symbolic
pointer, then h @ put(v, L,r) € HL

An element h in H can be written as @-chain L @2,
where y; is a new, free, or put function. In the further
text p; is also referred to as heap functions. The length of
chain |h| is the number of functions y; in chain h.

We introduce heap function get(h,r, <q>) to access field
<g> from dynamic record r where h is a symbolically de-
scribed heap and element of H. The operator get seeks for
the right-most function put(r, <q>,e) in h whose symbolic
pointer and qualifier matches the arguments of operator get.
If such a function put(r, <q>, e) exists the result of operator
get is e; otherwise L.

ML= pUt(rz <q>, 61)}

) e, if A =max{l|1<1I<mA
1, otherwise

get (l P, r, <a>

=1
(1)

In general determining whether y; = put(r, <q>, ¢;) matches
the arguments of operator get in a symbolic expression (or
not) is undecidable. In practice a wide class of symbolic re-
lations can be solved by our techniques for comparing sym-
bolic expressions [10]. If our symbolic evaluation framework
cannot prove that the result of get is <q> or L then get
is not resolvable and remains unchanged in the symbolic
expression. See Section 4 with respect to memory leaks.
For loops, we extend algebra H in order to model recurrences
[12; 13]. A recurrence system over H consists of a boundary
condition h(0) = h, h € H and a recurrence relation

e +1) = h() D k), k20 @)

where p;(k) can be a function new (r;(k), <t>;), free (r;(k))
or put(r;(k) ,<g>i,ei(k)). The boundary condition repre-
sents the symbolic value before entering the loop. For each
iteration of a loop a symbolic value is computed by the re-
currence relation. The index k determines the loop iteration.
Note that the parameters of the heap functions are functions

over index k. Clearly, every instance of the recurrence is an
element of H Moreover, for chains the operator get is not
sophisticated enough to cope with general read accesses of
recursively defined heaps. For this purpose the operator get
needs to be extended for recurrences such that heap opera-
tions inside of loops can be accessed, e. g. get(h(z),r, <q>).
The symbolic expression z is the number of loop iterations
determined by the loop exit condition and r is the symbolic
pointer of the dynamic record. Furthermore, the recurrence
index k has an upper and lower bound of 0 < k£ < z. To de-
termine a possible function put where the accessed element
is written, a potential index set X;(r,<q>) of the function
i is computed.

V1<i<m: Xi(r,<q>) = {k | (k) = put(r, <q>, e (k)) A
0<k<z}

3)

Xi(r, <q>) represents all possible indices of k£ such that func-
tion u;(k) potentially describes the value of the read access.
If the cardinality of X is zero then the corresponding heap
function is irrelevant to find the value of the requested field
of a dynamic record. If an index set X;(r,<q>) has more
than one element the field <q> of record r is written more
than once in different loop iterations. We are only inter-
ested in the right-most function of h(z). Consequently, we
choose the element with the largest index. The supremum
z1(r,<q>) of an index set X;(r,<q>) is the largest index
such that

Vi<Ii<m: z(r,<q>) = max X;(r,<q>)
Finally, we define the operator get for recurrences as follows,

e(k), fI1<I<m: z(r,<q>) =
maxi<k<m Lk (T, <q>)
get(h(0),r, <q>), otherwise
(4)

where e;(k) is the value of (k) = put(ri(k), <q>, ei(k)).
The maximum of the supremum indices z;(r, <q>) deter-
mines the symbolic value e;(z;(r,<q>)). If no supremum
index exists then get returns the access to the value before
the loop.

3.2 Symbolic Evaluation

In the following we relate the syntax of heap operations to
the semantics for allocating dynamic records, heap function
put for setting fields and heap function free for freeing dy-
namic records. For this purpose we use denotational seman-
tics [24]. Figure 1 lists the symbolic evaluation rules of the
heap operations. Nonterminal <stmt> denotes a heap oper-
ation, nonterminal <ptr> a pointer value, and nonterminal
<value> a value of a basic type.

For symbolically evaluating a program symbolic counter ¢ is
employed and it is incremented each time when a new dy-
namic record is allocated. The symbolic value of the counter
is used to generate a label for the newly allocated record.
The symbolic pointer of the new record is the value of ¢ after
incrementing it. The modifications on the heap are symbol-
ically described by a heap element §) of H For both, ¢ and
h, we introduce two new pseudo variables in state s. In the
first program context heap § is set to L and ¢ to 0.

In Figure 1 the denotational semantic rules (D1)-(D10) uses
the functions eval and §. The function eval(e, [s,t, p]) deter-
mines the symbolic expression under the constraints of pro-

get (h(z): T, <q.>) =

(D1)

(D2)

F :<stmt> > C = C
F[<ptr>1.<q> := <ptr>s;] =

Als, t,p] € C.[é (s, = eval(b, [s, ¢, p]) ® put(F [<ptr>1]([s,t, p]), <a>, F [<ptr>2]([s,t,p]))) . t,]
F[<ptr>.<q> := <value>;] =

As,t,p] € C.[d (s, =eval(h, [s, t,p]) ® put(F[<ptr>]([s, t,p]), <q>, eval(<value>, [s,t,p]))),t, p]

(D3) F[<ptr>.<q> := new <t>;] =

As,t,p] € C.[A\r € E.§ (s,c =1, h =eval(h,[s, t,p]) D new(r,<t>)d
put(F[<ptr>]([s,t,p]), <a>,7)) (eval(c,[s, t,p]) + 1), t,p]

(D4) F[<var> := <ptr>;] =

Als,t,p] € C.[Ar € E.§ (s,<var> = r, h = eval(h,[s, t,p]) ® put(eval(<var>, [s,t,p]), L,r))

(FI<ptr>]([s; t, 1)), 2, p]
(D5) F[<var> := new <t>;] =

A[s,t,p] € C[Ar € E.§ (s,<var> =r,c =1, h = eval(h, [s,t,p]) ® new(r,<t>) @ put(<var>, L 1))

(eva‘l(ca [Sa t:p]) + 1), t,p]
(D6) F[free <ptr>;] =

Als, t,p] € C.[6 (s, b = eval(h, [, t, p]) © free(eval(<ptr>, [s,t,p])) ,t,]

F :<ptr> - C =+ E
(D7) F[nil] = A[s,t,p] € C.L
(D8) F[<var>] = A[s, t,p] € C.eval(<var>, [s, t,p])

(D9) F[<ptr>.<q>] = A[s, t,p] € C.get(eval(h,[s,t,p]), F[<ptr>]([s, t, p]), <a>)
(D10) eval(<ptr>.<g>,[s,t,p]) = get(eval(h, [s,t,p]), F [<ptr>]([s, t, p]), <q>)

Figure 1: Symbolic evaluation of heap operations

gram context [s,t,p] (see [12; 13]). The function d(s;v1 =
e1,... ,Ur = e;) compresses the state description by listing
only those variables whose value changes after evaluating
the associated statement whereby state s is the state before
evaluating the statement and variables v; (1 < 4 < [) are
changed by the statement and get new symbolic values e;.
We distinguish between two different pointer assignments
(D1), and (D4). (D1) is a pointer assignment for a field of
a dynamic record. An assignment for a program variable
(D4) produces a new entry put(<var>, L,r) in the chain.
This redundant entry facilitates subsequent analyses. Rule
(D2) assigns a non-pointer field of a dynamic record a new
symbolic value. (D3) allocates a new dynamic record and
assigns it to a pointer field. (D5) allocates a new dynamic
record and assigns it to a program variable. The semantic of
the free operation is given by (D6). There are two different
types of field read accesses: (1) A pointer field is read (D9),
(2) a basic type field is accessed (D10).

3.3 Examples

The code fragment in Figure 2(a) illustrates the symbolic
evaluation of a sequence of program statements. Three
pointer variables pl, p2, p3 of type bna are modified in
the sequence. The type declaration of bna is given in Fig-
ure 2(b). For all statements ¢; in Figure 2(a) there exists
a program context [5171, tifl,pifl] before statement ¢; and
a program context [s;,t;, p;] after statement £;. In context
[s0, %0, po] heap b is set to symbolic expression 3 and sym-
bolic counter ¢ is assigned symbolic value a which denote
arbitrary heap configurations depending on the preceding
statements of the code fragment. The values of variables p1,
p2, and p3 are set to L, which means that they do not have
a valid value so far. In the first statement £; three dynamic
records are allocated and assigned to the variables. The al-
location is symbolically described by incrementing symbolic
counter ¢ and by adding three new and three put functions
to the heap h. Note that the put functions are necessary

due to the variable assignment (see Figure 1). In the next
two statements > and {3 field assignments are symbolically
evaluated. For each statement a new put function is added
to h. In 44 a list of qualifiers is used. Note that Figure 2(c)
depicts the heap after statement ¢5. The last statement £
frees the first dynamic record in the tree which results in
a memory leak. The memory leak occurs as it is no longer
possible to access the dynamic records.

The second example in Figure 3(b) shows a code fragment,
which is supposed to build a simply linked list. It is not able
to build up the list due to the fact that the reference to the
first element is lost. The type declaration of variable p is
given in Figure 3(a). Before evaluating the first statement
the heap variables h and ¢ are initialized to L and 0. The
variables i and p do not have a value so far and variable n
is set to 7, which denotes an arbitrary symbolic value.

The variables i, p, ¢, and b change their values in each itera-
tion of the loop. Therefore, we have four recurrences induced
by variable i, pointer variable p, symbolic counter ¢ and
heap h. Note that the result of operator get in statement
45 is given by ¢+ 1 since the right-most function put can be
directly found in the recurrence relation of h(k). After the
loop terminates the values of variables i, p, ¢ and § are de-
termined by their recurrences whereby the recurrence index
z is derived from the loop exit condition. Closed forms can
be found for i, p, c. The heap § in ¢7 symbolically describes
all elements of the simply linked list. Figure 3(c) depicts the
graphical representation of the recursively described linked
list for v > 2.

4. DETECTION OF MEMORY LEAKS

We now show how to detect memory leaks by providing a
logical predicate defined over program input. Clearly, sym-
bolic analysis can only track down a subclass of all possible
memory leaks, which is a limitation of our approach as well.
In order to statically detect memory leaks we introduce a

pl,p2,p3: bna;

[so ={pl=L1,p2=L1,p8=L1,c=a,bo=4}1t0,P0l
£1: pl := new bin; p2:= new bin; p3:= new bin;
[s1 =8 (sgspl=a+1,p2=a+2,p3=a+3,c =a+3,

h1 = bo ® new(a + 1,bin) @ put(pt, L, & + 1) ® new(a + 2,bin)®

put(p2, L, a + 2) @ new(a + 3,bin) @ put(ps, L, a + 3)),

t1 = tg,p1 = pol
f3: pl.left := p3;

[sg =6 (s1;5b2 = b1 @ put(a + 1, left, a + 3)) ,to = t1, p2 = p1]
f3: pl.right := p2;

[s3 = 8 (s2; b3 = ho @ put(a + 1, right, a + 2)) , t3 = tg, pg = p3]
£4: pl.right.left := p3;

[s4 = 8 (s3;bg = b3 @ put(get(hg, o + 1, right), left, a + 3)),

t4 =t3,p4 = p3l =

[sh =6 (S4;hﬁ; = b3 ® put(a + 2, left, +3)) sty =tg, Pl =p4]

f5: p3.right := p2;

[s5 =& (sa;hs = b)) @ put(a +3,right,a+2)) L ts = t), p5 = Pl

le: p2 := nil; p3:= nil;

[sg =8 (s5;pl=L1,p2=1,bg = b5 @ put(p2, L, L) ® put(ps, L, 1)),

te = t5,P6 = P5]
l7: free(pl);

[s7 =8 (sgi by = bg @ free(a + 1)), t7y = tg, p7 = pgl

(a)

type bin;
type bna is access bin;
type bin is record
left: ©bna;
right: bna;
end record;

(b)

a+1
left |right]

a+3

left |righti” | o 4 9
I left |right]

(c)

Figure 2: Code segment and its graphical representation

pointer graph that describes the connectivity of the dynamic
records on the heap. A heap operation destroys the property
of being connected if at least one dynamic record can no
longer be referenced in the program.

Formally, we introduce a pointer graph G(c;) = (9, €,t) of
a program context ¢;. The graph consists of a set of nodes
N, aset € C N x N of edges, and a root node denoted as
t € N. A pair (z,y) € € is called edge from z to y. A path
from z to y, {z,y} C N is a sequence xo, 1, ... ,x; of nodes
such that zo =z, z; = y and (x5, zi41) € Efor 0 < i < I 1
is the length of the path. A dynamic record is represented
by a node in 9. The root node t is an artificial node and
is not related to any dynamic records on the heap. If there
exists at least one field q of dynamic record x that points to
dynamic record y then edge (x,y) is in G. Pointer variables
are handled as artifical dynamic records without fields. If
there exists a pointer variable v in state s; that points to
dynamic record x then (r,v) and (v,x) are in &. If (z,y) € €
we say that node x is a predecessor of node y. The set of
predecessors pred(y) = {z | (z,y) € €} are all predecessors
of node y.

One can easily prove that a memory leak occurs if and only
if the graph is not connected. In other words for every dy-
namic record x there must exist a pointer path from the root
node t to x.

For creating pointer graph G we analyze the heap functions
of b from the left to the right of chain §. Initially, the pointer
graph contains only root node t. For each heap function of
h we update pointer graph G as follows:

1. Heap function new(r,<t>) adds a new node r to G.

2. Heap function put(z,<qg>,z), * # L updates pointer
graph G. If h is the sub-chain before put(z,<qg>, z),
and y = get (h, z, <q>) the old reference (y # L) then

edge (z,y) is removed from G and a new edge (z, z),
z # 1, is added to G. Figure 4(a) shows how the
pointer graph and heap are updated before and after
setting field <q> of dynamic record x under the as-
sumption that y and z are not L and no memory leak
occurs. A pointer path and an edge in G are shown as
a dotted and solid arrow, respectively.

3. Heap function put(v, L, z) removes edge (v, y) (if vari-
able v refers to y and y is unequal to L) and adds edge
(v,2), 2 # L.

4. Heap function free(z) removes node z and all edges
(z,y) and (y, z) from pointer graph G. Figure 4(b) dis-
plays the free operation under the assumption that no
memory leak occurs. The dynamic record = can have
several pointer fields, which point to dynamic record
Y, Yn-

In the following we derive a symbolic function that deter-
mines the set of predecessors of dynamic record y. For
constructing the set pred(y) we need an intermediate set
Sy which consists of pairs (z,<q>) — field <q> of dynamic
record x points to y — where z is a reference and <q> a
qualifier. The intermediate set is created by applying the
operator ©® to an intermediate set. Initially, the interme-
diate set is empty. The intermediate set is incrementally
updated by traversing the heap h € H from left to right.

S,oLl=S8, (5)

Sy ® (J_ @ new(z, <t>) @uz) =561 @ w (6)
1=1

=1

type el;
type ela is access el;

type el is record 1 2 k z
item: natural; next: next: —» nextie—{» — next:.——| I
next: ela; item: 1 item: 2| TUTTTTY item: k| TUTTT item: z

end record;

(a) (c)

p: ela; i,n:natural;
[so=fn=",p=1,i=1,c=0,0g=L},tq = true, pg = true]
{1: p := new el;
[s1 =8 (sgsp=1,¢c=1,b1 = hg ® new(l,el) @ put(p, L,1)),t1 = tg,p1 = pgl
129 p.-item := 1;
[sg =38 (s1;b2 = b1 @ put(l,iten, 1)) ,tg =t1,p2 =p1] =
f3: for i in 2..n loop
[s3 = 8 (s2;i =i(k),p =p(k), c =c(k), b3 = bh(k)),t3 = (i(0) =2Ap(0) =1Ac(0) =1A5H(0) =bh2),
p3 = i(k) <=17]
Uy : p-next := new el;
[s4 =38 (sg;¢ =c(k) +1,bg = b(k) ® new (c(k) + 1,el) @ put (p(k), next, c(k) +1)),t4 = t3,pq = p3]
7% P := p.next;
[s5 = 8 (sq;p = get (b5, p(k), next)) , t5 = tg,p5 = pgl =
[sf =8 (s5:p = c(k) + 1), t5 = t5, pg = p5]
17 p-item := i;
[s6 =& (shi b6 = b5 ® put(c(k) + 1, iten, i(k))) , tg = th, pg = Pj]
lr: end loop;

[sy =8(sgii=z2+2,p=2+1,c=2+4+1,h7 = h(2)),ty = (2 = max(0,v — 2)A
§(0) = bo A (k4 1) = h(k) @ new (k + 2, e1) @ put (k + 1,next, k + 2) @ put (k + 2, item, k + 2)) , py = true]

(b)

Figure 3: Symbolic evaluation of a program with recurrences

Sy © (J_@put(w,<q>,y)@m) =

=1

(SU{(z,<a>)}), ® LD w

=1

S, ® (L @ put(z, <a>, 2) @uz) =
=1

(S\{(z,<a>)}), 0 L m, ifz+#y
=1

Sy © (J_ @ free(z) @ m) =
=1

™ (9)
{(z,<a>)|(x,<q>) € SAz #2}), © LEP m
=1
The first Rule (5) is a termination rule. If the heap his L the
operator’s result is the original intermediate set. Allocating
a dynamic record does not change the set of predecessors
of y. Therefore, the result of operator ® in Rule (6) is
the original intermediate set. In the third (7) and forth (8)
rule a dynamic record is either added or removed from the
intermediate set depending on the value of reference y. If
value 7 of pointer field q in function put(z,<q>,r) is equal
to y, x must be a predecessor of y. If value r of pointer field
<g> in function put is not y, the dynamic record (z, <gq>)

must be removed from the intermediate set. Note that for
heap functions put(v, L,r), where v is a program variable
and r is a reference, rule (7) and rule (8) are valid. In
the last rule (9) all elements (z,<q>) are deleted. The free
operation removes dynamic record z from the intermediate
set. Record x can no longer be a predecessor of y.

The intermediate set is given by @), ©h for a program context
and a dynamic record y. Based on the intermediate set we
derive the set of predecessors pred(y) as follows,

{z | (z,<q>) € 0, ® h,<g># L}U

pred(y) = {r|if3z: (z,L1) € 0, ©h} Jify#t

otherwise
(10)

0,

The transitive closure of the set of predecessors pred* is
inductively defined as follows,

pred® (y) = pred(y)
pred(k'H) (y) = U

pepred(k) (y)

pred”(y) = | J pred® (y)
k>0

(11)

pred(p) (12)

(13)

Now it is easy to prove that the pointer graph G is connected
if and only if the root t is in pred”(y) for all y € 91.

Since (12) and (13) do only involve set union operations,
an algorithm calculating pred*(y) in order to decide if G is
connected can stop if it finds v € pred(p) for some p because
if t € pred®(y) for some £, then also t € pred*(y). This

Before: After:
T y T z
<q> <g>

(a) put function

(b) free function

Figure 4: Pointer graph — update operations

certainly will improve the performance of determining the
connectivity of G.

Let us continue the example code of Figure 2(a). In order to
detect memory leaks every single statement must be exam-
ined. For the sake of demonstration we only inspect state-
ment {7, which invokes a free operation he @ free(a+ 1) on
the heap. There are two pointer fields left and right of
record o + 1. Let us consider left. The value of left can
be determined by applying get(h7,a + 1,1left). Thus, in
order to detect the memory leak we need to compute the
symbolic set of predecessors pred”(a + 3).

Dats © (L ®new(a + 1,bin) @ put(p:, L,a+1)
@ new(a + 2,bin) @ put(p2, L, a + 2)
@ new(a + 3,bin) @ put(ps, L,a + 3)
@ put(a +1,1left,a + 3) ® put(a + 1,right, a + 2)
@ put(a + 2,1left,a + 3) @ put(a + 3,right, a + 2)
@ put(ps, L, 1) @ put(ps, L, 1)
@ free(a + 1)) =

Dats © (L @ put(p1, L,a+1) ® new(a + 2,bin)
@ put(p, La+2)®...) =

Dats © (L ® new(a + 2,bin) @ put(p2, L,a + 2)
@new(a+3,bin) ®...) =

Dats © (L @ put(ps, L, a +2) ® new(a + 3,bin)
@ put(ps, L,a+3)®...) =

Dot+s © (L ® new(a + 3,bin) & put(ps, L,a + 3)

(Rule 6)

(Rule 8)

(Rule 6)

(Rule 8)

O put(a+1,left,a+3)d...) = (Rule 6)
bots © (L @ put(ps, L,a+3)

O put(a+1,left,a+3)d...) = (Rule 7)
{(p3, L) }at+3 © (L @ put(a+1,1eft,a + 3)

@ put(a+1,right,a+2)P...) = (Rule 7)
{(ps, L), (a + 1,1eft)}ats @ (L

@ put(a+1,right,a+2)P...) = (Rule 8)
{(ps, 1), (@ +1,1eft) }ats ©

(L @put(a+2,left,a+3)d...) = (Rule 7)

{(p3: J—)a (a +1, 1eft): (a +2, 1eft)}0¢+3 ©

(L @ put(a+3,right,a+2)a...) = (Rule 8)
{(ps, L), (@ +1,1eft), (@ + 2,1eft) }at3 © (L

@ put(pz, L, L)@ put(ps, L,L)d...) = (Rule 8)
{(p3, L), (@ +1,1eft), (o + 2,1eft)}a43 O

(L& put(ps, L, L) d free(a+ 1)) = (Rule 8)
{(a +1,1eft), (e + 2,1eft) }a+3 O

(L& free(a+1)) = (Rule 9)
{(a+2,1eft)}ats © L = (Rule 5)

{(a +2,1eft)}ats

Thus we obtain pred(a+ 3) = {@+2}. In order to compute
pred*(a + 3) we have to determine pred(a + 2), which by
a similar computation gives pred(a + 2) = {« + 3}. Hence
pred*(a + 3) = {a + 2,a + 3}. Since v ¢ pred*(a + 2),
we conclude that the pointer graph is disconnected, which
means that we have detected a memory leak.

If a recursive heap is given by (2) we obtain a recursively
defined intermediate set Sy (k) for £ >0

5y(0) = Sy © h(0)

Sy(l+1)=5,(£)® J_énam(é),

=1

where S, denotes the intermediate set immediately before
the recursive heap description. Based on the recursive inter-
mediate set we define recurrence relations for pred(y) and
pred*(y) in an obvious way.

Studying the example in Figure 3 we obtain the following
recurrence relation (k > 1)

Sk+1(0) =0
Sk+1(€+1) = Spt1(€) © (L ®new(k + 2,el)

@ put(k + 1, next, k + 2)
@ put(k + 1, item, k + 2))

= Sk+1(€) © (L ® put(k + 1,next, k + 2)
@ put(k +1,item, k + 2))

= Sk+1(0) © (L ® put(k + 1,item k + 2))

= Sk+1(f).

Thus we get Sk+1(2) = pred(k+1) = pred* (k+1) = 0, which
implies that the corresponding pointer graph is disconnected
and we have encountered a memory leak. For k¥ = 0 no
memory leak occurs.

In general, if the recurrence relation for the intermediate set
or for the pred-sets cannot be solved, we try to find approxi-
mations (cf. [10; 11]). If we do not succeed in approximating
the solution, we conservatively assume that the appropriate
sets are empty, thus warning the programmer that a memory
leak may occur.

We have implemented a prototype of our symbolic frame-
work [12; 13; 3] which includes a system for manipulating
symbolic expressions and constraints, techniques for sim-
plifying expressions, automatically generating program con-
texts, and a recurrence solver. The current implementation
of our recurrence solver handles recurrences of the follow-
ing kind: linear recurrence variables (incremented inside a
loop by a symbolic expression defined over constants and in-
variants), polynomial recurrence variables (incremented by a
linear symbolic expression defined over constants, invariants
and recurrence variables) and geometric recurrence variables
(incremented by a term which contains a recurrence variable
multiplied by an invariant). Our algorithm [11] for comput-
ing lower and upper bounds of symbolic expressions based
on a set of constraints is used to detect whether a recur-
rence variable monotonically increases or decreases. Even if
no closed form can be found for a recurrence variable, mono-
tonicity information may be useful, for instance, to deter-
mine whether a pair of references can ever touch the same
address. The current implementation of our symbolic eval-
uation framework models assignments, GOTO, IF, simple
I/O and array statements, loops and procedures.

5. RELATED WORK

Much work has been done in the field of statically detecting
memory errors including misuses to nil pointers, failures to
allocate or deallocate memory, uses of undefined or deallo-
cated storage, and dangerous or unexpected aliasing.

There is a variety of conventional heap-based pointer analy-
sis [18; 22; 5; 21; 4; 25; 15] which develops specialized algo-
rithms to solve specific memory (pointer) problems without
annotations of the program. The deficiencies of these ap-
proaches mainly stem from their imprecise modeling of the
control flow.

In [9] a more general approach for memory analysis is de-
scribed that is based on user-provided annotations about
function interfaces, variables and types. Constraints nec-
essary to satisfy these annotations are checked at compile-
time. Anomalies are reported for program positions where
these constraints are violated. The underlying analysis is
not as accurate as our approach due to its imprecise mod-
eling of loops, recurrences, array subscript expressions, and
program control flow.

A runtime technique for detecting large classes of pointer
and array access errors has been described in [1]. The method
is based on pointer conversion, insertion of access checks,
pointer operator conversion, and runtime support. Inher-
ently due to the fact of a runtime analysis, this approach can
detect more memory errors than static analysis. However,
experiments shown in [1] also report on significant execution
time overhead due to runtime checking.

A Hoare-like logic is proposed in [14] in order to find deref-
erences of invalid pointers for a subset of C programs. This

analysis is based on an axiomatization of alias and connec-
tivity properties and can deal with circular data structures.
Loop invariants, however, have to be supplied by the user,
which can be a tedious task.

Another approach describes a static verification of pointer
programs using monadic second-order logic [19]. Stores are
modeled as strings and decidable specification logic for prop-
erties of stores with pointers is employed. This technique de-
pends on user-provided loop invariants and targets a small
subset of Pascal programs.

A combination of existing pointer analyses, point-to anal-
ysis, and connection analysis is presented in [16]. Point-
ers referring to stack are modeled based on a “store-based
points-to” analysis [8]. Heap pointers are analyzed by a hi-
erarchy of storeless heap analysis, connection analysis [17],
and shape analysis [20]. A main drawback of these methods
is that control flow information for resolving pointer prob-
lems are not considered.

A static analysis of programs that perform destructive up-
dating on heap-allocated storage is described in [23]. This
technique is based on shape-analysis. For every program
point a conservative, finite characterization of the possible
shapes that the program’s heap-allocated data structures
can have at that point is provided. For certain programs it
is possible to infer the underlying data structures, e.g. linked
lists and trees. However, in [7] it has been reported that for
detecting some memory errors (memory leaks, dereferencing
of nil pointers, etc.) the relationship between different vari-
ables as well as control flow must be modeled, which is not
included in the shape analysis of [23]. This drawback has
been overcome by a refined shape analysis as described in
[7]. On the other hand the approach of [7] limits the num-
ber of loop iterations which accounts also for the method
specified in [20]. In [15] a method is presented that approx-
imates the shape of dynamic data structures. For programs
that make major structural changes to data structures, the
shape abstraction is not powerful enough to give accurate
results.

6. CONCLUSIONSAND FUTURE WORK

‘We have presented a unified symbolic evaluation framework
for detecting and locating memory leaks (losing references to
dynamic records without freeing them). The contributions
of our approach are as follows:

e A heap algebra H symbolically describes the heap and
the heap operations of a program. Most other ap-
proaches approximate heap operations, which can re-
sult in many false alarms. The complexity of the heap
structure directly relates to the complexity of our heap
modeling.

e Recurrences over the heap algebra H accurately ex-
press the dynamic behavior of heap operations inside
of loops.

e Arbitrary pointer structures can be modeled.

e A pointer graph G is introduced based on which we
detect memory leaks (if and only if the graph is dis-
connected).

Our framework is not restricted to a specific programming
language. The underlying techniques are equally applicable

to most existing imperative programming languages. More-
over, our future work will be in three different directions.
Firstly, we want to investigate different types of memory
anomalies such as illegal accesses to already freed dynamic
records or dereferencing nil pointers. Secondly, we plan to
build a similar analysis for object-oriented programming lan-

guages, in particular for Java.

This includes also a Java

garbage collector that can greatly benefit by our techniques.
Thirdly, we want to develop analyses that prove specific heap
properties (“listness”, “treeness”, etc.) at certain program
points.

7.
[1]

2]

[6]

[7]

(8]

[10]

REFERENCES

T. Austin, S. Breach, and G. Sohi. Efficient detection
of all pointer and array access errors. In Conference

on Programming Language Design and Implementation,
Jun. 1994.

J. Blieberger, B. Burgstaller, and B. Scholz. Interpro-
cedural Symbolic Evaluation of Ada Programs with
Aliases. In Ada-Europe’99 International Conference on
Reliable Software Technologies, pages 136-145, San-
tander, Spain, June 1999.

J. Blieberger, T. Fahringer, and B. Scholz. Symbolic
cache analysis for real-time systems. To appear in Real-
Time Systems Journal., 1999.

M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-
insensitive interprocedural alias analysis in the presence
of pointers. In K. Pingali, U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Proceedings of the
Tth International Workshop on Languages and Compil-
ers for Parallel Computing, Lecture Notes in Computer
Science, pages 234-250, Ithaca, New York, Aug. 8-10,
1994. Springer-Verlag.

A. Deutsch. Semantic models and abstract interpre-
tation techniques for inductive data structures and
pointers. In Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, June 1995.

E. Dijkstra. A discipline of programming. Prentice Hall,
New Jersey, 1976.

N. Dor, M. Rodeh, and M. Sagiv. Detecting mem-
ory errors via static pointer analysis. In Workshop on

Program Analysis for Software Tools and Engineering
PARLE’98. ACM Press, 1998.

M. Emami, R. Ghiya, and L. J. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. ACM SIGPLAN Notices,
29(6):242-256, June 1994.

D. Evans. Static detection of dynamic memory errors.
In SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’96), May 1996.

T. Fahringer. Efficient Symbolic Analysis for Paralleliz-
ing Compilers and Performance Estimators. Journal of
Supercomputing, Kluwer Academic Publishers, 12(3),
1998.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

20]

21]

[22]

23]

T. Fahringer. Symbolic Analysis Techniques for Pro-
gram Parallelization. Journal of Future Generation
Computer Systems, Elsevier Science, North-Holland,
13(1997/98):385-396, March 1998.

T. Fahringer and B. Scholz. Symbolic Evaluation for
Parallelizing Compilers. In Proc. of the ACM Interna-
tional Conference on Supercomputing, July 1997.

T. Fahringer and B. Scholz. A unified symbolic eval-
uation framework for parallelizing compilers. Sub-
mitted. http://www.par.univie.ac.at/ tf/papers/
symbolic/symbol_eval.ps, 1998.

P. Fradet, R. Caugne, and D. L. Métayer. Static de-
tection of pointer errors: An axiomatisation and a
checking algorithm. In H. R. Nielson, editor, Program-
ming Languages and Systems—ESOP’96, 6th European
Symposium on Programming, volume 1058 of LNCS,
Linkoping, Sweden, 22-24 Apr. 1996. Springer.

R. Ghiya and L. Hendren. Is it a tree, a DAG, or a
cyclic graph? A shape analysis for heap-directed point-
ers in C. In Symposium on Principles of Programming
Languages. ACM Press, Jan. 1996.

R. Ghiya and L. Hendren. Putting pointer analysis
to work. In Symposium on Principles of Programming
Languages, Jan. 1998.

R. Ghiya and L. J. Hendren. Connection analysis: A
practical interprocedural heap analysis for C. Interna-
tional Journal of Parallel Programming, 24(6):547-578,
Dec. 1996.

L. Hendren and A. Nicolau. Parallelizing programs with
recursive data structures. IEEE Transactions on Par-
allel and Distributed Systems, 1(1):35-47, Jan. 1990.

J. L. Jensen, M. E. Jgrgensen, M. I. Schwartzbach,
and N. Klarlund. Automatic verification of pointer pro-
grams using monadic second-order logic. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI-97), vol-
ume 32, 5 of ACM SIGPLAN Notices, pages 226—234,
New York, Junel5-18 1997. ACM Press.

N. D. Jones and S. S. Muchnick. Flow analysis and
optimization of Lisp-like structures. In S. S. Muchnick
and N. D. Jones, editors, Program Flow Analysis: The-
ory and Applications, pages 102-131. Englewood Cliffs,
N.J.: Prentice-Hall, 1981.

W. Landi and B. G. Ryder. Safe approximate algorithm
for interprocedural pointer aliasing. ACM SIGPLAN
Notices, 27(7):235-248, 1992.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive updat-
ing. In Symposium on Principles of Programming Lan-
guages, St. Petersburg Beach, FL, Jan.Jan. 1996.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive up-
dating. ACM Transactions on Programming Languages
and Systems, 20(1):1-50, Jan. 1998.

[24]

25]

R. Tennent. Denotational semantics of programming
languages. Communication of the ACM, 19(8), Aug.
1976.

R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the
ACM SIGPLAN’95 Conference on Programming Lan-
guage Design and Implementation (PLDI), La Jolla,
California, 18-21 June 1995.

10

