
Applying Mobile Agent Technology
to Intrusion Detection

Christopher Kr ügel
chris@infosys.tuwien.ac.at

Thomas Toth
ttoth@infosys.tuwien.ac.at

Distributed Systems Group
Technical University Vienna

Argentinierstrasse 8
A-1040 Vienna, Austria

+43 1 58801 18451

ABSTRACT
The increasing number of network security related incidents
makes it necessary for organizations to actively protect their
sensitive data with the installation of intrusion detection sys-
tems (IDS). Autonomous software agents, especially when
equipped with mobility, promise an interesting design ap-
proach for such applications.

We evaluate the implications of applying mobile agent tech-
nology to the field of intrusion detection and present a tax-
onomy to classify different architectures. Sparta, an actual
implementation of a mobile agent based system which is de-
veloped at our group is described as well.

Keywords
Intrusion Detection, Network Security, Mobile Agents

1 INTRODUCTION
After the concept of intrusion detection (ID) was first estab-
lished in 1980 by Anderson [1] and later refined by Den-
ning in her famous article [6], two major variants of intru-
sion detection systems (IDS) have emerged, namely host and
network based approaches. Host based systems collect lo-
cal data from sources internal to a computer, usually at the
OS level. This has the advantage of collecting high qual-
ity data directly at the source (e.g. kernel). Unfortunately,
some attacks cannot be detected at a single location. Dis-
tributed intrusions may leave innocent marks at each single
host and can only be identified when combining data from a
number of different machines. In addition to that, worms or
telnet chains (i.e. successive logins by an attacker to hide his
tracks) are easier to spot when data from several sources is
considered.

Network based variants monitor packets on the wire by set-
ting the network interface to promiscuous mode and analyz-
ing network traffic. Therefore they have some possibilities
to correlate activities that occur at different hosts, but suffer
from scalability problems in case of high network load and

have problems when encrypted communication is used.

A new approach is the development of distributed architec-
tures, where sensors (host and network based) collect data,
preprocess it and send it to a centralized analyzing station
which is able to relate this input. Such client-server architec-
tures suffer from the following deficits.

• A central analyzer is a single point of failure. When an
intruder manages to put it out of action (e.g. denial-of-
service attack), the whole network loses its protection.

• When all information is processed at a single location,
the system is not scalable. The processing capacity of
the analyzer unit limits the monitored network size and
distributed data collection can lead to excessive data
traffic over the network.

• It is difficult to apply reconfigurations to the sensor sta-
tions. Usually, the whole system has to be restarted after
a modification.

The classic solution to combat these shortcomings is the in-
troduction of several hierarchical layers and redundant com-
ponents. State-of-the-art ID systems like Emerald [13] or
AAfID [3] use that approach.

A peer-to-peer intrusion detection system without a central
processing station is proposed in [15]. All hosts run a lo-
cal ID system and a security manager that can process input
from the local host as well as from other security managers.
These security managers cooperate by message passing to
detect distributed attacks.

A different and interesting approach is taken by systems
which utilize mobile agents to perform distributed intrusion
detection. The aim of this paper is to discuss advantages
and possible drawbacks when applying mobile agents to in-
trusion detection systems. In addition to that, we introduce a
taxonomy which can be used to classify such ID systems and
briefly present our implementation of an ID system called
Sparta, which heavily relies on mobile agents.

2 MOBILE AGENTS
The development of distributed ID systems and the introduc-
tion of software agents to perform intrusion detection lead



to the idea of using mobile agents. Mobile agents offer sev-
eral potential advantages when used in ID systems (see also
[9]) that may overcome limitations that exist in IDS that only
employ static, centralized components (as discussed above).

• Reducing Network Load -Instead of sending huge
amounts of data (e.g. audit files) to the data processing
unit, it might be simpler to move the processing algo-
rithm (i.e. agent) to the data.

• Overcoming Network Latency -When agents operate
directly on the host where an action has to be initiated,
they can respond faster than a hierarchical IDS that has
to communicate with a central coordinator located else-
where on the network.

• Autonomous Execution -When portions of the IDS get
destroyed or separated, it is important for the other
components to remain functional. Independent mobile
agents can still act and do useful work when their cre-
ating platform is unreachable which increases the fault-
tolerance of the overall system.

• Platform Independence -The agent platform allows
agents to travel in a heterogenous environment and in-
serts an OS independent layer between the hosts and the
IDS using agents. This allows IDS to share data (and
build a common knowledge base) as agents from one
organization may visit other ones and collect data there
(if allowed).

• Dynamic Adaption -The mobility of the agents can be
used to reconfigure the system at run-time by having
special agents move to a location where an attack cur-
rently takes place to collect additional data.

• Static Adaption (Upgradability) -It is important for an
(especially misused based) IDS that its attack signature
database and the detection algorithms are up-to-date.
Instead of upgrading and restarting all sensors when
new signatures are available, it is simpler to write up-
dated agents and send them on duty while the IDS keeps
running.

• Scalability -When a central processing unit is replaced
by distributed mobile agents, the computational load
is divided between different machines and the network
load is reduced. This enhances scalability and addition-
ally supports fault-resistant behavior.

Unfortunately, the introduction of agents and agent platforms
may also cause the following problems [8].

• Security -Introducing agents into an IDS causes several
security implications that must be considered. On one
hand, the host (and the agent platform) where an agent
gets executed must be protected against malicious code.
This can be done by signing agent’s code and providing
a valid certificate, that can be checked by the platform.
On the other hand, agents can be modified or be subject

to an eavesdropping attack when they move over the
network. This might be prevented by encrypting agents
in transit. Additionally, mobile agents can be attacked
by a malicious agent platform itself. This threat is ex-
tremely difficult to fight when agents need unrestricted
movement around the network [7].

• Code Size -An IDS is a complex piece of software
and agents that implement its functionality might get
rather large. Transferring the agent’s code over the net-
work may take some time, but it is only needed once,
when each host stores agent code locally. [8] claims
that agents get especially large when they encode op-
erating system dependant parts, but one might consider
putting these routines into the agent platform and offer a
generic interface to agents (effectively overcoming this
drawback).

• Performance -Agents are often written in scripting or
interpreted languages to be easily ported between dif-
ferent platforms. This mode of execution is very slow
compared to native code. As an IDS has to process a
large amount of data under very demanding timing con-
straints (near real-time), the use of MAs could degrade
its performance.

An important aspect of an IDS is its capability to detect
multi-point attacks. It is a question under research, how
agents can efficiently collect and analyze only parts of the
data. Instead of moving huge amounts of data to a central
point, the idea is to utilize mobile agents. They can work
in a collective fashion without simply carrying the whole
data with them (which would in fact increase network load).
Our proposed solution to this problem (that has been imple-
mented in Sparta) is described in Section 4.

Additionally, agent systems could be used to create more at-
tack resistant architectures. When a couple of aggregating
processing units are replaced by a fully distributed agent sys-
tem, the number of weak points is reduced. Agents act like
a colony of insects when working towards a common goal.
Nevertheless, it remains an open question how a global sys-
tem view can be established by independent agents without
a central coordinator.

Agents can be seen as guards, which protect a network by
moving from host to host and performing random sampling.
Instead of monitoring each host at any time, agents only
visit machines from time to time to conduct their examina-
tions. When any anomaly is detected, a more comprehen-
sive search is initiated. Although the metaphor of patrolling
guards seems appealing at first, this approach has the dis-
advantage of leaving hosts vulnerable while no agents are
present. On the other hand, random sampling definitely re-
duces the average computational load at each machine.

3 CLASSIFICATION
A number of taxonomies for intrusion detection systems as
well as for agent systems (e.g. [12]) exist. Nevertheless,



the application of agents in the context of intrusion detec-
tion raises issues which aren’t sufficiently dealt with in either
classification. Therefore, we have created a new taxonomy
model for ID systems that utilize agents.

The following points are of interest for our model.

• Agent Tasks -Agent based intrusion detection systems
utilize agents for different tasks. One can imagine a
number of different designs, where agents fulfill parts
or the whole functionality of the ID system. The basic
functional parts of an IDS are (according to [10]) data
gathering, data processing, data storage and response
components. Data gathering is needed to collect in-
formation from various sensors to get a picture of the
system state. Data processing is necessary to extract
potential attacks from the often enormous amounts of
raw data delivered by the data gathering unit and the re-
sponse component is used to react on an intrusion (e.g.
notify an administrator, reconfigure the firewall). The
data storage serves as a persistent storage for collected
data for later analysis and correlation.

All of these parts can be implemented by agents, where
most of the time, at least data gathering and processing
is realized directly by them. It is interesting to know for
a system whether it realizes data gathering, data pro-
cessing, data storage or response components as agents.

• Attack Description -An interesting characteristic of
agent based IDS is the way that users may specify in-
trusion scenarios which should be discovered by agents.
Three possible ways can be identified. A common
way is to implicitly describe attacks by providing code
that directly operates on data structures delivered by
data gathering components. The code itself determines
whether an intrusion has occurred by processing the in-
put and calling appropriate response functions.

Another possible way that separates ID systems into
components is the specification of scenarios in an
application-specific scripting language. Usually, one is
supported by predefined data types (e.g. IP packets) or
a rudimentary way of expressing timing constraints.

The last approach is a special language which allows
the security officer to define attack patterns which con-
sist of a set of events that can be spatially and tempo-
rally related. The description of the attack is translated
into rules and code, which can directly be processed by
agents. This has the advantage of an intuitive descrip-
tion of the attack scenario.

The shown description methods are listed in increas-
ing order of expressiveness. For each system, the kind
of used language is an important design decision. A
simple language might be easier to implement, but it
can fail when new, distributed scenarios should be de-
scribed. When choosing an extensive language the sys-
tem design gets more complicated.

• Data Relation -A challenging issue when building an
IDS is its mechanism to relate information from differ-
ent sources. A common way is to rely on a client-server
architecture, where client nodes forward their sensor in-
formation to a central analyzer component. This ap-
proach suffers from scalability problems when the num-
ber of clients grows and introduces a single point of fail-
ure into the system. Standard approaches like replica-
tion or additional hierarchical layers mitigate the neg-
ative impacts but do not attack the core problem it-
self. An alternative variant is a fully distributed design,
where all nodes are equal and form temporary groups
to detect distributed attacks. This approach offers im-
proved fault-tolerance and scalability, but suffers from
difficulties when coordinating the cooperating hosts.

Systems which use central entities have to attack totally
different issues than distributed ones. A design with a
central processing unit has to deal with the weaknesses
of a single point of failure and faces potential perfor-
mance and scalability problems. Distributed systems on
the other hand have to solve the problems of ordering
events from different sources (time synchronization) or
coordinating and locating agent activities.

Another issue is the cooperation and communication
between agents themselves. When agents can work to-
gether and in parallel to solve a common task, a system
scales better than one, where a single agent has to visit
every interesting host sequentially.

• Persistency -Two different types of agents are possi-
ble. One type (called transient) is launched by a cen-
tral station or by another agent to perform a single, spe-
cific task. After results have been delivered, the agent
itself vanishes. Such agents are mainly used for data
gathering tasks. The other type (called persistent) are
agents, that remain active for a longer period of time.
Such agents have the ability to accumulate knowledge
over time and react differently to identical stimuli. They
roam the network on their own initiative and usually
follow a broader range of activities. They can be con-
sidered as permanent guards that hop from host to host
to perform checks.

It is important to distinguish between these agent types
because persistent agents have the ability to modify
their reactions throughout their lifetime. Systems uti-
lizing persistent agents can adopt to certain threat sce-
narios while transient agents usually cannot.

4 INTRUSION DETECTION SYSTEMS
Only a few research projects have already attempted to in-
corporate some ideas of mobile agent technology into intru-
sion detection systems. One called Micael [5] aims to realize
the entire system functionality with mobile agents. Although
the architectural description is interesting no implementation
has been provided so far. Recently, another system which



is based on mobile agents has been introduced in [4]. Un-
fortunately, only an design overview is presented while the
actual detection and correlation mechanism is dealt with su-
perficially. IDA [2] is a classic host based system which
uses agents to track attackers and perform active response
(i.e. counterattacks). A few other systems, which claim to
use agents in some way do not really fit our area as those
agents are static. The most known one is AAfID [3], an ar-
chitecture where distributed sensors are called autonomous
agents. These agents cooperate in a client-server fashion by
sending data to central stations where it is further processed.
Although mobility is not an issue AAfID is frequently ref-
erenced in the descriptions of the systems mentioned above.
Several other agent based systems without mobility are listed
in [8].

The following subsection briefly describes Sparta, the sys-
tem which is currently developed at our group. It should act
as a proof of concept which demonstrates that the potential
advantages of mobile agents for ID systems can actually be
realized.

Sparta
Sparta [11] (which is an acronym for Security Policy Adap-
tation Reinforced Through Agents) is the name of a project
sponsored by the European Union. It is a system whose
primary aim is to detect security violations in a heteroge-
nous, networked environment. Nevertheless, the architecture
which has been designed for Sparta targets a broader range of
applications, ranging from network management to intrusion
detection.

Sparta is an architectural framework which helps to identify
and relate interesting events that may occur at different hosts
of a network. In addition to the detection of interesting pat-
terns, Sparta can also be utilized to collect statistical data (i.e.
extreme value or sum of attribute values) of certain events.

The system monitors local events at a number of hosts con-
nected by a network. In order to deal with complex patterns,
it is not sufficient to select events based on content alone. It
is necessary to consider multiple events at the same time and
deduce knowledge that is beyond the scope of an individual
event (a process calledcorrelation).

Each host has at least a local event generator, a storage com-
ponent and the mobile agent platform installed. The local
event generation is done by sensors which monitor interest-
ing occurrences on the network or at the host itself. The ex-
act types of events and their attributes is determined by the
application’s needs. In the current setup, we use Snort [14]
to extract interesting events from network traffic. The events
are stored in a local databases for later retrieval by agents.
The mobile agent subsystem is responsible for providing a
communication system to move the state and the code of
agents between different hosts and for providing an execu-
tion environment for them. Additionally, the system has to
provide protection against security risks involved when uti-

lizing mobile code. Most of the components are written in
Java and the agent platform itself rests on Gypsy [12], a Java
based system which has been developed at Technical Univer-
sity Vienna.

The goal of Sparta is the design of a mobile-agent based IDS
that identifies and improves potential shortcomings of other
intrusion detection system designs. The following three is-
sues are addressed.

To support our detection algorithm and to address the prob-
lem of systems which only offer an implicit way of spec-
ifying attack scenarios, we have designed an attack pat-
tern language (called EQL). This language allows us to ex-
press offending event correlations in a declarative manner
where one can specify what to detect instead of how to de-
tect. The primary language design objective is the reduc-
tion of the needed amount of transferred data while still re-
taining enough expressiveness to be usable for most situa-
tions. When a system uses mobile code (i.e. mobile agents),
it should aim at performing flexible computation remotely
at the location where the interesting data is stored. This
resulted in the limitation of restricting patterns to tree-like
structures when events between nodes are involved. For
events that occur at a single node virtually arbitrary correla-
tions are allowed. In addition to the specification of patterns,
EQL also allows us to define simple statistical queries. These
can deliver the number of authentication failures of a certain
user or identify the maximum number of processes running
at a single machine of the monitored network.

We realized a correlation mechanism which does not rely on
(one or more) central server locations where data is gathered
and related. Instead, it follows a fully distributed approach.
Mobile agents locally select interesting information and only
move parts of the data across the network. When detecting
patterns agents first try to find actual events which are spec-
ified by (and match) the root node of a given tree pattern.
When the root node is located, the agents follow the branches
of the tree to detect events that match the root’s predeces-
sors. This process is recursively applied until the whole tree
has been matched. With this algorithm only very few data
has to be carried by agents during each hop (for a complete
description of the detection process refer to [11]). The de-
tection algorithm is performed by multiple agents in parallel
which improves scalability, fault tolerance and performance
of the system when compared to a client-server variant.

While many agent systems use some way of encryption and
authentication when agents are sent over the network, most
of them lack a pubic key infrastructure (PKI). We address
this issue in Sparta by providing such a PKI to manage our
cryptosystem. Sparta utilizes an asymmetric (public/private
key pair) cryptosystem to exchange private keys which are
needed to secure agents when they are transfered over the
network. The agent code is signed and can be authenticated
before it is executed (to protect the platform). The signature



is also used to determine the set of permissions an agent is
granted when executing on a platform.

In our opinion, the contribution of Sparta is the description
of a system architecture to collect and correlate distributed
data in an efficient way by using mobile agents. It can be
used for intrusion detection, but other network applications
are possible as well.

5 CONCLUSION
Although the possible advantages of mobile agents seem im-
pressive at first, only a few systems use them to perform se-
curity related tasks. This stems from the fact that the benefits
are not introduced automatically and often the disadvantages
outweigh the intended improvements. IDA employs mobile
agents mainly for tracing purposes while Micael and Sparta
have more ambitious aims. In these systems, mobile agents
actually carry out the event correlation.

Our goal in Sparta is to demonstrate that it is possible to
beneficially apply agents to intrusion detection systems. We
have recently finished a first prototype system to support our
claims. The scalability, performance and fault tolerance can
be improved when mobile agents perform distributed detec-
tion and don’t need a central location where data is gathered.
Nevertheless, the designer has to be careful that the amount
of transfered data is not increased.

REFERENCES

[1] J. P. Anderson. Computer security threat monitoring
and surveillance. Technical report, James P. Anderson
Co., Box 42, Fort Washington, February 1980.

[2] M. Asaka, A. Taguchi, and S. Goto. The implemen-
tation of ida: An intrusion detection agent system. In
Proceedings of the 11th FIRST Conference, June 1999.

[3] J. S. Balasubramaniyan, J. O. Garcia-Fernandez,
D. Isacoff, E. Spafford, and D. Zamboni. An architec-
ture for intrusion detection using autonomous agents.
In 14th IEEE Computer Security Applications Confer-
ence, December 1998.

[4] M. C. Bernardes and E. dos Santos Moreira. Implemen-
tation of an intrusion detection system based on mobile
agents. InInternational Symposium on Software En-
gineering for Parallel and Distributed Systems, pages
158–164, 2000.

[5] J. D. de Queiroz, L. F. R. da Costa Carmo, and
L. Pirmez. Micael: An autonomous mobile agent sys-
tem to protect new generation networked applications.
In 2nd Annual Workshop on Recent Advances in Intru-
sion Detection, Rio de Janeiro, Brasil, September 1999.

[6] D. Denning. An intrusion-detection model. InIEEE
Symposium on Security and Privacy, pages 118–131,
Oakland, USA, 1986.

[7] W. Jansen and T. Karygiannis. Mobile agents and se-
curity. Special Publication 800-19, NIST, September
1999.

[8] W. Jansen, P. Mell, Karygiannis, and D. Marks. Apply-
ing mobile agents to intrusion detection and response.
Interim Report (IR) 6416, NIST, October 1999.

[9] W. Jansen, P. Mell, T. Karygiannis, and D. Marks. Mo-
bile agents in intrusion detection and response. In
12th Annual Canadian Information Technology Secu-
rity Symposium, Ottawa, Canada, June 2000.

[10] C. Krügel and T. Toth. A survey on intrusion detection
systems. Technical Report TUV-1841-00-11, Univer-
sity of Technology, Vienna, 2000.

[11] C. Krügel and T. Toth. Sparta - a security policy re-
inforcement tool for large networks. Insubmitted to
I-NetSec 01, 2001.

[12] W. Lugmayer. Gypsy: A component-based mobile
agent system. In8th Euromicro Workshop on Paral-
lel and Distributed Processing (PDP 2000), Rhodos,
Greece, January 2000.

[13] P. A. Porras and P. G. Neumann. Emerald: Event
monitoring enabling responses to anomalous live dis-
turbances. InProceedings of the 20th National Infor-
mation Systems Security Conference, October 1997.

[14] M. Roesch. Snort - lightweight intrusion detection for
networks. InUSENIX Lisa 99, 1999.

[15] G. B. White, E. A. Fisch, and U. W. Pooch. Co-
operating security managers: A peer-based intrusion
detection system.IEEE Network, pages 20–23, Jan-
uary/February 1996.


