
Web Service Engineering with DIWE

Engin Kirda�, Clemens Kerer�, Christopher Kruegel�and Roman Kurmanowytsch�

�Technical University of Vienna, Distributed Systems Group
Argentinierstr. 8, 184/1 1040 Vienna, Austria

�E.Kirda,C.Kerer,R.Kurmanowytsch�@infosys.tuwien.ac.at

�University of California, Santa Barbara
CA 93106, USA

chris@cs.ucsb.edu

Abstract

A Web service is frequently defined as browser-less ac-
cess to content on a Web site. The industry’s focus to date
has been on providing easy-to-use low-level libraries, tools
and technologies to enable the rapid construction of Web
services. The problem of how to support the automatic in-
tegration of Web services into Web sites has received less
attention. In this paper, we describe and show how SOAP-
based Web services can be modeled, implemented, com-
posed and automatically integrated into Web sites using the
Device-Independent Web Engineering (DIWE) framework.
The framework provides support for the separation of lay-
out, content and application logic in Web sites and automat-
ically generates Web service support for the browser-less
access to the content and the functionality.

Keywords: Web Service Engineering, Web Services,
SOAP, Modeling and Integrating Web Services into Web
sites

1 Introduction

Until the late 90s, the focus of Web research has been
the development of tools, technologies and methodologies
for the design, implementation and maintenance of HTML-
based Web sites. The common assumption was that a Web
site would always be accessed by a browser found on a per-
sonal computer or a laptop. Concurrently with the miniatur-
ization and widespread availability of processors have come
advances in networking capabilities, enabling ever more de-
vices to communicate with each other by connecting to ex-
isting network infrastructures such as the Internet, the tele-
phone network, or private company or home intranets. The

Web of the future will not only be accessed by users using
their personal computers and laptops, but by users using a
wide variety of Web devices (any hardware or software that
can be used to access Web content[19]) such as telephones
equipped with speech recognition software, watches, digi-
tal televisions and Personal Digital Assistants (PDAs). One
of the next challenges faced by the research community and
the World Wide Web Consortium (W3C) is the definition
of standards, tools and technologies for the “browser-less
Web”.

The W3C’s eXtensible Markup Language (XML) and
eXtensible Stylesheet Language (XSL) standards have
paved the way in creating the browser-less Web by provid-
ing a basic flexible infrastructure to independently define
content and presentation (i.e., layout) information and ex-
change data among parties on the Web. The XML and XSL
standards have been designed to eliminate HTML’s short-
comings such as its poor support for flexibility and device-
independence.

Although the term Web Service has been used since
the mid 90s to describe the collection of static and dy-
namic information offered to users on a Web site (e.g.,
see [7, 13, 18, 21]), it is now often being used to de-
note browser-less access to content on a Web site (e.g., see
[1, 8, 23]).

In order to keep a consistent meaning in the context of
this paper, we define the following terms:

� Web Service: An XML-based content delivery mech-
anism which is primarily intended for machine-to-
machine communication. A Web service provides
browser-less access to Web content.

� Web page: Static or dynamic content on a Web site
that is intended for browser-access and that is accessi-



ble through a unique URL.

� Web site: Collection of Web pages and Web services
in a single domain (e.g., the Web site of a company).

The industry’s focus to date has been on providing easy-
to-use low-level libraries, tools and technologies to enable
the modeling and the rapid construction of Web services.
The problem of how to support the automatic integration of
Web services into Web sites has received less attention.

The Simple Object Access Protocol[25] (SOAP) is one
technology that has gained popularity and has raised inter-
est. SOAP is an XML-based lightweight protocol for ex-
change of information in a decentralized, distributed en-
vironment. SOAP can potentially be used in combination
with a variety of transport protocols (e.g., SMTP, FTP), but
it is generally used in combination with HTTP. Companies
such as Microsoft and IBM have been integrating SOAP
support into their most recent products (e.g., the .NET plat-
form). SOAP was submitted to the W3C for the formation
of a working group in the area of XML-based protocols and
to standardize the work (i.e., the W3C Working Group on
XML Protocol[26]).

In this paper, we present an approach to model, im-
plement, integrate and compose Web services into Web
sites with the DIWE (Device-Independent Web Engineer-
ing) framework. The framework provides support for the
separation of layout, content and application logic in Web
sites and automatically generates Web service support for
the browser-less access to the content and the functionality.
We have used DIWE to engineer parts of the Web site of the
annual Vienna International Festival.

This paper is structured as follows: Section 2 gives a
brief overview of the DIWE framework. Section 3 discusses
how Web services are used in DIWE and demonstrates how
they can be implemented, integrated and composed to build
Web sites. Section 4 presents related work, Section 5 briefly
presents a case study and Section 6 concludes the paper.

2 Brief overview of DIWE

The DIWE framework consists of the MyXML language,
a compiler that can interpret the language and several run-
time components that are configured and deployed on the
Web server to provide access to the Web site. The frame-
work supports the design, implementation, deployment and
maintenance stages of Web sites[17]. Figure 1 illustrates the
different stages DIWE supports. For each Web page that
is modeled and built using DIWE, Web services that pro-
vide browser-less access to the contents of the page are au-
tomatically generated. Furthermore, the framework allows
the integration and composition of external Web services in
building new Web pages and sites.

During the design stage of a Web site, the content, layout
and the application logic are designed and defined. The ap-
plication logic is written using a technology of choice such
as Java servlets.

MyXML Language (Content)
+

XSL
=

Static or Dynamic Content, Web services

Static or Dynamic Content,
Web services

+
Application Logic

=
Web Application

Layout Changes
Content Management

Design

Implementation

Deployment

Maintenance

Content Definition
Layout Definition
Application Logic

Definition

Figure 1. Web site design, implementation,
deployment and maintenance with DIWE

A Web page in DIWE is modeled with the MyXML
language. The layout is defined using XSL stylesheets.
The MyXML language supports the complete Lay-
out/Content/Logic (LCL) separation and is used by the Web
developers to design and define the content, the interfaces
to the application logic and the integration and composition
rules for external Web services.

During the implementation stage, a MyXML language
compiler integrates the layout and generates static content
embedded in HTML or XML, or source code that provides
interactive functionality. Web services are also automati-
cally generated that provide browser-less access to the con-
tent.

The MyXML language used for Web page and service
specification is a simple XML-based language that uses
loops, variables and database access functions. One of
main advantages of an XML-based Web specification lan-
guage is that it allows the definition of functionality that
is technology-independent. Any popular programming or
scripting language can be generated from the XML and



XSL specifications with an appropriate MyXML language
compiler. A complete description of the MyXML language
is beyond the scope of this paper. The reader is referred to
[15, 17] for more information.

In the deployment stage, the resulting dynamic or static
content and the corresponding Web services are deployed
on the Web server along with the application logic.

During the maintenance phase, layout changes are inte-
grated by adapting the XSL layout definitions and the con-
tent in XML files is managed.

3 DIWE and SOAP-based Web Services

The Web service support in DIWE consists of three
parts: Service creation, service integration and service com-
position. Service creation denotes the modeling and imple-
mentation of SOAP-based Web services. Service integra-
tion denotes the inclusion of an external Web service into
a Web page or Web service that is being created. For ex-
ample, accessing and retrieving content from an external
weather reporting service and displaying it in a Web page
is service integration. Service composition, on the other
hand, denotes the creation of a new Web page or Web ser-
vice by integrating two or more external services. For ex-
ample, showing stock information that is retrieved from an
external stocks service based on the current time from a time
service is a typical example of Web service composition.
Web service composition includes the interactions between
independent, distributed Web services (e.g., retrieving con-
tent from one service and passing it to another as input).

The prototype implementation of the DIWE framework
uses the Apache SOAP toolkit[3], JLex[6] and JCup[2] for
the code generation, and Apache Xerces[4] and Xalan[5] as
the XML and XSL processors. In the prototype, Java source
code (i.e., Java class definitions) are generated.

In Section 3.1, 3.2 and 3.3, we give simple examples
of flexible service creation, integration and composition in
DIWE.

3.1 Web service creation

Imagine we are building a Web page with DIWE. The
page has a form where one can enter and submit the
(unique) last name of a person and receive her phone num-
ber as a result.

Every Web page that is created in DIWE is also auto-
matically a Web service. For every page that is created with
the MyXML compiler, a corresponding Apache SOAP de-
ployment descriptor in XML is generated. The name of the
generated service is always of the form �Generated Page
Name�Soap (e.g., for the generated dynamic page Pho-
neNumber it would be PhoneNumberSoap).

The Apache deployment descriptor is used to install a
Web service so that it is accessible over the Web via SOAP
using the Apache SOAP Toolkit. The descriptor provides
information to clients about this service such as the param-
eters it accepts and the method calls it exports. Figure 2
depicts the generated deployment descriptor for the phone
number page.

Constructs of the MyXML language (e.g., database
queries) are processed by the MyXML compiler and code
is automatically generated that exports contents via SOAP.
For example, Figure 3 shows the part of the generated Java
code for the phone number example we gave that is used for
SOAP invocations. Note that the code wraps the results of
the database query into an XML stream of the form�soap�
�phoneList phoneNumber/��/soap�.

The name of the tags are generated based on the default
values of the query and database field names. However,
the MyXML language provides means to process the XML
stream that is generated by using an XSL stylesheet to se-
lect and adapt it. Hence, the developer can adapt the content
generated by the SOAP interface according to the require-
ments. It is possible to have less or more information of-
fered over the SOAP interface than the generated Web page.
This setting would be used, for example, if the developer
would like to display first names and last names in the Web
page, but only last names in the SOAP interface and vice-
versa.

3.2 Web service integration

Now that we have created a Web page and Web service
in the previous section, suppose we would like to integrate
this service into another page with a different look-and-feel
(i.e., layout).

To create this new page, we first model the page with the
MyXML language. Then we define the layout information
in an XSL file and invoke the MyXML compiler. Figure
4 depicts the integration of an external Web service con-
tent into the new Web page. The �myxml:soap� element
from the MyXML language namespace is used to choose
the external service, indicate the URL it can be accessed by
and pass it parameters it requires. In this case, we are ac-
cessing the PhoneNumberSoap service that we just created
and which is located on the server kirda.kerer.at. We pass
to this service the CGI parameter theName that we accept
in our page. You can see the mapping between the theName
CGI parameter that we accept and the nameParameter pa-
rameter that the service we are accessing accepts.

When the MyXML compiler is invoked, it sees that we
would like to integrate a SOAP service into our page and
when the Java code is created, the functionality necessary
for accessing this SOAP service as a client is generated by
the compiler.



<isd:service xmlns:isd=“http://xml.apache.org/xml-soap/deployment“
id=“urn:PhoneNumberSoap“>

<isd:provider type=“java“ scope=“Request“ methods=“printSoapData“>
<isd:java class=“PhoneNumber“ static=“false“/>
</isd:provider>
<isd:faultListener>

org.apache.soap.server.DOMDefaultListener
</isd:faultListener>
<isd:mappings>
</isd:mappings>
</isd:service>

Figure 2. Generated deployment descriptor for the Apache SOAP toolkit

<…>
if (soapMode> out.println(“<phoneList_phoneNumber>“);

out.println(phoneList.getString(“phoneNumber“));
if (soapMode) out.println(““</phoneList_phoneNumber);
<…>

public String printSoapData(Hashtable hash) {
this.hash=hash;
soapMode=true;
ByteArrayOutputStream bout = new ByteArrayOutputStream();
PrintWriter out = new PrintWriter(bout);
out.println(“<? xml version=\“1.0\“ ?>\n<soap>“);
printContentsImpl(out);
out.println(“</soap>“);
out.flush();
return bout.toString();

}

Figure 3. Part of the code generated for SOAP

The Java code accesses the SOAP service at run-time
and retrieves XML content from it. This is where post-
stylesheets are used. To be able to add a layout to this XML
content, the developer provides another XSL stylesheet.
This post-stylesheet is used at run-time to format the XML
content received from the external Web service and to inte-
grate it into the page.

The use of post-styles and external Web services requires
knowledge about the XML structure of the result the service
returns. Before integrating a service, the developer needs to
check and find out the structure and the semantics of the in-
formation the service is offering (e.g., by use of Document
Type Definitions (DTDs), XML Schemas, Web Service De-
scription Language, or accompanying human-readable tex-
tual descriptions – in the prototype implementation, we do
not support automatic DTD, WSDL or XML Schema gen-

eration yet).
Note that the new page we just created also has a gener-

ated Web service interface itself. In the example we gave,
the new service takes the parameters that it receives and
contacts the PhoneNumberSoap service that actually pro-
vides the functionality. It passes the results it receives from
PhoneNumberSoap directly back to the client. Hence, it is
possible to build services that depend on other services.

3.3 Web service composition

The ability to integrate an external Web service into a
Web page is useful in many situations. For example, a
weather information Web site would probably like to en-
able external Web sites to integrate the weather news into
their sites and to enable various Web devices to access and



<phoneNumberIntegrator
xmlns:myxml=“http://www.infosys.tuwien.ac.at/ns/myxml“>

<soapCall>
<myxml:soap>

<myxml:urn> PhoneNumberSoap </myxml:urn>
<myxml:url>
http://kirda.kerer.at:8080/soap/servlet/rpcrouter
</myxml:url>
<myxml:parameter>
nameParameter,<myxml:cgi>theName</myxml:cgi>
</myxml:parameter>

</myxml:soap>
</soapCall>
</phoneNumberIntegrator>

Figure 4. Integrating a Web service into a page

<phoneNumberComposer
xmlns:myxml=“http://www.infosys.tuwien.ac.at/ns/myxml“>

<getPhoneNumber>
<myxml:soap name=“PhoneNumber“ visible=“false“>

<myxml:urn> PhoneNumberSoap </myxml:urn>
<myxml:url>
http://kirda.kerer.at:8080/soap/servlet/rpcrouter
</myxml:url>
<myxml:parameter>
nameParameter,<myxml:cgi>theName</myxml:cgi>
</myxml:parameter>

</myxml:soap>
</getPhoneNumber>

<getAddress>
<myxml:soap visible=“true“>

<myxml:urn> AddressSoap </myxml:urn>
<myxml:url>
http://kirda.kerer.at:8080/soap/servlet/rpcrouter
</myxml:url>
<myxml:parameter>
address,<myxml:reference>PhoneNumber</myxml:reference>
</myxml:parameter>

</myxml:soap>
</getAddress>
</phoneNumberComposer>

Figure 5. Composing a Web service from two other services



process the content in XML.
Taking the integration example we gave in the previous

section a little further, sometimes it would also be useful
to combine Web services and to allow them to interact with
each other.

Imagine we would like to find a person’s address after we
have found his/her phone number using the PhoneNumber-
Soap service. Suppose there is already an existing service
that does this. This service accepts a phone number as pa-
rameter and returns the address as result. Such services are
sometimes offered by phone companies.

Figure 5 shows how services can be composed using the
MyXML language. Note that composition is similar to in-
tegration. The first �myxml:soap� definition has a name
and visible attribute. The first attribute gives a name to the
�myxml:soap� block so that it can be referenced later. The
second attribute, visible, indicates that the content delivered
by this SOAP Web service does not need to be displayed
on the Web page. The second �myxml:soap� block does
not have a visible attribute. Hence, the default reaction of
the processor is to integrate the content into the page after
it has been processed with a post-stylesheet. Note that the
�myxml:parameter� in the second block takes the result of
the first SOAP block and sends it to the Address Soap ser-
vice (using�myxml:reference�). Both services are located
on the server kirda.kerer.at.

This composition mechanism is a simple, but effective
way of constructing Web services and creating Web pages
that use external content. The example given in Figure 5 is
again a Web service itself that depends on two other Web
services.

4 Related Work

For the last couple of years there has been a growing
interest in Web services. Much has been written about tech-
nologies, solutions and frameworks for building Web ser-
vices and large companies such as Sun Microsystems, Mi-
crosoft and IBM have been active in the area.

There have recently been proposals for XML-based
Web service composition languages such as Microsoft’s
XLANG, IBM’s Web Service Flow Language (WSFL), and
their joint Business Process Execution Language [12]. In
[24], a high-level, UML-based approach is presented for
modeling and composing Web services. These approaches,
however, solely focus on the integration and composition
of Web services whereas the approach we present in this
paper focuses on the integration and composition of Web
services into Web sites. We, therefore, view a Web service
as functionality that complements the typical functionality
provided by a Web site and focus on the Web engineering
problem [11] of using Web services.

Sun has been advocating the Open Network Environ-
ment (ONE) which, according to Sun’s definition[23], is a
platform “to provide a flexible and cost-effective environ-
ment where data, applications, reports and transactions can
be developed, deployed, discovered and utilized”. In [23],
Sun advocates that Web services are not anything new and
are “self describing software components that can automat-
ically discover and engage other Web components to com-
plete tasks over the Internet”.

Microsoft’s ASP.NET framework has extensive support
for the creation of Web pages and Web services. The Visual
Studio graphical development environment enables Web de-
velopers to rapidly create Web pages, Web sites and Web
services. For example, in Microsoft’s C# (and other .NET
languages) it is easy to export C# methods as Web services.
Furthermore, C# code that is written can easily be installed
as a dynamic Web application in the platform. However, the
way .NET deals with Web applications and Web services is
still quite low-level. Web service integration and composi-
tion are only supported in the code-level where the devel-
oper has to write the code herself. The framework lacks a
higher-level, language-independent model for dealing with
Web pages, sites and services.

IBM Alphawork’s Web Services Invocation Framework
(WSIF)[1] provides an API to invoke services, no matter
how or where the service is. It uses WSDL descriptions
to retrieve information about services and allows the pro-
grammer to work with representations of services instead
of working directly with SOAP APIs. The programmer can
work with the same programming model regardless of how
the service is implemented and accessed. Although WSIF
provides a higher-level abstraction in dealing with Web ser-
vices, it is still a programming library and does not provide
any support for Web page creation or any higher-level sup-
port for Web service integration or composition.

Much has also been written about methodologies, tools
and technologies to develop Web applications and Web
sites. Well-known Web application development method-
ologies such as the Object-Oriented Hypermedia Devel-
opment Methodology[22] (OOHDM) and the Relation-
ship Management Methodology[14] (RMM) are hypertext-
based and do not consider issues involved in the construc-
tion of Web services.

Web development tools such as Strudel[9] and
WebML[7] deal with Web requirements such as lay-
out flexibility, multi-device access to Web content and
content integration from heterogeneous data sources.
However, they do not tackle new Web site problems such
as the ability to create and maintain Web pages and sites
from distributed, external Web services.

An extensive survey of methodologies, technologies and
tools for Web site development can be found in [10]. We
note, however, that none of the tools or approaches dis-



cussed in the survey directly deal with or support Web ser-
vices as we do.

To our knowledge, the most similar Web development
framework to DIWE is the Apache Cocoon project[20]. Co-
coon supports the separation of Layout, Content and Logic
and has a flexible architecture. While Cocoon has a rich
set of tools for publishing Web documents, the eXtensible
Server Pages (XSP) technology that it uses still mixes lay-
out and logic to a certain degree. Cocoon has become highly
flexible in the new Cocoon 2 framework and has recently
started supporting the integration of SOAP Web services
into Web pages using a technique that is similar to that in
DIWE. Unlike DIWE, however, Cocoon does not support
the automatic generation of Web services.

5 Case study

Since 1995, our group has been managing and imple-
menting the Web presence of the Vienna International Festi-
val (VIF). We have been using the VIF Web site as a test-bed
for the techniques and tools we have developed. The VIF is
a major cultural event in Vienna that lasts five weeks. The
festival attracts tourists and visitors from around the globe
and during the festival, events such as operas, musicals and
art exhibitions are organized in different parts of the city.
The festival Web site offers detailed information about the
events that are taking place and an e-commerce component
enables visitors to buy tickets online.

We have built a version of this e-commerce component
with DIWE that also provides browser-less access using the
automatically generated Web services. The component can
be accessed via the traditional HTML-based Web interface
or the automatically generated SOAP Web service interface.
Parts of the VIF site were also reconstructed by integrating
and composing Web services.

Although run-time XSL transformations with post-
stylesheets do not cause significant performance problems
in the case-study we implemented, we note that there is
a need to investigate performance issues in such systems
that depend heavily on XSL transformations. XSL transfor-
mations are especially critical if a Web service is returning
large volumes of XML content.

Building Web sites based on Web services can be more
complex than traditional XML/XSL-based Web site engi-
neering as a higher number of XSL stylesheets and depen-
dencies are involved. As reported in [16], the planning over-
head of XML/XSL-based Web sites is higher than HTML-
based Web sites. This complexity may increase with the
integration of Web services. Nevertheless, the flexibility
achieved through the deployment of such concepts usually
pays-off during the maintenance phase because the func-
tionality and content can often be re-used. For example,
instead of writing new code to extract information from a

database, we can contact an existing service and select the
information using XSL stylesheets. This also enables us to
put different user interfaces on top of the same information,
thus providing support for different Web devices.

6 Conclusion

The importance of browser-less access to content on the
Web will continue to increase in the near future. Web sites
will need to support a wide variety of Web devices, XML
dialects and interfaces.

Most existing Web service tools and technologies are
code-dependent and do not address the Web engineering
problem of integrating and composing Web pages and sites
from Web services. The industry has mainly been focused
on providing easy-to-use low-level libraries, tools and tech-
nologies to enable the rapid construction of Web services.
Although these tools and technologies can be used to im-
plement the examples we presented in this paper, multi-
ple versions of Web pages, services and applications often
need to be provided in parallel (e.g., the construction of an
HTML-based application and a separate SOAP-based ap-
plication for browser-less access) and the effort necessary
is thus higher.

In this paper, we focused on the problem of using
Web services in constructing Web sites and described
and showed how SOAP-based Web services can be mod-
eled, implemented and composed into Web sites using the
Device-Independent Web Engineering (DIWE) framework.
The framework provides support for the separation of lay-
out, content and application logic in Web sites and automat-
ically generates Web service support for the browser-less
access to the content and the functionality.

Acknowledgments

The authors thank the Vienna International Festival for
their financial support and cooperation during the develop-
ment of the DIWE framework.

References

[1] Alphaworks.
Web Services - http://www.alphaworks.ibm.com/webservices.

[2] S. Anian. JCup: CUP Parser Generator for Java -
http://www.cs.princeton.edu/ appel/modern/java/CUP/ ,
2001.

[3] Apache.
SOAP Toolkit Homepage - http://xml.apache.org/soap,
2001.

[4] Apache. Xerces XML Parser - http://xml.apache.org/xerces-
j , 2001.

[5] Apache.
Xalan XSL Processor - http://xml.apache.org/xalan-j , 2001.



[6] E. Berk. JLex: A Lexical Analyser Generator for Java-
http://www.cs.princeton.edu/ appel/modern/java/JLex/,
2001.

[7] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Lan-
guage (WebML): a modeling language for designing Web
sites. In Proceedings of the 9th World Wide Web Conference,
Amsterdam, Netherlands, volume 33 of Computer Networks,
page 137 157. Elsevier Science B.V, May 2000.

[8] Developmentor. Essential .NET :Component Development
with C#, 2001.

[9] M. Fernandez, D. Florescu, J. Kang, and A. Levy. Catching
the Boat with Strudel: Experiences with a Web-Site Man-
agement System. In Proceedings of Sigmod ’98, Seattle,
Washington, USA, page 414 425, June 1998.

[10] P. Fraternali. Tools and approaches for developing data-
intensive applications: A survey. ACM Computing Surveys,
31(3):227 263, 1999.

[11] A. Ginige and S. Murugesan. Web Engineering: An Intro-
duction. IEEE Multimedia, Special Issue on Web Engineer-
ing, 8(1):14–18, March 2001.

[12] IBM.
http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/, 2003.

[13] D. B. Ingham, S. J. Caughey, and M. Little. Supporting
highly manageable Web services. In Proceedings of the
6th International World Wide Web Conference, Santa Clara,
California, number 29 in Computer Networks and ISDN
Systems, page 1405 1416. Elsevier Science, 1997.

[14] T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM:
A Methodology for Structured Hypermedia Design. Com-
munications of the ACM, 38(8):34–43, August 1995.

[15] C. Kerer and E. Kirda. Layout, Content and Logic Sepa-
ration in Web Engineering. In Proceedings of the 9th In-
ternational World Wide Web Conference, 3rd Web Engineer-
ing Workshop, Amsterdam, Netherlands, May 2000, number
2016 in Lecture Notes in Computer Science, page 135 147.
Springer Verlag, 2001.

[16] C. Kerer, E. Kirda, M. Jazayeri, and R. Kurmanowytsch.
Building XML/XSL-Powered Web Sites: An Experience
Report. In Proceedings of the 25th International Com-
puter Software and Applications Conference (COMPSAC),
Chicago, IL, USA. IEEE Computer Society Press, October
2001.

[17] E. Kirda. Engineering Device-Independent Web Services.
PhD thesis, Technical University of Vienna, 2002.

[18] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz. Experi-
ences in Engineering Flexible Web Services. IEEE Multi-
media, 8(1):58–65, April-June January - March 2001.

[19] H. W. Lie and J. Saarela. Multipurpose Web Publishing: Us-
ing HTML, XML, and CSS. Communications of the ACM,
42(10), October 1999.

[20] S. Mazzocchi. The Cocoon Project Home Page,
http://xml.apache.org/cocoon/, 1999-2000.

[21] M. W. Schranz. Management process of WWW services:
An Experience Report. In Proceedings of the 9�� Inter-
national Conference on Software Engineering and Knowl-
edge Engineering (SEKE ’97),Madrid, Spain, pages 16–23.
Knowledge Systems Institute, June 1997.

[22] D. Schwabe and G. Rossi. The Object-Oriented Hypermedia
Design Model. Communications of the ACM, 38(8):45–6,
August 1995.

[23] Sun. Implementing Services on Demand with the SUN Open
Net Environment – Sun ONE. Technical report, Sun Mi-
crosystems.

[24] S. Thoene, R. Depke, and G. Engels. Process-Oriented Flex-
ible Composition of Web Services with UML. In Proceed-
ings of the Joint Workshop on Conceptual Modeling Ap-
proaches for e-Business, (eCOMO 2002, at ER 2002 con-
ference), Temper, Finland, October 2002.

[25] W3C.
Simple Object Access Protocol V1.1 -
http://www.w3.org/TR/SOAP. Technical report, 2000.

[26] W3C.
XML Protocol Activity Home Page -
http://www.w3.org/2000/xp, 2001.


