Eliminating Redundant Range Checks in GNAT
Using Symbolic Evaluation

Johann Blieberger and Bernd Burgstaller

Department of Computer-Aided Automation
Technical University Vienna
A-1040 Vienna, Austria
{blieb,bburg}@auto.tuwien.ac.at

Abstract. Implementation of a strongly typed language such as Ada95
requires range checks in the presence of array index expressions and
assignment statements. Range checks that cannot be eliminated by the
compiler must be executed at run-time, inducing execution time and code
size overhead. In this work we propose a new approach for eliminating
range checks that is based on symbolic evaluation. Type information
provided by the underlying programming language is heavily exploited.

1 Introduction

Strongly typed programming languages impose non-trivial requirements on an
implementation in order to ensure the properties of the type system as specified
by the language semantics. For discrete types these properties are often expressed
as range constraints that must be met by values of a given type. For example,
[Ada95] requires for signed integer types that Constraint_Error is raised by the
execution of an operation yielding a result that is outside the base range of the
respective type. In the case of constrained subtypes the constraints imposed by
the requested ranges have to be enforced. In the case of array access, [Ada95]
requires that each index value belongs to the corresponding index range of the
array.

Integrity of a given program with respect to type system properties is usually
enforced through checks performed for each program statement that can poten-
tially violate them. Every check that cannot be proved redundant at compile-
time has to be postponed until run-time involving two additional comparison
and conditional branch instructions that need to be executed in order to ensure
that a given value is within a required range. The resulting impact both in exe-
cution time and code size is high enough to justify the existence of compile-time
options and language constructs that allow (partial) suppression of checks but
open up a potential backdoor to erroneous program execution in turn.

On the contrary, an approach that increases the number of checks that can
be proved redundant at compile-time aids in avoiding this backdoor by reducing
run-time overhead and thus supporting “acceptance” of those checks for which
either no proof of redundancy can be found or no such proof exists at all.

1 subtype sint is integer range -10 .. +10; Interval Symbolic
2 ... Arithmetic Values
3 procedure Swap (u, v : in out sint) is u v u v
4 begin [-10,410] | [-10,410] | = v
5 u = {u+v}f [—20,420] [[-10,4+10] |[u 4+ 2| »
6 v = {u—v}T%; [—10,410] | [-20,+20] |[u+v| u
7 u := {u—v}%3 [—20,420] |[[-10,+10] | w» u
8 end Swap;

Fig. 1. Swapping the contents of two variables

It is the goal of our range check elimination method to identify redundant
range checks that cannot be spotted by existing state-of-the-art compiler tech-
nology.

The outline of this paper is as follows. In Section 2 we present the notions
of the symbolic data flow analysis framework used. In Section 3 we demonstrate
the effectiveness of our framework through an example. Section 4 is devoted to
the implementation of our dataflow framework within GNAT. Section 5 presents
the experimental results gathered so far. In Section 6 we survey related work.
Finally we draw our conclusion in Section 7.

2 Symbolic Evaluation

2.1 Motivation

Consider the code fragment given in Fig. 1 which swaps the values stored in u
and v in place. It contains standard Ada95 code except for the numbered curly
braces “{...}f<number>» 4r0und those expressions for which GNAT will issue a
range check (cf., for instance, line 5).

Fig. 1 shows the intervals that GNAT derives by the standard interval arith-
metic ([Hag95]) of Fig. 2}. Three range checks, one for each assignment, are
necessary because the computed intervals of the expressions on the right hand
side exceed the range of subtype sint.

[a,b] + [¢c,d] =[a+c,b+d]

[a,b] — [¢,d] =[a —d,b— (]

[a,b] * [¢, d] = [min(ac, ad, be, bd), max(ac, ad, be, bd)]
[a,b]/[c,d] = [a,b] * [1/d,1/c], 0 & [c, d]

Fig. 2. Interval Arithmetic

1 In fact GNAT applies simplified rules for [a,] * [¢,d] and [a,b]/[c, d].

In contrast, the symbolic values in Fig. 1 show that range checks R2 and
R3 are redundant. In line 6 variable v is assigned the value of the actual pa-
rameter of u, namely w, and in line 7 u is assigned v. If one of u or v would
not be in the range of subtype sint, the range checks due to the Ada95 parame-
ter passing mechanism would raise exception Constraint_Error and control flow
would not reach the body of procedure Swap. It is this property, denoted as
u,v € [—10,+410], together with the fact that the values for u and v are com-
puted symbolically, that lets us actually derive that range checks R2 and R3
are redundant.

As can be seen by this introductory example symbolic analysis derives tighter
bounds for the ranges of expressions and thus reduces the number of necessary
range checks. The underlying theory of this approach is sketched in the remaining
part of this section.

2.2 Preliminaries

Symbolic evaluation is an advanced static program analysis in which symbolic
expressions are used to denote the values of program variables and computa-
tions (cf. e.g. [CHTT79]). A path condition describes the impact of the program’s
control flow onto the values of variables and the condition under which control
flow reaches a given program point. In the past, symbolic evaluation has already
been applied to the reaching definitions problem [BB98], to general worst-case
execution time analysis [Bli02], to cache hit prediction [BFS00], to alias analy-
sis [BBS99], to optimization problems of High-Performance Fortran [FS97], and
to pointer analysis for detecting memory leaks [SBF00].

The underlying program representation for symbolic evaluation is the control
flow graph (CFG), a directed labeled graph. Its nodes are basic blocks containing
the program statements, whereas its edges represent transfers of control between
basic blocks. Each edge of the CFG is assigned a condition which must evaluate
to true for the program’s control flow to follow this edge. Entry (e) and Ezit (z)
are distinguished nodes used to denote the start and terminal node.

In the center of our symbolic analysis is the program context, which includes
states S; and path conditions p;. A program context completely describes the
variable bindings at a specific program point together with the associated path
conditions and is defined as

k
i=1

where k denotes the number of different program states. State S is represented
by a set of pairs {(v1,e1),-- ., (Um, em)} where vs is a program variable, and e; is
a symbolic expression describing the value of v, for 1 < s < m. For each variable
v, there exists exactly one pair (vs,es) in S. A path condition p; specifies a
condition that is valid for a given state S; at a certain program point.

Ezxample 1. The context

{(z,n* = 1), (y,n+3)},2 =y -2 (2)

consists of two variables # and y with symbolic values n? — 1 and n + 3, re-
spectively. Variable n denotes some user input. The path condition ensures that
x =y — 2 at the program point where the context is valid.

2.3 Type System Information and Range Checks

Informally a type T is characterized by a set T of values and a set of primitive
operations. To denote the type of an entity j we write 7 (j), to denote the set of
values for T () we write 7 (j). The fact that a given value e € Z is contained in

the set 7(4) of a (constrained) integer type® is written as
ecT(j)eec [?(j)’First,T(j)’Last] (3)

where 7 (j) First and 7 (j)’Last denote the language-defined attributes for scalar
types (cf. [Ada95]). A range check is a test of Equation (3) and is denoted as

e€’ T(j). (4)

In general the test is not performed on a value e but on an expression E. Pred-
icate wal evaluates range checks symbolically within program contexts, which
means that the check E €’ T (j) is evaluated for each pair [S;, pi]:

val(E € T(j§),[S,p1]U--- U [Sk, pe]) =
[S1,p1 Aval(E€” T(5), [S1,pi))]U---U[Sk,pr Aval(E €’ T(4), [Sk, pr])]-

This evaluation involves the symbolic evaluation of E for [S;,p;], denoted as
val(E, [Si,pi]). If the result of this evaluation can be shown to be contained in
the set 7(4), then the evaluation of check E €’ T (5) yields true, which means
that the check is redundant for [S;, p;]:

true & val(E, [S;, p;]
val(E € (), S5,pi) = { s €T ©)
false else.
Otherwise the range check is required or cannot be proved to be redundant.
Deciding on the truth value of the above equation represents the center-piece
of our range check elimination method. It depends on the data flow framework
presented in Section 2.4, its exact treatment is thus deferred until Section 2.5.
Based on Equation (5) we define the necessity of a range check at a given
program context via predicate ?rc. It evaluates to false only iff the range check
is redundant for every pair [S;, p;] of the program context:

k false s YV (val(E€? T(j),[Si,pi]) = true
?I‘C(E E? T(J)7 U[Slapl]) = 15i§k()
i1 true else.

(6)
For the compiler backend we map predicate ?rc to the node-flag Do_Range_Check
of GNAT’s abstract syntaz tree (cf. also Section 4).

$ In Ada terms [Ada95] a combination of a type, a constraint on the values of the
type, and certain specific attributes is called subtype.

2.4 A Data-Flow Framework for Symbolic Evaluation

We define the following set of equations for the symbolic evaluation framework:
SymEval(Bentry) = [S(),p()]

where Sy denotes the initial state containing all variables which are assigned
their initial values, and pq is true,

SymEval(B) = U PrpgtCond(B’, B, SymEval(B')) | LocalEval(B)
B'€Preds(B)
(7)

where LocalEval(B) = {(vi,,€4),-- -, (Vi,,,€i,)} denotes the symbolic evalua-
tion local to basic block B. The variables that get a new value assigned in the
basic block are denoted by v;,,...,v;,,. The new symbolic values are given by
€1 5- - - €i,, - LThe propagated conditions are defined by

PrpgtCond(B', B,PC) = Cond(B’', B) ® PC,

where Cond(B’, B) denotes the condition assigned to the CFG-edge (B’, B).
Denoting by PC a program context, the operation ©® is defined as follows:

Cond(B',B) ® PC = Cond(B', B) ® [S1,p1] U - - - U [Sk, pk]
= [81,Cond(B’, B) Ap1]U - -- U [Sk, Cond(B', B) A pi]

The following definition gives rewrite rules for the | operator, which integrate
local changes of a basic block into the program state and path conditions.

Definition 1. The semantics of the | operator is as follows:

1. We replace {...,(v,e1),... }{-.., (v,e2),...} by {...,(v,e2),...}.

2. Furthermore {...,(vi,e1),... H{. .., (v2,e2(v1)),...}, where e(v) is an ex-
pression involving variable v, is replaced by {. .., (v1,e1),. .., (v2,e2(v1)),... }.
For the above situations it is important to apply the rules in the correct order,
which is to elaborate the elements of the right set from left to right.

3. If a situation like [{..., (v,e),...},C(...,v,...)] is encountered during sym-
bolic evaluation, we replace it with [{...,(v,e),...},C(...,e,...)].

This data-flow framework has been introduced in [Bli02].

Solving the Data-Flow Problem We solve the equation system defining the
data-flow problem using an elimination algorithm for data-flow analysis [Sre95].
It operates on the DJ graph (DJG), which essentially combines the control flow
graph and its dominator tree into one structure. Node n dominates node m, if
every path of CFG edges from Entry to m must go through n. Node n is the
immediate dominator of m if n # m, n dominates m, and n does not dominate
any other dominator of m. The dominator tree is a graph containing every node
of the CFG, and for every node m an edge from its immediate dominator n to m.

The elimination algorithm given in [Sre95] consists of two phases. The first
phase performs DJ graph reduction and variable substitution of the equation
system until the DJ graph is reduced to its dominator tree. Cycles (e.g. due to
loops) are treated by the loop-breaking rule [RP86], [Bli02]. After the first phase
the equation at every node is expressed only in terms of its parent node in the
dominator tree. After determining the solution for the equation of Node Entry,
the second phase of the algorithm is concerned with propagation of this infor-
mation in a top-down fashion on the dominator tree to compute the solution
for the other nodes. Every node corresponds to a basic block of the program
under investigation, and its solution is expressed in terms of a program context
as stated by Equation (1). By its definition such a context describes the possible
variable bindings valid at this program point, and in this way it provides the
information required for the range check elimination decision of Section 2.5.

Hierarchical Data-Flow Frameworks Since range checks are part of cer-
tain programming language constructs such as array access or assignment state-
ments, a program analysis method that incorporates these checks has to be
aware of control flow occurring on intra-statement level. The abstraction level
of intra-statement control flow is in the same order of magnitude lower than
inter-statement control flow as assembly language is compared to high-level lan-
guage code. It is not desirable to spend the complete analysis of a program
on intra-statement level since one gets easily overwhelmed by the amount of
detail and tends to loose the view of the “big picture”. For this reason we in-
troduce a two-level hierarchy in our data-flow framework where the two levels
correspond to analysis incorporating intra- and inter-statement control flow. We
avoid intra-statement control flow as much as possible, which means that it is
only considered for statements for which the compiler inserts a range check.

Fig. 3. Levels of Abstraction: Inter-Statement < Intra-Statement

As a notational convenience we collapse the intra-statement control flow sub-
graph into one single compound node of the inter-statement CFG. In this way
Fig. 3 depicts the code associated with Node 4 of Fig. 4 as a collapsed com-
pound node (left) and as a compound node expanded to its subgraph (right).
Note that we use circular shapes for ordinary nodes and boxes for compound
nodes to distinguish between the two.

2.5 The Range Check Elimination Decision

Consider Equation (8) which is an example of a valid symbolic equation accord-
ing to the symbolic data-flow framework introduced in Section 2.4. Construction
of an input program yielding this equation is straight-forward and suppressed
for space considerations. The types of the used variables are T (c) = Boolean,
and T (n,z,y,2) = Positive.

[{(c, 1), (n,n), (z,2), (y,9), (2.2}, 2" +y" = 2"] [{(¢,3—n€ T(2))}. (8)
The proposed range check can only be removed, if, according to Equation (5),
val(3 —n, [{(c, 1), (n,n), (2,2), (v, 9), (2, 2)}, 2" +y" = 2"]) € T(2).

This formula is valid if it it can be shown that n < 2, which requires a proof of
(Vn)(Va)(Vy) (V2)[z" +y" = 2" = n < 2],

also known as Fermat’s last theorem. While for this specific theorem our data-
flow framework could be aware of the recently discovered proof, in general there
exists no algorithm capable of determining the validity of a formula such as
Equation (5) stated in elementary arithmetic built up from +, x, =, constants,
variables for nonnegative integers, quantifiers over nonnegative integers, and the
sentential connectives -, A, V, =, & subject to the requirement that every
variable in such a formula be acted on by some quantifier. This follows from
a conclusion from Gdodel’s incompleteness theorem, [Rog87, p. 38] contains the
corresponding proof.

However, for a subclass of elementary arithmetic called Presburger arith-
metic, validity is decidable [Sho79]. Presburger formulas are those formulas that
can be constructed by combining first degree polynomial (affine) constraints on
integer variables with the connectives -, A, V, and the quantifiers V and 3. Con-
straints are affine due to the fact that Presburger arithmetic permits addition
and the usual arithmetical relations (<, <, >,>,=), but no arbitrary multipli-
cation of variables¥.

The Omega test [Pug92] is a widely used algorithm for testing the satisfiabil-
ity of arbitrary Presburger formulas. We can use it as a range check elimination
decision procedure if we are able to translate Equation (5) into such a formula.
We split this translation into two steps, each yielding a conjunction I" of con-
straints. Initially we set Iy = Iy = true.

Step 1: We derive constraints from the path-condition p; of state S; as follows.
The path-condition essentially is a conjunction of predicates P, that are true for
state S;:

Di =P A---NPn.

Each predicate P, corresponds to a CFG condition C' that is an expression involv-
ing program variables v, € V., where V, denotes the set {v1,...,v,} of possible

T Although it is convenient to use multiplication by constants as an abbreviation for
repeated addition.

program variables (cf. also Equation (1)). This can be written as P, = C(V,).
Once we evaluate C(V,) for state S; (cf. Definition 1), we get P, = C(E,) as
a condition over symbolic expressions. Solving C'(E.) yields the solution L;(V.)
for which P, = true. Thus each predicate P, yields a constraint for I'y:

s=I1 A /\ Ly(V, 9)

1<IKN

Ezample 2. Starting from the context given in Equation (2), we have predicate
P =C(V.):xz=y—-2,and C(E,) : n? — 1 = n + 1 which yields the solutions
n, = 2, and n, = —1 resulting in the constraint (n =2V n = —1).

Ezxample 8. Another example involves a predicate that arises from iteration-
schemes of for and while loops. Context [{(x,1),(y,1),(z,2)},z in y..2], yields
the constraint C(E.) : 1<z < 2.

Step 2: While the previous step dealt with the information captured in the path
condition p; of Equation (5), Step 2 addresses the translation of the proposed
range check val(E €’ 7(j)) into a conjunction I of constraints. Like the con-
ditions C of Step 1, expression E is a symbolic expression involving program
variables v, € V.. Again we evaluate E(V.) for state S; to get E(E.). We can
now set up a constraint that requires E(FE.) to be outside the range of type 7 (j):

Iyu=IhAj=E(E)A(j <T(j)First V j > T(j) Last). (10)

We then check by means of the Omega test whether there exists a solution
satisfying the conjunction Iy Al'. Non-existence of such a solution means that for
[Si, p;] the expression E(E,.) will be within the range of type 7T (j). Completing
Equation (5), we finally get

true < val(E, [S;,pi]) € T(j) © It A Iy = false

false else.

val(E €" T(5),[Si,pi])) = {
(11)

Non-Affine Expressions and Conservative Approximations A method
capable of transforming certain classes of general polynomial constraints into a
conjunction of affine constraints has been presented by Maslov [MP94].

For non-transformable nonaffine expressions that are part of (the solution
of) a predicate P, (cf. Step 1 above), we can omit the constraint imposed by
P, and hence generate a conservative approximation for Iy for the following
reason: given the set {vi,...,v,} of possible program variables, the mapping
of the symbolic expression E(E,.) to its value can be regarded as a function
f:T(v1)%,...,xT(vm) = Z. Each predicate P, potentially constrains the m-
dimensional domain of f, which, depending on E(E,), potentially constrains the
range of f. The smaller the range of f, the more likely it is that we can derive
that the proposed range check of E(E.) is redundant. Omission of P, results in a

conservative approximation of the range of f in the sense that we might generate
a false positive claiming that the proposed range check is needed whereas it is
actually redundant (cf. also Equation (6)). False negatives are not possible since
P, cannot widen the range of f.

3 Example

We demonstrate our range check elimination technique by an example for which
it can be shown manually that no range check is needed. Therefore every language-
defined range check is redundant and should be identified as such. Fig. 4 shows
our example taken from the Heapsort algorithm as presented in [Sed88].

1 Max: constant Positive := 77; -- Number of elements to be sorted
2 subtype Index is Positive range 1 .. Max;

3 type Sort_Array is array(Index) of Integer;

4 Arr : Sort_Array;

5 procedure Siftdown (N,K:Index) is

6 J, H : Index; -- Node 1
7 V : Integer; -- Node 1
8 begin

9 V := Arr(K); -- Node 1
10 H:=K; -- Node 1
11 while H in 1..N/2 loop -- Node 2
12 J = {2«H}FL; -- Node 3
13 if J<XN then -- Node 3
14 if Arr(J)<Arr({J+1}R2) then -- Node 4
15 J = {J4+1}583%; -- Node 5
16 end if;

17 end if;

18 if V >= Arr(J) then -- Node 6
19 Arr(H) :=V; -- Node 7
20 exit; -- Node 7
21 end if;

22 Arr(H) := Arr(J); -- Node 8
23 Arr(J) :=V; -- Node 8
24 H:=J -- Node 8
25 end loop;

26 return; -- Node 9

27 end Siftdown;

Fig. 4. Example: Procedure Siftdown

Fig. 5 shows the control flow graph of our example. It contains three com-
pound nodes (3, 4, and 5) which correspond to the intra-statement analysis
necessary to treat range checks R1, R2, and R3 (cf. Fig. 4). Compound Node 3
is expanded whereas compound Nodes 4 and 5 are collapsed due to space consid-
erations. CFG edges are labelled with their associated conditions, edges without
labels denote “true” conditions. The edge e — z is artificial in the sense that it is
required by our elimination algorithm but does not correspond to “real” control
flow. Symbol / denotes CFG edges that correspond to control flow of a Con-
straint_Error exception taken due to failure of a range check. Since procedure
Siftdown contains no exception handler and since we assume there is no calling

-(J <N) J<N

;

Arr(J) < Arr(J +1)

false

—(Arr(J) < Arr(J 4+ 1))

Fig. 5. Example: CFG of Procedure Siftdown

procedure with our example, these edges are simply “collected” by Node ce that
is connected to the procedure’s exit node.

Table 1 shows the set of SymEval equations for our example procedure.
The symbol L is used to denote undefined values. p; denotes the predicate
N e T(N)A K € T(K) that is due to the parameter association mechanism of
[Ada95]. Table 2 shows the sequence of elimination steps performed during the
elimination phase in order to reduce the system of equations so that each equa-
tion depends only on its immediate dominator. For the purpose of our example
it suffices to consider the result of the application of the loop-breaking rule at
Step 23, where each induction variable is replaced by an (indirect) recursion:

2 @: Xo =X, | {(ATT, AT’I‘(J_,I/)), (H,H(J_,V)), (J, J(J_,l/)), (Cl...7acl...7(J-7V))}'

For the purpose of our example it is furthermore sufficient to collapse all array
assignments into one recursion Arr(L,v).

In the propagation phase we propagate data flow information in a top-down
manner on the dominator tree after the solution of the root node has been
determined. Table 3 enumerates those steps for our example procedure.

For the sake of brevity we will focus on the examination of range check R1
located in Equation X3,. For this reason we are concerned with propagation

Xe = [{(Arr, Arr), (N, N), (K, K), (J,1),(V, 1),(H,L1),(C1r..7, L)}, p1]
X1 = Xe [{(V, Arr(K)), (H,K)}

X, = (X1 UX3g) | {(C1,(H in1..N/2))}

Xs3,=C1 0 X5 | {(Ca,(2x HE" T(J))}

X3,=C20 X3, [{(J,2%H),(C3,(J <N))}

X3;=—C2 0 X5, [{(J,1)}

Xa,=C3 0 Xz, | {(Ca, (J +1€" T(Index))}

X4y=Cs © Xyy [{(C5, (Arr(J) < (Arr(J +1))))}
Xy4;=C1 © Xy,

Xs5,=Cs5 O X, | {(Co, (J +1€" T(J))}

X5,=Cs © X5, | {(J,J+1)}

Xs5,=C6 © X5, | {(J, 1)}

X = (—C3 ® X3, U=C5 ® X4, UXs) | {(Cr, (V > Arr(J))}
X7 =Cro Xe | {(Arr(H),V)}

Xs =-C7 0 Xe | {(Arr({H}), Arr(J)), (Arr(J), V), (H, J)}
Xo =-C1 0X2U X7

Xee= X3, U Xy, U X,

X, = XoU Xee

Table 1. Set of SymEval Equations for Example Siftdown

steps 2, 3, and 4 of Table 3:
e—1,1-+22—3
Xs, =[{ (Arr, Arr(4rr,v)), (N, N), (K, K), (H, H(K, v)), (], J(L,v)),
(Cr..t,Cra(L,w)},p AH in 1..N/2] | {(Ca, 2% HE" T(J))}.
In order to compute the solution for Node X3,, we evaluate predicate val ac-
cording to Equation (5):
val(2 x H €' T(J),[{(Arr, Arr(Arr,v)),(N,N), (K, K), (H,H(K,v)),

. (12)
(J, J(J_, I/)), (C]_.“’], Clm7(J_, I/))},pl AHinl.. N/Z])

1.) 53 — ce 6.) 7T—9 11.) 41 — 6 16.) 33 — 2 21.) 31 -
2) 5y »12 7)) 45— ce 12.) 6 — 2 17)3, 59 22)9 >z
3.) 51 — ce 8.) 42 — 6 13.)6 = 9 18.) ce - 23.) 2%
4.)51 =6 9.) 42 —ce 14.) 33 — ce 19.) 31 — 2 24.)2 >z
5)8 =2 10.) 41 — ce 15.) 33 — ce 20.) 31 = 9 25.) 1>z

Table 2. Elimination: from DJ-Graph to Dominator Tree

1l.)e—z 4.) 2 — 34 7.) 32 — 44 10.) 42 — 51 13.) 33 —» 6 16.) 31 — ce
2)e—1 5.) 31 — 33 8.) 41 — 43 11.) 51 — b3 14.)6 — 7 17.)2 —9
3.) 1—2 6.) 31 — 32 9.) 47 — 49 12.) 51 — b2 15.) 6 — 8

Table 3. Propagation of the DFA-Solution

Range check R1 is redundant if Equation (11) evaluates to true. From Equa-
tion (9) we get

I c=true N 1< N<Max AN 1< K< Max N 1<H<N/2,

where “/” denotes integer division and where the second conjunct is due to
predicate p; and the third conjunct is due to predicate “H in 1..N/2”. From
Equation (10) we get

Iya=true N J=2xH A (J<1V J> Maz).

As expected the Omega test confirms that Iy A Iy = false which, according to
Equation (11), means that the range check 2x H € T (J) is redundant. Similarly
we can derive at propagation steps 7 and 10 that range checks R2 and R3 are
redundant.

4 TImplementation

Fig. 6 is an extension of the structure of the GNAT compiler as explained
in [SB94]. Our data-flow framework is situated between the frontend and the
backend of the GNAT compiler. Its input is an abstract syntax tree (AST) that
has been syntactically and semantically analyzed and expanded (cf. [SB94]).

1 Ada
Term C
Rewriting O A
%lnta)f Semant.lc Expander Data-Flow Gigi GCC
Anadysis Anaysis Framework Back-End
— — T T

Extension ifi
ot dwmasinst (1)) () sttt

Fig. 6. Integration of the Data-Flow Framework Within GNAT

Every tree expression for which node flag Do_Range_Check is set requires
the backend to generate a corresponding run-time check. The frontend makes
use of this signaling mechanism for each range check that cannot be proved

redundant at compile-time. When we build the CFG from the AST we generate
an intra-statement control flow subgraph for every statement containing such an
expression.

Once the CFG is extended by immediate domination edges, it is passed to
the elimination algorithm which determines the sequence of equation insertion
and loop-breaking steps in order to transform the DJG to its dominator tree
(cf. e.g. Table 2). Equation insertion and loop-breaking itself is handled by the
term rewriting component which, due to the nature of its requirements, depends
on pattern matching and expression transformation capabilities available mainly
in functional programming languages. An early prototype of this component has
already been implemented as a Mathematica package [Mae90].

In order to compute the data-flow solution for each CFG node the elimina-
tion algorithm instructs the term rewriting component to perform the necessary
propagation steps (cf. e.g. Table 3). If we can derive at a given CFG node that
according to Equation (6) a given range check is redundant, we reset the AST
flag Do_Range_Check which prevents the backend from generating the corre-
sponding run-time check.

5 Experimental Results

In order to demonstrate the effectiveness of our approach we have considered sev-
eral examples for which it can be manually proved that no range checks are neces-
sary. The following programs have been examined so far: “Siftdown” (cf. Fig. 4)
and the corresponding driver program “Heapsort” (cf. [Sed88]), “Mergesort”,
and “Quicksort”. Table 4 compares the number of range checks required by the
GNAT frontend to the number of checks that remain after symbolic analysis of
the example programs. The number of assembler statements and the stripped
object code size of the resulting executables are also given.

Post-GNAT Post-Symbolic Evaluation
Source [Range-Checks|Asm-Stmts|Obj.-Size|Range-Checks|Asm-Stmts|Obj.-Size
Siftdown 3 89 800 0 55 604
Heapsort 2 73 736 0 51 596
Quicksort 4 122 908 2 100 824
Mergesort 6 183 1128 0 119 812

Table 4. Experimental Results

For procedure “Siftdown” we have also measured the execution time overhead
for range checks. We have found that the removal of superfluous range checks
yields on average a performance increase of 11.7 percent, whereas the decrease in
object code size is more than 24 percent. The performance figures given in Fig. 7
have been obtained on an ix86 Linux PC, based on GNAT 3.2 20020814. The

©'150 . 3 25
s ~ s
—130 - <
;110 - 520
-~
90 . “—
= - 5 15
c s (0] D N e T,
[=2)
2 50 - - s 10 .
5 g~ —-—range checks c —— code size
o 30 L= 2 5))
o _F —— pruned s ---- execution tine
o 10 g
710 15 20 25 30 35 40 45 50 55 710 15 20 25 30 35 40 45 50 55
probl em si ze N (x1076) probl em size N (x1076)

Fig. 7. Execution Times and Performance Gain/Obj. Code Size Reduction

left-hand picture shows absolute execution times, while the right-hand picture
shows the relative performance gain and the decrease in object size.

6 Related Work

Determining how and when array items are accessed is of vital importance for
parallelizing compilers. For this reason this problem has been studied extensively
(see [Hag95] for a survey). Even symbolic approaches have been employed (again
compare [Hag95]). On the other hand eliminating range checks has not been
studied in this domain. Nevertheless it has been shown that expressions used for
array indexes are linear expressions in most cases (cf. [SLY90]).

In [RROO] some kind of symbolic analysis is employed to determine upper
and lower bounds of memory regions accessed by procedures and other pieces of
programs. Linear programming is used to solve the problem. This approach can
also be applied to our problem but it has some severe deficiencies; for example
our procedure Swap (Fig. 1) cannot be handled correctly. In addition, if the sign
of a variable is not constant (i.e., the variable does not assume only positive or
negative values), the approach presented in [RR00] cannot be applied.

7 Conclusion and Future Work

We have presented a new method of range check elimination based on sym-
bolic evaluation that incorporates type information provided by the underlying
programming language.

Our experiments showed that affine constraints can be handled without prob-
lems by the Omega test. As a next step we will conduct investigations on large
Ada code bases in order to back the assumption that most constraints are affine
in nature.

In addition, we will study validity checks which requires a delicate interpro-
cedural analysis, and overflow checks which are very costly and for this reason
turned off by GNAT in its default settings.

References

[Ada95]
[BBYS]

[BBS99]

[BFS00]

[BLi02]

ISO/IEC 8652. Ada Reference Manual, 1995.

J. Blieberger and B. Burgstaller. Symbolic Reaching Definitions Analysis
of Ada Programs. In Proc. of the Ada-Europe International Conference on
Reliable Software Technologies, pages 238-250, Uppsala, Sweden, June 1998.
J. Blieberger, B. Burgstaller, and B. Scholz. Interprocedural Symbolic Eval-
uation of Ada Programs with Aliases. In Proc. of the Ada-Europe Inter-
national Conference on Reliable Software Technologies, pages 136-145, San-
tander, Spain, June 1999.

J. Blieberger, T. Fahringer, and B. Scholz. Symbolic Cache Analysis for Real-
Time Systems. Real-Time Systems, Special Issue on Worst-Case Ezecution
Time Analysis, 18(2/3):181-215, 2000.

J. Blieberger. Data-Flow Frameworks for Worst-Case Execution Time Anal-
ysis. Real-Time Systems, 22(3):183-227, May 2002.

[CHT79] T. E. Cheatham, G. H. Holloway, and J. A. Townley. Symbolic Evalua-

[FS97]
[Hag95]
[Mae90]

[MP94]

[Pug92]

[Rog87]
[RP86]

[RRO0]

[SB94]

[SBFO0]

[Sed88]
[Sho79]

[SLY90]

[Sre95]

tion and the Analysis of Programs. IEEE Trans. on Software Engineering,
5(4):403-417, July 1979.

T. Fahringer and B. Scholz. Symbolic Evaluation for Parallelizing Compilers.
In Proc. of the ACM International Conference on Supercomputing, July 1997.
M. R. Haghighat. Symbolic Analysis for Parallelizing Compilers. Kluwer
Academic, 1995.

R. Maeder. Programming in Mathematica. Addison-Wesley, Reading, MA,
USA, 1990.

V. Maslov and W. Pugh. Simplifying Polynomial Constraints Over Integers
to Make Dependence Analysis More Precise. In Proc. of the International
Conference on Parallel and Vector Processing, pages 737748, Linz, Austria,
1994.

W. Pugh. The Omega Test: A Fast and Practical Integer Programming
Algorithm for Dependence Analysis. Communications of the ACM, 35(8):102—
114, August 1992.

H. Rogers Jr. Theory of Recursive Functions and Effective Computability.
MIT Press, Cambridge, MA, 1987.

B. G. Ryder and M. C. Paull. Elimination Algorithms for Data Flow Analysis.
ACM Computing Surveys (CSUR), 18(3):277-316, 1986.

R. Rugina and M. Rinard. Symbolic Bounds Analysis of Pointers, Array
Indices, and Accessed Memory Regions. In Proc. of PLDI, pages 182-195,
2000.

E. Schonberg and B. Banner. The GNAT Project: A GNU-Ada 9X Compiler.
In Proc. of the Conference on TRI-Ada ’94, pages 48-57. ACM Press, 1994.
B. Scholz, J. Blieberger, and T. Fahringer. Symbolic Pointer Analysis for De-
tecting Memory Leaks. In ACM SIGPLAN Workshop on ”Partial Evaluation
and Semantics-Based Program Manipulation”, Boston, January 2000.

R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, USA, 2™ edition,
1988.

R. E. Shostak. A Practical Decision Procedure for Arithmetic with Function
Symbols. Journal of the ACM, 26(2):351-360, April 1979.

Z. Shen, Z. Li, and P.-C. Yew. An Empirical Study of Fortran Programs
for Parallelizing Compilers. IEEE Transactions on Parallel and Distributed
Systems, 1(3):356-364, July 1990.

V. C. Sreedhar. Efficient Program Analysis Using DJ Graphs. PhD thesis,
School of Computer Science, McGill University, Montréal, Québec, Canada,
1995.

