Symbolic Data Flow Analysis for Detecting
Deadlocks in Ada Tasking Programs

Johann Blieberger!, Bernd Burgstaller!, and Bernhard Scholz?

! Department of Computer-Aided Automation
Technical University of Vienna
{blieb,bburg}@auto.tuwien.ac.at
% Institute of Computer Languages
Technical University of Vienna
scholz@complang.tuwien.ac.at

Abstract. It is well accepted that designing and analyzing concurrent
software-components are tedious tasks. Assuring the quality of such soft-
ware requires formal methods, which can statically detect deadlocks.
This paper presents a symbolic data flow analysis framework for de-
tecting deadlocks in Ada programs with tasks. The symbolic data flow
framework is based on symbolic evaluation — an advanced technique to
statically determine properties of programs.

The framework can guarantee the deadlock-freeness for an arbitrary
hardware environment. Our approach differs from existing work in that
tasks can be dynamically created and completed in the program. Exam-
ples are used to illustrate our approach.

1 Introduction

Modern software design includes concurrent programming, such as tasks, to en-
able the explicit expression of parallelism. Concurrent language constructs in-
crease the expressiveness of a language in the description of concurrency. How-
ever, it is widely agreed that designing and programming a concurrent system
are tedious tasks and can result in erroneous program behavior. Such anomalies
are particular hard to detect as it is usually very difficult to reproduce them
and to identify the source of the error. Clearly, it is of paramount importance
to detect program anomalies in concurrent systems at compile time as com-
pared to expensively testing programs at runtime. A static analysis tool that
targets the detection of concurrent program anomalies supports the design and
programming and improves the quality of the software.

In this paper we introduce a new static analysis framework to detect dead-
locks and other tasking anomalies without executing the program. Our static
analysis is based on symbolic evaluation — an advanced static analysis tech-
nique — in which symbolic expressions are used to denote the values of program
variables and computations and a path condition describes the impact of the
program’s control flow onto the values of variables.

Our method goes beyond previous work in the following points:

2 J. Blieberger, B. Burgstaller, and B. Scholz

1. The number of tasks in the program is not limited, it can grow dynamically
during the execution of the tasking program. We can handle an arbitrary
number of tasks, which can be dynamically created and completed in the
program.

2. We analyze each task body only once, although several instances of the task
can be created either statically (e.g. arrays of tasks) or dynamically by new
statements.

3. Our framework correctly analyzes generic units.

To ease the analysis we assume that no global variable is read /written by different
tasks (no shared variables). If such a variable is needed, a protected object has
to be employed.

The remainder of the paper is organized as follows. In Section 2 we give the
notions of the symbolic data flow analysis for detecting deadlocks. In Section 3
our approach is presented. Examples are used to illustrate our framework. In
Section 4 we survey related work. In Section 5 we conclude this paper and
describe future work.

2 Symbolic Evaluation

Symbolic evaluation is an advanced static program analysis in which symbolic
expressions are used to denote the values of program variables and computations
(cf. e.g. [6]). A path condition describes the impact of the program’s control flow
onto the values of variables and the condition under which control flow reaches
a given program point. In the past symbolic evaluation has been successfully
applied to the reaching definitions problem [2], to worst-case execution time
analysis [1], to cache hit prediction [4], to alias analysis [3], to optimization
problems of High-Performance Fortran [12], and to pointer analysis for detecting
memory leaks [17].

The underlying program representation for symbolic evaluation is the control
flow graph (CFG), a directed labelled graph. Its nodes are basic blocks containing
the program statements, whereas its edges represent transfers of control between
basic blocks. Each edge of the CFG is assigned a condition which must evaluate
to true for the program’s control flow to follow this edge. Entry and Exit are
distinguished nodes used to denote start and terminal node.

In the center of our symbolic analysis is the program context, which includes
states S; and state conditions C;. A program context completely describes the
variable bindings at a specific program point together with the associated state
conditions and is defined as Ule [Si, C;], where k denotes the number of different
program states. State S is represented by a set of pairs {(vi,e1),..., (Um,€em)}
where v; is a program variable, and e; is a symbolic expression describing the
value of v; for 1 < ¢ < m. For each variable v; there exists exactly one pair
(vi,e;) in S. A state condition C; specifies a condition that is valid for a given
state S; at a certain program point.

For all nodes in the CFG, a set of symbolic equations is used to compute
program contexts. The equation system is solved by an elimination algorithm
for data flow analysis [16].

Symbolic Deadlock Detection in Ada Tasking Programs 3

3 Symbolic Data Flow Equations for Tasking Programs

In previous work [3,17,4,1] we have applied symbolic analysis for sequential
programs. In order to analyze Ada programs with tasks we need a new form of
analysis to cope with these notions of parallelism. To get a handle on the problem
a new program representation, namely the tasking control flow graph (TCFQG),
is introduced which models the semantic behavior of concurrent Ada programs.
In the following, semantics and the construction of TCFGs are discussed. Then,
the symbolic equations for the program contexts are given and illustrated by two
examples.

To symbolically analyze Ada programs with tasks, we are confronted with
three major problems to model tasking correctly:

1. How do we handle dynamically allocated tasks?

2. If several entry calls are served by one accept statement, how can we ensure
that control flow proceeds at the correct place?

3. According to the semantics of Ada tasks, a task is allowed to complete only
if all its descendants have completed or are “waiting” at a select statement
with a terminate alternative. How do we ensure this behavior?

Problem 1 is solved by introducing symbolic task identifiers (task ids). Each
task object is assigned a unique task id at creation time. Such a task id can in
its simplest way be realized as a symbolic counter, that is incremented whenever
a task is created. (In fact we propose a different counter for each task type, but
this does not show up in the examples.) All local variables of a task object and
other local objects such as even tasks or protected objects can be referenced
uniquely with help of this task id. We denote such objects by v[id], which are
modelled as symbolic arrays [3, 4].

Concerning problem 2 we notice that entry calls are different from procedure
calls because tasks have a state. A procedure call can be modelled by a suitable
copy of the procedure with actual parameters supplied accordingly [3]. In con-
trast, we solve Problem 2 by introducing a symbolic variable E,[id] for accept
statement n which is indexed by the task id of the calling task. The variable is
assigned the value r if this is the rth entry call to n. We ensure that the control
flow that enters n is propagated to the correct successor after the rendezvous by
assigning condition E,[id] = r to the control flow from the end of the rendezvous
to the correct successor.

In order to solve Problem 3, we introduce variable T; if one or more instances
of task t are created in statement d. The purpose of T} is similar to that of E,[id]
above in ensuring that if several tasks are created at different places in the
program, their completion is awaited at the correct place. In addition, for each
created task (with task identifier equal to id) we introduce a symbolic variable
Cq,¢[4d]) which is initialized to 1. If the task completes or may complete because
of a terminate alternative, this variable is set to 0 and the condition Cy [id] = 0
is checked at an appropriate program point to ensure that each created task
ultimately completes.

4 J. Blieberger, B. Burgstaller, and B. Scholz

3.1 Building the CFG Tasking Forest
To build the TCFG, for each task body and for the main program a CFG is
constructed at first. The result is a CFG tasking forest.

1. In a task body each accept statement is a subgraph of the (task) CFG with
one designated “header node”.

2. There may be several (at least one) “end nodes” of a rendezvous according
to the construction of a CFG.

3. A select statement of the callee is modelled like a case statement with the
only difference that all conditions from the “header” to the “cases” are true.
Select statements with a terminate alternative are described in Section 3.2.

4. Select statements of the caller are modelled like if-statements.

3.2 Building the Tasking CFG from the CFG Tasking Forest

Then, based on the CFG tasking forest we can construct the TCFG. Note that
if ordinary control flow is indicated by a TCFG edge, we call this edge control
flow edge. If the edge of the TCFG represents an entry call, an entry return,
task creation or task completion, we call the edge tasking edge. Furthermore, we
distinguish between 5 kinds of TCFG nodes according to the following criteria:

1. If no tasking edge points to node n, we call n “control flow node”.

2. One or more tasking edges point to node n which models an accept state-
ment. Then n is called “header node” of a rendezvous.

3. One or more tasking edges point to the “start node” of a task, which is equal
to the entry node of the CFG modelling the corresponding task body.

4. One or more tasking edges point from the end nodes of a rendezvous to the
successor nodes of an entry call node (“entry successor node”).

5. One or more tasking edges point from the original exit node of the task CFG
to the exit node of the parent task. We call the latter exit node “synchroniz-
ing node” because all dependent tasks synchronize at this node before the
parent task is allowed to complete.

The CFG tasking forest is now glued together to create the TCFG, which models
the whole tasking program. This is done by inserting (dashed) tasking edges
between certain nodes of the CFGs forming the forest and by removing certain
(solid) control flow edges. The TCFG is build according to the following rules:

— For node n being the target of a tasking-related action:

e Let id denote the task id of the calling task which in its simplest way
can be realized by incrementing a symbolic counter each time a task is
created statically or dynamically. Introduce variable E,[id] and initialize
it to 0 when the called task is created. Set the value of E,[id] to r if this
is the rth tasking edge pointing to n.

e Insert a tasking edge (a dashed arrow) from the caller to the correspond-
ing start node of the rendezvous.

e Insert a tasking edge from all end nodes of the rendezvous to all entry
successors nodes and assign the condition (E,[id] = r) to these edges.

Symbolic Deadlock Detection in Ada Tasking Programs 5

e Remove the control flow edges from the entry call node to its (control
flow) successors.

— If one or more instances of task t are created in node d:

o Introduce the variables T; and for each created task Cg[éd] (T} is ini-
tialized to 0, Cy.[id] to 1).

¢ Create an intermediate node ¢4 and insert tasking edges from d to i4
and from ig4 to t. In addition, node i4; is used to assign r to Ty if this is
the rth tasking edge pointing to ¢.

e Create an intermediate node between each exit node of task ¢ and the
synchronizing node of its parent. Similarly, create an intermediate node
between all headers of a select statement with a terminate alternative
and the synchronizing node of its parent.

o Insert tasking edges to and from the intermediate node. In addition, the
intermediate node is used to assign 0 to Cy¢[id], the edge leading to the
intermediate node is assigned the condition (T3 = r) and the edge leaving
the intermediate node is assigned the condition (Cyq[id] = 0).

3.3 Setting Up the Data Flow Equations
The symbolic equation system of concurrent Ada programs is given in this sub-
section. The equations are derived from the TCFG.

Let C¢,_,,, denote the symbolic condition of control flow edge e =n' = n
and similarly C%, , ~the symbolic condition of tasking flow edge e = n’ — n.

Furthermore, we denote the control flow predecessors of node n by Pred®(n) and
the tasking flow predecessors by Predf(n). We define the symbolic equations as
follows:

1. If node n is a control flow node, we have

Xn = V (Xar A Crcz’—m) | { .- }

n’€Pred¢(n)

2. If node n is a header node, a start node, or an entry successor node, we
define

X, = V EwACo,) | A
n’€Pred¢(n)

false V \/ (X ACL L, AGuard(n)) | [{...}

n’ €Predt(n)

where Guard(n) denotes a guard condition of an accept statement. Guard(n)
is considered to be true if no guard condition is present or in case of start
or entry successor nodes.

Note that if n is a header node and there is no entry call for this entry, then
X,, = false.

6 J. Blieberger, B. Burgstaller, and B. Scholz

procedure Simple is
task T1 is
entry One;
entry Two;
end T1;
task body T1 is
begin
accept One; -- Node 4
accept Two; -- Node &
end T1;
begin
T1.Two; -- Node
T1.0ne; -- Node
end Simple; -- Node

(a) Source Code
Fig. 1. Simple Deadlock Example

LA~

3. If node n is a synchronizing node, we have

X, = V & AChL,) | A N K nCho) |-}

n' €Pred®(n) n’€Predt(n)

The {... }-part is supposed to contain the local changes to program variables in
the same way as is described in [1-3].

Note that X,, means “non-blocking” at node n. If, after solving the equations
and binding the — until now unbound - task identifiers of task ¢ (id;) by prepend-
ing /\ /\ to all conditions, all X,, evaluate to true, then there is no deadlock in

t id
the taskiing program. If some of the conditions do not evaluate to true, it has to
be checked by hand whether

— there is a deadlock,

— there are some program paths with a false condition because the program is
not supposed to terminate (this is typical for embedded systems), or

— there are some accept statements which are never called in the program.

3.4 A Simple Example

For sake of demonstration we have chosen a fairly simple Ada program with
one task. Figure 1(a) lists the source code. The task consists of two accept
statements. In the main program the two entry calls Two and One are invoked
in subsequent order. In Figure 1(b) the TCFG of the Ada source is shown. Nodes
1,2, 3,4, and 5 correspond to statements of the Ada program. Nodes 6 and 7 are
intermediate nodes introduced to model tasking correctly. Based on the semantic
rules given in Subsection 3.1 and 3.2 artificial variables (Ce 4[1], T4, E4[1], and
E5[1]) are introduced and the TCFG of Figure 1(b) is amended by the following
additional conditions and statements:

— Ce[1] :=1in node e due to the fact that one task with task id 1 is created.
— Ce,4[1] :== 0 in node 7 since the task is completed in this node.

Symbolic Deadlock Detection in Ada Tasking Programs 7

— E5[1]:=1in node 1 and E4[1] := 1 in node 2 represent call entries of node
1 and 2 respectively.

— Except task edge 4 — 3,5 — 2,5 — 7, and 7 — x the conditions of the task
edges are set to true.

— Task edge 5 — 2 and task edge 4 — 3 get the condition Es[1] = 1 and
E,4[1] = 1, respectively.

— Task edge 5 — 7 gets assigned the condition 7y = 1.

— Task edge 7 — x is conditioned by C, 4[1] = 0 because task 1 is supposed to
complete here.

The symbolic equations of the example are set up by the rules in Subsection 3.3
as follows,

Xe = true | {(T4,0), (Ce 4[1],1)},

X1 = Xe [{(B5[1],1)},

Xy = (Bs[1] = 1) A X5 | {(E4[1], 1)},

X3 = (Ea[l] = 1) A Xy,

X4 = X3 A X,

X5 = X1 A Xy,

Xo = Xe | {(Tu, 1), (E4[1],0), (E5[1],0)},

X7 =Ty =1) A X5 | {(Cea[1],0)},

Xy = (Ce,a[1] = 0) A X7 A ((false A Xe) V X3).

The equation system is solved step by step. First, we insert 2 — 4 and 6 — 4
and obtain

X = ((Bs5[1] = 1) A X5 [{(Ea[1], D}) A Xe | {(Ta; 1), (Ea[1],0), (E5[1], 0)},

which evaluates to false. Hence we also get X2 = X3 = X5 = X7 = false. This
proves that node 2 of the example cannot be reached, and a deadlock occurs in
the given program.

3.5 Modelling Protected Objects
Protected objects are semantically modelled as tasks. The corresponding task
body consists of an endless loop containing a select statement with a termi-
nate alternative. The select statement contains one accept statement for each
protected operation. Guards are mapped from protected entries to task entries.
Protected procedures and functions are mapped to task entries, whereby function
return values are (conceptually) replaced with out parameters.

Entry families can easily be integrated in our approach. The same applies to
task and entry attributes and to pragma Atomic.

3.6 Dining Philosophers Example

The second example is the well-known problem of the Dining Philosophers. The
source code of an Ada specification and implementation are shown in Figure 2(a).

8 J. Blieberger, B. Burgstaller, and B. Scholz

generic
type Num is mod <>;
procedure Dining;

procedure Dining is
Current_Id : Num := Num’Last;

function Next_-One return Num is
begin
Current_Id := Current_Id + 1;
return Current_Id;
end Next_One;

task type Philosopher(Id: Num := Next_-One);

protected type Fork is

entry Seize;

procedure Release;
private

Seized : boolean := false;
end Fork;

type Phil_Array is array (Num’Range) of
Philosopher;

type Fork_Array is array (Num’Range) of Fork;
Phils: Phil_Array; -- Node 1
Forks: Fork_Array; -- Node 1
task body Philosopher is
dur: duration;
begin
loop -- Node 2
Forks(Id).Seize; -- Node 3
Forks(Id+1).Seize; -- Node 4
Forks(Id).Release; -- Node 5
Forks(Id+1).Release; -- Node 6
end loop;
end Philosopher;
protected body Fork is -- loop -- Node 7, 8
entry Seize when not Seized is -- Node 9
begin
Seized := true; -- Node 9
end Seize;
procedure Release is -- Node 10
begin
Seized := False; -- Node 10
end Release;
end Fork; -- end loop;
begin
null;
end Dining;

(a) Source Code

Fig. 2. Dining Philosophers Example

N

Symbolic Deadlock Detection in Ada Tasking Programs 9

The corresponding TCFG is depicted in Figure 2(b) where nodes 1 to 6 originally
are part of the task Philosopher and nodes 7 to 10 are part of the protected type
Fork. Control flow edges between nodes 2 and 3, nodes 3 and 4, nodes 4 and 5, and
nodes 5 and 6 have been removed. Nodes 11 and 12 are intermediate nodes. To
keep the example small, the intermediate nodes ic; and i. 7 have been omitted,
since there is only one tasking edge to node 1 and to node 7, respectively. In
addition, we do not model function Next_One which is used to obtain unique task
identifiers (in the Ada program and not in its symbolically evaluated version).
To ease the readability, arrays are denoted in an Ada-like notation instead of
using the symbolic notation (compare [3,4]). The data flow equations have the
following form:

Xe = true | {(Ce[0..N — 1], 1), (Ce7[0..N — 1], 1), (Seized[0..N — 1], false)}
X, = X,
Xy = X1V X | {(Eolid], 1)}
X3 = (Eylid] = 1) A Xo | {(E[id], 2)}
Xy = (Bylid] = 2) A Xo | {(Eholid], 1)}
X5 = (Evo[id] = 1) A X0 | {(Ero[id],2)}
Xe = (Eolid] = 2) A X190
X7 = Xe | {(E9[0..N — 1],0), (E16[0..N — 1],0)}
Xg = X7V Xo V X10
X9 = Xg A [(X2 A = Seized[id] | {(Seized|id], true)}) V
(X3 A =Seized[id — 1] | {(Seized[id — 1], true)})]
X10 = Xg A [(X4 | {(Seized[id), false)}) V (X5 | {(Seized[id — 1], false) })]
X1 = Xs | {(Cer[id), 0)}
X12 = false A Xy | {(Ce,[id],0)}
Xy = (Ce,1[id] = 0) A (Cer[id) = 0) A Xe A X11 A X12

After performing the insertions 6 -+ 2,2 - 9,3 59,4 - 10,5 —> 10,7 — 8§,
e—>T7,e—>1,8—9, and 8 — 10, we obtain the two following recursive equations
for X9 and X9

Xo = (Xe | {(Eo[id],0), (Er0[id],0)} V Xg V X10) A
{[(Xe V ((E1o[id] = 2) A X10)) A ~Seized[id] | {(Ey[id], 1), (Seized[id], true)}] Vv
[((Eg[id] = 1) A Xg A =Seized[id — 1]) | {(Eo[id], 2), (Seized[id — 1], true)}]}

and

X10 = (Xe | {(E9[id],0), (E10[id],0)} V Xo V X10) A
{[(Eg [’Ld] = 2) A Xg | {(E10 ['ld], 1), (Sezzed[zd], false)}] \%
[(Elo[ld] = 1) A X10 | {(Em[zcﬂ, 2), (Sezzed[zd — 1], false)}]} .

10 J. Blieberger, B. Burgstaller, and B. Scholz

Simplifying the involved boolean expressions and solving the recurrence relations
we obtain

Ey[id] = 1) A =Seized[id — 1] | {(Eq[id], 2), (Seized[id — 1], true) }] V
Ey[id) = 2) [{(Exolid], 1), (Seized[id], false) }] v
Eqolid] = 1) | {(Enrolid], 2), (Seized[id — 1], false) }] v

(
X = [Xer E
(Erolid] = 2) A —Seized[id] | {(Ey[id], 1), (Seized|id], true)}]

Inserting e — 8, 8 — 11, 11 — x, 2 = 12, and 12 — x we see that X, =
X, = false, which indicates that the program does not complete. On the other
hand, this is clear because the philosopher tasks are supposed not to complete.
It remains to check whether

Xs = /\ [(Eolid] = 1) A ~Seized[id — 1] | {(Eo[id],2), (Seized[id — 1], true)}] V
id

[(Eqlid] = 2) | {(E1o[id], 1), (Seized[id], false) }] vV
[(Erolid) = 1) | {(Eno[id], 2), (Seized[id — 1],false)}] V
[(Erolid] = 2) A —Seized[id] | {(Ey[id], 1), (Seized[id], true)}] (1)

is true. Since,

/\[(Elo[id] = 2) A =Seized[id]] = true (2)
id
implies
/\[(Eg[zd] = 1) A Seized[id]] = /\[(Eg [id] = 1) A Seized[id — 1]] = true,
id id

we find that (1) evaluates to false if (2) holds. Thus we get

Xg < = \[(Brolid] = 2) A ~Seizedid]) = \/[(Erolid] = 1) V Seizedid]
id id

which means that the program deadlocks if each philosopher holds exactly one
fork and tries to pick up the second one, which is held by its neighbor. Thus our
framework obtains the correct answer to the problem.

4 Related Work

A large number of papers deals with detecting tasking anomalies in multi-tasking
(Ada) programs, e.g. [5,7-11,13,18-20]. SSA form for explicitly parallel pro-
grams is treated theoretically in [18]. Explicitly parallel programs are restricted
to a (cobegin ... coend)-like structure and are in strict contrast to the tasking
in Ada. The semantic chosen for global variables is far too weak to model Ada
programs with tasks. Static Concurrency Analysis, presented in [19], is a method
for determining concurrency errors in parallel programs. The class of detectable

Symbolic Deadlock Detection in Ada Tasking Programs 11

errors include infinite waits, deadlocks, and concurrent updates of shared vari-
ables. Infeasible Paths, however, represent a problem since they give rise to errors
which actually cannot occur. In [20] the authors propose symbolic execution to
detect infeasible paths. Their approach is based on interleaving the execution
of component processes. The interleaving approach, however, is poorly suited
for formal verification. In [9,10] concurrency analysis of programs is studied.
The approach allows recursive procedures and dynamically allocated tasks to be
present. The presented approach can handle (recursive) procedures but cannot
take into account the individual “instances” of the procedures and tasks, i.e., it
is based on the source-code of the tasks and procedures and not on their runtime
equivalent. In [13-15] static detection of infinite wait anomalies is studied. Clas-
sic data flow analysis is employed to solve this problem. This allows polynomial
time analysis but cannot solve dead paths problems. In addition, Ada’s generic
units cannot be modelled adequately. In [8] symbolic execution of Ada programs
is presented. The analysis is restricted to a static task model where tasks can
only be statically declared in the main program and the introduced framework
cannot cope with dynamic task creation and completion. High-level Petri nets are
employed in [5] to perform some analysis for multitasking Ada programs. In [11]
Petri nets are used to reduce the state space of deadlock analysis for Ada pro-
grams. Petri nets can be used to perform a small class of deadlock detection, but
they are not capable to analyze certain Ada features such as generic units. In [7]
three different approaches to deadlock analysis are surveyed, namely reachabil-
ity search, symbolic model checking, and inequality necessary conditions. None
of the methods cited above can handle the Dining Philosophers problem where
the number of philosophers enters the problem domain as a parameter. Our ap-
proach is different: it correctly reflects the runtime properties of multitasking
(Ada) programs, it correctly models statically and dynamically allocated tasks,
and it correctly handles generic units.

5 Conclusion and Future Work

We have presented a symbolic data flow analysis framework for detecting dead-
locks. Our framework can handle dynamic task creation and completion, which
goes beyond existing work. As shown in the dining philosophers example our
framework can cope with generic units as well. Note that the task body is only
analyzed once although several instances of the task can be either created stat-
ically or dynamically. Moreover, we observed that if the conditions like those of
the dining philosophers example, are very complicated, the program has good
chances to deadlock. Deadlock-free tasking programs usually lead to simple con-
ditions.

Our approach is also well-suited for other programming languages. In future
we plan to build a similar analysis for object-oriented programming languages,
in particular for Java.

References

1. J. Blieberger, Data-flow frameworks for worst-case execution time analysis, Real-
Time Systems (2000), (to appear).

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Blieberger, B. Burgstaller, and B. Scholz

J. Blieberger and B. Burgstaller, Symbolic reaching definitions analysis of Ada
programs, Proceedings of Ada-Europe’98 (Uppsala, Sweden), pp. 238-250.

J. Blieberger, B. Burgstaller, and B. Scholz, Interprocedural Symbolic Evaluation of
Ada Programs with Aliases, Ada-Europe’99 International Conference on Reliable
Software Technologies (Santander, Spain), pp. 136-145.

J. Blieberger, T. Fahringer, and B. Scholz, Symbolic cache analysis for real-time
systems, Real-Time Systems, Special Issue on Worst-Case Execution Time Analysis
(2000), (to appear).

E. Bruneton and J.-F. Pradat-Peyre, Automatic verification of concurrent Ada pro-
grams, Ada-Europe’99 International Conference on Reliable Software Technologies
(Santander, Spain), pp. 146-157.

T. E. Cheatham, G. H. Holloway, and J. A. Townley, Symbolic evaluation and
the analysis of programs, IEEE Trans. on Software Engineering 5 (1979), no. 4,
403-417.

J. C. Corbett, Evaluating deadlock detection methods for concurrent software, IEEE
Transactions on Software Engineering 22 (1996), no. 3, 161-180.

L. K. Dillon, Using symbolic execution for verification of Ada tasking programs,
ACM Transactions on Programming Languages and Systems 12 (1990), no. 4,
643-669.

E. Duesterwald, Static concurrency analysis in the presence of procedures, Tech.
Report #91-6, Department of Computer Science, University of Pittsburgh, 1991.

E. Duesterwald and M. L. Soffa, Concurrency analysis in the presence of procedures
using a data-flow framework, Proceedings of the 4th Symp. on Testing, Analysis
and Verification (TAV4), pp. 36-48.

S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz, Application and experimental
evaluation of state space reduction methods for deadlock analysis in Ada, ACM
Trans. on Software Engineering and Methodology 3 (1994), no. 4, 161-180.

T. Fahringer and B. Scholz, Symbolic Evaluation for Parallelizing Compilers, Proc.
of the ACM International Conference on Supercomputing.

D. Long and L. A. Clarke, Data flow analysis of concurrent systems that use the
rendezvous model of synchronization, Proceedings of the ACM Symp. on Testing,
Analysis, and Verification, pp. 21-35.

S. P. Masticola, Static detection of deadlocks in polynomial time, Ph.D. thesis,
Graduate School—New Brunswick, Rutgers, The State University of New Jersey,
1993.

S. P. Masticola and B. G. Ryder, Static infinite wait anomaly detection in polyno-
mial time, Proceedings of the 1990 International Conference on Parallel Processing,
pp. T178-T187.

B. G. Ryder and M. C. Paull, Elimination algorithms for data flow analysis, ACM
Computing Surveys 18 (1986), no. 3, 277-315.

B. Scholz, J. Blieberger, and T. Fahringer, Symbolic Pointer Analysis for Detecting
Memory Leaks, ACM SIGPLAN Workshop on ”Partial Evaluation and Semantics-
Based Program Manipulation” (PEPM’00) (Boston).

E. Stoltz, H. Srinivasan, J. Hook, and M. Wolfe, Static single assignment form for
ezplicitly parallel programs: Theory and practice, Tech. report, Dept. of Computer
Science and Engineering, Oregon Graduate Institute of Science and Technology,
Portland, Oregon, 1994.

R. N. Taylor, A general-purpose algorithm for analyzing concurrent programs, Com-
munications of the ACM 26 (1983), no. 5, 362—376.

M. Young and R. N. Taylor, Combining static concurrency analysis with symbolic
ezecution, IEEE Trans. on Software Engineering 14 (1988), no. 10, 1499-1511.

