Loops for Safety Critical Applications®

Johann Blieberger
Department of Automation, Technical University Vienna

Vienna, Austria

Abstract

In this paper so-called discrete loops are described which narrow the gap
between general loops (e.g. while- or repeat-loops) and for-loops. Al-
though discrete loops can be used for applications that would otherwise
require general loops, discrete loops are known to complete in any case.
Furthermore it is possible to determine the number of iterations of a
discrete loop, while this is trivial to do for for-loops and extremely dif-
ficult for general loops. Thus discrete loops form an ideal frame-work
for determining the worst case timing behavior of a program and they
are especially useful in implementing real-time and safety related systems
and proving such systems correct.

1 Introduction

Ordinary programming languages support two different forms of loop-state-
ments:

for-loops A loop variable assumes all values of a given integer range. Starting
with the smallest value of the range, the loop-body is iterated until the
value of the loop variable is outside the given range.

Some programming languages allow for starting with the largest value
and decrementing the loop variable, others allow for defining a fixed step
by which the loop variable is incremented or decremented.

general loops The other loop-statement is of a very general form and is con-
sidered for implementing those loops that can not be handled by for-
loops. These loops include while-loops, repeat-loops, and loops with exit-
statements (cf. e.g. [Ada95]).

If a general loop does not complete, the corresponding program usually
is incorrect. It is possible to use some logical devices, such as Hoare lo-
gic (cf. [Hoa69]), to prove that a certain loop (and thus the corresponding
program) completes. This however implies that the programmer has to be an
expert in formal logics. In most cases, however, programmers convince them-
selves by testing that their loops complete.

Concerning real-time systems the program behavior must not only be cor-
rect but the result of a computation must be available within a predefined
deadline. It has turned out that a major progress in order to guarantee the
timeliness of real-time systems can only be achieved if the scheduling problem
is solved accordingly. Most scheduling algorithms assume that the runtime of
a task is known a priori (cf. e.g. [LL73, HS91, Mok84]). Thus the worst case
performance of a task plays a crucial role.

*Supported by the Austrian Science Foundation (FWF) under grant P10188-MAT.

The most difficult task in estimating the timing behavior of a program is
to determine the number of iterations of a certain loop.

Determining the number of iterations of a for-loop is trivial. For example
the loop-body of the loop

for i in 1..N loop
-- loop body
end loop;

is performed exactly N times.

General loops, however, represent a very difficult task. In order to estimate
the worst case performance of general loops many methods and tools have been
developed, e.g. [HS91, PK89, NP93, Par93]. Most researchers, however, try to
ease the task of estimating the number of general loop iterations by forbidding
general loops, i.e., by forcing the user to supply constant upper bounds for the
number of iterations. Another approach is to let the user specify a time bound
within the loop has to complete (cf. e.g. [ITM90]). In any case the user, i.e.,
the programmer, has to react to such exceptional cases.

In this paper we will narrow the gap between general loops and for-loops
by defining discrete loops. These loops are known to complete and are easy
to analyze (especially their number of iterations) and capture a large part of
applications which otherwise would have been implemented by use of general
loops.

Clearly, discrete loops form an ideal frame-work for determining the worst
case timing behavior of a program and they are especially useful in implemen-
ting real-time and safety related systems and proving such systems correct.

2 Discrete Loops

In this section we give an informal introduction to discrete loops, before we
perform a theoretical treatment, i.e., an exact definition and some mathematical
results. Further results can be found in [Bli94].

2.1 Introduction to Discrete Loops

In contrast to for-loops, discrete loops allow for more complex dependency bet-
ween two successive values of the loop-variable. In fact an arbitrary functional
dependency between two successive values of the loop-variable is admissible,
but this dependency must be constrained in order to ensure that the loop com-
pletes and to determine the number of iterations of the loop. Details of this
constraints will follow below.

Like for-loops discrete loops have a loop-variable and an integer range as-
sociated with them.The fact that the loop is allowed to range over discrete
values, coined the name discrete loop. The major difference to for-loops is that
the loop-variable is not assigned each of the values of the range. Which values
are assigned to the loop-variable, is completely governed by the loop-body. The
loop-header, however, contains a list of all those values that can possibly be
assigned to the loop-variable during the next iteration. In fact each item of
this list of values is a function of the loop-variable.

A simple example is shown in Figure 1. In this example the loop-variable k

discrete k := 1 in 1..N new k := 2%k loop
—— loop body
end loop;

Figure 1: A simple example of a discrete loop

will assume the values 1,2,4,8,16,32,64, ... until finally a value greater than N
would be reached. Of course the effect of this example can also be achieved by
a simple for-loop, where the powers of two are computed within the loop body.

A more complex example is depicted in Figure 2. In this example the loop-

discrete k := 1 in 1..N new k := 2%k | 2xk+1 loop
—— loop body
end loop;

Figure 2: A more complex example of a discrete loop

variable k can assume the values 1,2,4,9,18,37,75,... until finally a value
greater than N would be reached. But it is also possible that k follows the
sequence 1,3,6,13,26,52,105,.... Here the same effect can not be achieved by
a for-loop, because the value of the loop variable can not be determined exactly
before the loop body has been completely elaborated. The reason for this is
the indeterminism involved in discrete loops.

The term ”indeterminism” requires some explanation: Clearly the loop
body determines exactly which of the given alternatives is chosen, thus one
can say that there is definitely no indeterminism involved. On the other hand,
from an outside-view of the loop one can not determine which of the alterna-
tives will be chosen, without having a closer look at the loop body or without
exactly knowing which data are processed by the loop. It is this ”outside-
view” indeterminism we mean here. Furthermore this indeterminism enables
us to estimate the number of loop iterations quite accurately without having
to know all details of the loop body.

By the way, a loop like that in Figure 2 occurs in a not-recursive imple-
mentation of Heapsort (cf. [Knu73] or [SS93] for a more readable form in a
high-order programming language).

There are two main reasons for stating this functional dependency between
successive values of the loop-variable in the loop-header:

1. The compiler or, if it can not be done statically at compile-time, the
runtime system should check if the loop-variable does in fact obtain one
of the possible values stated in the loop-header. This will evidently ease
debugging and shift some runtime errors to compile-time errors. In fact,
if the information given in the loop-header is incorrect, this results in a
programming error, not in a timing error. Of course this programming
error could cause a timing error.

2. Under some circumstances, the information in the loop-header will make
determining the number of loop iterations feasible.

2.2 Theoretical Treatment

Discrete loops can be defined using a range of any discrete type, e.g. an enume-
ration. In our theoretical treatment, however, we will assume that the range is
1. .N and that the loop-variable starts with k1 = s, where s is the starting value
of the loop. This restriction, however, does not inhibit transferring our results
to the cases mentioned above. If s is not in the range 1..N, the loop-body is
not executed, rather the control-flow of the program is transferred to the first
statement after the loop.

Definition 2.1. A discrete loop is characterized by N € N and a finite
number of functions f; : N — N, 1 <i<e.

Definition 2.2. An iteration sequence (k,) is defined by the recurrence
relation

ki :=s, se€l,N]

]{71/+1 = fz(ku)

for some i. The set of all possible iteration sequences is denoted by K = {(k,)}.
Remark 2.1. Note that k, € N for allv € N.
Definition 2.3. An iteration sequence (k,) is said to complete if 1 < k, <
N for all v <w but ky41 < 1or ky41 > N for some w € N. The number w is
denoted by len k, and called the length of (k,). It corresponds to the number
of iterations of the discrete loop if the loop variable iterates through (k).
Definition 2.4. A discrete loop is called a completing discrete loop if all
(ky) € K are completing sequences for all N and for all s € [1, N].

3 Monotonical Discrete Loops

Definition 3.1. A sequence (k,) is called strictly monotonically increasing
if kypr > k, for all v > 1. It is called strictly monotonically decreasing if
kyy1 <k, for all v > 1.

Definition 3.2. A discrete loop is called a monotonically increasing discrete
loop if all (k,) € K are strictly monotonically increasing sequences. It is called a
monotonically decreasing discrete loop if all (k,) € K are strictly monotonically
decreasing sequences. A discrete loop is called a monotonical discrete loop if it
is either monotonically increasing or monotonically decreasing.

Lemma 3.1. A monotonical discrete loop is completing.

Proof. If all (k,) are strictly monotonically increasing, there certainly must
exist some w > 1 such that k, < N < ky,41. Thus the loop completes.

On the other hand, if all (k,) are strictly monotonically decreasing, there
certainly must exist some w > 1 such that k, > 1 > k,41. Thus the loop
completes in this case too.

Lemma 3.2. Let a monotonically increasing discrete loop be characterized
by N and the functions f;. Then all functions f; fulfill

fi(z) >z

for all z € [1, NJ.

Proof. If there would exist some fg such that fg(2) < #, there would exist
an iteration sequence (k,) such that k,41 = fa(ky) < k, which contradicts
Definition 3.2.

Lemma 3.3. Let a monotonically decreasing discrete loop be characterized
by N and the functions f;. Then all functions f; fulfill

filz) <

for all z € [1, N].
Proof. If there would exist some f; such that f;(z) > z, there would exist

an iteration sequence (k,) such that k,41 = fj(k,) > k, which contradicts
Definition 3.2.

3.1 Syntactical and Semantical Issues of Monotonical
Discrete Loops

Although the syntax of discrete loops is certainly important, we consider the
semantical issues more important. In order to be able to demonstrate the
advantages of discrete loops over conventional loops, however, we define an Ada-
like syntax which will be used in the following examples. But it is important
to note that an appropriate syntax can be defined for other languages too.
The syntax of a monotonical discrete loop is given by a notation similar to

that in [Ada95].

loop_statement ::=
[loopsimple_name:]
[iteration_scheme] loop
sequence_of_statements
end loop [loop_simple name];

iteration_scheme ::= while condition
| for for_loop_parameter_specification
| discrete discrete_loop_parameter_specification

for_loop_parameter_specification ::=
identifier in [reverse] discrete_range

discrete_loop_parameter_specification ::=
identifier := initial_value in [reverse] discrete_range
new identifier := list_of_iteration_functions

list_of_iteration functions ::=
iteration_function { | iteration_function }

iteration_function ::= expression

For a loop with a discrete iteration scheme, the loop parameter specifica-
tion is the declaration of the loop variable with the given identifier. The loop
variable is an object whose type is the base type of the discrete range. The
initial value of the loop variable is given by initial_value. The optional key-
word reverse defines the loop to be monotonically decreasing; if it is missing
the loop is considered to be monotonically increasing. Within the sequence of
statements the loop variable behaves like any other variable, i.e., it can be used
on both sides of an assignment statement for example.

Before the sequence of statements is executed, the list of iteration functions
is evaluated. This results in a list of possible successive values. It is also checked
whether all of these values are greater than the value of the loop variable if the
keyword reverse is missing, or whether they are smaller than the value of the
loop variable if reverse is present. If one of these checks fails, the exception
monotonic_error is raised.

After the sequence of statements has been executed, it is checked whether
the value of the loop variable is contained in the list of possible successive
values. If this check fails, the exception successor_error is raised.

If the value of the loop variable is still within the discrete range stated in
the loop header, the loop is iterated (at least) once more. If it is not within
the range, the loop completes.

Remark 3.1. The semantics of monotonical discrete loops ensure that such
a loop will always complete, either because the value of the loop variable is
outside the given discrete range or because one of the above checks fail, i.e.,
one of the exceptions monotonic_error or successor_error is raised.

Remark 3.2. A corresponding compiler is free to perform as many checks as
it likes in order to inhibit one of the runtime exceptions monotonic_error and
successor_error. This can be done by ensuring that the iteration functions
are monotonical functions and by performing data-flow analysis to make sure
that successor_error will never be raised. Thus a lot of runtime checks can
be avoided.

Moreover the compiler might even detect the number of iterations of the
loop, which is a valuable result for real-time applications. Clearly the number
of iterations depends on the initial value of the loop variable, on the discrete
range (especially the number of elements in the range), and on the iteration
functions.

4 The Number of Iterations of a Monotonical
Discrete Loop

Because of the indeterminism involved in the definition of discrete loops, the
number of iterations of such a loop cannot be determined exactly. We can,
however, find lower and upper bounds for the number of iterations. Correspon-
ding theoretical results are given in the following subsection.

4.1 Lower and Upper Bounds

Definition 4.1. Let w(K) denote the multi-set of the length of all sequences
(ky) € K of a monotonical discrete loop and let

L =minw(K) and U= maxw(K)

denote the lower and upper bound of the length of the sequences. These repre-
sent lower and upper bounds for the number of iterations of the discrete loop
too.

In the rest of this section we will only be concerned with montonically incre-
asing discrete loops. Of course the following treatment can easily be modified
in order to deal with monotonically decreasing discrete loops.

In order to calculate U and L we can use algorithms given in [Meh84a]. The
following Theorem 4.1, however, will show that under certain conditions U and
L can be determined much easier. Before that we need one further definition.

Definition 4.2. Let a monotonically increasing discrete loop be given by
the number N and the iteration functions f;(z). Then we denote by

B = min fi(™) and by BT = max fi ()
the sequences that always assume the smallest and largest possible values, re-
spectively.

Theorem 4.1. If for all 1 < i<e f;(1) > 1 and fi(x + 1) — fi(z) > 1 for
all x € N, then

1. the corresponding discrete loop completes,

2. the length of (k,(,max)) is equal to L, and

3. the length of (k,(,min)) is equal to U.

A proof of Theorem 4.1 can be found in [Bli94].

If finin(2) = min;{f;(2)} and fmax(z) = max;{fi(z)} can be determined
independently of z, Theorem 4.1 enables us to restrict our interest to two single
functions in estimating lower and upper bounds of the number of iterations of
a discrete loop.

4.2 Some Results on Special Iteration Functions

In this subsection we prove some theorems which cover many important cases.
We study monotonically increasing discrete loops which are characterized by
N € N and the iteration functions f;(z) and we assume that f(z) = fin (%)
can be determined independently of . The initial value of the loop variable is
assumed to be k1 = 1, but our results can easily be generalized.

Theorem 4.2. If f(z) = [ax + 8], « > 1, § > 0, then the length of the
corresponding loop sequence is bounded above by

Jlog, (M=) 1

Proof. We clearly have

fl@)=lax+ 8] > ar+p.
Thus
k, > a1+

O‘V_l_lﬁ—a"‘l a+p-1 B g
a—1 o a—1 a—1"

To estimate len k, we must have

a?~1 atf-1 - p >N
a—1 a—1

which is equivalent to

N(a—1) Ié;
a+pB-1 a+p8-1

al/—l

Taking logarithms we have proved the theorem.

By similar methods lower bounds for the number of iterations of monotoni-
cally increasing discrete loops can be derived.

Integrating the results of Theorem 4.2 and similar theorems into a compiler,
the number of iterations of discrete loops can often be estimated at compile
time.

5 Discrete Loops with a Remainder Function

Definition 5.1. In contrast to the previous sections we now define a loop
sequence of remaining items to be the sequence of the number of data items that
remain to be processed during the remaining iterations of the loop. Such a loop
sequence is denoted by (r,) and the set of all loop sequences by R = {(r,)}. A
corresponding discrete loop is called a discrete loop with a remainder function.

Remark 5.1. Definition 5.1 is justified by the fact that normally each itera-
tion of a loop excludes a certain number of data items from future processing
(within the same loop statement). Thus the sequence of the number of the
remaining items is responsible for the overall number of loop iterations. This
situation is typical for divide and conquer algorithms. For example in binary
search the number of the remaining items is equal to the length of the remaining
interval.

Definition 5.2. A loop sequence of remaining items is called monotonical
ifr,p <y

Definition 5.3. A discrete loop with a remainder function is called mono-
tonical if all its loop sequences (r,) € R are monotonical.

Lemma 5.1. A monotonical discrete loop with a remainder function is
completing.

Proof. Since a monotonically decreasing discrete function will become smal-
ler than 1 in finitely many steps, the corresponding loop will complete.

5.1 Syntactical and Semantical Issues of Discrete Loops
with Remainder Functions

The syntax of a discrete loop with a remainder function is again given by a
notation similar to that in [Ada95]. In fact we add to the syntax definition of
Section 3.1.

loop_statement ::=
[loop_simple name:]
[iteration_scheme] loop
sequence_of statements
end loop [loop_simple name];

iteration_scheme ::= while condition

| for for_loop_parameter_specification
| discrete discrete_loop_parameter_specification

for_loop_parameter_specification ::=
identifier in [reverse] discrete_range

discrete_loop_parameter_specification ::=
monotonical discrete_loop_parameter_specification |
discrete_loop_with_remainder_function_parameter_specification

monotonical_discrete_loop_parameter_specification ::=
identifier := initial_value in [reverse] discrete_range

new l1dentifier := list_of_iteration_functions

discrete_loop_with_remainder_function_parameter_specification ::=

[identifier := initial _value
new identifier := list_of_iteration_functions]
with rem_dentifier := initial_value new remainder_function

list_of_iteration functions ::=
iteration_function { | iteration_function }

iteration_function ::= expression

remainder_function ::=
rem_identifier = expression |
rem_identifier <= expression [and rem_identifier >= expression]

For a discrete loop with a remainder function, the corresponding loop pa-
rameter specification is the optional declaration of the loop variable with the
given identifier. The loop variable is an object whose type is the base type of
result type of the iteration functions, which must be the same for all iteration
functions. The initial value of the loop variable is given by initial_value. Within
the sequence of statements the loop variable behaves like any other variable,
i.e., it can be used on both sides of an assignment statement for example.

After the keyword with the remainder loop variable is declared by the
given identifier (rem_identifier). Its type must be a subtype of natural in the
cases (1) and (2) below or an interval between two natural numbers in the
case (3). Its initial value is given by initial_value. The remainder function itself
may have three different forms:

1. If the remainder function can be determined exactly, it is given by an
equation.

2. If only an upper bound of the remainder function is available, it is given
by an inequality (<=).

3. If in addition to (2) a lower bound of the remainder function is known,
it can be given by an optional inequality (>=). The second inequality
must be separated from the first one by the keyword and.

The base type of the expressions defining the remainder function or its bounds
must be natural.

In case (1) the remainder loop variable behaves like a constant within the
sequence of statements. In cases (2) and (3) the remainder loop variable behaves
like any other variable within the sequence of statements. If the value of the
remainder loop variable is changed during the execution of the statements, we
call the original value previous value and the new value current value.

Before the sequence of statements is executed, the list of iteration functions
is evaluated if a loop variable is given. This results in a list of possible successive
values.

After the sequence of statements has been executed, it is checked whether
the value of the loop variable is contained in the list of possible successive
values. If this check fails, the exception successor_error is raised.

After the sequence of statements has been executed, the remainder function
or its bounds (depending on which are given by the programmer) are evaluated.
In case (1) the new value of the remainder loop variable is set to the value
calculated by the remainder function if it is smaller than the previous value,
otherwise the exception monotonic_error is raised.

In case (2) the new value of the remainder loop variable is set to the value
calculated by the remainder function if the previous value of the remainder
loop variable is equal to its current value and if the calculated value is smaller
than the current value, otherwise the exception monotonic_error is raised. If
the previous and the current value differ, the remainder loop variable is set to
the current value if it is smaller than or equal to the calculated value, which in
turn must be smaller than the previous value. If this is not true, the exception
monotonic_error is raised.

In case (3), at the beginning both the lower and upper bound of the rema-
inder loop variable are set to the initial value provided by the programmer.
After the loop body has been executed the new upper and lower bounds of
the remainder loop variable are set to the values calculated by the appropriate
remainder functions if the current value of the remainder variable is equal to
the previous value and if the calculated upper bound is smaller than the current
value of the upper bound and if the calculated lower bound is smaller or equal
to the current value of the lower bound. If the current value and the previous
value differ, both the upper and lower bound are set to the current value if the
current value is smaller than the calculated upper bound, which in turn must
be smaller than the previous upper bound, and if the current value is greater
than the calculated lower bound, which in turn must be smaller or equal than
the previous lower bound. Otherwise the exception monotonic_error is rai-
sed. This exception is raised too if the interval does not contain at least one
element.

If in cases (1) and (2) the value of the remainder loop variable is zero or if in
case (3) the upper bound is zero, the exception loop_error is raised, otherwise
the loop is continued.

The regular way to complete a discrete loop with a remainder function is
to use an exit statement, before the remainder loop variable is equal to zero.

Remark 5.2. The semantics of discrete loops with remainder functions en-
sure that such a loop will always complete, either if the loop is terminated
by an exit statement or because one of the above check fails, i.e., one of the
exceptions monotonic_error, successor_error, or loop_error is raised.

Remark 5.3. A corresponding compiler is free to perform as many checks
as it likes in order to inhibit one of the runtime exceptions monotonic_error,
successor_error, and loop_error. This can be done by ensuring that the
remainder function or its bounds are monotonical, by performing data-flow
analysis to make sure that successor_error will never be raised, or by ensuring
that the loop will complete before the remainder loop variable is equal to zero.
Thus a lot of runtime checks can be avoided.

Moreover the compiler might even detect bounds of the number of iterations
of the loop, which is a valuable result for real-time applications.

5.2 Some Examples of Monotonical Discrete Loops with
Remainder Functions

Traversing Binary Trees

Discrete loops with remainder functions are especially well-suited for algorithms
designed to traverse binary trees. A template showing such applications is given
in Figure 3. In this figure root denotes a pointer to the root of the tree, height

1 discrete node_pointer := root

2 new node_pointer := node_pointer.left | node_pointer.right
3 with h := height

4 new h := h-1 loop

5

6 -- loop body:

7 -- Here the node pointed at by node_pointer is processed
8 - and node_pointer is either set to the left or right

9 - successor.

10 -- The loop is completed if node_pointer = null.

11

12 end loop;

Figure 3: Template for Traversing Binary Trees

denotes the maximum height of the tree, and node_pointer is a pointer to a
node of the tree. The actual value of height depends on which kind of tree is
used, e.g. standard binary trees or AVL-trees.

Weight-Balanced Trees

So-called weight-balanced trees have been introduced in [NR73] and are treated
in detail in [Meh84b].

Definition 5.4. We define:

1. Let T be a binary tree with left subtree 7; and right subtree 7,.. Then

p(T) = |T|/IT| =1 = |T|/IT|

is called the root balance of T'. Here |T'| denotes the number of leaves of
tree T'.

2. Tree T is of bounded balance « if for every subtree 7" of T
a<p(Th<l-a

3. BBJe] is the set of all trees of bounded balance «.

If the parameter o satisfies 1/4 < a < 1 —1/2/2, the operations Access,
Insert, Delete, Min, and Deletemin take time O(log N) in BB[a]-trees. Here N
is the number of leaves in the BB[a]-tree. Some of the above operations can
move the root balance of some nodes on the path of search outside the permis-
sible range [a,1 — «]. This can be ”repaired” by single and double rotations
(for details see [Meh84b]).

BB[a]-trees are binary trees with bounded height. In fact it is proved
in [Meh84b] that

ldN -1]
Td(l=a) T

where N is the number of leaves in the BB[a]-tree T'.
A template for the above operations is shown in Figure 4, where floor(x)
is supposed to implement |[z]. The remainder function of Figure 4 has the

height(T') <

1 discrete node_pointer := root

2 new node_pointer := node_pointer.left | node_pointer.right
3 with r := N -—— N = number of leaves of tree

4 new r := floor((l-alpha)*r) loop

5

6 -- loop body

7

8 end loop;

Figure 4: Another Template for Operations on BB[a]-trees

advantage that it does not need logarithms since it works with the number of
leaves instead of the height of the tree.

5.3 The Number of Iterations of a Monotonical Discrete
Loop with a Remainder Function

Theorem 5.1. If a loop sequence of remaining items fulfills
= N,

Tv41 = I_TV//LJ:
where u > 1, then len r, is bounded above by

llog, N +2].

Proof. We clearly have
I_TV/:UJ S TV//L'

Thus

Ty < ’ul/—l

and to estimate the length of (r,) we must have

N < p’~ L.

Taking logarithms the theorem is proved.

6 Discrete Loops and Safety

There are several reasons why safety related systems can profit from discrete
loops:
e The syntax and semantics of discrete loops are easy enough to permit
validation or even verification of a suitable compiler.

This is especially true if only runtime checks are to be performed, i.e., no
compile time checks such as solving recurrences or data-flow analysis.

e Since discrete loops are known to complete in any case, no endless loop
can occur.

Thus during verification or validation no effort has to be spent in order
to prove that the application will complete. (We assume that tasks can
be scheduled periodically.) Note that this can be done without having to
rely on formal logical devices such as Hoare Logic (cf. [Hoa69, LS8T]).

e Since the number of iterations of a discrete loop is bounded from below
and from above, it is easy to derive lower and upper bounds for the timing
behavior of an application. Even if no automated tool can be used for
that purpose, information on the timing behavior can be derived by hand.

Thus the validation process can provide exact bounds for the timing
behavior of the application, again without use of formal logics such as
in [Sch92]. This is a valuable basis to start schedulability analysis.

e Since all important steps can be done by automated tools, validating or
even verifying these tools can save validation effort for applications. Such
tools include compilers and schedulability analyzers (cf. e.g. [HS91]).

Of course in the discussion above we have assumed that no while loops are

present in the application to be validated or verified.

7 Conclusion

In this paper we have described discrete loops which narrow the gap between
general loops and for-loops. Since they are well-suited for determining the
number of iterations, they form an ideal frame-work for estimating the worst
case timing behavior of real-time programs and safety related applications.

Thus we conclude that only for-loops and discrete loops should be allowed
for implementing safety related and real-time systems.

Development of a precompiler implementing discrete loops is part of Project
WOOP which is carried out at the Department of Automation at the Technical
Unwversity of Vienna.

References

[Adag5]
[Bli94]

[Hoa69]
[HS91]

[ITMY0]

[Knu73]

[LL73]

[LS87]

[Meh84a]
[Meh84b]

[Mok84]

[NP93]
[NR73]

[Par93]

[PK8Y]

[Sch92]

[$593]

ISO/IEC 8652. Ada Reference manual, 1995.

J. Blieberger. Discrete loops and worst case performance. Computer

Languages, 20(3):193-212, 1994.

C. A. R. Hoare. An axiomatic basis for computer programming.

Communications of ACM, 12:576-580, 1969.

W. A. Halang and A. D. Stoyenko. Constructing predictable real time
systems. Kluwer Academic Publishers, Boston, 1991.

Y. Ishikawa, H. Tokuda, and C. W. Mercer. Object-oriented
real-time language design: Constructs for timing constraints. In

ECOOP/OOPSLA ’90 Proceedings, pages 289-298, October 1990.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Com-
puter Programming. Addison-Wesley, Reading, Mass., 1973.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of the ACM, 20(1):46-61,
1973.

J. Loeckx and K. Sieber. The foundations of program verification.
Wiley-Teubner Series in Computer Science. John Wiley & Sons and
B.G. Teubner, New York and Stuttgart, second edition, 1987.

K. Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of
Data Structures and Algorithms. Springer-Verlag, Berlin, 1984.

K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures
and Algorithms. Springer-Verlag, Berlin, 1984.

A. K. Mok. The design of real-time programming systems based
on process models. In Proceedings of the IEEE Real Time Systems
Symposium, pages 5-16, Austin, Texas, 1984. IEEE Press.

V. Nirkhe and W. Pugh. A partial evaluator for the Maruti hard
real-time system. The Journal of Real-Time Systems, 5:13-30, 1993.

I. Nievergelt and E. Reingold. Binary search trees of bounded ba-
lance. SIAM Journal of Computing, 2(1):33-43, 1973.

C.Y. Park. Predicting program execution times by analyzing static
and dynamic program paths. The Journal of Real-Time Systems,
5:31-62, 1993.

P. Puschner and C. Koza. Calculating the maximum execution time
of real-time programs. The Journal of Real-Time Systems, 1:159-
176, 1989.

D. J. Scholefield. A Refinement Calculus for Real-Time Systems.
PhD thesis, University of York, 1992.

R. Schaffer and R. Sedgewick. The analysis of heapsort. Journal of
Algorithms, 15:76-100, 1993.

