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Abstract .

We investigate some real-time behaviour of a (discrete time) single server system with FCFS (first come
first serve) task scheduling under rush-hour conditions . The main result deals with the probability
distribution of a random variable SRD(T), which describes the time the system operates without
violating a fixed task service time deadline T

Relying on a simple general probability model, asymptotic formulas concerning the mean and the
variance of SRD (T) are determined ; for instance, if the average arrival rate is larger than the departure
rate, the expectation of SRD(T) is proved to fulfil E[SRD(T)] = c, + O(T - ') for T -+ m, where c,
denotes some constant .- If the arrival rate equals the departure rate, we find E[SRD(T)] c 2 T' for some
i>2 .
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1. Introduction .

In this paper, we will study some aspects concerning the real-time behaviour of
a discrete time single server system with FCFS (first come first serve) task schedul-
ing, i .e ., arriving tasks are served in the order they arrive at the system . Instead of
using queueing theory, we apply a special tree approach which is well-known from
the analysis of data structures, see [10], [11], [13] for a survey and [2], [12] for
another application of this approach .

We consider a system containing a task scheduler, a task list of (potential) infinite
capacity, and a single server . Tasks arriving at the system are taken by the scheduler
and placed into the task list according to the scheduling strategy . The server always
executes the task at the head of the list ; thus scheduling is done by rearranging the
task list. A dummy task will be generated by the scheduler, if the list becomes empty .
If the server executes a dummy task, the system is called idle, otherwise busy .
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Rearranging the task list is assumed to occur at discrete points on the time axis
only. The (constant) time interval between two such points is called a cycle . Due to
this assumption, we are able to model tasks formed by indivisible, i .e ., atomic actions
with duration of 1 cycle. A task may need an arbitrary number of actions to execute
for its completion while the dummy task as mentioned above is supposed to consist
of a single no-operation action (1 cycle) .

Obviously, the time axis is covered by busy periods, which are supposed to include
the initial idle cycle, too . This definition implies the correspondence of an idle cycle
and a busy period with duration of 1 cycle .

We assume that each task has associated with it a fixed deadline T, i .e ., the task has
to complete its execution within T cycles; otherwise it violates the deadline, which
may cause severe problems in a hard real-time system . In order to investigate
real-time performance, we are going to study the random variable successful run
duration SRD(T) which can be described as follows : Starting from an idle cycle,
a sequence of nonviolating busy periods followed by a busy period containing at
least one deadline violation is called a run, the sequence without the last (violating)
busy period is referred to as successful run. The random variable SRD(T) is the
length of a successful run, i .e ., the time interval from the beginning of the initial cycle
to the beginning of the (idle) cycle initiating the busy period containing the first
violation of a task's deadline T.

Different scheduling strategies may be compared via the distribution of this
quantity, even if the arrival process is modeled very simple (as we did) . We assume an
arrival process, which provides an arbitrarily distributed number of task arrivals
within a cycle, independent from the arrivals in the preceding cycles, and indepen-
dent from the task execution times, too . The arbitrarily distributed (but indepen-
dent) task execution time is the number of cycles necessary for processing the task to
completion if it would occupy the server exclusively.

In [2] and [12] we have studied certain scheduling algorithms in the case where
the average arrival rate is smaller than the departure rate of the system . We call this
case the normal case. In this case the system is stable, i .e ., it is able to cope with the
arriving tasks without forming an "unresolvable" backlog. The small arrival rate
results in an exponentially growing mean of SRD(T) . If, however, the arrival rate
increases, we found that the mean of SRD(T) decreases, but our former results are
only valid as long as the arrival rate is smaller than the departure rate .

In this paper we are going to investigate two cases, the case where the arrival rate
is larger than the departure rate, and the case where the arrival rate equals the
departure rate. Both cases may be characterized by causing a high load of the
system, which is known as rush-hour conditions (cf. [9]) . This time we are not able to
derive the limiting distribution of SRD(T) as we have done in the normal case (cf .
[4]). Nevertheless, in both cases we will derive the mean and the variance of the
random variable SRD(T).
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NOTATIONAL REMARK : We denote by [Z"] f(Z) the coefficient of Z" in the (formal)

power series f(z) .

2. Probability model.

This section introduces the probability model used for our subsequent inves-
tigations. We assume arbitrary but independent probability distributions of both
the number of task arrivals within a cycle and task execution times .

The probability generating function (PGF) of the number of task arrivals during
a cycle is denoted by

and should meet the constraint ao = A(0) > 0, i.e ., the probability of no arrivals

during a slot should be greater than zero . This assures the existence of idle cycles .
The definition implies the independence of arrivals within two arbitrary different

cycles .
The PGF of the task execution time (measured in cycles) is denoted by

L(Z) _ I I'Z'

3. Tree approach .

We start our treatment by introducing an arrival sequence {a„}, n >_ 0, where

a„ >_ 0 counts the number of cycles caused by task arrivals during the nth busy cycle
following the initial (idle!) cycle . We will establish a one-to-one mapping between
arrival sequences and a family of planted planar trees, which provides a nice
correspondence between deadline constraints and limited widths of the tree . Due to
this fact, we may relate the original problem of investigating the random variable
SRD(T) to a counting problem regarding a special (sub)family -4T of trees .

A(z) _

	

akZk

k>0

k>_0

with the additional assumption 40) = 0, i .e ., the task execution time should be
greater than or equal to one cycle . Again, this definition implies task execution times
both independent from each other and from the arrival process . Since we are
studying FCFS scheduling, we may deal with the overall service time, i .e., the
number of cycles induced by arrivals within a cycle, instead of using the number of
arrivals and corresponding service times separately . Using the property that the
PGF of a sum of independent random variables is the product of the corresponding
PGFs, we obtain

P(z) _ Y- Pkzk = A(L(z» .
k>_0
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Let us start with an example; consider the arrival sequence

(3, 2, 0, 0, 0, 1, 2, 0, 0)

and the corresponding tree

Each vertex corresponds to a cycle n ; the number of successors of a vertex equals a,,,
the number of (busy) cycles caused by arrivals during the cycle; the root corresponds
to the initial idle cycle 0. The execution sequence is related to the preorder traversal
policy (left to right) of the tree . The "aligned" representation of the tree above will be
useful in establishing the deadline property mentioned above .

For convenience, each vertex is labeled by an expanded string representation of
the task list at the beginning of the corresponding cycle, i .e ., by all cycles currently
forming the task list. The kth cycle of the nth task is denoted by nk . New cycles are
attached at the end of the string, the cycle actually executed is removed at the front of
it. Note, however, that construction and reconstruction of tree and arrival sequence,
respectively, does not depend on this labeling .

Looking carefully at our example, one sees that the length of the task list is the
same for all vertically aligned vertices . This is in fact true for all such trees due to the
construction principle. The length of the task list represents the time interval
(measured in cycles) until completion of the last cycle in the list ; hence limiting the
service times of the tasks by a deadline T is reflected by limiting the width of the tree
to T vertices!

To obtain the connection to our probability model, we simply have to attach
weights to all vertices. The weight of each vertex is equal to the probability that the
vertex has its specific number of successors. The ordinary generating function
(OGF) of this special family -4T of trees is the PGF of the length of a busy period
conditioned by the fact that the busy period contains no deadline violation .
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4. The rush-hour case.

In this section we are going to study the behaviour of our system if the average
arrival rate is larger than the average departure rate, which is reflected by the fact
that P'(1) > l .

In order to justify our computations we will need some constraints concerning
zeros of P(z) - z, i.e ., fix-points of P(z).

Considering an arbitrary PGF P(x) (with P"(x) # 0 and P'(1) > 1) w.r .t . real
arguments x, we obviously observe the trivial fix-point x = 1 . If the Taylor expan-
sion at x = 1 exists and is valid in a neighbourhood of x = 1, we have

(1) f(x) = P(x) - x = (x - 1)(P'(1) - 1) + R2(x) .

Since P(0) = p o > 0 and P(1) = 1, we have f(O) > 0 and f(1) = 0. Furthermore (1)
implies that for some E sufficiently small

f(x) <0 for xc(1-E,1).

Hence, there exists at least one zero of f (x) in (0,1) ; let the smallest one be denoted by
ß. Now, it is easy to show by Rouché's Theorem that there exists only one zero
within a circle around 0 with radius 1 and only one zero on the circle. Note that from
simple geometric arguments P'(ß) < 1, which forces ß to be a simple zero of f(x).

Thus we state the following constraints for the PGF of the number of cycles
induced by arrivals within one cycle:
(1) P(0) = p o > 0, i .e ., it is guaranteed that our tree construction process works .
(2) The average number of cycles induced by arrivals within one cycle should be

greater than one, i .e ., P'(1) > 1 .
(3) P"(z) # 0, i.e ., we explicitly exclude the trivial case P(z) = p o + (1 - po)z.
(4) The radius of convergence Rp of P(z) should be sufficiently large . We assume that

Rp>1.

As mentioned in Section 1, a run denotes a sequence of busy periods not violating
any task's deadline followed by a busy period with at least one deadline violation .
Let

bk , T = prob{Length of a non-violating busy period equals k cycles)

and

BT(Z) =

	

bk , TZk
k>_0

be the corresponding PGF . The PGF of the random variable SRD(T), i.e., the
length of a successful run, is given by

1

	

BT(1)
ST(Z) _ , 3k T

_

k?. 0

	

1 - BT(Z)

This follows from the fact that the PGF of the length of an arbitrary number of
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nonviolating busy periods is Y" , O BT (z)", and that the probability of the occurrence
of the terminating violation busy period equals 1 - BT(l)-

In order to derive BT(Z), we start with the following symbolic equation concerning
our family of width constrained trees .4T . The derivations below follow the pro-
cedure in [12] . We decided to repeat them for the sake of completeness . Note that
the family also appears in the analysis of a simple register function regarding T-ary
operations ; cf. [7], [8] for details . In fact, there is a relation to the so-called left sided
height of a tree.

With Pk denoting the probability of obtaining k cycles induced by arrivals within
a cycle (cf. Section 2), we have

-4T=POD+P1 I + . . .+Pk /

	

+ . . .+ PT /
0
~

-4T

	

-4T-k+1-4T-1-4T

	

-4I . . . T-1~T

for all T>_ 1. According to [5], this symbolic equation translates into a recurrence
relation of the ordinary generating function

T

	

T

BT(Z) - I PkZ j j

	

Bj(z) .
k=0

	

j=T-k+l

Since each vertex with k successors is weighted by Pk Z, the coefficient of z" in BT (Z),
denoted by b" _ [z"]BT (Z), is the probability of obtaining a tree with exactly
n vertices. Defining

and the corresponding bivariate generating function

Q(S, Z) _ E Qk(Z)Sk ,

we obtain

1
Qo(z) = 1,

	

Qn(Z) = B"(Z) . . .B1(z)

k>_0

BT(Z) - QT-1(z)

QT(Z)

Multiplying our fundamental recurrence relation by Q T(z) yields

T
QT - 1(Z) = Z

	

PkQT -k(Z)9
k=0

multiplying both sides by ST and summing for T >- 1, we find

SOS, Z) = Z(Q(s, Z)P(S) - PO)

Q(s, Z) =
	 ZPO

ZP(S) - s
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The bivariate generating function Q(s, z) enables us to use singularity analysis
techniques for obtaining results concerning QT (z) and BT(z), hence we are not forced
to make use of explicit expressions .

We will determine the mth derivative of QT(z), denoted by QT~(z), evaluated at the
point z = 1 . For practical applications, the deadline T of a task should be large
compared to the duration of a cycle, and hence asymptotic results for large T are
satisfactory. We easily obtain

QT
(m)(1) = QT )(Z)Iz=I = m![(Z - 1)m][ST]Q(s,Z) .

The expansion of Q(s, z) at z = 1 is found below :

Q(s'Z) =

	

zPo	= - Po	(z - 1)(P(s)/(s - P(s)))
zP(s) - s

	

P(s) 1 - (z -1)(P(s)/(s - P(s)))

_ Po	1	
s - P(s) 1 - (z - 1)(P(s)/(s - P(s))) '

and hence we are able to pick up the coefficient of [(z - 1)m] directly by using the
geometric series . For m >- l, we obtain

(2)

	

[(Z -1)m]Q(s, Z) _ -
Pos(P(s))`
(s - P(s))m+, ,

and for m = 0, we have

(3)

	

[(Z - 1) o]Q(s, Z) = Q(s,1) _ -
	 Po

s - P(s)

According to methods from singularity analysis, the order of magnitude of the
coefficient of sT is mainly determined by the singularity with smallest modulus,
resulting from the denominator vanishing at this point . An overview of asymptotic
methods, especially concerning the method of Darboux, may be found in [6], [13],
and [1] . However, we will need elementary techniques only, namely a weaker
version of the so-called Cauchy estimates. In order to derive asymptotic formulas for
the mean and the variance of SRD(T) we will use the method of subtracting
singularities, i.e., we will locate the singularities of a corresponding generating
function and use this knowledge to achieve asymptotic results . First we are going to
determine the asymptotic behaviour of the mean of SRD(T)

AT) _ SIT' '(1) =	 BT(1)
1 - BT(l) '

where BT(Z) = QT-I(Z)IQT(Z)-

Our first step is to derive expansions of our generating functions in a suitable
neighbourhood of the singularities. Thus, using

s - P(s) _ (1- P'(ß))(s - P) + O((s - ß)Z)
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and setting v = (1 -

	

we get the expansion

(S - P(S)) -, = -v(1 - s/ß)-1 + W, (s)
and derive

[ST]Q(S,1) _ -CsT]
	 Po 	

= PoVß-T - [s']Wl(s)s - P(s)

Since W1(s) is analytic in a neighbourhood of s = ß, we have to consider the
singularity at s = 1 next, i.e., we need an expansion around s = 1

(s - P(s))-1 = 1 1 + W2(S)-
1 - P'(1) 1 - s

Hence we derive

QT(1) _ [ST]Q(s' 1) = PoVß-T + 1	 P~,(1) + O(R -T)

for some R, 1 < R < Rp .
In order to derive the mean of SRD(T), we need more accurate expansions, e .g .

S - P(s) _ -0/V)(1- s/ß)

X [1 + 7(1 - S/ß) + 8(1 - S/ß)2 + E(1 - S/ß)3 + O((1 - s/ß)4)],

where y = 1P"(ß)vß 2 , S =
1 p,,,(ß)Vß3, and s = 311 p(°)(ß)vß4 ._6

	

_4
Thus we find

(4)

	

(S - P(S)) -1 = -v(1 - s/ß) -1 + Vy - v(8 + 7 2 )(1 - s/ß)

+ V(E + 278 + y 3)(1 - s/ß) 2 + O((1 - S/ß) 3 )

and

(S - P(S)) -2 = V2(1 - s/ß)-2 - 2v 27(1 - s/ß)-1 + V272 + 2V2(S + 7 2 )

-(2V 2 (8 + 2V8 + 7 3 ) + 2V 2y(8 + 7 2))(1 - S/ß) + O((1 - S/ß) 2 ) .

The Nth coefficient in the last formula is asymptotically given by

[SN](S - P(S)) -2 = V2(N + 1)ß-N - 2V27ß-N + O(N-3ß-N)

and we obtain

QT
(1)( 1 ) _ - po[ST-1](S - P(S))-2 = -pOV2Tß-T+1 + 2poV 2yß-T+1 + O(T -3ß-T),

where the remainder terms are justified by a suitable Transfer Lemma (cf. [13]) . Now
we are able to derive an asymptotic equivalent to µ(T) = ST( ' )(1) = B'T(1)/(1 - BT(1))

by evaluating the denominator :
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I - B T(1) - 1 -	 QT-1(1) = poVß-T (1 -ß)+ O(R -T)
QT( 1 )

	

poVß -T + O( 1 )
= 1 - ß + O(R T) + 0(ßT).

Finally we need an asymptotic formula for the numerator, which is given by

B'T(1) =
	 QT-1( 1 ) -QT-i(I)QT(1)

QT(1)

	

QTl1)
We derive

QT 1(1)
pOV

ßT + 0(ß2T)

and get

QT-1(1)
=(-p0V2(T- 1)ß-T+2 + 2POV2Yß-T+2

+ 0(T-3ß -T))((POV)-1ßT + 0(ß2T ))QT( 1 )

_ -Vß2(T - 1) + 2V7ß 2 + O(T -3 )

and in a similar way

QT-1(1)QT(1)
_ -Vß2T + 2V7ß2 + O(T -3).

QT(1)

Hence, summing up, we have shown

B'T (1) = Vß2 + O(T -3 )

and are able to estimate the mean of SRD(T) .

THEOREM 1 . With the notations above, the mean of SRD(T) fu filc for T -+ ao

µ(T) = 1
BTBT)(1)

= 1 vß2ß + O(T-3 ) =
1

	 ß
ß 1- P'(ß)

+ o(T -3 ) .

In order to determine an asymptotic formula for the variance of SRD(T) we need
some more expansions based on (4), e.g.

(S - P(S)) -3 = -V3(l - S/ß) -3 + 3V 3Y(l - Slß) -2

-3v 3(S + 272 )(1 - S/ß) -1 + c 1 + 0(1 - S/ß),

where c 1 denotes a constant, and
p(S) = ß

- P'(ß)ß(1 - clß) + IP"(ß)ß2(1 - s/ß)2

- 3P"'(ß)ß3(1 - S/ß)3 + 0((1 - S/ß)4).

If we set f (s) = P(S)(S - p(S)) - 3 , we get
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f(S) _ -V3ß(1 - SIP)-3 + fl(1 - SIP)- 2 + gl(1 - S/ß) -1 + C2 + O(1 - SIP)

where fi = 3v 37ß + V 3 fp , (P), g, = -3ßv 3(8 + 2y2) - 3V 3Ypp ' (ß) - I V 3ß2P „(ß)

and C2 is a constant, whose value could also be expressed in terms involving
derivatives of P(z) and P . Since, however, we will not need it for our asymptotic
expansions, we do not give its exact value . The Nth coefficient of f (s) fulfils

[SN] f(S) _ -V3P(N
2
+2)#-N + fl(N + 1)P -N + g1P-N + O(N-2ß-N).

Thus we obtain

QT )( 1) _ - 2PO[ST-1]P(S)(S - P(S)) -3

=Pov3T2P
-T+2 + fTP-T+1 +gß-T+1

+ O(T-2p-T )

where f = 2pof, + pov 3P and g = 2pog, for simplicity .

F

.
Our next goal is to derive asymptotic results for BT )( 1) = S, + S2 + S3 , where

S1 = QT- '( 1 )QT~ 1( 1 ), S2 = 2(QT'(1))(uQi') 1(1), and S3 = (QT 1(1))(2)QT-,(1). We
get

S, = V2ß3(T - 1) 2 + P vv P2(T - 1) + Póv ß2 + O(T-2 ) .

Using (d/dz)QT 1(z) _ -QT )(Z)/Q2 (Z) we derive

S2 = -2v2P'T 2 + (8V 2y#3 + 2V2#3)T - ( 8V 2y 2ß 3 + 4V2yß3) + O(T -2).

Taking into account (d 2/dZ 2)QT 1(Z) _ -Q (2 )(Z)/Q 2(Z) + 2[QT ) (Z)J 2/Q3 (Z) we see
that S 3 = S4 + S5 , where S4 = C- QT'(1)lQT( 1 )IQT - 1 (1) and S5 = C2[Q,'.~(1)72/

QT(1)]QT-,(1) and derive

S4 = - v 2#3 T 2 - f ß2 T + 9
P2 + O(T-2 )

Pov

	

Pov

and

	

S5 = 2v2ß3 T 2 - 8V2yß3T + 8V2y 2ß3 + O(T -2).

Summing up we get BT~(1) = n + O(T -2 ), where

n = 2 9 P2 + v 2ß3 - 4v 27ß 3 -
f

P2 ,
Pov

	

Pov

f = PoV 3ß - 6PoV 3YP - 2Pov 3PP'(P), and

g = 6Poßv 3(8 + 2y2 ) + 6PoV 3Y#P, (P) + Pov 3P 2P„(P).

Since

and

S'T(1) =
BT(1)

+ 2µ(T) 2
1 - BT(1)
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Var(T) = S" (1) + µ(T) - µ(T) 2 ,

we can summarize our previous estimations in the following theorem .

THEOREM 2 . With the notations above, the variance of the random variable SRD(T)
fu filsfor T oo

Var(T) = nl+Vfl 2 + (IV?PP)2 + O(T _ 2).

The rest of this section is devoted to an application of the preceding general
formulas to the Poisson case. Suppose

P(z) = e'(Z - 1

the PGF of a Poisson distribution with rate A. Note that P'(1) _ ~, i .e ., the rate
equals the average number of cycles induced by arrivals within a cycle, and that we
are mainly interested in large values of ~ .

In order to derive the most critical quantity P, we have to study the zero of P(s) - s
in the interval (0, 1) . This is easily done by applying the Lagrange inversion formula
(cf. e.g . [3]) as can be seen by writing z = As and µ = ale -A which yields

µ = ze'.

Thus using the Lagrange inversion formula, we derive z = Y-k, 1 Ckµk, where
ck = kk-1/k! .
Hence P = P(A) is (for A - oo) given by

P _ Y_ (k. )k-1 a -Ak = e-A + O(Ae -2A ) .
k >_ 1

	

k!

Using this and by mentioning Theorem 1, we have shown the following corollary .

COROLLARY . Under rush-hour conditions Poisson arrivals cause the mean of
SRD(T) to fulfil for T -+ oo

µ(T) = c(A) + O(T-3 ),

where c(A) =1 P
P

	 1 1~P = e-A + O(Ae-2A )for A oo .

5. The balanced case .

In this section we are going to consider the case where average arrival and
departure rates are equal, i.e., we assume

P(1) = P'(1) = 1 .
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If the Taylor expansion exists in a neighborhood of x = 1, we may write for some
i>2

P(x) - x = O i(x - 1)` + qi+1(x - 1)i+1 + Ri+2(x),

where O i = P ( i )(1)/i! 0, 0i+1 = P(i+1)(1)/(i + 1)! which may be equal to zero, and
Ri+2(x) = O((x - 1)i+2). From our previous assumptions we may conclude that i is
even, because otherwise there would exist a zero 0 < ~ < 1 ofP(x), which can be seen
by simple geometric arguments . This, however, would contradict our assumption
that P(z) has non-negative coefficients . So i has to be even, but we will not use this
fact in the following treatment .

We can state the following constraints for the PGF of the number of cycles
induced by arrivals within one cycle
(1) P(0) = p o > 0, i .e ., it is guaranteed that our tree construction process works .
(2) The average number of cycles induced by arrivals within one cycle should be

equal to one, i .e ., P'(1) = 1 .
(3) P"(z) # 0, i.e., we explicitly exclude the trivial case P(z) = p o + (1 - po)z.
(4) The radius of convergence Rp of P(z) should be sufficiently large . We assume that

Rp > 1 .

Using the formulas derived for the GFs of the moments of SRD(T) in Section 4 (cf.
(2) and (3)), we need the following expansion

(S - POD-1 = (	̀+1	 (1 -S) ` + (-1 )i-1 Oí21 (1 - S)" + O((1 - S)") .

Now, we are able to look up the coefficient we are interested in :

QT(1) _ po [ST] (S - P(S))-1

i '

(

T+i- 1)

	

,pool+1
(
T+ i - 2)

	

i 3_ (-1)

	

i - 1

	

+
(-1)	

2

	

i - 2

	

+ O(T )

Using
b

(6)

	

CT b
a

) T (
-
b

1 +
2

(1 + 2a - b)T -1 + O(T _2)
,

for T -+ oo and for fixed values of a and b, we find

QT(1) = (-1) ` p° Ti-l Cl + (i - 1)( 2 +~
O

i 1 ) T 1 + O(T -2)]
0 - 1)! 10i

and finally

1 - BT(1) _ (i - 1)/T + O(T -2 ) .

In order to derive an asymptotic expression for
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(7)

	

BT)(1) - QT-1( 1 ) _ QT-1M01)(1) = S1 - S2
QT(1)

	

QT( 1 )

we need asymptotic results for

Q (T )( 1 ) = - po[ST- 1](S - P(S)) -2 .

We use the expansion

(S - P(S)) -2 =
W2

(1 - S)-2i + 2	 31 (1 - S)-2i+1 .+ 0((1 - S)-2i+2)

to derive

- 2- 1 N+2i-1

	

Wi+1 N+2i-2
Is'] (s - P(s))

	

2

	

+ 2	O? ( 2i - 2 )
+ O(N2j-a )

~i

	

2i - 1

which, using (6), gives

QT ) ( 1) _ - i (2i 1 1), T
V-1

C
I + (2i - 1)C2122

+ 2 O ` 1 T- 1 + O(T-2)1 .

Hence we obtain after some computations

s,
_ (- 1) i+1 (i - 1)!

T"C1 C
3i2 - 9i+4 + (3i - 1) 0'+1I T-1 + O(T 2)

JO i

	

(2i - 1)!

	

2

and

S2 = (- 1)i +1 (i - 1)!

7.,iC1

+ (3i 2 - 7i+4
+(3i-1)0'+1

T -1 + O(T -2) I~
Oi

	

(2i - 1)!

	

2

	

Oi

which implies

BT P(1) = (-1)`	i!	Ti-1 (1 + O(T-1 )) .
Wi (2i - 1)1

Thus we can estimate the mean of SRD(T) for large T .

THEOREM 3. An asymptotic expression for the mean of SRD(T) is for T -+ oo given
6y

N(T) -
(T')(1) _ (-1)i i! T'(1 + O(T -1 )) .1 - B T(1)

	

0i (i - 1)(21 - 1)!

In a similar way we can derive asymptotic results concerning the variance of
SRD(T).
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THEOREM 4 . With the notations above, the variance of the random variable SRD(T)

is for T -. x given by

Var(T) = 2
1	

T2 ' 2i
(i- 1)!2

-4i
(i- 1)! + 1

	

t!2

2J
(1 +O(T-t)) •~ i (i - 1)

	

(2i- 1)!

	

(3i - 1)!

	

t - 1 (2i - 1)!
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